An axiomatic basis for computer programming
...on the relaxed Arm-A architecture:

the AxSL logic

Angus Hammond*, Zongyuan Liuf,
Thibaut Pérami*, Peter Sewell*,
Lars Birkedal®, Jean Pichon-Pharabodf

*University of Cambridge, TAarhus University

January 18, 2024

Motivation

® \We want to reason about programs in weak memory settings, like Arm-A

2| 14

Motivation

® \We want to reason about programs in weak memory settings, like Arm-A

e \\e have an authoritative model for user-mode Arm-A

2| 14

Motivation

® \We want to reason about programs in weak memory settings, like Arm-A

e \\e have an authoritative model for user-mode Arm-A

® But we want to reason about programs in a compositional way

2| 14

Motivation

® \We want to reason about programs in weak memory settings, like Arm-A

We have an authoritative model for user-mode Arm-A

® But we want to reason about programs in a compositional way

And the Arm-A model is very global

2| 14

Why it is hard: Load Buffering

a: rp = Idr [x] ¢ ryi=Idr [y]

po po

-

b: str[y] 1 d:str[x] 1

-

From initial state x = y = 0, final state = r, = 1 is allowed.

3] 14

Incompatability of simple logics and LB

Expect both:

4] 14

Incompatability of simple logics and LB

Expect both:

{Pxr v}
r = Idr [x]
{P*nr+v}

Resources passed between program points

4] 14

Incompatability of simple logics and LB

Expect both:

{P}
{Pxnr v} str [x] 1 "
r = Idr [x] {T} {T}
{Px v} n = ldr [x]

{P}

Resources passed between program points Resources passed from writes to reads

4] 14

Incompatability of simple logics and LB

a: rp = Idr [x] ¢ ry=Idr [y]

po po

-

b:str [y] 1 d:strx] 1

-

Logics for RC11 don't suffer this issue as RC11 has (po U rf) acyclic.

5| 14

Existing WM models

e QOperational models

m Naturally operational
m Explicit speculation and instruction rewinding

6 | 14

Existing WM models

® QOperational models

m Naturally operational
m Explicit speculation and instruction rewinding

® Promising models

m Fairly operational
m LB requires tricky to reason about certification step

6 | 14

Existing WM models

® QOperational models

m Naturally operational
m Explicit speculation and instruction rewinding

® Promising models

m Fairly operational
m LB requires tricky to reason about certification step

e Axiomatic models

m Succinct and straightforward to formalise
m Not at all operational

6 | 14

Global nature of axiomatic semantics

e Axiomatic models are so global because the consistency check is done after program
execution completes

7] 14

Global nature of axiomatic semantics

e Axiomatic models are so global because the consistency check is done after program
execution completes

e We would like to use the information from the consistency check incrementally as
the program executes

7] 14

Global nature of axiomatic semantics

e Axiomatic models are so global because the consistency check is done after program
execution completes

e We would like to use the information from the consistency check incrementally as
the program executes

e But we cannot easily check consistency of partial executions, because an execution
could be made inconsistent by later events

7] 14

Opax Semantics

® |n the Opax semantics, we instead guess a consistent whole program memory event
graph before beginning execution

8 | 14

Opax Semantics

® |n the Opax semantics, we instead guess a consistent whole program memory event
graph before beginning execution

® Then we incrementally check the guessed graph matches program behaviour

8 | 14

Opax Semantics

® |nitialisation
e — (G, 0, e) where G is a memory event graph consistent with the axiomatic
model

9| 14

Opax Semantics

® |nitialisation
e — (G, 0, e) where G is a memory event graph consistent with the axiomatic
model

® Matching an event
(G,F,r:=Idr [a] : e) — (G,FU{R av},e) whereRave G\F

9| 14

Opax Semantics

® |nitialisation
e — (G, 0, e) where G is a memory event graph consistent with the axiomatic
model

® Matching an event
(G,F,r:=Idr [a] :e) — (G,FU{R av},e) whereRave G\F

9| 14

Opax Semantics

® |nitialisation
e — (G, 0, e) where G is a memory event graph consistent with the axiomatic
model

® Matching an event
(G,F,r:=Idr [a] ::e) — (G,FU{R av},e) where Rave G\F

9| 14

Overview of AxSL

® |ris program logic built above Opax semantics

e thread-modular reasoning about memory event graphs

10 | 14

Overview of AxSL

® |ris program logic built above Opax semantics
e thread-modular reasoning about memory event graphs

