
An Axiomatic Basis for Computer Programming on Relaxed Hardware
Architectures: The AxSL Logics

ZONGYUAN LIU, Aarhus University, Denmark

ANGUS HAMMOND, University of Cambridge, UK

THIBAUT PÉRAMI, University of Cambridge, UK

PETER SEWELL, University of Cambridge, UK

LARS BIRKEDAL, Aarhus University, Denmark

JEAN PICHON-PHARABOD, Aarhus University, Denmark

Very relaxed concurrency memory models, like those of the Arm-A, RISC-V, and IBM Power hardware architectures, underpin much

of computing but break a fundamental intuition about programs, namely that syntactic program order and the reads-from relation

always both induce order in the execution. Instead, out-of-order execution is allowed except where prevented by certain pairwise

dependencies, barriers, or other synchronisation. This means that there is no notion of the ‘current’ state of the program, making it

challenging to design (and prove sound) syntax-directed, modular reasoning methods like Hoare logics, as usable resources cannot

implicitly flow from one program point to the next.

We present AxSL, a family of separation logics for relaxed hardware memory models, and instantiate it on sequential consistency and

on the Arm-Amemorymodel. The Arm-A instance captures the fine-grained reasoning underpinning the low-overhead synchronisation

idioms used by high-performance systems code. We mechanise AxSL in the Iris separation logic framework, illustrate it on key

examples, and prove it sound with respect to the axiomatic memory model of Arm-A.

By instantiating AxSL on different memory models, we demonstrate the generality of our approach, and show that it is largely

generic in the axiomatic model and in the instruction-set semantics, offering a potential way forward for compositional reasoning for

other models, and for the combination of production concurrency models and full-scale ISAs.

CCS Concepts: • Theory of computation → Separation logic; • Computer systems organization→ Multicore architectures.

Additional Key Words and Phrases: relaxed memory models, program logic, separation logic, Arm, Iris

ACM Reference Format:
Zongyuan Liu, Angus Hammond, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod. 2024. An Axiomatic

Basis for Computer Programming on Relaxed Hardware Architectures: The AxSL Logics. 1, 1 (October 2024), 62 pages. https:

//doi.org/10.1145/nnnnnnn.nnnnnnn

Authors’ addresses: Zongyuan Liu, zy.liu@cs.au.dk, Aarhus University, Åbogade 34, Aarhus, Denmark, 8200; Angus Hammond, Angus.Hammond@cl.

cam.ac.uk, University of Cambridge, Computer Laboratory, JJ Thomson Avenue, Cambridge, UK, CB3 0FD; Thibaut Pérami, Thibaut.Perami@cl.cam.ac.uk,

University of Cambridge, Computer Laboratory, JJ Thomson Avenue, Cambridge, UK, CB3 0FD; Peter Sewell, Peter.Sewell@cl.cam.ac.uk, University of

Cambridge, Computer Laboratory, JJ Thomson Avenue, Cambridge, UK, CB3 0FD; Lars Birkedal, birkedal@cs.au.dk, Aarhus University, Åbogade 34,

Aarhus, Denmark, 8200; Jean Pichon-Pharabod, jean.pichon@cs.au.dk, Aarhus University, Åbogade 34, Aarhus, Denmark, 8200.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Association for Computing Machinery.

Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2 Zongyuan Liu, Angus Hammond, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod

1 INTRODUCTION

Systems code, such as operating system and hypervisor kernel code, is a prime target for software verification, being

security-critical yet relatively small. However, it is highly concurrent, which raises two questions: What model to

verify it above? And what verification theory to use? For example, the Arm-A architecture is used in essentially all

mobile devices, and its base (“user”) relaxed concurrency model is now reasonably well-understood and stable [Arm Ltd.

2023, Ch.B2],[Alglave et al. 2021, 2014; Deacon 2016; Flur et al. 2017; Pulte et al. 2018]. However, there is little program

verification theory or tooling that applies directly to Arm-A, nor to similarly relaxed architectures.

In this paper, we develop a family of separation logics that can be instantiated on relaxed hardware memory models,

and yet is expressive, supporting local reasoning with higher-order ghost state and invariants, and mechanised in

Coq, using the Iris program logic framework [Jung et al. 2018, 2015]. We then instantiate this logic on the Arm-A

“user” concurrency model, which is particularly challenging for program-logic reasoning because it (like RISC-V and

IBM Power, but unlike x86) permits load-store reordering, as in the classic “load buffering” LB shape of Fig. 1. This

means that the union of program order (po) and the reads-from relation (rf) is not guaranteed to be acyclic — but for

compositional reasoning, one wants to attach assertions to particular program points, and program logics usually rely

on the strength of program order captured by that acyclicity; they let resources implicitly flow in the proof context

from one program point to the next. Previous program logics have either assumed po ∪ rf acyclic (which requires extra

barriers), e.g. FSL++ [Doko 2021; Doko and Vafeiadis 2017], GPS [Turon et al. 2014], and iRC11 [Dang et al. 2020], or lack

ghost state, e.g. FSL [Doko and Vafeiadis 2016], which makes the logic substantially less expressive and more awkward

to use, or give extremely weak guarantees for non-synchronised reads, e.g. RSL [Vafeiadis and Narayan 2013]. The

Lace logic [Bornat et al. 2015] targeted relaxed architectural models but lacked a proof of soundness, and the Ogre and

Pythia logic [Alglave and Cousot 2017] is a refinement of Owicki-Gries [Owicki and Gries 1976] that is parameterised

by (and sound for) a range of relaxed models, but (like Owicki-Gries) lacks thread-local modular reasoning.

𝑎: 𝑟1 := ldr [𝑥] 𝑐: 𝑟2 := ldr [𝑦]
𝑏: str [𝑦] 1 𝑑 : str [𝑥] 1

𝑎:R 𝑥 1

𝑏:W 𝑦 1

𝑐:R 𝑦 1

𝑑 :W 𝑥 1

po po
rf

rf

Fig. 1. LB+pos

In contrast to those previous program logics, to allow sound usage of ghost resources even in the presence of LB, we

prevent implicit flow of usable resources between program points along po, allowing it only when actual synchronisation

is present — for example, for the Arm-A memory model, along the ordered-before ordering (ob). Different relaxed

hardware architectures expose different combinations of ways to impose such synchronisation: address dependencies,

release writes, etc. We allow explicit reasoning about those if need be, by exposing the structure of the axiomatic model,

letting one reason about the low-cost ordering that the architecture under consideration guarantees from various forms

of dependency (RSL, FSL, FSL++, GPS, and iGPS are all for C11 or RC11, without dependencies).

Stepping back, why would one want to reason directly above an architecture concurrency model? After all, high-level

language concurrency models, e.g. C/C++11 [Batty et al. 2011; Boehm and Adve 2008] and the Linux kernel memory

model, LKMM [Alglave et al. 2018; McKenney et al. 2020], were designed to obviate the need to program and reason

about specific underlying architectures, with extensive work on the correctness of their compilation schemes [Batty

Manuscript submitted to ACM

An Axiomatic Basis for Computer Programming on Relaxed Hardware Architectures: The AxSL Logics 3

et al. 2012; Lahav et al. 2017; Manerkar et al. 2016; Sarkar et al. 2012], and one would not envisage manual proof about

large bodies of assembly code. There are three main reasons.

𝑥 = 0 ∧ 𝑦 = 0

𝑎: 𝑟1 := ldr [𝑥] 𝑐: 𝑟2 := ldr [𝑦]
𝑏: str [𝑦] 𝑟1 𝑑 : str [𝑥] 𝑟2

𝑎:R 𝑥 42

𝑏:W 𝑦 42

𝑐:R 𝑦 42

𝑑 :W 𝑥 42

po
data po

data

rf

rf

Fig. 2. LB+datas

First, those C/C++ language-level models are fundamentally flawed for highly relaxed code because of the out-of-

thin-air problem [Becker 2011, §23.9p9] [Batty et al. 2015]: they allow arbitrary values to be created, e.g. for the Fig. 2

LB+datas shape of relaxed atomic accesses and source-language data dependencies. Thin-air values are not believed to

arise for conventional compilers and hardware, but it has proven challenging to define tractable semantics that exclude

them while remaining sound w.r.t. conventional compiler and hardware optimisations — especially compiler dependency

removal and hardware load-store reordering. The LKMM forbids thin-air outcomes by assuming some dependencies are

respected, and in specific coding idioms they often are, but in general they can be removed by conventional compiler

optimisations. There have been many attempts to solve this problem [Chakraborty and Vafeiadis 2019; Jeffrey and Riely

2016; Kang et al. 2017; Lee et al. 2020; Paviotti et al. 2020; Pichon-Pharabod and Sewell 2016], but so far none have

been adopted — so we simply do not yet have any high-level language semantics suitable for reasoning about deployed

highly relaxed code. In contrast, architecture concurrency models for Arm-A, x86, RISC-V, IBM Power, and others, are

now well-established [Alglave et al. 2021, 2014; Arm Ltd. 2023; Deacon 2016; Flur et al. 2017; Owens et al. 2009; Pulte

et al. 2018; Sarkar et al. 2011, 2009; Waterman and Asanović 2019], and do not suffer from the thin-air problem: these

architectures guarantee respect for certain syntactic dependencies, ruling out thin-air. These architectural models thus

give us a solid foundation that we can reason above.

Second, ultimately, the machine-code binary is what runs — and therefore one wants to verify down to the (concurrent)

machine semantics, even if the bulk of one’s source-language verification is at the C level or above. There are several

possible approaches to this: for example, one might have a source language with more restricted concurrency (without

relaxed accesses), and then some verified compilation result down to the machine semantics [Cho et al. 2022; Tao et al.

2021]. But production systems-code in practice does use relaxed accesses for performance, and hence reasoning about

them is an important problem. We thus aim here to first understand how to reason directly about the binary, where we

have a good underlying model; future work can then use this as the basis for verified compilation or other verification

approaches for higher-level code.

Third, systems code relies, in small but crucial parts, on assembly which is not C-language expressible — e.g. for

particular barriers, and for management of systems features of the underlying architecture (instruction and data cache

management [Simner et al. 2020], virtual memory [Simner et al. 2022][Arm Ltd. 2023, B2.3], exceptions, etc.). We do not

cover systems semantics here, but our approach is designed to generalise to it.

Contributions. We develop a family of separation logics for relaxed hardware architectures, AxSL, that is expressive,

supporting reasoning with higher-order ghost state and invariants, and mechanised in Coq, using the Iris program

logic framework.

We then instantiate AxSL on two memory models: sequential consistency, and on the Arm-A concurrency model. For

both, we use an idealised instruction set architecture (ISA), but our approach is designed to generalise: our idealised ISA

Manuscript submitted to ACM

4 Zongyuan Liu, Angus Hammond, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod

semantics and base logic are defined above the microinstructions of the Sail “outcome” interface [Gray et al. 2015][Pulte

et al. 2018, §6.1][Pulte 2018, §2.3], so they should generalise straightforwardly to the full ISA of Arm-A or RISC-V. For

the concurrency model, our approach is largely generic in the structure of the axiomatic model, so this work offers a

path towards similar logics for other architecture axiomatic models (e.g. the RISC-V “user” model, which is similar to

that of Arm-A), or, more speculatively, to extensions covering systems semantics, as has been developed for example

for Arm [Simner et al. 2022, 2020]. Moreover, both the Arm-A architecture reference manual and RISC-V specify their

concurrency architecture in this axiomatic style [Arm Ltd. 2023, Ch.B2] and are actively maintained and occasionally

changed, so (while semantics for new features have been developed in multiple styles), it is desirable to be able to track

the reference-manual version with minimal effort.

Plan. We describe the program-logic and relaxed-memory context in §2. We explain the key ideas of our logic

informally in §3. In §4, we describe the two languages we consider, and how we give their semantics in a way that makes

it possible to build an expressive logic featuring higher-order ghost state. We present one language for SC, combining

a simplified assembly language with sequential consistency; and one for Arm-A, combining a simplified assembly

language featuring dependencies with the real LB-permitting Arm-A axiomatic concurrency model.
1
In §5, we describe

the rules of our AxSL logic and exercise them on small, representative examples. We do this in three stages, first we

present how to deal with axiomatic memory models ignoring relaxed memory, then we show how to structure the logic

to deal with a relaxed memory model but in the simple setting of sequential consistency, and finally we deal with an

actual relaxed memory model, namely that of Arm-A. In §6, we define the model of AxSL in Iris, following the same

three stages, and present our non-standard definition of weakest precondition. In §7, we present our non-standard proof

of adequacy of AxSL in Iris. In §8, we discuss some technical aspects and limitations of our work. We discuss related

work in §9, and how our work can be used and extended further in §10. The Arm-A instance of AxSL, its soundness

and the examples are formalised in Coq using the Iris separation logic framework; the full development is available at

https://github.com/logsem/AxSL.

