
An axiomatic basis for computer programming
...on the relaxed Arm-A architecture:
the AxSL logic

Angus Hammond∗, Zongyuan Liu†,
Thibaut Pérami∗, Peter Sewell∗,
Lars Birkedal†, Jean Pichon-Pharabod†

∗University of Cambridge, †Aarhus University

January 18, 2024

Motivation

• We want to reason about programs in weak memory settings, like Arm-A

• We have an authoritative model for user-mode Arm-A

• But we want to reason about programs in a compositional way

• And the Arm-A model is very global

2 14

Motivation

• We want to reason about programs in weak memory settings, like Arm-A

• We have an authoritative model for user-mode Arm-A

• But we want to reason about programs in a compositional way

• And the Arm-A model is very global

2 14

Motivation

• We want to reason about programs in weak memory settings, like Arm-A

• We have an authoritative model for user-mode Arm-A

• But we want to reason about programs in a compositional way

• And the Arm-A model is very global

2 14

Motivation

• We want to reason about programs in weak memory settings, like Arm-A

• We have an authoritative model for user-mode Arm-A

• But we want to reason about programs in a compositional way

• And the Arm-A model is very global

2 14

Why it is hard: Load Buffering

a: r1 := ldr [x]

b: str [y] 1

c: r2 := ldr [y]

d: str [x] 1

po po

rf rf

From initial state x = y = 0, final state r1 = r2 = 1 is allowed.

3 14

Incompatability of simple logics and LB

Expect both:

r1 := ldr [x]
{P ∗ r1 r7→ v}

{P ∗ r1 r7→ v ′}

str [x] 1
{P}

{⊤}
r1 := ldr [x]
{⊤}

{P}

rf

Resources passed between program points Resources passed from writes to reads

4 14

Incompatability of simple logics and LB

Expect both:

r1 := ldr [x]
{P ∗ r1 r7→ v}

{P ∗ r1 r7→ v ′}

str [x] 1
{P}

{⊤}
r1 := ldr [x]
{⊤}

{P}

rf

Resources passed between program points

Resources passed from writes to reads

4 14

Incompatability of simple logics and LB

Expect both:

r1 := ldr [x]
{P ∗ r1 r7→ v}

{P ∗ r1 r7→ v ′}

str [x] 1
{P}

{⊤}
r1 := ldr [x]
{⊤}

{P}

rf

Resources passed between program points Resources passed from writes to reads

4 14

Incompatability of simple logics and LB

a: r1 := ldr [x]

b: str [y] 1

c: r2 := ldr [y]

d: str [x] 1

po po

rf rf

Logics for RC11 don’t suffer this issue as RC11 has (po ∪ rf) acyclic.

5 14

Existing WM models

• Operational models
Naturally operational
Explicit speculation and instruction rewinding

• Promising models
Fairly operational
LB requires tricky to reason about certification step

• Axiomatic models
Succinct and straightforward to formalise
Not at all operational

6 14

Existing WM models

• Operational models
Naturally operational
Explicit speculation and instruction rewinding

• Promising models
Fairly operational
LB requires tricky to reason about certification step

• Axiomatic models
Succinct and straightforward to formalise
Not at all operational

6 14

Existing WM models

• Operational models
Naturally operational
Explicit speculation and instruction rewinding

• Promising models
Fairly operational
LB requires tricky to reason about certification step

• Axiomatic models
Succinct and straightforward to formalise
Not at all operational

6 14

Global nature of axiomatic semantics

• Axiomatic models are so global because the consistency check is done after program
execution completes

• We would like to use the information from the consistency check incrementally as
the program executes

• But we cannot easily check consistency of partial executions, because an execution
could be made inconsistent by later events

7 14

Global nature of axiomatic semantics

• Axiomatic models are so global because the consistency check is done after program
execution completes

• We would like to use the information from the consistency check incrementally as
the program executes

• But we cannot easily check consistency of partial executions, because an execution
could be made inconsistent by later events

7 14

Global nature of axiomatic semantics

• Axiomatic models are so global because the consistency check is done after program
execution completes

• We would like to use the information from the consistency check incrementally as
the program executes

