An axiomatic basis for computer programming ...on the relaxed Arm-A architecture: the AxSL logic

Angus Hammond^{*}, Zongyuan Liu[†], Thibaut Pérami^{*}, Peter Sewell^{*}, Lars Birkedal[†], Jean Pichon-Pharabod[†]

*University of Cambridge, [†]Aarhus University

January 18, 2024

• We have an authoritative model for user-mode Arm-A

• We have an authoritative model for user-mode Arm-A

• But we want to reason about programs in a compositional way

• We have an authoritative model for user-mode Arm-A

• But we want to reason about programs in a compositional way

• And the Arm-A model is very global

Why it is hard: Load Buffering

From initial state x = y = 0, final state $r_1 = r_2 = 1$ is allowed.

Incompatability of simple logics and LB

Expect both:

Expect both:

$$\{P * r_1 \stackrel{r}{\mapsto} v\}$$

$$r_1 := \operatorname{Idr} [x]$$

$$\{P * r_1 \stackrel{r}{\mapsto} v'\}$$

Resources passed between program points

Expect both:

$$\{P * r_1 \stackrel{r}{\mapsto} v\} r_1 := \operatorname{Idr} [x] \{P * r_1 \stackrel{r}{\mapsto} v'\}$$

Resources passed between program points

Resources passed from writes to reads

Incompatability of simple logics and LB

Logics for RC11 don't suffer this issue as RC11 has (po \cup rf) acyclic.

Existing WM models

- Operational models
 - Naturally operational
 - Explicit speculation and instruction rewinding

Existing WM models

- Operational models
 - Naturally operational
 - Explicit speculation and instruction rewinding
- Promising models
 - Fairly operational
 - LB requires tricky to reason about certification step

Existing WM models

- Operational models
 - Naturally operational
 - Explicit speculation and instruction rewinding
- Promising models
 - Fairly operational
 - LB requires tricky to reason about certification step
- Axiomatic models
 - Succinct and straightforward to formalise
 - Not at all operational

• Axiomatic models are so global because the consistency check is done after program execution completes

• Axiomatic models are so global because the consistency check is done after program execution completes

• We would like to use the information from the consistency check incrementally as the program executes

• Axiomatic models are so global because the consistency check is done after program execution completes

• We would like to use the information from the consistency check incrementally as the program executes

• But we cannot easily check consistency of partial executions, because an execution could be made inconsistent by later events

• In the Opax semantics, we instead guess a consistent whole program memory event graph before beginning execution

• In the Opax semantics, we instead guess a consistent whole program memory event graph before beginning execution

• Then we incrementally check the guessed graph matches program behaviour

• Initialisation

 $e \longrightarrow \langle G, \emptyset, e \rangle$ where G is a memory event graph consistent with the axiomatic model

Initialisation

 $e \longrightarrow \langle G, \emptyset, e \rangle$ where G is a memory event graph consistent with the axiomatic model

• Matching an event $\langle G, F, r := \mathsf{Idr} [a] :: e \rangle \longrightarrow \langle G, F \cup \{\mathsf{R} \ a \ v\}, e \rangle$ where $\mathsf{R} \ a \ v \in G \setminus F$

• Initialisation

 $e \longrightarrow \langle G, \emptyset, e \rangle$ where G is a memory event graph consistent with the axiomatic model

• Matching an event $\langle G, F, r := \operatorname{Idr} [a] :: e \rangle \longrightarrow \langle G, F \cup \{ R \ a \ v \}, e \rangle$ where R $a \ v \in G \setminus F$

Initialisation

 $e \longrightarrow \langle G, \emptyset, e \rangle$ where G is a memory event graph consistent with the axiomatic model

• Matching an event $\langle G, F, r := \mathsf{Idr} [a] :: e \rangle \longrightarrow \langle G, F \cup \{\mathsf{R} \ a \ v\}, e \rangle$ where $\mathsf{R} \ a \ v \in G \setminus F$

- Iris program logic built above Opax semantics
- thread-modular reasoning about memory event graphs

- Iris program logic built above Opax semantics
- thread-modular reasoning about memory event graphs

$$P, Q \in iProp ::= (Iris connectives) \cdots |$$

$$r \mapsto v@a | a \oplus P | \{P\}e\{Q\}_{\phi} | \cdots$$
Register value v comes
from event a

- Iris program logic built above Opax semantics
- thread-modular reasoning about memory event graphs

$$P, Q \in iProp ::= (\text{Iris connectives}) \cdots |$$

$$r \mapsto v@a \mid a \leftrightarrow P \mid \{P\}e\{Q\}_{\phi} \mid \cdots$$
Register value v comes P is tied to event a
from event a

