
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Mechanized Reasoning about a Capability Machine
Aïna Linn Georges
Aarhus University
ageorges@cs.au.dk

Alix Trieu
Aarhus University
alix.trieu@cs.au.dk

Lars Birkedal
Aarhus University
birkedal@cs.au.dk

Abstract
Capability machines are promising targets for secure com-
pilers since capabilities can be used to enforce abstractions
that are usually expected for high-level languages, such as
well-bracketed control-flow (WBCF) and local state encap-
sulation (LSE). We present the first formalization of a capa-
bility machine that supports mechanized reasoning about
deep semantic properties, including WBCF and LSE. Our
formalization is done in the Coq implementation of Iris, a
state-of-the-art concurrent higher-order separation logic,
and includes a formalization of the logical relation defined
by Skorstensgaard et al. [15], which can used to prove WBCF
and LSE.

Keywords keyword1, keyword2, keyword3

1 Introduction
Capability machines allow for fine grained control over the
authority of memory [14, 18]. At the machine level, pointers
are replaced by capabilities, to which is attached a range of
authority and a permission. When the machine executes an
instruction it dynamically checks that the instruction uses a
capability within its range of authority. Capability machines
are promising targets for secure compilers because these
dynamic checks can be used to enforce abstractions that
are usually expected for high-level languages, such as well-
bracketed control-flow (WBCF) and local state encapsulation
(LSE).

We present the first formalization of a capability machine
that supports mechanized reasoning about deep semantic
properties, including WBCF and LSE.
Our formalization builds upon earlier work of Skorsten-

gaard et al. [15] and [16], who present two different capa-
bility machines and calling conventions that enforce well-
bracketed control flow, and methods for defining and rea-
soning about capability machines. In each case, they define
a logical relation to capture a semantic notion of capability
safety and use it to prove WBCF and LSE.
The logical relations in [15] and [16] are so-called step-

indexed Kripke logical relations, which means that they are
indexed over recursively-defined worlds, which contain de-
scriptions of invariants of the memory of the machine. It is
well-known that it is non-trivial to define andworkwith such
step-indexed Kripke logical relations [1, 2]. Therefore we do

PL’18, January 01–03, 2018, New York, NY, USA
2018.

not formalize the logical relations of Skorstengaard et al. di-
rectly, but rather give a more abstract logical definition of the
logical relations in the Iris program logic framework [7–10],
which comes with built-in support for abstract reasoning
about recursion (qua the later modality and Löb induction)
and invariants. Such a logical approach to defining logical
relations has been used successfully before for logical rela-
tions for typed high-level languages (e.g., [3, 6, 13, 17]); here
we use it for the first time for a low-level untyped machine
language. Another reason for using Iris is that we can use
the Coq implementation of Iris and the Iris proof mode [11]
to mechanize our development.

In summary, we present Iris formalizations of

• a program logic for reasoning about capability ma-
chine programs.

• the logical relation from [15], which captures capa-
bility safety and which can be used to reason about
examples that rely on WBCF and LSE.

Currently, almost all of the technical development is mech-
anized in Coq using the Coq implementation of Iris. The
mechanization presently consists of 5.8K lines of spec and
15K lines of proof as reported by coqwc. Its substantial size
can probably be reduced by better use of tactics. However,
such a mechanization will always be non-trivial due to the
nature of the capability machine with dynamic checks and
multiple ways in which instructions can fail.

2 A Program Logic for a Capability
Machine

In this section we give a brief overview of how we define a
program logic for reasoning about the capability machine
from [15] in the Iris framework.
While Iris is a framework and supports many languages,

it is geared towards models of higher-level languages, which
abstract from the fact that programs are stored in memory,
and hence come equipped with notions of expressions and
values, in addition to the program memory. In contrast, our
low-level capability machine model has no notion of expres-
sion and values, it just consists of a memory and a register
file. The program counter register contains a pointer to an
address in memory. That address in turn will contain an
integer, which can then be decoded to a machine instruction,
such as Load, Store, Jump, etc. Once an instruction has been
executed, the program counter is updated and will then point
to the next instruction in memory.

1



111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

PL’18, January 01–03, 2018, New York, NY, USA Aïna Linn Georges, Alix Trieu, and Lars Birkedal

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

To capture the semantics of the capability machine in
the Iris framework, we introduce an abstract notion of an
instruction, whose operational meaning is to execute the in-
struction the program counter points to, and abstract notions
of values, for halted and failed configurations.