• But we cannot easily check consistency of partial executions, because an execution
could be made inconsistent by later events

7 14

Opax Semantics

• In the Opax semantics, we instead guess a consistent whole program memory event
graph before beginning execution

• Then we incrementally check the guessed graph matches program behaviour

8 14

Opax Semantics

• In the Opax semantics, we instead guess a consistent whole program memory event
graph before beginning execution

• Then we incrementally check the guessed graph matches program behaviour

8 14

Opax Semantics

• Initialisation
e −→ ⟨G , ∅, e⟩ where G is a memory event graph consistent with the axiomatic
model

• Matching an event
⟨G ,F , r := ldr [a] :: e⟩ −→ ⟨G ,F ∪ {R a v}, e⟩ where R a v ∈ G \ F

9 14

Opax Semantics

• Initialisation
e −→ ⟨G , ∅, e⟩ where G is a memory event graph consistent with the axiomatic
model

• Matching an event
⟨G ,F , r := ldr [a] :: e⟩ −→ ⟨G ,F ∪ {R a v}, e⟩ where R a v ∈ G \ F

9 14

Opax Semantics

• Initialisation
e −→ ⟨G , ∅, e⟩ where G is a memory event graph consistent with the axiomatic
model

• Matching an event
⟨G ,F , r := ldr [a] :: e⟩ −→ ⟨G ,F ∪ {R a v}, e⟩ where R a v ∈ G \ F

9 14

Opax Semantics

• Initialisation
e −→ ⟨G , ∅, e⟩ where G is a memory event graph consistent with the axiomatic
model

• Matching an event
⟨G ,F , r := ldr [a] :: e⟩ −→ ⟨G ,F ∪ {R a v}, e⟩ where R a v ∈ G \ F

9 14

Overview of AxSL

• Iris program logic built above Opax semantics
• thread-modular reasoning about memory event graphs

P ,Q ∈ iProp ::= (Iris connectives) · · · |

r r7→ v@a | a ↬ P | {P}e {Q}Φ | · · ·

10 14

Overview of AxSL

• Iris program logic built above Opax semantics
• thread-modular reasoning about memory event graphs

P ,Q ∈ iProp ::= (Iris connectives) · · · |

r r7→ v@a | a ↬ P | {P}e {Q}Φ | · · ·

Register value v comes
from event a

10 14

Overview of AxSL

• Iris program logic built above Opax semantics
• thread-modular reasoning about memory event graphs

P ,Q ∈ iProp ::= (Iris connectives) · · · |

r r7→ v@a | a ↬ P | {P}e {Q}Φ | · · ·

Register value v comes
from event a

P is tied to event a

10 14

Overview of AxSL

• Iris program logic built above Opax semantics
• thread-modular reasoning about memory event graphs

P ,Q ∈ iProp ::= (Iris connectives) · · · |

r r7→ v@a | a ↬ P | {P}e {Q}Φ | · · ·

sound resource passing along po

10 14

Overview of AxSL

• Iris program logic built above Opax semantics
• thread-modular reasoning about memory event graphs

P ,Q ∈ iProp ::= (Iris connectives) · · · |

r r7→ v@a | a ↬ P | {P}e {Q}Φ | · · ·

modular reasoning

10 14

Overview of AxSL

• Iris program logic built above Opax semantics
• thread-modular reasoning about memory event graphs

P ,Q ∈ iProp ::= (Iris connectives) · · · |

r r7→ v@a | a ↬ P | {P}e {Q}Φ | · · ·

Hoare triple with
per-location protocol
Φ ∈ addr → val → eid → iProp

10 14

Proving MP in AxSL

Φ(data, v , e) ≜ Initial(e) ∨ v = 42

Φ(flag , v , e) ≜ Initial(e) ∨
(
v = 1 ∗ ∃e ′. e ′:W data 42 po→ e:Wrel flag 1

)

a: str [data] 42

b: strrel [flag] 1

c: r1 := ldr [flag]

d: r2 := ldr [data + r1 − r1]

Proof obligation
Φ(data, 42, a)Proof obligation

Φ(flag , 1, b)