- Iris program logic built above Opax semantics
- thread-modular reasoning about memory event graphs

$$P, Q \in iProp ::= (\text{Iris connectives}) \cdots |$$

$$r \mapsto v@a \mid a \oplus P \mid \{P\}e\{Q\}_{\phi} \mid \cdots$$
sound resource passing along po

- Iris program logic built above Opax semantics
- thread-modular reasoning about memory event graphs

$$P, Q \in iProp ::= (\text{Iris connectives}) \cdots |$$

$$r \mapsto v@a \mid a \oplus P \mid \{P\}e\{Q\}_{\phi} \mid \cdots$$

$$modular \text{ reasoning}$$

- Iris program logic built above Opax semantics
- thread-modular reasoning about memory event graphs

$$P, Q \in iProp ::= (Iris connectives) \cdots |$$

$$r \mapsto v@a | a \Leftrightarrow P | \{P\}e\{Q\}_{\Phi} | \cdots$$
Hoare triple with
per-location protocol
$$\Phi \in addr \rightarrow val \rightarrow eid \rightarrow iProp$$

a: str [data] 42 c: $r_1 := \operatorname{Idr} [flag]$

b: str_{rel} [flag] 1

d: $r_2 := Idr [data + r_1 - r_1]$

a: str [*data*] 42 \downarrow po; [Rel] \subseteq ob b: str_{rel} [*flag*] 1

c:
$$r_1 := \operatorname{Idr} [flag]$$

addr \subseteq ob \downarrow
d: $r_2 := \operatorname{Idr} [data + r_1 - r_1]$

{ ⊤ } a: str [*data*] 42

$$\{ r_1 \stackrel{\text{\tiny IP}}{\longrightarrow} _ * r_2 \stackrel{\text{\tiny IP}}{\longrightarrow} _ \}$$
c: $r_1 := \operatorname{Idr} [flag]$

b: str_{rel} [flag] 1

d:
$$r_2 := Idr [data + r_1 - r_1]$$

 $\{ \cdots \}$

$$\left\{ \begin{matrix} r_1 \vdash v_{flag} @_ * r_2 \vdash v_{data} @_ * \\ (v_{flag} = 1 \Rightarrow v_{data} = 42) \end{matrix} \right\}$$

b: str_{rel} [flag] 1

d:
$$r_2 := \operatorname{\mathsf{Idr}} [data + r_1 - r_1]$$

$$\{\cdots\}$$

a:

$$\begin{cases} r_1 \mapsto v_{flag} @_ * r_2 \mapsto v_{data} @_ * \\ (v_{flag} = 1 \Rightarrow v_{data} = 42) \end{cases}$$

 $\begin{array}{l} \Phi(\textit{data}, \textit{v}, e) \triangleq \mathsf{Initial}(e) \lor \textit{v} = 42 \\ \Phi(\textit{flag}, \textit{v}, e) \triangleq \mathsf{Initial}(e) \lor (\textit{v} = 1 * \exists e'. e': \mathsf{W} \textit{ data } 42 \xrightarrow{\mathsf{PO}} e: \mathsf{W}_{\mathsf{rel}} \textit{ flag } 1) \end{array}$

$$\{ \cdots \}$$

$$\begin{cases} r_1 \mapsto v_{flag} @_ * r_2 \mapsto v_{data} @_ * \\ (v_{flag} = 1 \Rightarrow v_{data} = 42) \end{cases}$$

 $\Phi(data, v, e) \triangleq \text{Initial}(e) \lor v = 42$ $\Phi(flag, v, e) \triangleq \text{Initial}(e) \lor (v = 1 * \exists e' \cdot e' : W \text{ data } 42 \xrightarrow{PO} e : W_{\text{rel}} flag 1)$ $\{r_1 \mapsto * r_2 \mapsto \}$ $\{ \top \}$ c: $r_1 := \operatorname{Idr} [flag]$ a: str [*data*] 42 { a:W data 42 $\xrightarrow{\text{po}}$ ·} b: str_{rel} [flag] 1 d: $r_2 :=$ ldr [*data* + $r_1 - r_1$] $(a:W data 42 \xrightarrow{PO} b:W_{rel} flag 1*)$ \ldots $\{\cdots\}$ **Proof** obligation $\begin{cases} r_1 \mapsto v_{flag} @_ * r_2 \mapsto v_{data} @_ * \\ (v_{flag} = 1 \Rightarrow v_{data} = 42) \end{cases}$ $\Phi(flag, 1, b)$

$$\begin{array}{l} \Phi(\textit{data}, \textit{v}, e) \triangleq \mathsf{lnitial}(e) \lor \textit{v} = 42 \\ \Phi(\textit{flag}, \textit{v}, e) \triangleq \mathsf{lnitial}(e) \lor (\textit{v} = 1 * \exists e'. e': \mathsf{W} \textit{ data } 42 \xrightarrow{\mathsf{po}} e: \mathsf{W}_{\mathsf{rel}} \textit{ flag } 1) \end{array}$$

