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Motivation

• We want to reason about programs in weak memory settings, like Arm-A

• We have an authoritative model for user-mode Arm-A

• But we want to reason about programs in a compositional way

• And the Arm-A model is very global
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Why it is hard: Load Buffering

a: r1 := ldr [x ]

b: str [y ] 1

c: r2 := ldr [y ]

d: str [x ] 1

po po

rf rf

From initial state x = y = 0, final state r1 = r2 = 1 is allowed.
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Incompatability of simple logics and LB

Expect both:

r1 := ldr [x ]
{P ∗ r1 r7→ v}

{P ∗ r1 r7→ v ′}

str [x ] 1
{P}

{⊤}
r1 := ldr [x ]
{⊤}

{P}

rf

Resources passed between program points Resources passed from writes to reads
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Incompatability of simple logics and LB

a: r1 := ldr [x ]

b: str [y ] 1

c: r2 := ldr [y ]

d: str [x ] 1

po po

rf rf

Logics for RC11 don’t suffer this issue as RC11 has (po ∪ rf) acyclic.
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Existing WM models

• Operational models
Naturally operational
Explicit speculation and instruction rewinding

• Promising models
Fairly operational
LB requires tricky to reason about certification step

• Axiomatic models
Succinct and straightforward to formalise
Not at all operational
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Global nature of axiomatic semantics

• Axiomatic models are so global because the consistency check is done after program
execution completes

• We would like to use the information from the consistency check incrementally as
the program executes

• But we cannot easily check consistency of partial executions, because an execution
could be made inconsistent by later events
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Opax Semantics

• In the Opax semantics, we instead guess a consistent whole program memory event
graph before beginning execution

• Then we incrementally check the guessed graph matches program behaviour
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Opax Semantics

• Initialisation
e −→ ⟨G , ∅, e⟩ where G is a memory event graph consistent with the axiomatic
model

• Matching an event
⟨G ,F , r := ldr [a] :: e⟩ −→ ⟨G ,F ∪ {R a v}, e⟩ where R a v ∈ G \ F
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Overview of AxSL

• Iris program logic built above Opax semantics
• thread-modular reasoning about memory event graphs

P ,Q ∈ iProp ::= (Iris connectives) · · · |

r r7→ v@a | a ↬ P | {P}e {Q}Φ | · · ·
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Overview of AxSL

• Iris program logic built above Opax semantics
• thread-modular reasoning about memory event graphs

P ,Q ∈ iProp ::= (Iris connectives) · · · |

r r7→ v@a | a ↬ P | {P}e {Q}Φ | · · ·

Hoare triple with
per-location protocol
Φ ∈ addr → val → eid → iProp
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Proving MP in AxSL

Φ(data, v , e) ≜ Initial(e) ∨ v = 42

Φ(flag , v , e) ≜ Initial(e) ∨
(
v = 1 ∗ ∃e ′. e ′:W data 42 po→ e:Wrel flag 1

)

a: str [data] 42

b: strrel [flag ] 1

c: r1 := ldr [flag ]

d: r2 := ldr [data + r1 − r1 ]

Proof obligation
Φ(data, 42, a)Proof obligation

Φ(flag , 1, b)
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Soundness (Adequacy theorem) of AxSL

• Soundness proof is challenging
tension between reasoning along program order and induction along ob

• AxSL has an adequacy theorem
results proven in AxSL also hold at the meta level w.r.t.
the (axiomatic-model-based) Opax semantics

• The statement is similar to stardard Iris adequacy, but the proof is novel
by stratification: two traversals over program executions
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Conclusion

• AxSL is an expressive program logic for (user-mode) Arm-A memory model, that
supports thread-local reasoning and many advanced CSL features
is proven sound w.r.t. the axiomatic-model-based Opax semantics (first in Iris)
is fully mechanised in Coq

• Main limitations
Lacking support for coherence
Missing many abstractions

• Our approach will generalise
The Opax semantics can be adapted for other axiomatic memory models
The resource-tied-to assertions will allow sound reasoning above other very relaxed
MMs, e.g. RISC-V
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AD: If you like beautiful interactive robots...

Check out Glowbot Garden @ St Mary le Strand Church (3 min away! 12noon-8pm)
14 14