P, Q € iProp ::= (Iris connectives) - - -
resv@a | ax P | {Ple{Q}, |

/

Register value v comes
from event a

10 | 14

Overview of AxSL

® |ris program logic built above Opax semantics
e thread-modular reasoning about memory event graphs

P, Q € iProp ::= (Iris connectives) - - -
resv@a | ax P | {Ple{Q}, |

/

Register value v comes P is tied to event a
from event a

10 | 14

Overview of AxSL

® |ris program logic built above Opax semantics

e thread-modular reasoning about memory event graphs

P, Q € iProp ::= (Iris connectives) --- |
resv@a | ax P | {Ple{Q}, |

sound resource passing along po

10 | 14

Overview of AxSL

® |ris program logic built above Opax semantics
e thread-modular reasoning about memory event graphs
P, Q € iProp ::= (Iris connectives) --- |
resv@a | ax P | {Ple{Q}, |

%/—/
modular reasoning

10 | 14

Overview of AxSL

® |ris program logic built above Opax semantics

e thread-modular reasoning about memory event graphs
P, Q € iProp ::= (Iris connectives) --- |

resv@a | ax P | {Ple{Q}, |

Hoare triple with
per-location protocol
® € addr — val — eid — iProp

10 | 14

Proving MP in AxSL

a: str [data] 42 c: n = Idr [flag]

b strre [flag] 1 d: rp := Idr [data+ r; — 1]

11 | 14

Proving MP in AxSL

a: str [data] 42 c: n = Idr [flag]
lpo; [Rel] € ob addr C obl
b: stry [flag] 1 d: ry ;= Idr [data + r; — rq]

11 | 14

Proving MP in AxSL

{T} {I’ll%i*lé’%i}
a: str [data] 42 c: rp = Idr [flag]
b: strre [flag] 1 d: rpy :=Idr [data+ r; — rq]

r s Vaag@ x rp 5 v, %
(Vflag =1= Vdata = 42)

11 | 14

Proving MP in AxSL

{—I—l PN * ra L Iy 1
a:

The protocol ®:

b: ®(data, v, e) = Initial(e) V v = 42
®(flag, v, e) = Initial(e) V (v = 1 x Je’. "W data 42 2 e:W, flag 1)

l (Vflag =1= Vdata = 42)J

11 | 14

Proving MP in AxSL

®(data, v, e) = Initial(e) V v = 42
®(flag, v, e) = Initial(e) V (v = 1« Je’. ¢ "W data 42 = e:W, flag 1)

{T}

a: str [data] 42

b: stre [flag] 1

{rl > RN O) > o }
c: = Idr [flag]

d: rpy :=Idr [data+ r; — rq]

rn o> Vf/ag@i * o> Vdata@i*
(Vflag =1= Vdata =— 42)

11 | 14

Proving MP in AxSL

®(data, v, e) = Initial(e) V v = 42
®(flag, v, e) = Initial(e) V (v = 1« Je’. ¢ "W data 42 = e:W, flag 1)

{T} {I’ll%i*lé%i}
a: str [data] 42 c: rp = Idr [flag]
{ aW data 42 = -}

~

b: strye [flag] 1~ Proof obligation ., .— |dr [data + r; — 1]
®(data, 42, a)

r s Vaag@ x rp 5 vgae,@ %
(Vflag =1= Vdata = 42)

11 | 14

Proving MP in AxSL

®(data, v, e) = Initial(e) V v = 42

®(flag, v, e) = Initial(e) V (v = 1« Je’. e""W data 42 = e:W,, flag 1)
{T} {I’ll%i*lé’%i}
a: str [data] 42 c: rp = Idr [flag]
{ aW data 42 = -}

b: strre [flag] 1 d: rpy :=Idr [data+ r; — rq]
{a:W data 42 = b:W, flag 1*}
{3 >

Proof obligation

(flag, 1, b) 1 VaagQ@_ ok 1y Hy Vara@ _x
o (Viisg = 1 = Vaara = 42)

11 | 14

Proving MP in AxSL

®(data, v, e) = Initial(e) V v = 42
®(flag, v, e) = Initial(e) V (v = 1« Je’. ¢ "W data 42 = e:W, flag 1)

{T} {n *xno }
a: str [data] 42 c: rp = Idr [flag]
{ aW data 42 = -} R flag Vyag = -
rn ¥ viag@c x ¢ & O(flag, vpag,) * - - -
b stree [flag] 1 d: rp :=Idr [data+ r; — rq]

{a:W data 42 = b:W, flag 1*}

r o> Vf/ag@i * o> Vdata@i*
(Vflag =1= Vdata = 42)

