VMSL.: A Separation Logic for
Mechanised Robust Safety of Virtual
Machines Communicating over FF-A

Zongyuan Liu, Sergei Stepanenko, Jean Pichon-Pharabod, Amin Timany, Aslan Askarov, Lars Birkedal

/v

PLDI'23 AARHUS UNIVERSITY

Hypervisors and Virtual Machines

 Allows one host machine to run multiple guest VMs

* Ensures VMSs run as if on bare metal, with their own CPUs, registers,
memory etc.

* Provides isolation between VMs

 Allows controlled communication via hypercalls

High privilege (EL2) Hypervisor Context switching, memory
sharing, message passing

Arm machine

Memory Management of Hypervisors

e Controlling memory access of VMs is crucial for isolation
» Access control is implemented by address translation

« Page tables of VMs are managed by the hypervisor

Virtual Memory (VM1) Physical Memory Virtual Memory (VM2)

Controlled by
the page table
of VM2

Controlled by'
the page table
of VM1

Verifying Communicating VMs

Separation logic nicely captures domain concepts:

Hypervisor

Separation logic

Communicating VMs

Cooperative threads

Permissions: access, share, ...

Ownership

Sharing memory pages

Transferring ownership

Memory isolation

Separation

Contributions

 Formalised a substantial part of Arm’s FF-A specification as an operational
semantics

e instr:=movrl «r2|addrlr2|1ldr rl [r2]]| --- | hvc
* Developed a separation logic for modular reasoning about VMs with communication
e (= _*rn— 42} movrl « 12 {rj— 42%r, » 42}

* Proved two logical relations to reason about combination of known and unknown
VMs

X
« All mechanised in Coq with the Iris framework Ir(S

VM-local Reasoning of Context Switching FF-A

hve with RO = Run, Rl

1

Resumption conditions for lightweight resources transfer

P*RC@0 Q

Run

Assume (obtain) O

»E

Higher-order & guarded recursion -
Allowing session type like protocols
with embedded RCs, e.g. ping-pong

Assert (transfer) O

Yield

Reasoning about Memory Sharing FF-A

Reasoning with standard points-tos

= -

Share p w/1 P " mem — *p = et {O}

| *RC@0 (p —,,, 42) 5

Run ’i
: Retrieve p

1 P |_>mem—>kp |_>pgt {0’1}
: Write 42 to p
|< Yield
p I_>mem 42 :

Read p
[Swoidgetsz

Robust Safety with Unknown VMs

Share p w/1

Run

>

Retrieve p

Write 42 to p

Yield

Run

29?2

Read p

Srogsugee2

Yield

VM2 doesn’t have
access top

Reasoning about Unknown VMs

» Captured and proved using logical relations

* Intuition: a VM can only change memory it has (or can get) access to

Safe to run VM i

rmm—
 Shape of theorem: Vi, pgt, trans . FootPrint(pgt, trans) - WP m@i {m. T }

« Parametrised by state of the pagetable and in-flight memory sharing
transactions

* One challenge is to account for footprint resources required by all hypercalls
* No assumptions on contents of memory (code is in memory)

e Two mutually compatible LRs for unknown primary and unknown secondary VMs

Conclusion

Formalised a substantial part of FF-A specification as an operational
semantics

« As implemented by Google’s Hafnium hypervisor

Developed a separation logic for modular reasoning about VMs with
communication

Proved two logical relations to capture robust safety

» Verified key scenarios of VMs using FF-A hypercalls in the presence of
adversarial, unknown code

All mechanised in Coq with the Iris framework

10