Difference with the original paper. This article is an extended version of the original paper presented at POPL

2024 [Hammond et al. 2024]. In particular, it makes our contributions more accessible, especially to those who are less

familiar with relaxed memory and the memory model of Arm-A, it elaborates the definitions to be self-contained, and

it makes technical improvements to the proof technique. In detail:

• We introduce our novel ‘opax’ type of semantics using a simple language with a simple memory model (namely

sequential consistency) in §4.3.3.

• We explain the novel ideas of AxSL
Arm

in that simpler setting, building two logics for that simple SC language:

AxSL
SC

and AxSL
SCExt

. These two simpler logics work as explanatory steps when building up the syntax and

the semantic model of the AxSL
Arm

.

– We show how to define a first straightforward logic, AxSL
SC

, on top of our novel ‘opax’ style of semantics in

§5.2, and how to define a semantic model for it in §6.3.

– We then show how to define a second, more elaborate logic, AxSL
SCExt

, that uses the ideas that make AxSL
Arm

work in the setting of relaxed memory, but still in the simple setting of sequential consistency in §5.3, and

present its semantic model in §6.4.

1
To avoid adding overwhelming complexity to an already complex topic, we only consider the “user” Arm-A memory model of 2018 [Pulte et al. 2018],

and not more recent extensions and changes: no mixed-size accesses, no instruction fetching, no virtual memory, and no pick dependencies, although

these extensions are all in the shape that our approach supports.

Manuscript submitted to ACM

https://github.com/logsem/AxSL

An Axiomatic Basis for Computer Programming on Relaxed Hardware Architectures: The AxSL Logics 5

• We give a self-contained presentation of the definitions of the model of AxSL
Arm

, using precise definitions that

were omitted in the original paper because of space constraints, in §6.5.

• We expand the explanation of various technical definitions and proofs, and add illustrations to make the technical

material more accessible.

• We refine the model of AxSL
Arm

, leading to some technical improvements that we elaborate on in §8.1, in

particular a better proof of adequacy.

Moreover, by demonstrating the ideas of AxSL
Arm

on a different (albeit simple) memory model, we have shown that

our novel approach to defining semantics and program logics generalises.

2 CONTEXT: PROGRAM LOGICS AND RELAXED CONCURRENCY

Early work on program verification, in a sequential setting, could assume the existence of a simple program state

of memory values, updated by each instruction, and program proof could be done by annotating a flowchart (as per

Turing [Morris and Jones 1984; Turing 1949] and Floyd [Floyd 1967]), or syntactic program points (as per Naur [Naur

1966] and Hoare [Hoare 1969]), with assertions on that state. In this setting, a fact about a part of the state untouched

by some instruction remains true (and usable for program proof) after the instruction, though managing such framing

had to be done manually. The first separation logics, of Reynolds, O’Hearn, and Yang [O’Hearn et al. 2001; Reynolds

2002], refined this view with a separating conjunction, allowing assertions to express ownership of some part of such

a state, with an explicit frame rule. Simple concurrent separation logics, e.g. CSL [Brookes and O’Hearn 2016], are

broadly similar except that ownership of parts of the state can be transferred at lock acquire and release points: facts

about owned parts of the state remain true from one program point to the next, except where the state they mention is

explicitly modified by the intervening instruction.

In a relaxed-memory concurrent setting, however, there is no simple notion of program state, acted on by all threads

in some global interleaving: threads do not execute in-order, and different threads can observe events in incompatible

orders. To capture this, the underlying semantics have quite different forms to classical sequential or sequentially

consistent concurrent semantics. Two styles of semantics for architectural relaxed-memory concurrency are common:

abstract-microarchitectural operational models explain how the allowed observable behaviour arises from explicit

speculative execution and event propagation, with roll-back when speculation turns out to violate some constraint,

e.g. [Higham et al. 2007; Owens et al. 2009; Pulte et al. 2018; Sarkar et al. 2011], while axiomatic models define the

allowed observable behaviour more concisely as predicates on candidate complete execution graphs, e.g. [Alglave et al.

2010, 2014; Gharachorloo 1995; Kohli et al. 1993], but do not straightforwardly support the incremental construction of

valid executions. A third, “Promising”, style is, very roughly, intermediate between the two [Pulte et al. 2019]. All are

challenging to work with, in different ways, as we discuss in §3.2.

We base the current work on axiomatic models. In these, a program gives rise to a large set of candidate complete

execution graphs, each with a function from event IDs to events, and a program order relation over event IDs (po)

within each thread, and various other base relations. An axiomatic concurrency model typically defines compound

relations derived from these, e.g. for Arm-A — which we will use as our main case study — the model of Fig. 4 defines

an observed before (ob) relation that captures synchronisation, and imposes constraints on those, in particular that ob is

acyclic. The semantics of a program is the set of all candidate complete execution graphs that satisfy those properties

and are consistent with the intra-instruction semantics. For example, the candidate execution for LB+pos in Fig. 1 is

allowed by the Arm-A axiomatic model because the plain po relation, between reads and writes to different addresses,

Manuscript submitted to ACM

6 Zongyuan Liu, Angus Hammond, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod

𝑎:R 𝑥 0

𝑏:W 𝑦 0

𝑐:R 𝑦 0

𝑑 :W 𝑥 0

po
data po

data

rf

rf

Fig. 3. An SC execution of LB+datas

(* Coherence-after *)
let ca = fr | co
(* Observed-by *)
let obs = rfe | fre | coe
(* Dependency-ordered-before *)
let dob = addr | data
| ctrl; [W]
| (ctrl | (addr; po)); [ISB]; po; [R]
| addr; po; [W]
| (ctrl | data); coi
| (addr | data); rfi
(* Atomic-ordered-before *)
let aob = rmw
| [range(rmw)]; rfi; [A | Q]
(* Barrier-ordered-before *)
let bob = po; [dmb.full]; po | [L]; po; [A]

| [R]; po; [dmb.ld]; po
| [A | Q]; po
| [W]; po; [dmb.st]; po; [W] | po; [L]
| po; [L]; coi
(* Locally ordered-before *)
let lob = dob | aob | bob
(* Ordered-before *)
let ob = (obs | lob)+
(* Internal visibility requirement *)
acyclic po-loc | ca | rf
(* External visibility requirement *)
irreflexive ob
(* Atomicity requirement *)
empty rmw & (fre; coe) as atomic

Fig. 4. Arm-A axiomatic model by Deacon [Pulte et al. 2018] (with lob separated out, following later Arm models [Alglave et al. 2021]),

in herd’s cat syntax [Alglave et al. 2014] for relational algebra. Here |, &, ;, and + are relational union, intersection, composition, and

transitive closure; [W], [R], [L], [A] and [Q] are the identity relations over all write, read, release, acquire and acquirePC events; [ISB],

[dmb.full], [dmb.st], [dmb.ld] are the identity on those barrier events; addr, data, and ctrl are the syntactic dependency-relation subsets

of program order po; po-loc relates same-address memory accesses in po; co is coherence over writes; the derived fr relates reads to

coherence successors of the write they read from; rmw is the successful read/write-exclusive pairs; and the rf, co, and fr relations are

subdivided into their “internal” (same-thread) and “external” (different-thread) parts, suffixed i and e respectively. The main “axiom”

requires that ordered-before (ob) is irreflexive.

is not included in the ordered-before ob that is required to be acyclic (or in the internal or atomicity requirements).

The candidate execution for LB+data at the bottom of Fig. 2 is forbidden in Arm-A because the intra-thread syntactic

data dependencies create data edges, which are included in the Arm-A locally ordered before lob relation, and that and

the inter-thread reads-from relation rfe are both contained in ob. For contrast the candidate execution for LB+data in

which 𝑎 reads from (rf) the initial state in Fig. 3 is allowed.

For some, relatively simple, forms of relaxed concurrency, one can adapt separation logic relatively straightforwardly.

For example, rely/guarantee reasoning with acquire/release reads and writes lets one do thread-modular proofs, in

which a thread might gain some resource at an acquire read, manipulate it freely, and then pass it on with a release write

– with the resource still persisting from one program point to the next between those points (except where explicitly

modified by this thread), as a read-acquire is ordered with all po-successors and a write-release with all po-predecessors.

The effect of reading from a shared variable on the thread’s logical state is accounted for thread-locally by relying on

a protocol or invariant to abstract the possible actions of other threads. The protocol constrains what logical resources

are transferred when accessing shared variables. In a candidate execution, one can see this as annotating the incoming

(to reads) and outgoing (from writes) reads-from edges, for the part of the graph for each thread, with the resources

that get transferred along them (Fig. 5).

Manuscript submitted to ACM

An Axiomatic Basis for Computer Programming on Relaxed Hardware Architectures: The AxSL Logics 7

a: 𝑟1 := ldracq [𝑥]

b: str
rel

[𝑦] 𝑟1

𝑐:W
rel
𝑥 𝑣

𝑎:Racq 𝑥 𝑣

𝑏:W
rel
𝑦 𝑣

𝑑 :Racq 𝑦 𝑣

po 𝑆1

po 𝑆2

po 𝑆3

rf

𝜙 𝑣

rf

𝜓 𝑣

Fig. 5. Thread-local part (in grey) of a candidate execution, annotated with the logical resources in blue flowing on edges. The thread

program is on the left. Resources 𝑆1,2,3 are those in hand at each program point, and the protocol specifies the resources 𝜙 𝑣 and𝜓 𝑣

passed along the release-acquire edges for 𝑥 and 𝑦.

In this view, as described for RSL, the events of the execution graph act following flow implications: “the annotation

is locally valid around that action [when] basically the sum of the annotated heaps on the incoming edges should equal

the sum of the annotated heaps on the outgoing edges, modulo the effect of [the] action”.

FSL generalises RSL to reason about C11’s release and acquire fences, but its assertions are still persistently freely

usable along po, so they have to choose between soundness in the presence of load buffering (FSL) and support for

ghost state, at the cost of requiring po ∪ rf acyclic (FSL++). We describe these and related logics in more detail in §9.

3 KEY IDEAS

3.1 The First Problem: Relaxed Thread-local Ordering

𝑎: 𝑟1 := ldr [𝑥]
𝑏: 𝑟2 := ldr [𝑥 ′]
𝑐: str [𝑦] 𝑟1
𝑑 : str [𝑦′] 𝑟2

𝑎:R 𝑥 𝑣1

𝑏:R 𝑥 ′ 𝑣2

𝑐:W 𝑦 𝑣1

𝑑 :W 𝑦′ 𝑣2

po

po

po

data

data

Fig. 6. Intra-thread concurrency

The biggest challenge for reasoning about the more relaxed behaviour of

mainstream (non-TSO) relaxed architectures, including Arm-A, RISC-V, and

IBM Power, arises from the fact that they all permit out-of-order execution

of program-ordered loads and stores, except where there is some dependency

or barrier. This means that a resource gained on a load cannot be deemed to

implicitly persist through to any program-order-later store where it might

be passed on. For example, consider a thread consisting of two interleaved

copies of the left thread of LB+datas (operating on disjoint addresses), as in

Fig. 6. The data dependencies order 𝑎 with 𝑐 , and 𝑏 with 𝑑 , but that is all the

ordering we get. In particular, nothing orders the last read 𝑏, before the first

write 𝑐 – in contrast to the release/acquire case.

The Arm-A axiomatic model’s locally-ordered-before (lob) relation specifies what thread-local ordering is respected,

as introduced by barriers, synchronising accesses (store release, acquire reads, etc.), and register-to-register dependencies.

All but the strongest barriers and synchronising accesses impose only a partial ordering and allow some intra-thread

concurrency. In particular, some register dependencies merely impose a pairwise ordering of events; as such, they are

particularly cheap, and are one of the motivations to directly write assembly for high-performance code, for example in

the Linux kernel’s pervasive RCU library.

Manuscript submitted to ACM

8 Zongyuan Liu, Angus Hammond, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod

Our first key idea is that by attaching resources only to locally-ordered-before edges, rather than all of program

order, we can make a sound logic even for relaxed architectures exhibiting load buffering and intra-thread concurrency.

