An axiomatic basis for computer programming ... on the relaxed Arm-A architecture: the $A x S L$ logic

Angus Hammond*, Zongyuan Liu ${ }^{\dagger}$, Thibaut Pérami*, Peter Sewell*, Lars Birkedal ${ }^{\dagger}$, Jean Pichon-Pharabod ${ }^{\dagger}$
*University of Cambridge, ${ }^{\dagger}$ Aarhus University
January 18, 2024

Motivation

- We want to reason about programs in weak memory settings, like Arm-A

Motivation

- We want to reason about programs in weak memory settings, like Arm-A
- We have an authoritative model for user-mode Arm-A

Motivation

- We want to reason about programs in weak memory settings, like Arm-A
- We have an authoritative model for user-mode Arm-A
- But we want to reason about programs in a compositional way

Motivation

- We want to reason about programs in weak memory settings, like Arm-A
- We have an authoritative model for user-mode Arm-A
- But we want to reason about programs in a compositional way
- And the Arm-A model is very global

Why it is hard: Load Buffering

From initial state $x=y=0$, final state $r_{1}=r_{2}=1$ is allowed.

Incompatability of simple logics and LB

Expect both:

Incompatability of simple logics and LB

Expect both:

$$
\begin{aligned}
& \left\{P * r_{1} \leftrightarrows v\right\} \\
& r_{1}:=\operatorname{ldr}[x] \\
& \left\{P * r_{1} \mapsto v^{\prime}\right\}
\end{aligned}
$$

Resources passed between program points

Incompatability of simple logics and LB

Expect both:

$$
\begin{aligned}
& \left\{P * r_{1} \mapsto v\right\} \\
& r_{1}:=\operatorname{ldr}[x] \\
& \left\{P * r_{1} \mapsto v^{\prime}\right\}
\end{aligned}
$$

Resources passed from writes to reads

Incompatability of simple logics and LB

Logics for RC11 don't suffer this issue as RC11 has (po $\cup \mathrm{rf}$) acyclic.

Existing WM models

- Operational models
- Naturally operational
- Explicit speculation and instruction rewinding

Existing WM models

- Operational models
- Naturally operational
- Explicit speculation and instruction rewinding
- Promising models
- Fairly operational
- LB requires tricky to reason about certification step

Existing WM models

- Operational models
- Naturally operational
- Explicit speculation and instruction rewinding
- Promising models
- Fairly operational
- LB requires tricky to reason about certification step
- Axiomatic models

■ Succinct and straightforward to formalise

- Not at all operational

Global nature of axiomatic semantics

- Axiomatic models are so global because the consistency check is done after program execution completes

Global nature of axiomatic semantics

- Axiomatic models are so global because the consistency check is done after program execution completes
- We would like to use the information from the consistency check incrementally as the program executes

Global nature of axiomatic semantics

- Axiomatic models are so global because the consistency check is done after program execution completes
- We would like to use the information from the consistency check incrementally as the program executes
- But we cannot easily check consistency of partial executions, because an execution could be made inconsistent by later events

Opax Semantics

- In the Opax semantics, we instead guess a consistent whole program memory event graph before beginning execution

Opax Semantics

- In the Opax semantics, we instead guess a consistent whole program memory event graph before beginning execution
- Then we incrementally check the guessed graph matches program behaviour

Opax Semantics

- Initialisation
$e \longrightarrow\langle G, \emptyset, e\rangle$ where G is a memory event graph consistent with the axiomatic model

Opax Semantics

- Initialisation
$e \longrightarrow\langle G, \emptyset, e\rangle$ where G is a memory event graph consistent with the axiomatic model
- Matching an event $\langle G, F, r:=\operatorname{ldr}[a]:: e\rangle \longrightarrow\langle G, F \cup\{R$ a $v\}, e\rangle$ where R a $v \in G \backslash F$

Opax Semantics

- Initialisation
$e \longrightarrow\langle G, \emptyset, e\rangle$ where G is a memory event graph consistent with the axiomatic model
- Matching an event $\langle G, F, r:=\operatorname{ldr}[a]:: e\rangle \longrightarrow\langle G, F \cup\{R$ a $v\}, e\rangle$ where R a $v \in G \backslash F$

Opax Semantics

- Initialisation
$e \longrightarrow\langle G, \emptyset, e\rangle$ where G is a memory event graph consistent with the axiomatic model
- Matching an event $\langle G, F, r:=\operatorname{ldr}[a]:: e\rangle \longrightarrow\langle G, F \cup\{R$ a $v\}, e\rangle$ where $R a v \in G \backslash F$