 $\left\{ \begin{array}{c} \top \end{array} \right\} \\ a: str [data] 42 \\ \left\{ a: W \ data \ 42 \xrightarrow{P^{\circ}} \cdot \right\} \end{array}$

b: str_{rel} [flag] 1 $\begin{cases}
a: W \text{ data } 42 \xrightarrow{p_0} b: W_{rel} \text{ flag } 1* \\
\cdots \\ \{\cdots\}
\end{cases}$

$$\begin{cases} r_1 \stackrel{\text{\tiny IT}}{\longrightarrow} _ * r_2 \stackrel{\text{\tiny IT}}{\longrightarrow} _ \end{cases} \\ c: r_1 := \mathsf{ldr} [flag] \\ \begin{cases} c: \mathsf{R} \ flag \ v_{flag} \stackrel{\text{\tiny PO}}{\longrightarrow} \cdot * \\ r_1 \stackrel{\text{\tiny IT}}{\longrightarrow} v_{flag} @c * c \hookrightarrow \Phi(flag, v_{flag}, c) * \cdots \end{cases} \\ d: r_2 := \mathsf{ldr} \ [data + r_1 - r_1] \end{cases}$$

$$\begin{cases} r_1 \stackrel{\mu}{\mapsto} v_{flag} @_ * r_2 \stackrel{\mu}{\mapsto} v_{data} @_ * \\ (v_{flag} = 1 \Rightarrow v_{data} = 42) \end{cases}$$

$$\begin{split} \Phi(\textit{data}, v, e) &\triangleq \mathsf{Initial}(e) \lor v = 42 \\ \Phi(\textit{flag}, v, e) &\triangleq \mathsf{Initial}(e) \lor (v = 1 * \exists e'. e': \mathsf{W} \textit{ data } 42 \xrightarrow{\mathsf{po}} e: \mathsf{W}_{\mathsf{rel}} \textit{ flag } 1) \end{split}$$

 $\{ \top \}$ a: str [*data*] 42 $\{ a: W \ data \ 42 \xrightarrow{P^{\circ}} \cdot \}$

b: str_{rel} [flag] 1 $\begin{cases}
a: W \text{ data } 42 \xrightarrow{\text{po}} b: W_{\text{rel}} \text{ flag } 1* \\
\cdots \\ \dots \\
\end{cases}$

$$\begin{cases} r_1 \stackrel{r_2}{\longrightarrow} \ * \ r_2 \stackrel{r_2}{\longrightarrow} \ - \ \end{cases}$$

$$c: r_1 := \operatorname{Idr} [flag]$$

$$\begin{cases} c: R \ flag \ v_{flag} \stackrel{p_0}{\longrightarrow} \cdot * \\ r_1 \stackrel{r_1}{\longrightarrow} v_{flag} @c \ * \ c \ \hookrightarrow \ \Phi(flag, v_{flag}, c) \ * \cdots \end{cases}$$

$$d: \ r_2 := \operatorname{Idr} [data + r_1 - r_1]$$

$$\begin{cases} r_1 \stackrel{\mu}{\mapsto} v_{flag} @_ * r_2 \stackrel{\mu}{\mapsto} v_{data} @_ * \\ (v_{flag} = 1 \Rightarrow v_{data} = 42) \end{cases}$$

 $\Phi(data, v, e) \triangleq \text{Initial}(e) \lor v = 42$ $\Phi(flag, v, e) \triangleq \text{Initial}(e) \lor (v = 1 * \exists e' \cdot e' : W \text{ data } 42 \xrightarrow{\text{po}} e: W_{\text{rel}} \text{ flag } 1)$ $\{r_1 \mapsto r_2 \mapsto \}$ $\{ \top \}$ a: str [data] 42 c: $r_1 := \operatorname{Idr} [flag]$ $\begin{cases} c: \mathsf{R} \ \textit{flag} \ \textit{v}_{\textit{flag}} \xrightarrow{\mathsf{po}} \cdot \ast \\ r_1 \vdash \mathsf{v}_{\textit{flag}} @c \ast c \mathrel{\hookrightarrow} \Phi(\textit{flag}, \textit{v}_{\textit{flag}}, c) \ast \cdots \end{cases}$ { a:W data 42 $\xrightarrow{\text{po}}$ ·} b: str_{rel} [flag] 1 d: $r_2 := Idr [data + r_1 - r_1]$ $\langle r_1 \mapsto v_{flag} @c * r_2 \mapsto v_{data} @d * c \leftrightarrow \top *$ $\{ \dots \}$ $d \oplus (\Phi(data, v_{data}, d) * \Phi(flag, v_{flag}, c))$ $\begin{cases} r_1 \stackrel{\mu}{\mapsto} v_{flag} @_ * r_2 \stackrel{\mu}{\mapsto} v_{data} @_ * \\ (v_{flag} = 1 \Rightarrow v_{data} = 42) \end{cases}$