However, for practical and compositional reasoning, we want to annotate a program text, not the large set of its

candidate executions. Moreover, to identify when ordering will arise from register dependencies to program-order-later

events, it suffices to keep track of the source of each register value. Concretely, a load 𝑎 into register 𝑟 of a value 𝑣 , from

some location following a protocol 𝜙 , will give us

(𝑟 r↦→ 𝑣@{𝑎}) ∗ (𝑎 ↬ (𝜙 𝑣))

Here our register points-to assertion 𝑟 r↦→ 𝑣@𝐸 keeps track of the set 𝐸 of (thread-local) events that it stems from, along

with 𝑟 ’s current value 𝑣 , while 𝑎 ↬ (𝜙 𝑣) records the resources gained (according to protocol 𝜙) from the load, tying

them to its event ID 𝑎. (The 𝜙,𝜓, . . . are per-location value-based protocols, which we later generalise.)

These register points-to and tied resources then do flow down to later program points (except where transferred

away), but, crucially, they can only be used for an event 𝑏 when 𝑎 is locally-ordered-before 𝑏, e.g. where 𝑏 is a program-

order and data-dependent write after 𝑎, which might consume some or all of the resources in passing them to another

thread. It is tempting to try to combine these two assertions into one, bypassing the indirection, as 𝑟 r↦→ 𝑣&(𝜙 𝑣), but
this breaks down for all but the simplest use cases: moving the contents of a register into another must distribute the

resources, or use indirection as we do via events. Lace logic [Bornat et al. 2015] had a somewhat similar mechanism,

but more explicitly in terms of edges than sources, which fits their setting where they dictate ordering (à la Crary and

Sullivan [Crary and Sullivan 2015]) better, but is less convenient for ours, where ordering emerges in program order.

In general, of course, there may be many dynamic instances – and hence memory events – arising from each static

instruction; that can also be dealt with within the logic, by existential quantification and counters for event IDs [Alglave

and Cousot 2017; Lamport 1977].

Crucially, we allow any Iris proposition to be tied to an event. This includes any piece of ghost state gs, embedded

into an Iris proposition as gs . Ghost state is very flexible [Dinsdale-Young et al. 2013, 2010; Jung et al. 2018, 2015;

Svendsen and Birkedal 2014], and, as usual in Iris, we use it both (1) to track the physical state (by enforcing in the

definition of weakest precondition that it keeps in sync with physical state introduced in §§3.2 and 4.3), but piecemeal,

so that we for example can talk about the state of a single register; and (2) to track the logical state of a program,

for example with an exclusive permission to commit to a value, where owning such a permission to commit refutes

observing another thread having done something that required having committed to a value (as in §5.6). In a sense,

ghost state instruments the physical state of the operational semantics, but unlike physical state, ghost state can be

updated freely by a view shift 𝑃 ⇛ 𝑄 , as long as the update is frame-preserving, meaning that it does not contradict

other pieces of ghost state; the view shift can be viewed as a generalised implication. Finally, our 𝑎 ↬ 𝑃 assertion is

itself defined using ghost state, using the fact that Iris ghost state is higher-order, in the sense that it is mutually defined

with Iris propositions.

1 {𝑟1 r↦→ _ ∗ 𝑅0} // 𝑆1
2 𝑎: 𝑟1 := ldr [𝑥]
3 {∃𝑣1 . 𝑟1 r↦→ 𝑣1@{𝑎} ∗ (𝑎 ↬ (𝜙 𝑣1)) ∗ 𝑅0} // 𝑆2
4 𝑏: str [𝑦] 𝑟1 (𝑅0 ∗ 𝜙 𝑣1) ⇛ (𝜓 𝑣1)
5 {𝑟1 r↦→ 𝑣1@{𝑎}} // 𝑆3

Fig. 7. Proof sketch for a plain-access (non-release/acquire) version of Fig. 5. The flow implication is on line 4.

Manuscript submitted to ACM

An Axiomatic Basis for Computer Programming on Relaxed Hardware Architectures: The AxSL Logics 9

Using these assertions, we can write concrete proofs for synchronisation involving thread-local dependencies, as

sketched in Fig. 7, without relying on the program-order strength of release-acquire reasoning we illustrated in Fig. 5.

(This proof sketch is more complicated than needed for LB+datas, which has a very simple proof just asserting all

writes write 0, but it generalises to variations of LB, as we show in §5.) The initial logical state of the thread on line

1, 𝑆1, includes a register points-to for 𝑟1 containing unknown, irrelevant data, which we write with an underscore:

𝑟1
r↦→ _, and some potential extra logical state 𝑅0. The load 𝑎 reads some value 𝑣1, so now we have 𝑟1

r↦→ 𝑣1@{𝑎} and
𝑎 ↬ (𝜙 𝑣1). When performing the store 𝑏 on line 4, the proof rule requires us to establish the corresponding flow

implication. Because the store has a data dependency on 𝑎, we get to use not only the ambient 𝑅0, but also the 𝜙 𝑣1 tied

to 𝑎, to establish (because this is a store) the protocol for 𝑣1 for 𝑦,𝜓 𝑣1. The flow implication for 𝑏 that the proof rule

requires us to establish is thus (𝑅0 ∗ 𝜙 𝑣1) ⇛ (𝜓 𝑣1).
If the data dependency between 𝑎 and 𝑏 is removed (so the store, e.g. now of a constant, can execute early, and hence

the relaxed LB behaviour of Fig. 1, where both reads read a non-zero value, is allowed by Arm-A), then the proof does

not go through anymore, as desired, because the flow implication for 𝑏 no longer has 𝜙 𝑣1 available. This illustrates

how our assertions allow us to soundly use ghost state to reason about relaxed architectures exhibiting load buffering

and intra-thread concurrency.

𝑎: 𝑟 := ldr [𝑥]
{𝑟 r↦→ 𝑣@{𝑎} ∗ 𝑎 ↬ (𝑃 ∗𝑄)}
{𝑟 r↦→ 𝑣@{𝑎} ∗ (𝑎↬𝑃) ∗ (𝑎↬𝑄)}
{𝑟 r↦→ 𝑣@{𝑎} ∗ 𝑎 ↬ 𝑃}

𝑏: str [𝑦] 𝑟 // uses 𝑃
{𝑟 r↦→ 𝑣@{𝑎} ∗ 𝑎 ↬ ⊤}
{𝑟 r↦→ 𝑣@{𝑎}}

{𝑟 r↦→ 𝑣@{𝑎} ∗ 𝑎 ↬ 𝑄}
𝑐: str [𝑧] 𝑟 // uses 𝑄
{𝑟 r↦→ 𝑣@{𝑎} ∗ 𝑎 ↬ ⊤}

Fig. 8. Splitting tied resources

Framing. We are separating resources flowing from different sources to

different targets by necessity. Relatedly, one of the points of separation logic

is allow separate resources to flow side-by-side, for convenience (specifically,

for modularity). In the example of Fig. 6, reasoning about 𝑐 is not allowed

to use the resource from 𝑏, only from 𝑎 — thanks to framing, it does not

need to mention the resource from 𝑏 either (similarly, reasoning about 𝑑 is

not allowed to use the resource from 𝑎, and does not need to mention them

either). In addition to framing a tied resource off, we also support splitting

tied resources, so that given an instruction that merely needs 𝑎 ↬ 𝑃 , we can

split 𝑎 ↬ (𝑃 ∗𝑄) into (𝑎 ↬ 𝑃) ∗ (𝑎 ↬ 𝑄) and frame the latter off, as in Fig. 8,

see §6.5.

3.2 The Second Problem: Operationalising the Relaxed Arm-A
Model

The next challenge is that of selecting – or developing – a version of the Arm-A concurrency architecture to underlie

the soundness proof for our logic. A priori, one might use existing abstract-microarchitectural operational [Pulte et al.

2018], axiomatic [Pulte et al. 2018], or Promising-Arm [Pulte et al. 2019] models, which are proved equivalent (for

the features covered by all). We would like to express the logic as an instantiation of Iris [Jung et al. 2018, 2015], an

expressive separation logic framework, to get the benefits of its higher-order ghost state, guarded recursion, and existing

mechanisation. That requires the underlying semantics to be phrased as a small-step operational semantics, for the

logical setup for higher-order ghost state to apply, and it should work ‘enough’ along program order for the soundness

proof of our syntax-directed proof rules to be tractable.

The abstract microarchitectural operational model is explanatory, based on hardware intuition, and it is operational,

but it is in this respect too close to hardware, with explicit out-of-order execution; it also splits memory reads and writes

into multiple fine-grained events. The axiomatic model as normally presented is not straightforwardly operational:

Manuscript submitted to ACM

10 Zongyuan Liu, Angus Hammond, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod

phrased as acyclicity requirements on the ob and certain other derived relations of a whole-program complete candidate

execution, expressed using relational algebra with fixpoints over basic relations po, data, rf, etc. One might imagine

constructing an operational model from the axiomatic model by fiat, with a state that is a set of events, and steps that

add an arbitrary event and recheck the axiomatic-model validity predicate, but for Arm-A (and similarly RISC-V and

IBM Power), because po ∪ rf is not acyclic, this cannot straightforwardly follow program order, as reads would have to

sometimes read from events that have not yet been introduced. One might follow ob, but that would be at odds with

the structure of the soundness proof. Or one might permit such reads to read new symbolic values, and propagate those

through the instruction semantics, but that adds substantial complexity.

Instead, we develop a novel operationalisation of the axiomatic memory model in a mixed operational-axiomatic

style (§4), our second key idea. This opax semantics is sufficiently close to a small-step operational semantics that it is

not too difficult to instantiate the Iris logical framework to it, it works enough along program order for the soundness

proof of our syntax-directed proof rules to be tractable, and it remains manifestly equivalent to the reference axiomatic

model.

Executions in our opax semantics are with respect to an ambient complete candidate execution graph that satisfies

the axiomatic model validity predicate (but unconstrained by the thread-local ISA semantics), which is picked non-

deterministically at the start. The semantics executes threads individually: there is no substantive interleaving, nor

interaction directly between threads, only between single threads and the ambient memory graph. The instructions of

each thread execute in order, keeping only thread-local state – the next memory event identifier, the contents of registers,

sources of control dependencies, etc. Each instruction acts as an assertion about the existence of a corresponding

memory event at a particular position in the ambient execution graph, and the thread is stuck if an appropriate memory

event does not exist in the graph (in which case that specific execution is stuck in the opax semantics, but of course the

assembly program itself does not get stuck). This explicitly manipulates a non-thread-local graph; but in the logic, we

manage to hide this non-thread-locality in normal cases (as we show in §5).

Candidate graphs in which one or more thread(s) get stuck are simply ignored. This is unusual: getting stuck is not

an error; it indicates rather that this particular graph is not consistent with the thread-local semantics of instructions.

This was inspired by a related approach taken for the Islaris logic [Sammler et al. 2022] for reasoning about sequential

Arm-A machine-code, which faced a similar challenge in that rather different context
2
. In a sense, this opax model is

merely permuting the order of the usual construction of the axiomatic model: it starts by guessing a valid execution

graph (that is, an execution graph that follows the constraints), and then checks that each thread’s contribution in the

graph does indeed correspond to an execution of the thread.

One could instead try to work directly over Promising-Arm [Pulte et al. 2019], which is also operational enough for

our current purposes in the above senses. In Promising-Arm, apart from promises of future writes (which can all be done

at the start of execution, and which also inspire our up-front nondeterministic choice of graph) each thread executes in

program order; threads interact through a linear history of writes, keeping track of certain integer timestamps (indices

into the history of writes), which constrain how instructions can interact with the history. Timestamps keep track of

lower bounds on the sources of register values (and some whole-thread bounds for barriers), abstracting the set of

source events for each. These integer timestamps might be technically easier to work with than graphs, but we found

the explicit nodes with explicit edges of the axiomatic model helpful in developing our model of assertions. In a sense,

2
To reason above the full Arm-A ISA semantics without being overwhelmed with irrelevant detail, Islaris simplified the semantics of each instruction with

respect to chosen assumptions, e.g. about Arm-A system register values and alignment facts, using Isla SMT-assisted symbolic execution [Armstrong et al.

2021]. The resulting symbolic traces contain asserts on some paths, which (when they fail to hold) discard those paths from the instruction semantics –

which the Islaris instantiation of Iris exploits.

Manuscript submitted to ACM

An Axiomatic Basis for Computer Programming on Relaxed Hardware Architectures: The AxSL Logics 11

our opax semantics is a reformulation of an axiomatic model made to look more like a promising model, but with the

advantage that changes to the axiomatic model apply directly.