Overview of AxSL

- Iris program logic built above Opax semantics
- thread-modular reasoning about memory event graphs

Overview of AxSL

- Iris program logic built above Opax semantics
- thread-modular reasoning about memory event graphs

$$
\begin{aligned}
P, Q \in i \text { Prop }::= & (\text { Iris connectives }) \cdots \mid \\
& \xrightarrow{r \leftrightarrow} v @_{a}|\quad a \leftrightarrow P \quad| \quad\{P\} e\{Q\}_{\Phi} \mid \ldots
\end{aligned}
$$

Register value v comes from event a

Overview of AxSL

- Iris program logic built above Opax semantics
- thread-modular reasoning about memory event graphs

$$
P, Q \in i \text { Prop }::=\text { (Iris connectives) }
$$

Overview of AxSL

- Iris program logic built above Opax semantics
- thread-modular reasoning about memory event graphs

$$
\begin{aligned}
P, Q \in \text { iProp }::= & (\text { Iris connectives }) \cdots \mid \\
& r \mapsto v @ a|\quad a \leftrightarrow P \quad| \quad\{P\} e\{Q\}_{\phi} \mid \ldots
\end{aligned}
$$

sound resource passing along po

Overview of AxSL

- Iris program logic built above Opax semantics
- thread-modular reasoning about memory event graphs

$$
\begin{aligned}
& P, Q \in \text { iProp }::=(\text { Iris connectives }) \cdots \quad \mid \\
& r \stackrel{\mapsto}{r} v @ a|\quad a \leftrightarrow P| \\
& \text { modular reasoning }
\end{aligned} \begin{cases}\{P\} e\{Q\}_{\phi} \mid \ldots\end{cases}
$$

Overview of AxSL

- Iris program logic built above Opax semantics
- thread-modular reasoning about memory event graphs

$$
\begin{aligned}
& P, Q \in \text { iProp }::=\text { (Iris connectives) } \\
& r \mapsto v @ a \quad \mid \quad a \rightarrow P \\
& \{P\} e \underset{\sim}{\{Q\}_{\phi}} \mid \cdots \\
& \text { Hoare triple with } \\
& \text { per-location protocol } \\
& \Phi \in \text { addr } \rightarrow \text { val } \rightarrow \text { eid } \rightarrow \text { iProp }
\end{aligned}
$$

Proving MP in AxSL
a: str [data] 42
c: $r_{1}:=\operatorname{ldr}[f l a g]$
b: $\operatorname{str}_{\text {rel }}[f l a g] 1$
$\mathrm{d}: r_{2}:=\operatorname{ldr}\left[\right.$ data $\left.+r_{1}-r_{1}\right]$

Proving MP in AxSL

a: $\operatorname{str}[d a t a] 42$
$\downarrow \mathrm{po} ;[$ Rel $] \subseteq \mathrm{ob}$
b: $\operatorname{str}_{\text {rel }}[f l a g] 1$
c: $r_{1}:=\operatorname{ldr}[f / a g]$
addr \subseteq ob \downarrow
$\mathrm{d}: r_{2}:=\mathrm{ldr}\left[\right.$ data $\left.+r_{1}-r_{1}\right]$

Proving MP in AxSL

```
{ T }
a: \(\operatorname{str}\) [data] 42
```

b: str rel $[f l a g] 1$
$\{\cdots\}$

$$
\left\{\begin{array}{r}
r_{1} \mapsto v_{\text {flag }}^{@}{ }^{*} r_{2} \mapsto v_{\text {data }}^{@} * * \\
\left(v_{\text {flag }}=1 \Rightarrow v_{\text {data }}=42\right)
\end{array}\right\}
$$

Proving MP in AxSL

$\{丁\}$
 a:

The protocol Φ :
b:

$$
\begin{aligned}
& \Phi(\text { data }, v, e) \triangleq \operatorname{Initial}(e) \vee v=42 \\
& \Phi(f l a g, v, e) \triangleq \operatorname{Initial}(e) \vee\left(v=1 * \exists e^{\prime} . e^{\prime}: W \text { data } 42 \xrightarrow{\text { po }} e: W_{\text {rel }} \text { flag } 1\right)
\end{aligned}
$$

$$
\left(\quad\left(v_{\text {flag }}=1 \Rightarrow v_{\text {data }}=42\right) \int\right.
$$

