
PLDI’23

VMSL: A Separation Logic for
Mechanised Robust Safety of Virtual
Machines Communicating over FF-A
Zongyuan Liu, Sergei Stepanenko, Jean Pichon-Pharabod, Amin Timany, Aslan Askarov, Lars Birkedal

Hypervisors and Virtual Machines
• Allows one host machine to run multiple guest VMs

• Ensures VMs run as if on bare metal, with their own CPUs, registers,
memory etc.

• Provides isolation between VMs

• Allows controlled communication via hypercalls

VM0 VM1 VM2

Hypervisor

Arm machine

FF-A

Low privilege (EL1)

High privilege (EL2)

2

Context switching, memory
sharing, message passing
…

Memory Management of Hypervisors
• Controlling memory access of VMs is crucial for isolation

• Access control is implemented by address translation

• Page tables of VMs are managed by the hypervisor

3

Physical MemoryVirtual Memory (VM1) Virtual Memory (VM2)

Controlled by

the page table

of VM1

Controlled by

the page table

of VM2

Verifying Communicating VMs
Separation logic nicely captures domain concepts:

4

Hypervisor Separation logic

Communicating VMs Cooperative threads

Permissions: access, share, … Ownership

Sharing memory pages Transferring ownership

Memory isolation Separation

Contributions
• Formalised a substantial part of Arm’s FF-A specification as an operational

semantics

•

• Developed a separation logic for modular reasoning about VMs with communication

•

• Proved two logical relations to reason about combination of known and unknown
VMs

• All mechanised in Coq with the Iris framework

instr ::= 𝚖𝚘𝚟 𝚛𝟷 ← 𝚛𝟸 | 𝚊𝚍𝚍 𝚛𝟷 𝚛𝟸 | 𝚕𝚍𝚛 𝚛𝟷 [𝚛𝟸] | ⋯ | 𝚑𝚟𝚌

{r1 ↦ _ * r2 ↦ 42} 𝚖𝚘𝚟 𝚛𝟷 ← 𝚛𝟸 {r1 ↦ 42 * r2 ↦ 42}

5

VM-local Reasoning of Context Switching FF-A
hvc with R0 = Run, R1 = 1

Resumption conditions for lightweight resources transfer

6

VM0 VM1

Run

Yield

P * RC@0 Q

Assert (transfer) QAssume (obtain) Q
 Q

Higher-order & guarded recursion -
Allowing session type like protocols
with embedded RCs, e.g. ping-pong

Reasoning about Memory Sharing FF-A
Reasoning with standard points-tos

7

VM0 VM1

RUN

Yield

Run

Share p w/1

Retrieve p

Write 42 to p

Read p

 p ↦mem _ * p ↦pgt {0}
* RC@0 (p ↦mem 42)

p ↦mem 42

p ↦mem _ * p ↦pgt {0,1}

Should get 42

Robust Safety with Unknown VMs

8

VM0 VM1

RUN

Yield

Run

Share p w/1

Retrieve p

Write 42 to p

Run

VM2

Yield

Read p

VM2 doesn’t have
access to p

Should still get 42!

???

Reasoning about Unknown VMs
• Captured and proved using logical relations

• Intuition: a VM can only change memory it has (or can get) access to

• Shape of theorem:

• Parametrised by state of the pagetable and in-flight memory sharing
transactions

• One challenge is to account for footprint resources required by all hypercalls

• No assumptions on contents of memory (code is in memory)

• Two mutually compatible LRs for unknown primary and unknown secondary VMs

∀i, pgt, trans . FootPrint(pgt, trans) ⊢ WP m@i {m . ⊤ }

9

Safe to run VM i

Conclusion
• Formalised a substantial part of FF-A specification as an operational

semantics

• As implemented by Google’s Hafnium hypervisor

• Developed a separation logic for modular reasoning about VMs with
communication

• Proved two logical relations to capture robust safety

• Verified key scenarios of VMs using FF-A hypercalls in the presence of
adversarial, unknown code

• All mechanised in Coq with the Iris framework

10