Note that, while our opax semantics technically qualifies as an operational semantics, it falls short of most usual

expectations of such. In particular, there is no reasonable sense in which it is executable.

By putting an axiomatic model in the required shape, we need a non-standard definition of weakest precondition

(§6.5) and a non-standard proof of adequacy (§7) (even more so as our threads are executed independently), but we still

benefit from more fundamental Iris features like higher-order ghost state, which one would not want to reconstruct.

Developing a separation logic directly over an axiomatic memory model has previously been done either using

a non-standard semantics of assertions (e.g. RSL, FSL, and GPS, which, as noted by Kaiser et al. [Kaiser et al. 2017,

§1.2], requires significant effort), or by defining an equivalent, operational model (e.g. iGPS [Kaiser et al. 2017] and

ORC11 [Dang et al. 2020]), which is challenging when the model allows very relaxed behaviour.

3.3 The Third Problem: Structuring the Adequacy Proof

Finally, given a proof in AxSL
Arm

using our new assertions, we then need an adequacy theorem (§7), which, given a

family of thread-local proofs in our logic, gives a statement about a whole program in the meta-logic, sound w.r.t. the

Arm-A semantics. To prove such an adequacy theorem, we need to address a tension between our proof, which is

syntax-directed, and therefore in program order, and synchronisation, which is along rf — even though there can be

cycles in po ∪ rf, which prevents doing an induction on it. Our third key idea is that, to solve this tension, we can

split the proof of adequacy in two phases: first along po, and then along ob. The first phase, along po, uses thread-local

resources to establish, for each thread, and for each memory event of that thread, that the flow implication for that

event holds. The second phase, along ob, stitches the flow implications together. For example, this second phase walks

through the thread of Fig. 6 twice, for the two disjoint components of ob: once from 𝑎 to 𝑐 , and once from 𝑏 to 𝑑 (with

both orderings being possible).

4 THE LANGUAGES

As the focus of this paper is on real-world concurrency rather than realistic instruction set architectures, we consider

a simplified assembly language, TinyArm, in which to write simple Arm-A concurrency-model programs. However,

we give its semantics by elaborating it into the outcome interface type of Sail [Gray et al. 2015][Pulte et al. 2018,

§6.1][Pulte 2018, §2.3] (§4.1), translating instructions into sequences of their semantic “microinstructions”: primitive

register and memory accesses, and Arm-A fences. These are what our logic actually reasons about. Using our basic

rules for the interface events, we then give high-level rules for our toy instructions. This means the logic should extend

naturally to the full Sail semantics for a large fragment of the Arm-A instruction-set architecture (ISA), using either

the Sail-generated Coq definitions for the ISA, or (as in Islaris [Sammler et al. 2022]) the output of the Isla symbolic

evaluator for Sail [Armstrong et al. 2021], both of which express the intricate real semantics of instructions in terms of

that same outcome interface type.

Our simplified language is shown in Fig. 9. Loads and stores are parameterised by an ordering strength, os, either

plain, release/acquire, or weak-acquire, and a variety, vr : non-exclusive or exclusive. The output register of a store is

used only for the success/fail value of a store exclusive; a dummy register is used for other stores.

Besides TinyArm, Fig. 9 also depicts the syntax of TinySc, an even simpler language in which we write concurrent

programs for a sequentially consistent (SC) memory model. We use this compact language to demonstrate the core

idea of opax which is the formal foundation that two logics in §5 build upon. TinySc is syntactically a sublanguage of

Manuscript submitted to ACM

12 Zongyuan Liu, Angus Hammond, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod

𝑖TinyArm ::= instructions

nop 𝑟 ∈ Reg ≜ {𝑟0, 𝑟1, . . .}
| 𝑟 := 𝑡 register assignment 𝑣, x ∈ Word ≜ 0..264 − 1

| br x branch to address x op ::= + | − | ×
| bne 𝑡 x conditional branch 𝑡 ::= 𝑣 | 𝑟 | 𝑡1 op 𝑡2
| 𝑟 := ldros,vr [𝑡addr] memory load os ::= plain | relacq | weakacq
| 𝑟 := stros,vr [𝑡addr] 𝑡data memory store vr ::= nexcl | excl
| dmb sy | dmb st | dmb ld | isb Arm-A fences

𝑟 := ldr [𝑡
addr

] ≜ 𝑟 := ldr
plain,nexcl [𝑡addr]

𝑟 := ldar [𝑡
addr

] ≜ 𝑟 := ldr
relacq,nexcl [𝑡addr]

stlr [𝑡
addr

] 𝑡
data

≜ 𝑟 := str
relacq,nexcl [𝑡addr] 𝑡data

𝑖TinySc ::= nop | 𝑟 := 𝑡 | br x | bne 𝑡 x | 𝑟 := ldr [𝑡
addr

] | 𝑟 := str [𝑡
addr

] 𝑡
data

Fig. 9. Instructions and syntactic sugar of TinyArm and TinySc

TinyArm, where we elide the os and vr and omit the barriers. Therefore, in the rest of this section, we present their

semantics by detailing one and then merely explaining how the other relates to it.

4.1 The Elaboration Semantics of Instructions into the Sail Outcome Interface

The Sail outcome interface defines the intra-instruction semantics for each instruction, independently from the behaviour

of registers and memory. It does this in terms of abstract microinstructions, formally a free monad of effects on outcomes,

with constructors RegRead, RegWrite, MemRead, MemWrite, etc. Each of these takes the appropriate arguments, and

the free monad constructor Next pairs it with a continuation which takes any register or memory read result and gives

the subsequent intra-instruction semantics.

We show how to elaborate TinyArm instruction using the interface, especially how to handle Arm’s architectural

dependencies, and then how to reuse the elaboration for TinySc instructions by merely ignoring those Arm specifics.

4.1.1 The Elaboration of TinyArm Instructions. Given an ordering strength os, a variety (exclusive or non-exclusive) vr ,

and address 𝑥 , and dependencies 𝑑 ∈ Dep ≜ 𝑃 (Reg) × 𝑃 (𝑁) (composed of register dependencies r, and intra-instruction

event dependencies m), MemRead os vr 𝑥 𝑑 has type (roughly) Outcome Word, wrapped in the instruction monad

IMon 𝐴 which has constructors Next𝑇 : Outcome 𝑇 → (𝑇 → IMon 𝐴) → IMon 𝐴 and Ret :𝐴 → IMon 𝐴. Rather than

give an exhaustive definition, we sketch how a few special cases of our instructions elaborate into (a meta-level Coq

program over) this Sail outcome interface in Fig. 10. A plain, non-exclusive load 𝑟 := ldr [𝑡
addr

], into register 𝑟 from

address 𝑡
addr

, elaborates into a plain (and non-exclusive) memory read from that address with address dependencies

given by the auxiliary function DJ−K (in our simplified language, dependencies can be computed from the syntax), the

value of which is bound to 𝑣 , followed by a register write to 𝑟 of 𝑣 with dependencies ⟨∅, {0}⟩ meaning that the register

write has no register dependency and a dependency on the 0th MemRead of the instruction. See the corresponding

reduction rule A-reg-write of our semantics in §4.3 for how the real dependencies are computed from this bookkeeping

type Dep. Finally, the elaboration is followed by a program counter increment (which we write with a bind >>= to be

systematic).

Manuscript submitted to ACM

An Axiomatic Basis for Computer Programming on Relaxed Hardware Architectures: The AxSL Logics 13

J𝑟 := ldr [𝑡
addr

]K ≜ TJ𝑡
addr

K >>= 𝜆𝑥.Next (MemRead plain nexcl 𝑥 (DJ𝑡
addr

K))
(𝜆𝑣 .Next (RegWrite 𝑟 𝑣 ⟨∅, {0}⟩) (𝜆(). Ret ())) >> IncPC

Jstlr [𝑡
addr

] 𝑡
data

K ≜ TJ𝑡
addr

K >>= 𝜆𝑥. TJ𝑡
data

K >>= 𝜆𝑣.

Next (MemWrite rel nexcl 𝑥 𝑣 (DJ𝑡
addr

K) (DJ𝑡
data

K)) (𝜆(). Ret ()) >> IncPC

Jbne 𝑡 xK ≜ TJ𝑡K >>= 𝜆𝑣.Next (BranchAnnounce 𝑥 DJ𝑡K)(
𝜆(). if 𝑣 = 0 then IncPC

else Next (RegWrite pc x ⟨∅, ∅⟩) (𝜆(). Ret ())

)
IncPC ≜ Next (RegRead pc) (𝜆𝑣.Next (RegWrite pc (𝑣 + 4) ⟨∅, ∅⟩) (𝜆(). ()))

TJ𝑣K ≜ Ret 𝑣

TJ𝑟K ≜ Next (RegRead 𝑟) Ret
TJ𝑡1 op 𝑡2K ≜ TJ𝑡1K >>= 𝜆𝑣1 . TJ𝑡2K >>= 𝜆𝑣2 . Ret (𝑣1 OJopK 𝑣2)

DJ𝑣K ≜ ∅
DJ𝑟K ≜ {𝑟 }
DJ𝑡1 op 𝑡2K ≜ DJ𝑡1K ∪ DJ𝑡2K

Fig. 10. A few cases of the elaboration of TinyArm into the outcome interface (eliding some details), where ldr is the syntactic sugar

of ldr
plain,nexcl and stlr is the syntactic sugar of str

rel,nexcl. The computation of intra-instruction dependencies is highlighted.

A non-exclusive store release stlr [𝑡
addr

] 𝑡
data

, at 𝑡
addr

of 𝑡
data

, elaborates into the elaboration of the evaluation of

terms 𝑡
addr

and 𝑡
data

to some 𝑥 and 𝑣 , using the auxiliary function TJ−K, followed by a release (and non-exclusive)

memory write to 𝑥 of 𝑣 with address data dependencies and again a PC increment (the dummy register is not mentioned).

We use the Sail interface BranchAnnounce outcome to capture dependencies of branches, which we elaborate into

evaluation of their condition, followed by, depending on whether the condition holds (using the conditional of the

meta-language), either a write of the given address x to the program counter, or a normal program counter increment.

4.1.2 The Elaboration of TinySc Instructions. We just reuse the elaborations of plain, non-exclusive load and store of

TinyArm as the elaborations of load and store of TinySc respectively, and identical elaborations for other shared instruc-

tions. The elaboration is further simplified by ignoring register dependencies (defining DJ−K to 𝜆_. ∅), since register
dependencies do not matter for SC. For the sake of simplicity, we omit the constant arguments of microinstructions, and

for example only writeMemRead 𝑥 for MemRead plain nexcl 𝑥 ∅, when we present the microinstructions for TinySc.

4.2 The Conventional Axiomatic Concurrency Model Semantics

A program working over the Sail outcome interface can then be glued onto a memory model, either operational,

axiomatic, or promising. For an axiomatic memory model, this is usually done by recursively computing the set of

thread-local instruction-semantics pre-executions of (the control-flow unfoldings of) each thread, allowing arbitrary

concrete values for register and memory reads, and then taking the cartesian product of these sets, which ensures that

all the pre-executions are consistent with (the instruction semantics of) the program. For each such pre-execution, one

enumerates the set of candidate executions, decorating the pre-execution with rf and co relations (unconstrained except

for some well-formedness properties). Finally, one filters those with the axiomatic-model validity predicate.

4.3 Our Opax Concurrency Model Semantics

As discussed in §3.2, it is not clear how to define a syntax-directed program logic over this axiomatic style of semantics.

Hence, we reformulate the combination of axiomatic model and instruction semantics in our novel opax semantics,

mixing operational and axiomatic styles. We first present the language-agnostic shape of this new style of semantics,

and then give concrete opax semantics definitions for TinySc and TinyArm. Similarly to how the instruction elaboration

Manuscript submitted to ACM

14 Zongyuan Liu, Angus Hammond, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod

of TinyArm extends the instruction elaboration of TinySc with bookkeeping, the instantiation of TinyArm as an opax

semantics extends the instantiation of TinySc with bookkeeping local states for register dependencies, etc.