Proving MP in AxSL

$$
\begin{aligned}
& \Phi(\text { data }, v, e) \triangleq \operatorname{Initial}(e) \vee v=42 \\
& \Phi(f l a g, v, e) \triangleq \operatorname{Initial}(e) \vee\left(v=1 * \exists e^{\prime} . e^{\prime}: W \text { data } 42 \xrightarrow{\text { po }} e: W_{\text {rel }} \text { flag } 1\right)
\end{aligned}
$$

\{ T \}
a: $\operatorname{str}[d a t a] 42$
b: str ${ }_{\text {rel }}[f l a g] 1$

$$
\mathrm{d}: r_{2}:=\operatorname{ldr}\left[\operatorname{data}+r_{1}-r_{1}\right]
$$

$\{\cdots\}$

$$
\left\{\begin{array}{r}
r_{1} \mapsto \\
v_{\text {flag }} @_{-} * r_{2} 山 v_{\text {data }} @_{-} * \\
\left(v_{\text {flag }}=1 \Rightarrow v_{\text {data }}=42\right)
\end{array}\right\}
$$

Proving MP in AxSL

$$
\begin{aligned}
& \Phi(\text { data }, v, e) \triangleq \operatorname{Initial}(e) \vee v=42 \\
& \Phi(\text { flag }, v, e) \triangleq \operatorname{lnitial}(e) \vee\left(v=1 * \exists e^{\prime} . e^{\prime}: \mathrm{W} \text { data } 42 \xrightarrow{\mathrm{po}} e: \mathrm{W}_{\text {rel }} \text { flag } 1\right)
\end{aligned}
$$

\{ T \}

a: str [data] 42
$\{\mathrm{a}: \mathrm{W}$ data $42 \underset{\sim}{\stackrel{\mathrm{po}}{\sim}} \cdot\}$
b: str rel $[f l a g] 1$ Proof obligation
Φ (data, 42, a)

$$
\left\{r_{1} \mapsto r_{2} r_{1}\right\}
$$

$$
\mathrm{c}: r_{1}:=\operatorname{ldr}[\text { flag }]
$$

$$
\mathrm{d}: r_{2}:=\operatorname{ldr}\left[\text { data }+r_{1}-r_{1}\right]
$$

$\{\cdots\}$

$$
\left\{\begin{array}{r}
r_{1} \mapsto v_{\text {flag }}^{@} * r_{2} \mapsto v_{\text {data }} @_{-}^{*} * \\
\left(v_{\text {flag }}=1 \Rightarrow v_{\text {data }}=42\right)
\end{array}\right\}
$$

Proving MP in AxSL

$$
\begin{aligned}
& \Phi(\text { data }, v, e) \triangleq \operatorname{Initial}(e) \vee v=42 \\
& \Phi(\text { flag }, v, e) \triangleq \operatorname{Initial}(e) \vee\left(v=1 * \exists e^{\prime} . e^{\prime}: W \text { data } 42 \xrightarrow{\mathrm{po}} e: \mathrm{W}_{\text {rel }} \text { flag } 1\right)
\end{aligned}
$$

\{ T \}
a: str [data] 42
$\{\mathrm{a}: \mathrm{W}$ data $42 \xrightarrow{\text { po }} \cdot\}$
b: $\operatorname{str}_{\text {rel }}[f l a g] 1$
$\left\{\begin{array}{l}a: W \text { data } 42 \xrightarrow{\text { po }} \text { b: } W_{\text {rel }} \text { flag } 1 * \\ \cdots\end{array}\right\}$
$\{\cdots\}$
Proof obligation
Ф(flag, $1, b$)

$$
\left\{r_{1} \mapsto r_{2} r_{1}\right\}
$$

$$
\mathrm{c}: r_{1}:=\operatorname{ldr}[\text { flag }]
$$

$$
\mathrm{d}: r_{2}:=\operatorname{ldr}\left[\text { data }+r_{1}-r_{1}\right]
$$

$$
\left\{\begin{array}{r}
r_{1} \mapsto v_{\text {flag }}^{@} * r_{2} \mapsto v_{\text {data }}^{@} * * \\
\left(v_{\text {flag }}=1 \Rightarrow v_{\text {data }}=42\right)
\end{array}\right\}
$$

Proving MP in AxSL

$$
\begin{aligned}
& \Phi(\text { data }, v, e) \triangleq \operatorname{Initial}(e) \vee v=42 \\
& \Phi(\text { flag }, v, e) \triangleq \operatorname{Initial}(e) \vee\left(v=1 * \exists e^{\prime} . e^{\prime}: W \text { data } 42 \xrightarrow{\mathrm{po}} e: \mathrm{W}_{\text {rel }} \text { flag } 1\right)
\end{aligned}
$$