11 14

Proving MP in AxSL

Φ(data, v , e) ≜ Initial(e) ∨ v = 42

Φ(flag , v , e) ≜ Initial(e) ∨
(
v = 1 ∗ ∃e ′. e ′:W data 42 po→ e:Wrel flag 1

)

a: str [data] 42

b: strrel [flag] 1

po; [Rel] ⊆ ob

c: r1 := ldr [flag]

d: r2 := ldr [data + r1 − r1]

addr ⊆ ob

Proof obligation
Φ(data, 42, a)Proof obligation

Φ(flag , 1, b)

11 14

Proving MP in AxSL

Φ(data, v , e) ≜ Initial(e) ∨ v = 42

Φ(flag , v , e) ≜ Initial(e) ∨
(
v = 1 ∗ ∃e ′. e ′:W data 42 po→ e:Wrel flag 1

)

{ ⊤ }
a: str [data] 42

b: strrel [flag] 1

{ · · · }

{r1 r7→ _ ∗ r2 r7→ _ }
c: r1 := ldr [flag]

d: r2 := ldr [data + r1 − r1]

{
r1 r7→ vflag@_ ∗ r2 r7→ vdata@_∗

d ↬

(vflag = 1 ⇒ vdata = 42)

}

Proof obligation
Φ(data, 42, a)Proof obligation

Φ(flag , 1, b)

11 14

Proving MP in AxSL

Φ(data, v , e) ≜ Initial(e) ∨ v = 42

Φ(flag , v , e) ≜ Initial(e) ∨
(
v = 1 ∗ ∃e ′. e ′:W data 42 po→ e:Wrel flag 1

)

{ ⊤ }
a: str [data] 42

b: strrel [flag] 1

{ · · · }

{r1 r7→ _ ∗ r2 r7→ _ }
c: r1 := ldr [flag]

d: r2 := ldr [data + r1 − r1]

{
r1 r7→ vflag@_ ∗ r2 r7→ vdata@_∗

d ↬

(vflag = 1 ⇒ vdata = 42)

}

Proof obligation
Φ(data, 42, a)Proof obligation

Φ(flag , 1, b)

The protocol Φ:

Φ(data, v , e) ≜ Initial(e) ∨ v = 42

Φ(flag , v , e) ≜ Initial(e) ∨
(
v = 1 ∗ ∃e ′. e ′:W data 42 po→ e:Wrel flag 1

)

11 14

Proving MP in AxSL

Φ(data, v , e) ≜ Initial(e) ∨ v = 42

Φ(flag , v , e) ≜ Initial(e) ∨
(
v = 1 ∗ ∃e ′. e ′:W data 42 po→ e:Wrel flag 1

)
{ ⊤ }
a: str [data] 42

b: strrel [flag] 1

{ · · · }

{r1 r7→ _ ∗ r2 r7→ _ }
c: r1 := ldr [flag]

d: r2 := ldr [data + r1 − r1]

{
r1 r7→ vflag@_ ∗ r2 r7→ vdata@_∗

d ↬

(vflag = 1 ⇒ vdata = 42)

}

Proof obligation
Φ(data, 42, a)Proof obligation

Φ(flag , 1, b)

11 14

Proving MP in AxSL

Φ(data, v , e) ≜ Initial(e) ∨ v = 42

Φ(flag , v , e) ≜ Initial(e) ∨
(
v = 1 ∗ ∃e ′. e ′:W data 42 po→ e:Wrel flag 1

)
{ ⊤ }
a: str [data] 42
{ a:W data 42 po→ ·}

b: strrel [flag] 1

{ · · · }

{r1 r7→ _ ∗ r2 r7→ _ }
c: r1 := ldr [flag]

d: r2 := ldr [data + r1 − r1]

{
r1 r7→ vflag@_ ∗ r2 r7→ vdata@_∗

d ↬

(vflag = 1 ⇒ vdata = 42)

}
Proof obligation
Φ(data, 42, a)

Proof obligation
Φ(flag , 1, b)

