Van Mechelen, M., Smith, R. C., Schaper, M.-M. A., Tamashiro, M. A., Bilstrup, K.-E. K., Lunding, M. S., Petersen, M. G. & Iversen, O. S. (2022).
Emerging Technologies in K-12 Education: A Future HCI Research Agenda.
ACM Transactions on Computer-Human Interaction,
30(3), Artikel 47.
https://doi.org/10.1145/3569897
Vanegas, H., Cabarcas, D.
& Aranha, D. F. (2023).
Privacy-Preserving Edit Distance Computation Using Secret-Sharing Two-Party Computation. I A. Aly & M. Tibouchi (red.),
Progress in Cryptology – LATINCRYPT 2023: 8th International Conference on Cryptology and Information Security in Latin America, LATINCRYPT 2023, Quito, Ecuador, October 3–6, 2023, Proceedings (s. 67-86). Springer.
https://doi.org/10.1007/978-3-031-44469-2_4
Valsted, F. M., Nielsen, C. V. H., Jensen, J. Q., Sonne, T.
& Jensen, M. M. (2017).
Strive: Exploring Assistive Haptic Feedback on the Run. I M. Brereton, D. Vyas, A. Soro, B. Ploderer, J. Waycott & A. Morrison (red.),
Proceedings of the 29th Australian Computer-Human Interaction Conference: Human-Nature, OzCHI 2017 (s. 275-284). Association for Computing Machinery.
https://doi.org/10.1145/3152771.3152801
Uhrmacher, A. M.
, Schulz, H.-J., Schumann, H., Schwabe, L. & Timmermann, D. (2009).
Regenerative Systems - Challenges and Opportunities for Modeling, Simulation, and Visualization. I G. Stea, J. Mairesse & J. Mendes (red.),
Proceedings of the 4th International Conference on Performance Evaluation Methodologies and Tools Artikel 45.
https://doi.org/10.4108/ICST.VALUETOOLS2009.7907
Tziavelis, N., Giannakopoulos, I., Doka, K., Koziris, N.
& Karras, P. (2019).
Equitable Stable Matchings in Quadratic Time. I H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox & R. Garnett (red.),
Advances in Neural Information Processing Systems 32 (NIPS 2019): Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019 (Bind 32, s. 455-465). Curran Associates, Inc..
https://papers.nips.cc/paper/8337-equitable-stable-matchings-in-quadratic-time
Tzavelis, N., Giannakopoulos, I., Johansen, R. Q., Doka, K., Koziris, N.
& Karras, P. (2020).
Fair Procedures for Fair Stable Marriage Outcomes. I
AAAI 2020 - 34th AAAI Conference on Artificial Intelligence (Bind 34, no. 5, s. 7269-7276). AAAI Press.
https://doi.org/10.1609/aaai.v34i05.6218
Turkmen, R., Gelmez, Z. E., Batmaz, A. U., Stuerzlinger, W., Asente, P., Sarac, M.
, Pfeuffer, K. & Machuca, M. D. B. (2024).
EyeGuide & EyeConGuide: Gaze-based Visual Guides to Improve 3D Sketching Systems. I
CHI 2024 - Proceedings of the 2024 CHI Conference on Human Factors in Computing Sytems Artikel 178 Association for Computing Machinery.
https://doi.org/10.1145/3613904.3641947
Tunç, H. C., Abdulla, P. A., Chakraborty, S., Krishna, S., Mathur, U.
& Pavlogiannis, A. (2023).
Optimal Reads-From Consistency Checking for C11-Style Memory Models.
Proceedings of the ACM on Programming Languages ,
7(PLDI), 761–785. Artikel 137.
https://doi.org/10.1145/3591251
Tsourakakis, C. E., Mitzenmacher, M.
, Larsen, K. G., Blasiok, J., Lawson, B., Nakkiran, P. & Nakos, V. (2018).
Predicting Positive and Negative Links with Noisy Queries: Theory Practice. arxiv.org.
http://arxiv.org/abs/1709.07308
Tsitsulin, A.
, Mottin, D., Karras, P., Bronstein, A. & Müller, E. (2019).
Spectral graph complexity. I L. Liu & R. White (red.),
The Web Conference 2019 - Companion of the World Wide Web Conference, WWW 2019 (s. 308-309). Association for Computing Machinery.
https://doi.org/10.1145/3308560.3316589
Tsitsulin, A., Munkhoeva, M.
, Mottin, D., Karras, P., Bronstein, A., Oseledets, I. & Müller, E. (2020).
The Shape of Data: Intrinsic Distance for Data Distributions. Afhandling præsenteret på The International Conference on Learning Representations (ICLR), Ababa, Etiopien.
Tsitsulin, A., Munkhoeva, M.
, Mottin, D., Karras, P., Oseledets, I. & Mueller, E. (2021).
FREDE: Anytime Graph Embeddings.
Proceedings of the VLDB Endowment,
14(6), 1102-1110.
https://doi.org/10.14778/3447689.3447713
Tsirogiannis, C., Sandel, B. S. & Kalvisa, A. (2014).
New Algorithms for Computing Phylogenetic Biodiversity. I D. Brown & B. Morgenstern (red.),
Algorithms in Bioinformatics: 14th International Workshop, WABI 2014, Wroclaw, Poland, September 8-10, 2014. Proceedings (s. 187-203). Springer VS.
https://doi.org/10.1007/978-3-662-44753-6_15
Truong, T. T., Airao, J., Hojati, F., Ilvig, C. F., Azarhoushang, B.
, Karras, P. & Aghababaei, R. (2024).
Data-driven prediction of tool wear using Bayesian regularized artificial neural networks.
Measurement: Journal of the International Measurement Confederation,
238, Artikel 115303.
https://doi.org/10.1016/j.measurement.2024.115303
Truong, T. T., Airao, J., Fattahi, S., Azarhoushang, B.
, Karras, P. & Aghababaei, R. (2025).
Image-based machine learning model for tool wear estimation in milling Inconel 718.
Wear, Artikel 205865. Advance online publication.
https://doi.org/10.1016/j.wear.2025.205865
Truica, C.-O., Apostol, E. S., Stefu, T.
& Karras, P. (2021).
A Deep Learning Architecture for Audience Interest Prediction of News Topic on Social Media. I Y. Velegrakis, D. Zeinalipour-Yazti, P. K. Chrysanthis & F. Guerra (red.),
Advances in Database Technology - EDBT 2021: 24th International Conference on Extending Database Technology, Proceedings (s. 588-599). openproceedings.org.
https://doi.org/10.5441/002/edbt.2021.69
Trittenbach, H., Böhm, K.
& Assent, I. (2020).
Active Learning of SVDD Hyperparameter Values. I G. Webb, Z. Zhang, V. S. Tseng, G. Williams, M. Vlachos & L. Cao (red.),
Proceedings - 2020 IEEE 7th International Conference on Data Science and Advanced Analytics, DSAA 2020 (s. 109-117). Artikel 9260103 IEEE.
https://doi.org/10.1109/DSAA49011.2020.00023