Next we use the Iris framework to prove Hoare triples for
each instruction. As in [5], we define a points-to predicate
for registers, denoted r 7→r w . Since a capability machine
replaces pointers with capabilities, we replace the conven-
tional points-to predicate of separation logic for pointers
with a points-to predicate with a permission attached to
it, denoted a 7→a [p]w . This predicate states that address a
points to wordw with permission p. The permission restricts
how the memory may be updated at address a. For instance,
if a 7→a [RX]w , then the RX (ReadExecute) permission gives
us permission to read from address a, to execute w, but it
does not permit us to write to address a.

The Hoare triples for basic instructions take the following
form

run time conditions ∧ decode(w) = instr ⇒
{{{PC 7→r ((p,д),b, e,a) ∗ a 7→a [p]w ∗ ...}}}

Instr Executable

{{{PC 7→r ((p,д),b, e,a + 1) ∗ a 7→a [p]w ∗ ...}}}

Here, the runtime conditions correspond to the dynamic
checks done by the capability machine, and Instr Executable
is the abstract expression for executing the next instruction
in memory. This form of Hoare triple is similar to the one
used in [5] but unlike [5], the decoding function is in our
case assumed.

Here we have only described the format for Hoare triples
for individual instructions; we use a trick involving the stan-
dard bind rule of Iris to reason about programs consisting of
many instructions, but we omit the description of that from
this extended abstract.

3 Logical Relation
We now outline how we define a unary logical relation in
Iris that captures capability safety. We define a value rela-
tion V as an Iris relation of type World → Word → iProp,
where World is a collection of state transition systems used
to reason about local state andWord is the type of capability
machine words. It is well-known how state transistion sys-
tems can be defined in Iris via Iris’ notion of monoids and
ghost state [9].
Our notion of World is simpler and more abstract than

the one used in the concrete logical relation given by [15],
where the World is a collection of invariants describing the
behaviour of all memory, not just local state. We can use a
simpler more abstract notion of world because the Iris model
takes care of the world circularity problem. In particular,
we make use of Iris’ higher-order ghost state — the ability
to store arbitrary higher-order separation-logic predicates

in ghost variables — to define the validity of the regions a
capability has authority over. The semantics of Iris’ higher-
order ghost state involves solving a recursive equation [7].
Logical accounts of logical relations for high level lan-

guages with references have used Iris invariants to define
semantic validity of reference locations, see, e.g., [12]. This
approach suffices for reasoning about examples involving
local state encapsulation in languages where all calls are
well-bracketed.

In our case, however, calls are not always well-bracketed
(since the capability machine includes general jump instruc-
tions). Skorstengaard et al. [15] distinguishes between well-
bracketed and non well-bracketed calls by using notions
of public- and private future worlds, following [4]. Iris in-
variants do not make such a distinction and thus invariants
alone are not sufficient for our purposes. Instead we explicitly
define notions of public and private future world relations,
rather than relying on Iris’ implicit future world, and use
these notions to distinguish between well-bracketed and non
well-bracketed calls. We use these relations in combination
with Iris’ higher-order ghost state, which allow us to save
a predicate by associating it to a unique ghost name. Using
that unique name, we are then able to refer to the saved
predicate somewhere else, and apply it to an appropriate
future world argument.

We prove the Fundamental Theorem of Logical Relations,
which roughly says that if we have a read-execute capabil-
ity, and it is capability safe to read it, then it is capability
safe to execute it (use it as a program counter). We then
use the fundamental theorem to prove functional correct-
ness of examples with calls to unknown adversary code and
whose correctness relies on local state encapsulation and
well-bracketed control flow.

In the future we plan to finish the remaining details of
the implementation, then use it as a starting point to prove
full abstraction of a compiler from a high level language to
our capability machine. Furthermore, it can also be used as
a starting point for exploring different kinds of capabilities.

Acknowledgments
This research was supported in part by the ModuRes Sapere
Aude Advanced Grant from The Danish Council for Indepen-
dent Research for the Natural Sciences (FNU) and by a Villum
Investigator grant (no. 25804), Center for Basic Research in
Program Verification (CPV), from the VILLUM Foundation.