11 14

Proving MP in AxSL

Φ(data, v , e) ≜ Initial(e) ∨ v = 42

Φ(flag , v , e) ≜ Initial(e) ∨
(
v = 1 ∗ ∃e ′. e ′:W data 42 po→ e:Wrel flag 1

)
{ ⊤ }
a: str [data] 42
{ a:W data 42 po→ ·}

b: strrel [flag] 1{
a:W data 42 po→ b:Wrel flag 1∗
· · ·

}
{ · · · }

{r1 r7→ _ ∗ r2 r7→ _ }
c: r1 := ldr [flag]

d: r2 := ldr [data + r1 − r1]

{
r1 r7→ vflag@_ ∗ r2 r7→ vdata@_∗

d ↬

(vflag = 1 ⇒ vdata = 42)

}

Proof obligation
Φ(data, 42, a)

Proof obligation
Φ(flag , 1, b)

11 14

Proving MP in AxSL

Φ(data, v , e) ≜ Initial(e) ∨ v = 42

Φ(flag , v , e) ≜ Initial(e) ∨
(
v = 1 ∗ ∃e ′. e ′:W data 42 po→ e:Wrel flag 1

)
{ ⊤ }
a: str [data] 42
{ a:W data 42 po→ ·}

b: strrel [flag] 1{
a:W data 42 po→ b:Wrel flag 1∗
· · ·

}
{ · · · }

{r1 r7→ _ ∗ r2 r7→ _ }
c: r1 := ldr [flag]{
c :R flag vflag

po→ ·∗
r1 r7→ vflag@c ∗ c ↬ Φ(flag , vflag , c) ∗ · · ·

}
d: r2 := ldr [data + r1 − r1]

{
r1 r7→ vflag@_ ∗ r2 r7→ vdata@_∗

d ↬

(vflag = 1 ⇒ vdata = 42)

}

Proof obligation
Φ(data, 42, a)

Proof obligation
Φ(flag , 1, b)

11 14

Proving MP in AxSL

Φ(data, v , e) ≜ Initial(e) ∨ v = 42

Φ(flag , v , e) ≜ Initial(e) ∨
(
v = 1 ∗ ∃e ′. e ′:W data 42 po→ e:Wrel flag 1

)
{ ⊤ }
a: str [data] 42
{ a:W data 42 po→ ·}

b: strrel [flag] 1{
a:W data 42 po→ b:Wrel flag 1∗
· · ·

}
{ · · · }

{r1 r7→ _ ∗ r2 r7→ _ }
c: r1 := ldr [flag]{
c :R flag vflag

po→ ·∗
r1 r7→ vflag@c ∗ c ↬ Φ(flag , vflag , c) ∗ · · ·

}
d: r2 := ldr [data + r1 − r1]

{
r1 r7→ vflag@_ ∗ r2 r7→ vdata@_∗

d ↬

(vflag = 1 ⇒ vdata = 42)

}

Proof obligation
Φ(data, 42, a)

Proof obligation
Φ(flag , 1, b)

11 14

Proving MP in AxSL

Φ(data, v , e) ≜ Initial(e) ∨ v = 42

Φ(flag , v , e) ≜ Initial(e) ∨
(
v = 1 ∗ ∃e ′. e ′:W data 42 po→ e:Wrel flag 1

)
{ ⊤ }
a: str [data] 42
{ a:W data 42 po→ ·}

b: strrel [flag] 1{
a:W data 42 po→ b:Wrel flag 1∗
· · ·

}
{ · · · }

{r1 r7→ _ ∗ r2 r7→ _ }
c: r1 := ldr [flag]{
c :R flag vflag

po→ ·∗
r1 r7→ vflag@c ∗ c ↬ Φ(flag , vflag , c) ∗ · · ·

}
d: r2 := ldr [data + r1 − r1]c :R flag vflag

addr→ d :R data vdata∗
r1 r7→ vflag@c ∗ r2 r7→ vdata@d ∗ c ↬ ⊤∗
d ↬(Φ(data, vdata, d) ∗ Φ(flag , vflag , c))

{
r1 r7→ vflag@_ ∗ r2 r7→ vdata@_∗

d ↬

(vflag = 1 ⇒ vdata = 42)

}

Proof obligation
Φ(data, 42, a)

Proof obligation
Φ(flag , 1, b)

