Soden, R., Ribes, D., Jack, M., Sutherland, W., Khovanskaya, V., Avle, S., Sengers, P.
& Bødker, S. (2019).
Fostering Historical Research in CSCW & HCI. I
CSCW 2019 Companion - Conference Companion Publication of the 2019 Computer Supported Cooperative Work and Social Computing (s. 517-521). Association for Computing Machinery.
https://doi.org/10.1145/3311957.3359436
Afshani, P., Fagerberg, R., Hammer, D., Jacob, R., Kostitsyna, I., Meyer, U., Penschuck, M.
& Sitchinava, N. (2019).
Fragile complexity of comparison-based algorithms. I M. A. Bender, O. Svensson & G. Herman (red.),
27th Annual European Symposium on Algorithms, ESA 2019 Artikel 2 Dagstuhl Publishing.
https://doi.org/10.4230/LIPIcs.ESA.2019.2
Thiel, S.-K., Falk Olesen, J., Halskov, K. & Larsen-Ledet, I. (2019).
Group Dynamics in Gameful Collaborative Innovation Processes. I H. Nakanishi, H. Egi, I.-A. Chounta, H. Takada, S. Ichimura & U. Hoppe (red.),
Collaboration Technologies and Social Computing (s. 222-231). Springer.
https://doi.org/10.1007/978-3-030-28011-6_16
Birkedal, L., Bizjak, A., Clouston, R., Grathwohl, H. B., Spitters, B. & Vezzosi, A. (2019).
Guarded Cubical Type Theory.
Journal of Automated Reasoning,
63(2), 211-253.
https://doi.org/10.1007/s10817-018-9471-7,
https://doi.org/10.1007/s10817-018-9471-7
Saatci, B., Rädle, R., Rintel, S., O'Hara, K.
& Klokmose, C. N. (2019).
Hybrid Meetings in the Modern Workplace: Stories of Success and Failure. 45-61. Afhandling præsenteret på International Conference on Collaboration and Technology, Kyoto, Japan.
Mathisen, A., Horak, T.
, Klokmose, C. N., Grønbæk, K. & Elmqvist, N. (2019).
InsideInsights: Integrating Data-Driven Reporting in Collaborative Visual Analytics.
Computer Graphics Forum,
38(3), 649-661.
https://doi.org/10.1111/cgf.13717
Arge, L., Grønlund, A., Svendsen, S. C. & Tranberg, J. (2019).
Learning to find hydrological corrections. I F. Banaei-Kashani, G. Trajcevski, R. H. Güting, L. Kulik & S. Newsam (red.),
27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems (SIGSPATIAL '19) (s. 464-467). Association for Computing Machinery.
https://doi.org/10.1145/3347146.3359095
Schulz, H.-J., Röhlig, M., Nonnemann, L., Aehnelt, M., Diener, H., Urban, B. & Schumann, H. (2019).
Lightweight Coordination of Multiple Independent Visual Analytics Tools. I A. Kerren, C. Hurter & J. Braz (red.),
VISIGRAPP 2019 - Proceedings of the 14th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (Bind 2, s. 106-117). SCITEPRESS Digital Library.
https://doi.org/10.5220/0007571101060117
Grønlund, A., Kamma, L., Larsen, K. G., Mathiasen, A. & Nelson, J. (2019).
Margin-Based Generalization Lower Bounds for Boosted Classifiers. I H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox & R. Garnett (red.),
Advances in Neural Information Processing Systems 32 (NIPS 2019) (Bind 32). Neural Information Processing Systems Foundation.
https://arxiv.org/abs/1909.12518
Vadicamo, L.
, Mic, V., Falchi, F. & Zezula, P. (2019).
Metric Embedding into the Hamming Space with the n-Simplex Projection. I G. Amato, C. Gennaro, V. Oria & M. Radovanovic (red.),
Similarity Search and Applications - 12th International Conference, SISAP 2019, Proceedings (s. 265-272). Springer.
https://doi.org/10.1007/978-3-030-32047-8_23
André, É., Bloemen, V., Petrucci, L.
& Pol, J. V. D. (2019).
Minimal-Time Synthesis for Parametric Timed Automata. I L. Zhang & T. Vojnar (red.),
Tools and Algorithms for the Construction and Analysis of Systems - 25th International Conference, TACAS 2019, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Proceedings: 25th International Conference, TACAS 2019, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2019, Prague, Czech Republic, April 6–11, 2019, Proceedings (Bind II, s. 211-228). Springer.
https://doi.org/10.1007/978-3-030-17465-1_12
Juul, M., Madsen, T., Guo, Q., Bertl, J., Hobolth, A., Kellis, M.
& Pedersen, J. S. (2019).
ncdDetect2: Improved models of the site-specific mutation rate in cancer and driver detection with robust significance evaluation.
Bioinformatics,
35(2), 189-199.
https://doi.org/10.1093/bioinformatics/bty511
Damgård, I. B., Escudero Ospina, D. E., Frederiksen, T. K., Keller, M.
, Scholl, P. & Volgushev, N. (2019).
New Primitives for Actively-Secure MPC over Rings with Applications to Private Machine Learning. I
Proceedings - 2019 IEEE Symposium on Security and Privacy, SP 2019 (s. 1102-1120). Artikel 8835310 IEEE.
https://doi.org/10.1109/SP.2019.00078
Eskildsen, S., Iranzo, A.
, Stokholm, M., Staer, K., Ostergaard, K., Eroles, M.
, Otto, M., Svendsen, K., Pla, A., Vilas, D.
, Borghammer, P., Santamaria, J.
, Moller, A., Gaig, C.
, Brooks, D., Tolosa, E.
, Ostergaard, L. & Pavese, N. (2019).
Occurrence of brain capillary dysfunction in patients with REM sleep behavior disorder. S786-S787. Abstract fra International Congress of Parkinson's Disease and Movement Disorders, Nice, Frankrig.
Piras, E. M., Cabitza, F., Lewkowicz, M.
& Bannon, L. (2019).
Personal Health Records and Patient-Oriented Infrastructures: Building Technology, Shaping (New) Patients, and Healthcare Practitioners.
Computer Supported Cooperative Work: CSCW: An International Journal,
28(6), 1001-1009.
https://doi.org/10.1007/s10606-019-09364-x
Safavi, T., Belth, C., Faber, L.
, Mottin, D., Müller, E. & Koutra, D. (2019).
Personalized Knowledge Graph Summarization: From the Cloud to Your Pocket. 528-537. Afhandling præsenteret på IEEE International Conference on Data Mining, Beijing, Kina.
https://web.eecs.umich.edu/~dkoutra/papers/19_ICDM_GLIMPSE-CR.pdf
Agarwal, A.
, Dowsley, R., McKinney, N. D., Wu, D., Lin, C. T., Cock, M. D. & Nascimento, A. (2019).
Privacy-Preserving Linear Regression for Brain-Computer Interface Applications. I Y. Song, B. Liu, K. Lee, N. Abe, C. Pu, M. Qiao, N. Ahmed, D. Kossmann, J. Saltz, J. Tang, J. He, H. Liu & X. Hu (red.),
Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018 (s. 5277-5278). Artikel 8621861 IEEE.
https://doi.org/10.1109/BigData.2018.8621861