4.3.1 Opax Candidate Executions. Unlike the conventional definition of candidate execution, an opax candidate execution

has a different meaning. It consists of the usual events and relations, but we swap the validity check with the program

consistency check. That is, an opax candidate execution has to be well-formed and satisfies the axiomatic-model validity

predicate, but is not assumed to be consistent with a program. We define it using the outcome interface. Formally, an

opax candidate execution (graph) X comprises a collection of events in the form of a function lab from event IDs (of

type Eid) to events, and various relations between events of type Eid× Eid, where an event is of type Outcome 𝑇 ×𝑇 ,
that is, a pair of an outcome request and its response. The validity predicate usually consists of acyclicity requirements

on compound relations (defined using base relations), and differs from model to model. The well-formedness condition

for relations is standard, except for po, for which the constraint depends on the implementation of Eid (we elaborate

on this soon). The semantics of a program is then defined as the set of opax candidate executions consistent with the

program. We give two formal instantiations following this new notion below.

Opax Candidate executions of SC. An opax candidate execution for SC is defined as

X ≜ ⟨lab, po, rf, co, fr, sc⟩

with reads of arbitrary values and writes of values, and with arbitrary reads-from (rf), coherence (co), and fr (equivalent

to rf
−1
; co) relations between them. The validity requirement is the acyclicity of sc ≜ po ∪ rf ∪ co ∪ fr, where 𝑒 sc 𝑒′

means event 𝑒 happens before 𝑒′.

Opax Candidate executions of Arm-A. An opax candidate execution for Arm-A is defined as

X ≜ ⟨lab, po, rf, co, fr, ctrl, addr, data, rmw, . . . (compound relations)⟩

with new ctrl, data, and addr dependencies, and rmw base relation for exclusives. The compound relations and validity

requirements are defined in Fig. 4.

4.3.2 The Shape of the Opax Semantics. The opax semantics works in two phases. In the first phase, execution of a

whole program starts by guessing a complete opax candidate execution graph X for the program. This execution graph

is well-formed and valid, but is otherwise unconstrained, and in particular is for now unrelated to the program itself.

In the second phase, each thread is executed independently: interaction happens only via the execution graph. For

simplicity, we assume a fixed instruction memory 𝐼 , which is simply a map from addresses to opcode values, and

𝑛 threads, with initial program counter values 𝑐1, . . . , 𝑐𝑛 . (Instruction fetching could be accurately modelled in the

memory model, as per Simner et al. [Simner et al. 2020], but this would lead to significant complexity.)

Each thread state s is either Ctd 𝐶 (“continued”), which represents an ongoing thread execution, or Done 𝑇 , which

represents a completed thread execution. Here𝐶 is a tuple ⟨𝑝,𝑇 ⟩ where 𝑝 is the remaining microinstruction program in

the Sail outcome interface for the current instruction, and 𝑇 is the thread state which is dependent on the language and

the concurrency model.

For each thread tid, 𝑠init (𝑐tid) is its initial thread state, with pc set to 𝑐tid and microinstruction program Ret ()
(before the first instruction has started). Execution of a thread terminates when it has finished execution of the

current microinstruction program and the program counter points outside of instruction memory. Thread transitions

𝑠 tid,X ,𝐼−−−−−→
h
𝑠′ are indexed by the thread ID, execution graph, and instruction memory, and are deterministic.

Manuscript submitted to ACM

An Axiomatic Basis for Computer Programming on Relaxed Hardware Architectures: The AxSL Logics 15

Successful whole system execution requires each thread to execute to completion independently:

Whole-system-execution

(𝑠init 𝑐1)
1,X ,𝐼−−−−→∗

h
Done ⟨_⟩ . . . (𝑠init 𝑐𝑛)

𝑛,X ,𝐼−−−−→∗
h
Done ⟨_⟩

⟨𝑐1 ∥ . . . ∥ 𝑐𝑛, 𝐼 , X⟩ −→tp ✓

It is worth-noting that the only source of non-determinism is the guessing step; all following thread-local reductions

are deterministic. A similar pattern appears in operational semantics with a quantified scheduler, where picking the

scheduler is non-deterministic, and the interleaving is determined by the scheduler.

A stuck thread is not an error state: it rather indicates that the guessed graph does not correspond to this program.

Rule Whole-system-execution of our semantics ignores these wrongly guessed graphs, leaving only the execution

graphs of the program.

In the rest of this subsection, we give the instantiations of the opax semantics for the two languages. We start with

the semantics of TinySc, which is compact and makes it easy to demonstrate the core idea, and then show the semantics

of TinyArm, explaining how to handle the complexities that come with Arm-A: access kinds and dependencies.

4.3.3 Opax Semantics for TinySc. For TinySc, we instantiate thread state 𝑇 with a tuple ⟨regs, IT ⟩ to track a register

state regs - a finite map from register names to values - and an intra-instruction state IT which comprises a thread local

event counter cntr .

We sketch selected rules of the thread operational semantics in Fig. 11. A thread executes by executing the current

microinstruction program until it ends, at which point all microinstructions of the current instruction must have been

executed (checked by instr-done), and then (rule S-reload) fetching the next instruction at the address in register pc by

looking it up in 𝐼 , and decoding it into a new microinstruction program. The program execution terminates when pc is

outside the instruction memory (rule S-term), at which point there must not be further events by this thread in the

graph (checked by prog-done).

The event identifier of the current microinstruction 𝑒 = ⟨tid, IT .cntr⟩ comprises a thread identifier (zero being

reserved for the ‘initial’ thread that contains all the initial writes), and the event counter IT .cntr which is an ordered

pair comprising an instruction counter and an intra-instruction event counter.

A MemRead microinstruction can execute (rule S-mem-read) only when there is a corresponding memory read

event in the execution graph; otherwise, this instruction (and thus this thread) is stuck. This event has to have the

appropriate po edges to it. To check po edges, the intra-instruction counter of IT .cntr gets incremented with next-e

after executing every microinstruction; the instruction counter gets incremented with next-i, which additionally resets

the intra-instruction counter when finishing up an instruction (in S-reload). po edges are special, in the sense that a po

edge between two non-initial events can be checked for by determining whether their identifiers have same thread id

and their local event counter values are lexicographically ordered. This is part of the well-formedness condition of the

execution graph. This indicates that we do not need to explicitly check if there is a po edge between two events in the

graph – we only need to increment the counters correctly.

A RegWrite microinstruction can similarly execute (rule S-reg-write) only when there is a corresponding register

write event in the execution graph. The graph register write event needs to agree with the thread-local register state

regs on the value of the write. (This register event is not used in the axiomatic memory models for either SC or Arm-A,

because the former does not need it and the latter instead uses primitive dependency relations, but the interface includes

it to support operational models and other axiomatic models.)

Manuscript submitted to ACM

16 Zongyuan Liu, Angus Hammond, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod

S-mem-read

X .lab(𝑒) = R x 𝑣 𝑒 = ⟨tid, IT .cntr⟩

Ctd ⟨Next (MemRead x) 𝐾, ⟨regs, IT ⟩⟩ tid,X ,𝐼−−−−−→
h
Ctd ⟨𝐾 𝑣, ⟨regs, next-e(IT)⟩⟩

S-mem-write

X .lab(𝑒) = W x 𝑣 𝑒 = ⟨tid, IT .cntr⟩

Ctd ⟨Next (MemWrite x 𝑣) 𝐾, ⟨regs, IT ⟩⟩ tid,X ,𝐼−−−−−→
h
Ctd ⟨𝐾 (), ⟨regs, next-e(IT)⟩⟩

S-reg-write

X .lab(𝑒) = RegW 𝑟 𝑣 𝑒 = ⟨tid, IT .cntr⟩

Ctd ⟨Next (RegWrite 𝑟 𝑣) 𝐾, ⟨regs, IT ⟩⟩ tid,X ,𝐼−−−−−→
h
Ctd ⟨𝐾 (), ⟨regs[𝑟 ↦→ 𝑣], next-e(IT)⟩⟩

S-reg-read

X .lab(𝑒) = RegR 𝑟 𝑣 𝑒 = ⟨tid, IT .cntr⟩ regs(𝑟) = 𝑣

Ctd ⟨Next (RegRead 𝑟) 𝐾, ⟨regs, IT ⟩⟩ tid,X ,𝐼−−−−−→
h
Ctd ⟨𝐾 (), ⟨regs, next-e(IT)⟩⟩

S-reload

regs(pc) = x 𝐼 (x) = opcode decode(opcode) = 𝑝 instr-done(X , IT .cntr)

Ctd ⟨Ret (), ⟨regs, ?𝑅, IT ⟩⟩ tid,X ,𝐼−−−−−→
h
Ctd ⟨𝑝, ⟨regs, next-i(IT)⟩⟩

S-term

regs(pc) = x x ∉ dom(𝐼) prog-done(X , IT .cntr)

Ctd ⟨Ret (), ⟨regs, IT ⟩⟩ tid,X ,𝐼−−−−−→
h
Done ⟨regs, IT ⟩

Fig. 11. Selected reduction rules of opax semantics for TinySc

4.3.4 Opax Semantics for TinyArm. We define the opax semantics for TinyArm by extending the TinySc semantics

with instrumentation to track Arm-A dependencies and access kinds. Concretely, we first extend the thread state𝑇 with

the set srcs
ctrl

of sources of control dependencies, and the previous exclusive read event 𝑒rmw. Then, we augment every

register in regs with dependency information alongside its value. Finally, we add the list of identifiers of intra-instruction

read events seen so far mrd as a new field of IT .

The two selected rules in Fig. 12 illustrate how these extensions check dependency edges. A non-exclusiveMemRead

microinstruction now has to have the appropriate addr and ctrl edges to it (rule A-mem-read-nexcl), as checked using

the thread state (the set of data dependencies 𝑑
addr

and the control dependency sources srcs
ctrl

respectively). Unlike

how we treat po, here we have to check if those dependency edges exist in the graph explicitly. The event ID 𝑒 is

appended to the intra-instruction memory read list IT .mrd by auxiliarly function intra-read-app, so that later register

microinstructions can obtain 𝑒 by providing a position in the list to check a dependency from 𝑒 if the register value is

computed from the read value 𝑣 (we demonstrate this with the elaboration of load in Fig. 10 in the following paragraph).

A RegWrite microinstruction (rule A-reg-write) now also updates the dependency of the register 𝑑reg for the local

registers in regs. The dependency 𝑑reg is a set of event identifiers computed from two sources tracked with 𝑑 : the union

of the dependencies of every register in 𝑑.r (the left iterated union), and intra-instruction event dependencies that are

memory reads whose indices are in 𝑑.m (the right iterated union). For instance, in the elaboration of load in Fig. 10

where 𝑑 is instantiated to ⟨∅, {0}⟩, 𝑑reg is computed to be {𝑒} when IT .mrd is [𝑒] (that is, we take the 0th event from

the list), where 𝑒 is the event ID of the memory read event preceding the register write. Therefore, we conclude that the

data of the register 𝑣 comes from 𝑒 , and update regs accordingly.

4.3.5 Stuckness. The guessing step and the fact that executions can get stuck mean that this model is not executable as

such, but this is not problematic for a logic. First, we discard stuck executions by assuming unstuckness in the definition

Manuscript submitted to ACM

An Axiomatic Basis for Computer Programming on Relaxed Hardware Architectures: The AxSL Logics 17

A-mem-read-nexcl

X .lab(𝑒) = Ros,nexcl x 𝑣 𝑒 = ⟨tid, IT .cntr⟩ {⟨𝑒𝑑 , 𝑒⟩ | 𝑒𝑑 ∈ srcs
ctrl

} = to(𝑒,X .ctrl)
{⟨𝑒𝑑 , 𝑒⟩ | 𝑟 ∈ 𝑑addr .r ∧ regs(𝑟) = ⟨_, srcs𝑑 ⟩ ∧ 𝑒𝑑 ∈ srcs𝑑 } = to(𝑒,X .addr) intra-read-app(IT , 𝑒) = IT ′

Ctd ⟨Next (MemRead os nexcl x 𝑑
addr

) 𝐾, ⟨regs, srcs
ctrl
, ?𝑅, IT ⟩⟩ tid,X ,𝐼−−−−−→

h
Ctd ⟨𝐾 𝑣, ⟨regs, srcs

ctrl
, ?𝑅, next-e(IT ′)⟩⟩

A-reg-write

X .lab(𝑒) = RegW 𝑟 𝑣 𝑒 = ⟨tid, IT .cntr⟩ 𝑑reg =
©­«

⋃
{srcs𝑑 | 𝑟 ∈𝑑.r∧regs (𝑟)=⟨_,srcs𝑑 ⟩}

srcs𝑑
ª®¬ ∪

(⋃
i∈𝑑.m

{IT .mrd [𝑖]}
)

Ctd ⟨Next (RegWrite 𝑟 𝑣 𝑑) 𝐾, ⟨regs, ?𝑅, IT ⟩⟩ tid,X ,𝐼−−−−−→
h
Ctd ⟨𝐾 (), ⟨regs[𝑟 ↦→ ⟨𝑣, 𝑑reg⟩], ?𝑅, next-e(IT)⟩⟩

Fig. 12. Selected reduction rules of our operationalised semantics. We write ?𝑅 to stand for the rest of a 𝑅. We write to(𝑒, R) for the
set of edges of type R with target 𝑒 . The instrumentation to deal with Arm dependencies is highlighted in orange.

of weakest preconditions. Second, the guessing does not appear in the definition of weakest preconditions, which takes

the guessed graph as a parameter; instead, the guessing is handled by a quantification in the adequacy theorem, when

the proofs of the individual threads are combined.