11 14

Proving MP in AxSL

Φ(data, v , e) ≜ Initial(e) ∨ v = 42

Φ(flag , v , e) ≜ Initial(e) ∨
(
v = 1 ∗ ∃e ′. e ′:W data 42 po→ e:Wrel flag 1

)
{ ⊤ }
a: str [data] 42
{ a:W data 42 po→ ·}

b: strrel [flag] 1{
a:W data 42 po→ b:Wrel flag 1∗
· · ·

}
{ · · · }

{r1 r7→ _ ∗ r2 r7→ _ }
c: r1 := ldr [flag]{
c :R flag vflag

po→ ·∗
r1 r7→ vflag@c ∗ c ↬ Φ(flag , vflag , c) ∗ · · ·

}
d: r2 := ldr [data + r1 − r1]c :R flag vflag

addr→ d :R data vdata∗
r1 r7→ vflag@c ∗ r2 r7→ vdata@d ∗ c ↬ ⊤∗
d ↬(Φ(data, vdata, d) ∗ Φ(flag , vflag , c))

{
r1 r7→ vflag@_ ∗ r2 r7→ vdata@_∗
d ↬ (vflag = 1 ⇒ vdata = 42)

}

Proof obligation
Φ(data, 42, a)

Proof obligation
Φ(flag , 1, b)

11 14

Soundness (Adequacy theorem) of AxSL

• Soundness proof is challenging
tension between reasoning along program order and induction along ob

• AxSL has an adequacy theorem
results proven in AxSL also hold at the meta level w.r.t.
the (axiomatic-model-based) Opax semantics

• The statement is similar to stardard Iris adequacy, but the proof is novel
by stratification: two traversals over program executions

12 14

Soundness (Adequacy theorem) of AxSL

• Soundness proof is challenging
tension between reasoning along program order and induction along ob

• AxSL has an adequacy theorem
results proven in AxSL also hold at the meta level w.r.t.
the (axiomatic-model-based) Opax semantics

• The statement is similar to stardard Iris adequacy, but the proof is novel
by stratification: two traversals over program executions

12 14

Soundness (Adequacy theorem) of AxSL

• Soundness proof is challenging
tension between reasoning along program order and induction along ob

• AxSL has an adequacy theorem
results proven in AxSL also hold at the meta level w.r.t.
the (axiomatic-model-based) Opax semantics

• The statement is similar to stardard Iris adequacy, but the proof is novel
by stratification: two traversals over program executions

12 14

Conclusion

• AxSL is an expressive program logic for (user-mode) Arm-A memory model, that
supports thread-local reasoning and many advanced CSL features
is proven sound w.r.t. the axiomatic-model-based Opax semantics (first in Iris)
is fully mechanised in Coq

• Main limitations
Lacking support for coherence
Missing many abstractions

• Our approach will generalise
The Opax semantics can be adapted for other axiomatic memory models
The resource-tied-to assertions will allow sound reasoning above other very relaxed
MMs, e.g. RISC-V

13 14

Conclusion

• AxSL is an expressive program logic for (user-mode) Arm-A memory model, that
supports thread-local reasoning and many advanced CSL features
is proven sound w.r.t. the axiomatic-model-based Opax semantics (first in Iris)
is fully mechanised in Coq

• Main limitations
Lacking support for coherence
Missing many abstractions

• Our approach will generalise
The Opax semantics can be adapted for other axiomatic memory models
The resource-tied-to assertions will allow sound reasoning above other very relaxed
MMs, e.g. RISC-V

13 14

Conclusion

• AxSL is an expressive program logic for (user-mode) Arm-A memory model, that
supports thread-local reasoning and many advanced CSL features
is proven sound w.r.t. the axiomatic-model-based Opax semantics (first in Iris)
is fully mechanised in Coq

• Main limitations
Lacking support for coherence
Missing many abstractions

• Our approach will generalise
The Opax semantics can be adapted for other axiomatic memory models
The resource-tied-to assertions will allow sound reasoning above other very relaxed
MMs, e.g. RISC-V

13 14

AD: If you like beautiful interactive robots...

Check out Glowbot Garden @ St Mary le Strand Church (3 min away! 12noon-8pm)
14 14