References
[1] A. Ahmed, A. Appel, and R. Virga. 2002. A Stratified Semantics of

General References. In LICS.
[2] Lars Birkedal, Bernhard Reus, Jan Schwinghammer, Kristian Støvring,

Jacob Thamsborg, and Hongseok Yang. 2011. Step-Indexed Kripke
models over recursive worlds. In POPL.

[3] D. Dreyer, A. Ahmed, and L. Birkedal. 2011. Logical Step-Indexed
Logical Relations. LMCS 7, 2:16 (2011).

2



221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Short Title PL’18, January 01–03, 2018, New York, NY, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

[4] Derek Dreyer, Georg Neis, and Lars Birkedal. 2012. The impact of
higher-order state and control effects on local relational reasoning.
Journal of Functional Programming 22, 4-5 (2012), 477–528. https:
//doi.org/10.1017/S095679681200024X

[5] Jonas B. Jensen, Nick Benton, and Andrew Kennedy. 2013. High-level
Separation Logic for Low-level Code. SIGPLAN Not. 48, 1 (Jan. 2013),
301–314. https://doi.org/10.1145/2480359.2429105

[6] Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer.
2018. RustBelt: Securing the Foundations of the Rust Programming
Language. In POPL.

[7] Ralf Jung, Robbert Krebbers, Lars Birkedal, and Derek Dreyer. 2016.
Higher-order ghost state. In ICFP. 256–269.

[8] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars
Birkedal, and Derek Dreyer. 2018. Iris from the ground up: A modular
foundation for higher-order concurrent separation logic. Journal
of Functional Programming 28 (2018), e20. https://doi.org/10.1017/
S0956796818000151

[9] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron
Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris: Monoids and
Invariants as an Orthogonal Basis for Concurrent Reasoning. In POPL.
637–650.

[10] Robbert Krebbers, Ralf Jung, Aleš Bizjak, Jacques-Henri Jourdan, Derek
Dreyer, and Lars Birkedal. 2017. The essence of higher-order concur-
rent separation logic. In European Symposium on Programming (ESOP).

[11] Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive
Proofs in Higher-order Concurrent Separation Logic. In Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages (POPL 2017). ACM, New York, NY, USA, 205–217. https:
//doi.org/10.1145/3009837.3009855

[12] Robbert Krebbers, Amin Timany, and Lars Birkedal. 2017. Interactive
Proofs in Higher-Order Concurrent Separation Logic. In POPL.

[13] Morten Krogh-Jespersen, Kasper Svendsen, and Lars Birkedal. 2017. A
Logical Account of a Type-and-Effect System. In POPL.

[14] Henry M. Levy. 1984. Capability-Based Computer Systems. Digital
Press. https://homes.cs.washington.edu/~levy/capabook/

[15] Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. 2018. Rea-
soning About a Machine with Local Capabilities. In Programming
Languages and Systems, Amal Ahmed (Ed.). Springer International
Publishing, Cham, 475–501.

[16] Lau Skorstengaard, Dominique Devriese, and Lars Birkedal. 2019. Stk-
Tokens: Enforcing Well-bracketed Control Flow and Stack Encapsu-
lation Using Linear Capabilities. Proc. ACM Program. Lang. 3, POPL,
Article 19 (Jan. 2019), 28 pages. https://doi.org/10.1145/3290332

[17] Amin Timany, Léo Stefanesco, Morten Krogh-Jespersen, and Lars
Birkedal. 2018. A Logical Relation for Monadic Encapsulation of State:
Proving contextual equivalences in the presence of runST. Proc. ACM
Program. Lang. 2, POPL (Jan. 2018), to appear.

[18] R. N. M. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Ander-
son, D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie, S. J. Murdoch,
R. Norton, M. Roe, S. Son, and M. Vadera. 2015. CHERI: A Hybrid
Capability-System Architecture for Scalable Software Compartmen-
talization. In IEEE Symposium on Security and Privacy. IEEE, 20–37.
https://doi.org/10.1109/SP.2015.9

3

https://doi.org/10.1017/S095679681200024X
https://doi.org/10.1017/S095679681200024X
https://doi.org/10.1145/2480359.2429105
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/3009837.3009855
https://doi.org/10.1145/3009837.3009855
https://homes.cs.washington.edu/~levy/capabook/
https://doi.org/10.1145/3290332
https://doi.org/10.1109/SP.2015.9

	Abstract
	1 Introduction
	2 A Program Logic for a Capability Machine
	3 Logical Relation
	Acknowledgments
	References