4.3.6 Infinite Executions. Handling infinite executions in memory models exhibiting load buffering is currently an

open problem. The problem manifests in axiomatic models in the form of an infinite regress, where an event is justified

by a program-order-later event, itself justified by another program-order-later event, ad infinitum, without an eventual

grounding, but because this is not a cycle, most axiomatic models do not reject this kind of execution. The same

underlying problem appears in the promising and operational models of Arm-A under a different guise. We do not

attempt to tackle this problem, and our opax semantics sticks to the axiomatic model as-is.

5 THE LOGICS

The goal of this section is to build up to AxSL
Arm

. We do this incrementally, introducing two intermediate logics to

explain the different building blocks of AxSL
Arm

.

(1) We start by tackling only the challenge of defining a logic on top of an opax semantics, and illustrate it with our

first logic: AxSL
SC

. We start from a simple setting: sequentially consistent (SC) concurrency: the question here is how

to deal, in a logic like Iris, with a fixed execution graph representing the shared memory. This is merely the first step:

AxSL
SC

is built on the right foundations (namely, an opax semantics) to scale to relaxed concurrency, but it still bakes

in too much ordering in its structure.

(2) We then move on to describe our novel style of assertions compatible with relaxed memory, and illustrate

it with our second logic: AxSL
SCExt

, a logic with both foundations and an assertion style compatible with relaxed

concurrency. For simplicity, AxSL
SCExt

stays in the context of sequential consistency, but follows the fine-grained

resource management style sketched in §2. In particular, AxSL
SCExt

employs ‘tied-to’ assertions and flow implications

in order to be compatible with relaxed concurrency.

(3) Finally, we present AxSL
Arm

, our logic for the relaxed memory of Arm. The final challenge is to deal with the

subtleties of such a memory model: syntactic dependencies, external vs. internal reads, exclusives, etc.

For each of the three logics, we present a selection of its proof rules followed by examples. The proof rules (and

the Hoare triples used in them) of the three logics are defined at two abstraction levels: the underlying rules are for

microinstructions, and are proven sound against the semantics of Hoare triples described in §6.5, while the high-level

rules explicitly used in proofs of programs are for the surface instructions of Fig. 9, derived from the former by reasoning

Manuscript submitted to ACM

18 Zongyuan Liu, Angus Hammond, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod

about instruction elaboration (§4.1). Before diving into the three logics, we first discuss the resource transfer mechanism

that they employ.

5.1 Resource Transfer with Protocols

Concurrent separation logic (CSL) uses invariants to share and transfer resources. However, invariants are unsound

in the context of relaxed concurrency [Dang et al. 2020; Turon et al. 2014]. Intuitively, this is because, with relaxed

concurrency, threads may have different views on the shared memory, thus owning potentially inconsistent resources

describing those views, while classic CSL invariants require the transferred resources to be consistent across all threads.

Furthermore, even though invariants have been shown to work well with heap reasoning, it is unknown how they

work in conjunction with graph reasoning. Recall that in CSL, to share memory resources (e.g. some points-tos), one

usually allocates some invariant with them, and then distributes the duplicates of the invariant to the threads. The

threads then may obtain the ownership of the resources (temporarily) by opening the invariant for loading and storing.

In the graph-based approach that we present in this section, one is not required to own any shared memory assertions

to access the shared memory; instead, one makes assertions about the graph representing memory. It is not clear to us

how this can be made to work with invariants, in particular how to make connections between the newly-gained graph

assertions and the resources shared by invariants.

In AxSL, we instead, inspired by previous relaxed memory logics including RSL and GPS, use a notion of protocol for

resource transfer (compatible with the invariants we use for exclusives in §5.7). A protocol Φ is a rely/guarantee-style

protocol that enables thread-local reasoning by expressing the intended resource transfer across an entire program. For

each location 𝑥 , Φ(𝑥), referred to as a per-location protocol, is a simple variant of the per-location invariants of GPS.

(For simplicity, we only consider static protocols with a single state) We discuss their relation in detail in §9. Our Hoare

triples are simply parametrised by this fixed protocol, which should be agreed upon by all threads.

Our triples ensure the protocol Φ(𝑥) holds at every event involving location 𝑥 , which enables resource transfer

between those events. In particular, as we will see in the proof rules, every read event of 𝑥 obtains the resource specified

by Φ(𝑥) from the external write that it is reading from, and every write must supply that resource. A protocol for 𝑥 takes

as arguments a value 𝑣 and an event ID 𝑒 . The event ID 𝑒 is associated with the write event that fullfills the protocol.

This event ID argument 𝑒 is used for explicit reasoning about the execution graph, as illustrated in the message passing

example below. For example, it makes it possible to state “there exists a write to a certain address of a certain value that

is lob-before 𝑒” using our library of graph ghost state properties. For simpler cases, this last argument can be elided, as

we have so far.

5.2 Dealing with Opax Semantics: The AxSLSC Logic

AxSL
SC

is a thin logical layer above our opax semantics of TinySc. It essentially exposes all the details of the opax

semantics to the users of the logic, which gives the logic an unique shape and new reasoning principles compared

to classic operational-based CSLs. The distinction primarily comes from the diverging representations of the shared

memory of the underlying semantics. Since the opax semantics guesses a fixed execution graph upfront, in AxSL
SC

,

we can only deal with persistent knowledge on graph events and memory orders, rather than the usual points-to

assertions that represent the state of a shared and dynamic heap at individual locations (We show how to close this gap

by recovering points-tos in AxSL
SC

in Appendix B). To understand how AxSL
SC

works, in particular its graph-based

compositional reasoning, we show some of its proof rules, and then verify a message passing example.

Manuscript submitted to ACM

An Axiomatic Basis for Computer Programming on Relaxed Hardware Architectures: The AxSL Logics 19

SC-ht-micro-memread{
1 PoPred(𝑒po) ∗ ∀𝑒, 𝑣, 𝑒𝑤 .

(
2 GraphFactsR(𝑒, x, 𝑣, 𝑒𝑤 , 𝑒po) ∗ 3 Φ(x, 𝑣, 𝑒𝑤)
⇛ 4 𝑃 (𝑒, 𝑥, 𝑣, 𝑒𝑤 , 𝑒po) ∗ Φ(x, 𝑣, 𝑒𝑤)

)}
MemRead x{
𝑣 . ∃𝑒, 𝑒𝑤 . 5 PoPred(𝑒) ∗ GraphFactsR(𝑒, x, 𝑣, 𝑒𝑤 , 𝑒po) ∗ 𝑃 (𝑒, x, 𝑣, 𝑒𝑤 , 𝑒po)

}
tid,Φ

SC-ht-micro-memwrite{
1 PoPred(𝑒po) ∗ ∀𝑒. 2 GraphFactsW(𝑒, x, 𝑣, 𝑒po) ⇛ 3 Φ(x, 𝑣, 𝑒)

}
MemWrite x 𝑣{
(). ∃𝑒. 4 PoPred(𝑒) ∗ GraphFactsW(𝑒, x, 𝑣, 𝑒po)

}
tid,Φ

SC-ht-micro-regwrite

{𝑟 r↦→ _}RegWrite 𝑟 𝑣 {(). 𝑟 r↦→ 𝑣}tid,Φ

Fig. 13. Seleted proof rules of AxSL
SC

5.2.1 Proof Rules for Microinstructions. Fig. 13 depicts three slightly specialised proof rules for microinstructions

MemRead, MemWrite, and RegWrite. We first explain the rule SC-ht-micro-memread for MemRead in detail, which is

proved sound against the opax rule S-mem-read.

Our microinstruction Hoare triple forMemRead has the form {𝑃}MemRead x {𝑣 .𝑄}tid,Φ, which states that, for a

MemRead on thread tid following protocol Φ, if one provides the resources specified in the precondition 𝑃 , then the

MemRead results in the updated resources 𝑄 of the postcondition, which can refer to the resulting read value 𝑣 passed

to the continuation to continue reasoning about the thread. The event ID of the associated memory read event is

existentially quantified in 𝑄 as 𝑒 .

The rule has two main aspects, as do the other low-level rules for MemRead and MemWrite: low-level graph

reasoning, and high-level resource transfer.

First, for directly conducting graph reasoning with respect to the axioms of the memory model, we use a book-

keeping assertion 1 PoPred(𝑒po) to capture the 𝑒po parts of the opax thread state 𝑇 . Intuitively, the assertion

keeps track of the event that will become the po immediate predecessor of the memory event 𝑒 that associates

with the next microinstruction, and thus allow us to conclude facts about new incoming po edge 𝑒po po 𝑒 , that is

included in GraphFactsR(𝑒, x, 𝑣, 𝑒𝑤 , 𝑒po). It gets updated accordingly in the postcondition, as 5 . The predicate 2

GraphFactsR(𝑒, x, 𝑣, 𝑒𝑤 , 𝑒po) includes all graph assertions we can conclude for the read event. Besides the incoming

po edge, it also includes an event assertion 𝑒:R 𝑥 𝑣 indicating that the event is assigned with ID 𝑒 , and another edge

assertion 𝑒𝑤 rf 𝑒 to relate the read with the write 𝑒𝑤 that it is reading from. It is worth noting that all graph assertions

are persistent knowledge that can be freely duplicated, which reflects the fact that the graph is fixed once guessed in

opax. Furthermore, we can stop the reasoning (by contradiction) if some graph facts gathered together imply a violation

of the validity predicate of the axiomatic memory model, since this further implies that we are reasoning about a graph

that does not represent a valid execution result of the program. We demonstrate this idiom in the message passing

example below.

Second, to support high-level reasoning via resource transfer, the precondition has a user-supplied 4 𝑃 (𝑒, 𝑥, 𝑣, 𝑒𝑤 , 𝑒po)
on the right side of an Iris view shift⇛ (a separation implication that permits resource update), which also appears in

the post condition, meaning that 𝑃 is obtained after the read. This view shift constrains what we can conclude in 4

given the facts about the new read and the protocol resource 3 received from the write 𝑒𝑤 being read. Note that we

have to give back the same protocol resource Φ after concluding 𝑃 , to ensure that the resource remains available for

other potential reads of the same write 𝑒𝑤 . In a sense, this view shift allows us to temporarily obtain the ownership of

Manuscript submitted to ACM

20 Zongyuan Liu, Angus Hammond, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod

concrete

addresses

symbolic

addresses

instruction

instances

memory

events

1000:

1000 + 4:

1000 + 8:

𝑎: str [x] 42

𝑏: str
rel

[y] 1

𝑐: r := ldr [𝑧]

𝑎:W x 42

𝑏:W
rel

y 1

𝑐:R z 2

Fig. 14. Conflating (left columns) a numerical instruction address (1000, 1000+4, 1000+8) with a symbolic instances address (𝑎,𝑏, 𝑐),

and (right columns) an instruction instance (str [x] 42, ...) with its unique memory event (W x 42, ...).

the protocol resource of 𝑒𝑤 at this memory read, akin to CSL invariants that can only be opened for a single program

step. As we will see later in AxSL
SCExt

, this view shift is a specialised form of the notion of flow implication.

The rule SC-ht-micro-memwrite forMemWrite is similar, except that Φ is on the right side of the view shift, indicating

that it is sent away.

The rule SC-ht-micro-regwrite updates a points-to assertion for register 𝑟 to mirror the change to 𝑇 .regs in the opax

rule A-reg-write.

5.2.2 Proof Rules for Instructions. Moving from microinstructions to the instructions composed out of them, we can

write a derived high-level proof rule for each instruction. These high-level rules can be further specialised to specific

programming idioms and their assumptions to make reasoning practical.