\{ T \}
a: str [data] 42
$\{\mathrm{a}: \mathrm{W}$ data $42 \xrightarrow{\mathrm{po}} \cdot\}$
b: $\operatorname{str}_{\text {rel }}[f l a g] 1$
$\left\{\begin{array}{l}a: W \text { data } 42 \xrightarrow{\mathrm{po}} b: \mathrm{W}_{\text {rel }} \text { flag } 1 * \\ \cdots\end{array}\right\}$
$\{\cdots\}$

$$
\left\{\begin{array}{r}
r_{1} \mapsto \\
v_{\text {flag }} @_{-} * r_{2} \mapsto v_{\text {data }} @_{-}^{*} * \\
\left(v_{\text {flag }}=1 \Rightarrow v_{\text {data }}=42\right)
\end{array}\right\}
$$

Proving MP in AxSL

$$
\begin{aligned}
& \Phi(\text { data }, v, e) \triangleq \operatorname{Initial}(e) \vee v=42 \\
& \Phi(\text { flag }, v, e) \triangleq \operatorname{Initial}(e) \vee\left(v=1 * \exists e^{\prime} . e^{\prime}: W \text { data } 42 \xrightarrow{\mathrm{po}} e: \mathrm{W}_{\text {rel }} \text { flag } 1\right)
\end{aligned}
$$

\{ T \}
a: str [data] 42
$\{\mathrm{a}: \mathrm{W}$ data $42 \xrightarrow{\mathrm{po}} \cdot\}$
b: $\operatorname{str}_{\text {rel }}[f l a g] 1$
$\left\{\begin{array}{l}a: W \text { data } 42 \xrightarrow{\mathrm{po}} b: \mathrm{W}_{\text {rel }} \text { flag } 1 * \\ \cdots\end{array}\right\}$
$\{\cdots\}$

$$
\left\{\begin{array}{r}
r_{1} \mapsto \\
v_{\text {flag }} @_{-} * r_{2} \mapsto v_{\text {data }} @_{-}^{*} * \\
\left(v_{\text {flag }}=1 \Rightarrow v_{\text {data }}=42\right)
\end{array}\right\}
$$

Proving MP in AxSL

$$
\begin{aligned}
& \Phi(\text { data }, v, e) \triangleq \operatorname{Initial}(e) \vee v=42 \\
& \Phi(\text { flag }, v, e) \triangleq \operatorname{lnitial}(e) \vee\left(v=1 * \exists e^{\prime} . e^{\prime}: \mathrm{W} \text { data } 42 \xrightarrow{\mathrm{po}} e: \mathrm{W}_{\text {rel }} \text { flag } 1\right)
\end{aligned}
$$

\{ T \}
a: str [data] 42
$\{a: W$ data $42 \xrightarrow{\text { po }} \cdot\}$
b: $\operatorname{str}_{\text {rel }}[f l a g] 1$
$\left\{\begin{array}{l}a: W \text { data } 42 \xrightarrow{\text { po }} b: W_{\text {rel }} \text { flag } 1 * \\ \cdots\end{array}\right\}$
$\{\cdots\}$

$$
\left\{r_{1} \mapsto r_{2} r_{1}\right\}
$$

c: $r_{1}:=\operatorname{ldr}[f l a g]$

$$
\left\{\begin{array}{l}
c: R \text { flag } v_{\text {flag }} \xrightarrow{\text { po }} \cdot * \\
r_{1} \mapsto v_{\text {flag }} @ c * c \rightarrow \Phi\left(\text { flag }, v_{\text {flag }}, c\right) * \cdots
\end{array}\right\}
$$

$$
\mathrm{d}: r_{2}:=\mathrm{Id} r\left[d a t a+r_{1}-r_{1}\right]
$$

$$
\left\{\begin{array}{l}
c: R \text { flag } v_{\text {flag }} \xrightarrow{\text { addr }} d: R \text { data } v_{\text {data }} * \\
r_{1} \mapsto v_{\text {flag }} @ c * r_{2} \mapsto v_{\text {data }} @ d * c \leftrightarrow T_{*} \\
d \leftrightarrow\left(\Phi\left(\text { data }, v_{\text {data }}, d\right) * \Phi\left(\text { flag }, v_{\text {flag }}, c\right)\right)
\end{array}\right\}
$$

$$
\left\{\begin{aligned}
r_{1} \mapsto & v_{\text {flag }} @_{-} * r_{2} \mapsto v_{\text {data }} @_{-}^{*} \\
& \left(v_{\text {flag }}=1 \Rightarrow v_{\text {data }}=42\right)
\end{aligned}\right\}
$$