11 | 14

Proving MP in AxSL

®(data, v, e) = Initial(e) V v = 42
®(flag, v, e) = Initial(e) V (v = 1« Je’. ¢ "W data 42 = e:W, flag 1)

{T} {n *xno }
a: str [data] 42 c: rp = Idr [flag]
{ aW data 42 = -} R flag Vyag = -
rn ¥ viagQc x ¢ & O(flag, vpag,) * - - -
b stree [flag] 1 d: rp :=Idr [data+ r; — rq]

{a:W data 42 = b:W, flag 1*}

r o> Vf/ag@i * o> Vdata@i*
(Vflag =1= Vdata = 42)

11 | 14

Proving MP in AxSL

®(data, v, e) = Initial(e) V v = 42
®(flag, v, e) = Initial(e) V (v = 1« Je’. ¢ "W data 42 = e:W, flag 1)

{T} {n *xno }

a: str [data] 42 c: rp = Idr [flag]

{ a:W data 42 = -} {CiR flag Viag —> - }
rn ¥ viagQc x ¢ & O(flag, vpag,) * - - -

b: st [flag] 1 d: rpy :=Idr [data+ r; — rq]

{a:W data 42 = b:W, flag 1*} c:R flag vgag W AR data vk

c r % Vaag@c x r % vyaa@d * ¢ 9= T
{} d (P (data, Vgata, d) * P(flag, vaag, c))

r s Vaag@ x rp 5 vgae,@ %
(Vflag =1= Vdata = 42)

11 | 14

Proving MP in AxSL

®(data, v, e) = Initial(e) V v = 42
®(flag, v, e) = Initial(e) V (v = 1« Je’. ¢ "W data 42 = e:W, flag 1)

{T} {n *xno }

a: str [data] 42 c: rp = Idr [flag]

{ a:W data 42 = -} {CiR flag Vpag = -* }
rn ¥ viagQc x ¢ & O(flag, vpag,) * - - -

b: st [flag] 1 d: rpy :=Idr [data+ r; — rq]

{a:W data 42 = b:W, flag 1*} c:R flag Vfag W AR data vk

s r % Vaag@c x r % vygaa@d * ¢ 9= T
{--} d (P (data, Vgata, d) * P(flag, vaag, c))

r s Vaag@ x rp 5 vgae,@ %
d (Vf/ag =1= Vdata — 42)

11 | 14

Soundness (Adequacy theorem) of AxSL

® Soundness proof is challenging
m tension between reasoning along program order and induction along ob

12 | 14

Soundness (Adequacy theorem) of AxSL

® Soundness proof is challenging
m tension between reasoning along program order and induction along ob
® AxSL has an adequacy theorem

m results proven in AxSL also hold at the meta level w.r.t.
the (axiomatic-model-based) Opax semantics

12 | 14

Soundness (Adequacy theorem) of AxSL

® Soundness proof is challenging
m tension between reasoning along program order and induction along ob
® AxSL has an adequacy theorem

m results proven in AxSL also hold at the meta level w.r.t.
the (axiomatic-model-based) Opax semantics

® The statement is similar to stardard Iris adequacy, but the proof is novel
m by stratification: two traversals over program executions

12 | 14

Conclusion

® AxSL is an expressive program logic for (user-mode) Arm-A memory model, that

m supports thread-local reasoning and many advanced CSL features
m is proven sound w.r.t. the axiomatic-model-based Opax semantics (first in Iris)
m is fully mechanised in Coq

13 | 14

Conclusion

® AxSL is an expressive program logic for (user-mode) Arm-A memory model, that

m supports thread-local reasoning and many advanced CSL features
m is proven sound w.r.t. the axiomatic-model-based Opax semantics (first in Iris)
m is fully mechanised in Coq

e Main limitations

m Lacking support for coherence
m Missing many abstractions

13 | 14

Conclusion

® AxSL is an expressive program logic for (user-mode) Arm-A memory model, that

m supports thread-local reasoning and many advanced CSL features
m is proven sound w.r.t. the axiomatic-model-based Opax semantics (first in Iris)
m is fully mechanised in Coq

e Main limitations

m Lacking support for coherence
m Missing many abstractions

e Qur approach will generalise

m The Opax semantics can be adapted for other axiomatic memory models
m The resource-tied-to assertions will allow sound reasoning above other very relaxed
MMs, e.g. RISC-V

13 | 14

AD: If you like beautiful interactive robots...

Check out Glowbot Garden @ St Mary le Strand Church (3 min away! 12noon-8pm)

14 | 14