 $\Phi(data, v, e) \triangleq \text{Initial}(e) \lor v = 42$ $\Phi(flag, v, e) \triangleq \text{Initial}(e) \lor (v = 1 * \exists e' \cdot e' : W \text{ data } 42 \xrightarrow{\text{po}} e: W_{\text{rel}} \text{ flag } 1)$ $\{r_1 \mapsto r_2 \mapsto \}$ $\{ \top \}$ a: str [data] 42 c: $r_1 := \operatorname{Idr} [flag]$ $\begin{cases} c: \mathsf{R} \ \textit{flag} \ \textit{v}_{\textit{flag}} \xrightarrow{\mathsf{po}} \cdot \ast \\ r_1 \vdash \mathsf{v}_{\textit{flag}} @c \ast c \ \hookrightarrow \ \Phi(\textit{flag}, \textit{v}_{\textit{flag}}, c) \ast \cdots \end{cases}$ { **a**:W data 42 $\xrightarrow{\text{po}}$ ·} b: str_{rel} [flag] 1 d: $r_2 := Idr [data + r_1 - r_1]$ $\begin{cases} a: W \text{ data } 42 \xrightarrow{p_0} b: W_{rel} \text{ flag } 1* \\ \dots \end{cases}$ $\int c: R flag v_{flag} \xrightarrow{addr} d: R data v_{data} *$ $\langle r_1 \mapsto v_{flag} @c * r_2 \mapsto v_{data} @d * c \Leftrightarrow \top *$ $\{\ldots\}$ $d \oplus (\Phi(data, v_{data}, d) * \Phi(flag, v_{flag}, c))$ $\begin{cases} r_1 \vdash v_{flag} @_ * r_2 \vdash v_{data} @_ * \\ d \hookrightarrow (v_{flag} = 1 \Rightarrow v_{data} = 42) \end{cases}$

Soundness (Adequacy theorem) of AxSL

- Soundness proof is challenging
 - tension between reasoning along program order and induction along ob

Soundness (Adequacy theorem) of AxSL

- Soundness proof is challenging
 - tension between reasoning along program order and induction along ob
- AxSL has an adequacy theorem
 - results proven in AxSL also hold at the meta level w.r.t. the (axiomatic-model-based) Opax semantics

Soundness (Adequacy theorem) of AxSL

- Soundness proof is challenging
 - tension between reasoning along program order and induction along ob
- AxSL has an adequacy theorem
 - results proven in AxSL also hold at the meta level w.r.t. the (axiomatic-model-based) Opax semantics
- The statement is similar to stardard Iris adequacy, but the proof is novel
 - by stratification: two traversals over program executions

- AxSL is an expressive program logic for (user-mode) Arm-A memory model, that
 - supports thread-local reasoning and many advanced CSL features
 - is proven sound w.r.t. the axiomatic-model-based Opax semantics (first in Iris)
 - is fully mechanised in Coq

- AxSL is an expressive program logic for (user-mode) Arm-A memory model, that
 - supports thread-local reasoning and many advanced CSL features
 - is proven sound w.r.t. the axiomatic-model-based Opax semantics (first in Iris)
 - is fully mechanised in Coq
- Main limitations
 - Lacking support for coherence
 - Missing many abstractions

- AxSL is an expressive program logic for (user-mode) Arm-A memory model, that
 - supports thread-local reasoning and many advanced CSL features
 - is proven sound w.r.t. the axiomatic-model-based Opax semantics (first in Iris)
 - is fully mechanised in Coq
- Main limitations
 - Lacking support for coherence
 - Missing many abstractions
- Our approach will generalise
 - The Opax semantics can be adapted for other axiomatic memory models
 - The resource-tied-to assertions will allow sound reasoning above other very relaxed MMs, e.g. RISC-V

AD: If you like beautiful interactive robots...

Check out Glowbot Garden @ St Mary le Strand Church (3 min away! 12noon-8pm)