Before looking at the proof rules, we make our treatment of instructions precise. As usual, reasoning about a machine

with instructions in (and fetched from) specific addresses in memory, rather than a language with an abstract syntax of

statements, causes a slight impedance mismatch with Hoare logic: the thread state does not include instructions, but

merely the address of the “current” instruction. However, a normal-looking Hoare triple can be recovered by using

some indirection [Myreen et al. 2007; Myreen and Gordon 2007; Myreen et al. 2008][Myreen 2009, §3.4][Erbsen et al.

2021, §4.3][Liu et al. 2023]. We use Hoare triples for presentation, but use weakest preconditions in our formalisation.

Our Hoare triples for a single instruction 𝑖 are of the form {𝑃} a: 𝑖 {a′: 𝑄}tid,Φ, where a is the address of the instruction,
and a′ is the address of the next instruction. This instruction triple is implemented using register points-to of pc: the

precondition 𝑃 is combined with pc
r↦→ a, and 𝑄 is combined with pc

r↦→ a′ for the appropriate a′ — which is a + 4 (as

per the elaboration of IncPC) except for branch instructions.

For presentation purposes, for programs without branching (and thus no looping), we can (as illustrated in Figure 14)

conflate instruction instances with instructions, and thus conflate instruction identifiers 𝑎, 𝑏, 𝑐 , etc. with numerical

addresses for instructions in memory 𝑎, 𝑎 + 4, 𝑎 + 8, etc. For languages where an instruction instance leads to a single

memory event (as we have so far), we can conflate instruction instance identifiers with memory event identifiers. In

other cases, we use the counters of the opax semantics, although they can often be quantified over in reasoning rather

than considered in detail, merely keeping the information that they are smaller than the current counter (and thus

po-before the current event).

For instance, the rule SC-ht-inst-ldr in Fig. 15 is for a load instruction at address 𝑎 with an immediate address 𝑥 ,

which is elaborated into MemRead 𝑥 followed by RegWrite followed by IncPC.

This rule is slightly specialised to only taking an immediate address, and is derived by a SC-ht-micro-memread

followed by and SC-ht-micro-regwrite. Similarly, one can prove a specialised instruction rule SC-ht-inst-str for a store

Manuscript submitted to ACM

An Axiomatic Basis for Computer Programming on Relaxed Hardware Architectures: The AxSL Logics 21

SC-ht-inst-ldr{
𝑟 r↦→ _ ∗ PoPred(𝑒po) ∗ ∀𝑒, 𝑣, 𝑒𝑤 .

(
GraphFactsR(𝑒, x, 𝑣, 𝑒𝑤 , 𝑒po) ∗ Φ(x, 𝑣, 𝑒𝑤)

⇛ 𝑃 (𝑒, 𝑥, 𝑣, 𝑒𝑤 , 𝑒po) ∗ Φ(x, 𝑣, 𝑒𝑤)

)}
a: 𝑟 := ldr [x]{
𝑎 + 4: 𝑟 r↦→ 𝑣 ∗ ∃𝑒𝑤 . PoPred(𝑎) ∗ GraphFactsR(𝑎, x, 𝑣, 𝑒𝑤 , 𝑒po) ∗ 𝑃 (𝑎, 𝑣, 𝑒𝑤)

}
tid,Φ

SC-ht-inst-str{
PoPred(𝑒po) ∗ ∀𝑒.

(
GraphFactsW(𝑒, x, 𝑣, 𝑒po) ⇛ Φ(x, 𝑣, 𝑒)

)}
a: str [x] 𝑣{
𝑎 + 4: PoPred(𝑎) ∗ GraphFactsW(𝑎, x, 𝑣, 𝑒po)

}
tid,Φ

Fig. 15. Two instruction proof rules with instruction triples. 𝑎 + 4 in the postcondition indicates the address of the next instruciton.

with immediate operators by SC-ht-micro-memwrite. We use these two instruction rules in the message passing example

below.

𝑎: str [data] 42 𝑐: 𝑟1 := ldr [flag]
𝑏: str [flag] 1 𝑑 : 𝑟2 := ldr [data]

Fig. 16. MP in SC: 𝑟1 = 1 → 𝑟2 = 42

5.2.3 Message Passing. We now demonstrate the graph rea-

soning capability that opax-based logics have, and how we

achieve local reasoning with protocols, by exercising AxSL
SC

on a message-passing litmus test.

The example has two threads: one sending, and one receiv-

ing. The sending thread writes a value (in this case 42) to a

‘data’ address in order to transfer it between threads, then writes 1 to a ‘flag’ address to indicate that the data write has

been completed. The receiving thread reads from the flag address to check whether a message has been passed to it,

and then reads from the data location.

Specification. We want to be able to prove that if the load of the flag reads 1, then the load of the data will read 42;

formally, 𝑟1
r↦→ 𝑣 ∗ 𝑟2 r↦→ 𝑣 ′ ∗ (𝑣 = 1 → 𝑣 ′ = 42).

Picking the protocol. The proof sketch of Fig. 17 relies on extensive graph reasoning. We first specify the protocol

used in the proof. For the data address, we pick Φ(data, 𝑣, 𝑒) ≜ Initial(𝑒) ∨ 𝑣 = 42, where Initial(𝑒) denotes that the
event is an initial write that necessarily has value 0. It is not possible to require that 𝑣 be 42 in all cases, because the

initial write would then not satisfy the protocol. For the flag address, we pick

Φ(flag, 𝑣, 𝑒) ≜ Initial(𝑒) ∨
(
𝑣 = 1 ∗ 𝑒:W flag 1 ∗ ∃𝑒′ . 𝑒′:W data 42 ∗ 𝑒′ po 𝑒

)
requiring that a non-initial write to the flag address is only allowed if it is a write of value 1, on the sending thread,

which is po after a write of 42 to the data address.

Note that the only information we pass between threads with this protocol are persistent graph facts. It means that

we can always duplicate and keep the complete protocol resources in the thread when reading. With the protocol in

hand, we can give a proof sketch for each thread.

Sending thread. On the sending thread, we are required to show first that the data write 𝑎 satisfies the protocol on

data, which we can do straightforwardly because the right branch of the protocol only requires that the write has value

42. We apply SC-ht-inst-str twice for the two writes. At the write of the data, we learn PoPred(𝑎) and 𝑎:W data 42 in
Manuscript submitted to ACM

22 Zongyuan Liu, Angus Hammond, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod

Sending thread:

1 {PoPred(−)}
2 GraphFactsW(𝑎, data, 42,−)

⇛
3 Φ(data, 42, 𝑎) ∗ 𝑎:W data 42
4 𝑎: str [data] 42
5 {PoPred(𝑎) ∗ 𝑎:W data 42}
6 GraphFactsW(𝑏, flag, 1, 𝑎) ∗ 𝑎:W data 42

⇛
7 Φ(flag, 1, 𝑏)
8 𝑏: str [flag] 1
9 {PoPred(𝑏) ∗ 𝑎:W data 42 ∗ 𝑏:W flag 1 ∗ 𝑎 po 𝑏}

Receiving thread:

10 {PoPred(−) ∗ 𝑟1 r↦→ _ ∗ 𝑟2 r↦→ _}
11 ∀𝑣, 𝑒𝑤 .GraphFactsR(𝑐, flag, 𝑣, 𝑒𝑤 ,−) ∗ Φ(flag, 𝑣, 𝑒𝑤)

⇛
12 Φ(flag, 𝑣, 𝑒𝑤) ∗ Φ(flag, 𝑣, 𝑒𝑤) ∗ 𝑐:R flag 𝑣 ∗ 𝑒𝑤 rf 𝑐

13 𝑐: 𝑟1 := ldr [flag]
14 {PoPred(𝑐) ∗ ∃𝑣, 𝑒 . 𝑟1 r↦→ 𝑣 ∗ Φ(flag, 𝑣, 𝑒) ∗ 𝑐:R flag 𝑣 ∗ 𝑒 rf 𝑐}
15 ∀𝑣 ′, 𝑒𝑤 .GraphFactsR(𝑑, data, 𝑣 ′, 𝑒𝑤 , 𝑐) ∗ Φ(data, 𝑣 ′, 𝑒𝑤)

⇛
16 Φ(data, 𝑣 ′, 𝑒𝑤) ∗ (𝑣 = 1 → 𝑣 ′ = 42)
17 𝑑 : 𝑟2 := ldr [data]
18 {PoPred(𝑑) ∗ ∃𝑣, 𝑣 ′ . 𝑟1 r↦→ 𝑣 ∗ 𝑟2 r↦→ 𝑣 ′ ∗ (𝑣 = 1 → 𝑣 ′ = 42)}

Fig. 17. Proof sketch of MP in AxSL
SC
.

line 5. We are then required to show that the flag write satisfies the flag protocol. We can do so by instantiating the

existential on the right hand side of the protocol with 𝑎, which is a write to data of 42, as required, and can be shown to

be po-before the current event because it is the current po-predecessor. We illustrate how to unfold the two instructions

to resources, in particular graph facts, in the proof in Fig. 18.

Receiving thread. The receiving thread is where interesting graph reasoning happens. We apply SC-ht-inst-ldr twice

for the two reads. We read from the flag, learning 𝑟1
r↦→ 𝑣 and Φ(flag, 𝑣, 𝑒) for some write 𝑒 in line 14 (we get Φ by

duplicating it in line 12). Finally, we consider the data read. We learn 𝑟2
r↦→ 𝑣 ′ and Φ(data, 𝑣 ′, 𝑒𝑤) for some 𝑣 ′ and 𝑒𝑤 , and

are required to prove 𝑣 = 1 → 𝑣 ′ = 42. The graph reasoning in line 15 & 16 starts by case splitting on Φ(data, 𝑣 ′, 𝑒𝑤).
We have 𝑣 ′ = 42 immediately in the right case. In the left case, we derive a contradiction from Initial(𝑒𝑤) and 𝑣 = 1

with graph facts. That is, an fr from 𝑑 to 𝑒′, the write to data in the sending thread, can be derived given 𝑒𝑤 being the

initial write, which closes a ℎ𝑏 cycle

𝑑 fr 𝑒′ po 𝑒 rf 𝑐 po 𝑑

violating the SC axiom.

5.3 Tracking Flow of Resources: The AxSLSCExt Logic

AxSL
SCExt

extends the syntax of AxSL
SC

with a notion of tied-to assertion: 𝑎 ↬ 𝑃 means that 𝑃 is tied to event 𝑎. This

extension allows us to track sources of resources and how resources flow between individual events precisely, instead

Manuscript submitted to ACM

An Axiomatic Basis for Computer Programming on Relaxed Hardware Architectures: The AxSL Logics 23

{PoPred(−)}
𝑎:str [data] 42

𝑏:str [flag] 1 {

{
PoPred(𝑎) ∗
𝑎:W data 42

}
𝑏:str [flag] 1 {


PoPred(𝑏) ∗
𝑎:W data 42 ∗
𝑏:W flag 1 ∗
𝑎 po 𝑏



𝑎:str [data] 42

𝑏:str [flag] 1

𝑎:W data 42

𝑏:str [flag] 1{ {

𝑎:W data 42

𝑏:W flag 1

po

Fig. 18. The proof (here, of the writer side of MP) in progress (proof steps are indicated by {) unfolds the program (on a blue

background) into a graph: either implicitly via assertions { . . .} in the top row, or visualised as an explicit graph in the bottom row.

of mixing resources regardless of their sources as in AxSL
SC

. It is worth noting that this does not add any additional

expressiveness power to the logic - in fact AxSL
SC

is already a fine logic for SC - but is a robust solution that is also

applicable to the relaxed concurrency of Arm-A for which an AxSL
SC

-like construction is unsound. Recall that in SC, sc

is the acyclic synchronisation relation, thus passing resources along it (or its subrelations) is sound. In fact, for thread

local reasoning, it suffices to flow resources along po, which is included in sc and is also the reasoning order. In AxSL
SC

(and other CSLs for SC), we implicitly unify the resource flowing order and the reasoning order, but in AxSL
SCExt

we

separate them by making the former explicit with the tied-to assertion. We elaborate this idea with the AxSL
SCExt

version of AxSL
SC

rules depicted in Fig. 13.

5.3.1 Proof Rules for Microinstructions. There are substantial similarities between AxSL
SCExt

rules and their AxSL
SC

counterparts. We have the same bookkeeping assertions for the immediate po predecessor, which is updated in the post

condition; and the same clauses universally quantified by the new event 𝑒 accompanied by the graph fact about it. The

two main distinctions are the use of the tied-to assertions, and the new FlowSCX predicates for high-level resource

transfer between nodes. Let us take a closer look at them in SCExt-ht-micro-memread.