Proving MP in AxSL

$$
\begin{aligned}
& \Phi(\text { data }, v, e) \triangleq \operatorname{Initial}(e) \vee v=42 \\
& \Phi(\text { flag }, v, e) \triangleq \operatorname{lnitial}(e) \vee\left(v=1 * \exists e^{\prime} . e^{\prime}: \mathrm{W} \text { data } 42 \xrightarrow{\mathrm{po}} e: \mathrm{W}_{\text {rel }} \text { flag } 1\right)
\end{aligned}
$$

\{ T \}
a: str [data] 42
$\{a: W$ data $42 \xrightarrow{\text { po }} \cdot\}$
b: $\operatorname{str}_{\text {rel }}[f l a g] 1$
$\left\{\begin{array}{l}a: W \text { data } 42 \xrightarrow{\text { po }} b: W_{\text {rel }} \text { flag } 1 * \\ \cdots\end{array}\right\}$
$\{\cdots\}$

$$
\left\{r_{1} \stackrel{r}{\longrightarrow}, * r_{2}{ }_{\square}\right\}
$$

c: $r_{1}:=\operatorname{ldr}[f l a g]$

$$
\left\{\begin{array}{l}
c: R \text { flag } v_{\text {flag }} \xrightarrow{\text { po }} \cdot * \\
r_{1} \mapsto v_{\text {flag }} @ c * c \rightarrow \Phi\left(\text { flag }, v_{\text {flag }}, c\right) * \cdots
\end{array}\right\}
$$

$$
\mathrm{d}: r_{2}:=\mathrm{Id} r\left[d a t a+r_{1}-r_{1}\right]
$$

$$
\left\{\begin{array}{l}
c: R \text { flag } v_{\text {flag }} \xrightarrow{\text { addr }} d: R \text { data } v_{\text {data }} * \\
r_{1} \mapsto v_{\text {flag }} @ c * r_{2} \mapsto v_{\text {data }} @ d * c \leftrightarrow T_{*} \\
d \leftrightarrow\left(\Phi\left(\text { data }, v_{\text {data }}, d\right) * \Phi\left(\text { flag }, v_{\text {flag }}, c\right)\right)
\end{array}\right\}
$$

$$
\left\{\begin{array}{l}
r_{1} \mapsto v_{\text {flag }} @_{=} * r_{2} \mapsto v_{\text {data }} @_{-}^{*} \\
d \mapsto\left(v_{\text {flag }}=1 \Rightarrow v_{\text {data }}=42\right)
\end{array}\right\}
$$

Soundness (Adequacy theorem) of AxSL

- Soundness proof is challenging
- tension between reasoning along program order and induction along ob

Soundness (Adequacy theorem) of AxSL

- Soundness proof is challenging
- tension between reasoning along program order and induction along ob
- AxSL has an adequacy theorem
- results proven in AxSL also hold at the meta level w.r.t. the (axiomatic-model-based) Opax semantics

Soundness (Adequacy theorem) of AxSL

- Soundness proof is challenging
- tension between reasoning along program order and induction along ob
- AxSL has an adequacy theorem
- results proven in AxSL also hold at the meta level w.r.t. the (axiomatic-model-based) Opax semantics
- The statement is similar to stardard Iris adequacy, but the proof is novel
- by stratification: two traversals over program executions

Conclusion

- AxSL is an expressive program logic for (user-mode) Arm-A memory model, that
- supports thread-local reasoning and many advanced CSL features
- is proven sound w.r.t. the axiomatic-model-based Opax semantics (first in Iris)
- is fully mechanised in Coq

Conclusion

- AxSL is an expressive program logic for (user-mode) Arm-A memory model, that
- supports thread-local reasoning and many advanced CSL features
- is proven sound w.r.t. the axiomatic-model-based Opax semantics (first in Iris)
- is fully mechanised in Coq
- Main limitations
- Lacking support for coherence
- Missing many abstractions

Conclusion

- AxSL is an expressive program logic for (user-mode) Arm-A memory model, that
- supports thread-local reasoning and many advanced CSL features
- is proven sound w.r.t. the axiomatic-model-based Opax semantics (first in Iris)
- is fully mechanised in Coq
- Main limitations
- Lacking support for coherence
- Missing many abstractions
- Our approach will generalise
- The Opax semantics can be adapted for other axiomatic memory models
- The resource-tied-to assertions will allow sound reasoning above other very relaxed MMs, e.g. RISC-V

AD: If you like beautiful interactive robots...

Check out Glowbot Garden @ St Mary le Strand Church (3 min away! 12noon-8pm)