This rule allows us to explicitly reason about resources flowing to 𝑒 along po edges. If there is such an incoming

edge, say from 𝑒′ to 𝑒 , and we have an 𝑒′ ↬ 𝑃 , then the flow implication FlowSCR can use 𝑃 in its premise. In total, the

resources that flow into 𝑒 , and thus are considered in the flow implication for 𝑒 , consist of (the separating conjunction

of) all such local resources (which need not be persistent) that flow along po edges, as collected in the partial event-

to-resource map𝑚 (for thread-internal resource flow), combined with the (usually persistent) resources flowing from

external events (here, the quantified external write 𝑒𝑤 that 𝑒 is reading from), as specified by the protocol Φ.

To apply the rule, the user has to supply a finite map𝑚 to specify how to flow thread-local resources to the current

node to show the flow implication (3). Assertion 1 ∗(𝑒′
po
↦→𝑃po) ∈𝑚 (𝑒′

po
↬ 𝑃po), collecting the resources in𝑚 for the

premise of the flow implication. The map𝑚 is constrained by assertion 2 in the hypothetical reasoning, which requires

that an event 𝑒′
po

can only occur in the domain of 𝑚 when there will be (given the graph facts) an po edge to the

Manuscript submitted to ACM

24 Zongyuan Liu, Angus Hammond, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod

{PoPred(−)}
𝑐:𝑟1 := ldr [flag]

𝑑 :𝑟2 := ldr [data] {


PoPred(𝑐) ∗
𝑐:R flag 1 ∗
∃𝑒. 𝑐 ↬ Φ(flag, 1, 𝑒)
. . .


𝑑 :𝑟2 := ldr [data] {



PoPred(𝑑) ∗
𝑐:W data 𝑣 ∗
𝑐 ↬ ⊤ ∗
𝑑 :W flag 𝑣 ′ ∗
𝑑 ↬ (𝑣 = 1 → 𝑣 ′ = 42) ∗
𝑐 po 𝑑

. . .



𝑐:𝑟1 := ldr [flag]

𝑑 :𝑟2 := ldr [data]

𝑐:R flag 𝑣
Φ(flag, 𝑣, . . .)↫→

𝑑 :𝑟2 := ldr [data]{ {

𝑐:R flag 𝑣
⊤↫→

𝑑 :R data 𝑣 ′

(𝑣 = 1 → 𝑣 ′ = 42)
↫→

po

Fig. 19. The proof (here, of the reader side of MP, in AxSL
SCExt

) in progress. Resources tied-to a node (in orange) ‘dangle’ off it. Between

the second{, we flow Φ(flag, 𝑣, . . .) from 𝑐 to 𝑑 along po, by consuming it from 𝑐 and using it to conclude (𝑣 = 1 → 𝑣′ = 42) at 𝑑 .

newMemRead event. Finally, as a result of the hypothetical reasoning on the last line of the precondition, we get the

(user-supplied) result 𝑃 (x, 𝑣, 𝑒𝑤) of the flow implications 3 , tied to the new memory event 𝑒 , as 4 . This flow implication

FlowSCR replicates the view shift of SC-ht-micro-memread except for the now explicit local resource transfer from po

predecessors (the iteratedd separation conjunction). Both this and FlowSCW forMemWrite are instances of the general

definition of the flow implication.

5.3.2 Message Passing. We revisit MP to showcase the resource flow reasoning with tied-tos in AxSL
SCExt

. This time,

we use the same protocol, but adapt the specification (changes highlighted in orange) to account for explicit resource

flowing, as follows:

𝑟1
r↦→ 𝑣 ∗ 𝑟2 r↦→ 𝑣 ′ ∗ ∃𝑒. 𝑒 ↬ (𝑣 = 1 → 𝑣 ′ = 42) ∗ (∃𝑒′ . 𝑒 po 𝑒′ ∨ 𝑒 = 𝑒′ ∗ PoPred(𝑒′))

In general, 𝑃 holds whenever 𝑎 ↬ 𝑃 appears in a post condition, since one can flow 𝑃 from 𝑎 to a hypothetical

terminating event along po. In this new specification, the implication 𝑣 = 1 → 𝑣 ′ = 42 is embedded in a tied-to for an

event 𝑒 , which is po-before the terminating event, as stated in the last clause.

We look at a proof sketch of the receiving thread depicted in Fig. 21 (with an illustration in Fig. 19); the proof of the

sending thread is nearly identical to that of AxSL
SC

as no local resource flowing is happening in the thread. This time

in the receiving thread, to get the protocol resource Φ(flag, . . .) from the flag load, we have to justify FlowSCR with

argument 𝑃 being instantiated with Φ, as in line 2 & 3. After that, in line 4, the transferred Φ is tied to the memory

read 𝑐 , which claims a constraint that one can only access Φ if is po after 𝑐 . To conclude the specification with the

graph facts in Φ, we have to flow it to the second load. We therefore let the user-assigned 𝑚 of the read rule be a

singleton map [𝑐 ↦→ Φ(flag, . . .)], and show that 𝑐 is indeed a po predecessor of 𝑑 by PoPred(𝑐)3. Then, we show the

flow implication FlowSCR for the load of data in line 6 & 7, with 𝑃 being 𝑣 = 1 → 𝑣 ′ = 42, where we perform the same

3
In this example, the protocol resource we flow is persistent, but we can also flow non-persistent resources

Manuscript submitted to ACM

An Axiomatic Basis for Computer Programming on Relaxed Hardware Architectures: The AxSL Logics 25

SCExt-ht-micro-memread
PoPred(𝑒po) ∗ 1∗(𝑒′

po
↦→𝑃po) ∈𝑚 (𝑒′

po
↬ 𝑃po) ∗

∀𝑒, 𝑣, 𝑒𝑤 .
(
GraphFactsR(𝑒, x, 𝑣, 𝑒𝑤 , 𝑒po) −∗
(2 Po(dom(𝑚), 𝑒) ∗ 3 FlowSCR(Φ, 𝑒, x, 𝑣, 𝑒𝑤 ,𝑚, 𝑃))

)
MemRead x{
𝑣 . ∃𝑒, 𝑒𝑤 . PoPred(𝑒) ∗ GraphFacts(𝑒, x, 𝑣, 𝑒𝑤 , 𝑒po) ∗ 4 𝑒 ↬ 𝑃 (x, 𝑣, 𝑒𝑤)

}
tid,Φ

SCExt-ht-micro-memwrite
PoPred(𝑒po) ∗ ∗(𝑒po ↦→𝑃po) ∈𝑚 (𝑒po ↬ 𝑃po) ∗

∀𝑒.
(
GraphFactsW(𝑒, x, 𝑣, 𝑒po) −∗
(Po(dom(𝑚), 𝑒) ∗ FlowSCW(Φ, 𝑒, x, 𝑣,𝑚, 𝑃))

)
MemWrite x 𝑣{
(). ∃𝑒. PoPred(𝑒) ∗ GraphFacts(𝑒, x, 𝑣, 𝑒po) ∗ 𝑒 ↬ 𝑃 (x)

}
tid,Φ

FlowSCRΦ (𝑒, x, 𝑣, 𝑒𝑤 ,𝑚, 𝑃) ≜
((∗(_↦→𝑃po) ∈𝑚 𝑃po

)
∗ Φ(x, 𝑣, 𝑒𝑤)

)
⇛ Φ(x, 𝑣, 𝑒𝑤) ∗ 𝑃 (x, 𝑣, 𝑒𝑤)

FlowSCWΦ (𝑒, x, 𝑣,𝑚, 𝑃) ≜
(∗(_ ↦→𝑃po) ∈𝑚 𝑃po

)
⇛ Φ(x, 𝑣, 𝑒𝑤) ∗ 𝑃 (x)

Fig. 20. AxSL
SCExt

version of the AxSL
SC

rules shown in Fig. 13. The new syntax and changes are highlighted. The user provides𝑚, a

thread-local map from events to the resources consumed.

graph reasoning as in the AxSL
SC

MP proof. Finally, we have the desired implication tied to event 𝑑 , which suffices to

show the specification.

1 {PoPred(−) ∗ 𝑟1 r↦→ _ ∗ 𝑟2 r↦→ _}
2 ∀𝑣, 𝑒𝑤 .Φ(flag, 𝑣, 𝑒𝑤)

⇛
3 Φ(flag, 𝑣, 𝑒𝑤) ∗ Φ(flag, 𝑣, 𝑒𝑤)
4 𝑐: 𝑟1 := ldr [flag]
5 {PoPred(𝑐) ∗ ∃𝑣, 𝑒 . 𝑟1 r↦→ 𝑣 ∗ 𝑐 ↬ Φ(flag, 𝑣, 𝑒) ∗ 𝑐:R flag 𝑣 ∗ 𝑒 rf 𝑐}
6 ∀𝑣 ′, 𝑒𝑤 .GraphFactsR(𝑑, data, 𝑣 ′, 𝑐) ∗ Φ(data, 𝑣 ′, 𝑒𝑤) ∗ Φ(flag, 𝑣, 𝑒)

⇛
7 Φ(data, 𝑣 ′, 𝑒𝑤) ∗ (𝑣 = 1 → 𝑣 ′ = 42)
8 𝑑 : 𝑟2 := ldr [data]
9 {PoPred(𝑑) ∗ ∃𝑣, 𝑣 ′ . 𝑟1 r↦→ 𝑣 ∗ 𝑟2 r↦→ 𝑣 ′ ∗ 𝑑 ↬ (𝑣 = 1 → 𝑣 ′ = 42)}

Fig. 21. Proof sketch of the receiving thread of MP in AxSL
SCExt

. The explicit reasoning of resource flow is highlighted.

5.4 Handling Arm-A Concurrency: The AxSLArm Logic

Using AxSL
SCExt

for TinySc as the base, we build AxSL
Arm

for TinyArm. The changes we make to AxSL
SCExt

to obtain

AxSL
Arm

are twofold. First, we extend the surface assertion language. Similar to how we extend the opax semantics of

TinySc to obtain the counterpart of TinyArm, we add new assertions dedicated to reason about Arm’s dependencies,

etc., and augment existing ones. Second, we change the resource flowing order. We shift from reasoning about resource

flow along po to Arm’s lob to reflect the change of the synchronisation order from SC’s sc to Arm’s ob. Arm-A’s relaxed

concurrency is fundamentally different from SC in the sense that po in Arm-A does not impose an intra-thread ordering,

Manuscript submitted to ACM

26 Zongyuan Liu, Angus Hammond, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod

which implies that transferring resources along po is unsound. Thus, in AxSL
Arm

, we instead rely on lob, the local

fragment of which enforces synchronisation. We elaborate on these two changes with the rule for MemRead in §5.4.1.

5.4.1 Proof Rules for Microinstructions. We now explain one of the key proof rules ht-micro-memread-rdep-ext in

Fig. 22 for aMemReadwith ordering strength os, variety vr , address x, and address dependencies 𝑑 , focusing on the new

components introduced to handle Arm-A’s memory model. To keep the exposition manageable, the rule is specialised

to a read from a distinct thread (an external read), with empty intra-instruction dependencies (i.e. only syntactic register

dependencies). We illustrate this rule schematically in Fig. 23.

ht-micro-memread-rdep-ext
1 NoLocalWrites(x) ∗ 2 𝑑 = (dom(regs), ∅) ∗ PoPred(𝑒po) ∗ 3 CtrlPreds(srcs

ctrl
) ∗

4∗(𝑟 ↦→(𝑣,𝐸)) ∈regs 𝑟
r↦→ 𝑣@𝐸 ∗ ∗(𝑒lob ↦→𝑃lob) ∈𝑚 (𝑒

lob
↬ 𝑃

lob
) ∗

∀𝑒, 𝑣, 𝑒𝑤 .
(
5 GraphFacts(𝑒, os, vr, x, 𝑣, 𝑒𝑤 , 𝑒po, srcsctrl, 𝑑, regs) −∗
(6 Lob(dom(𝑚), 𝑒) ∗ 7 FlowR(Φ, 𝑒, x, 𝑣, 𝑒𝑤 ,𝑚, 𝑃))

) 
MemRead os vr x 𝑑(𝑣, 𝐷) .

∃𝑒, 𝑒𝑤 . 𝐷 = {𝑒} ∗ 8 NoLocalWrites(x) ∗ PoPred(𝑒) ∗ CtrlPreds(srcs
ctrl

) ∗
9∗(𝑟 ↦→(𝑣,𝐸)) ∈regs 𝑟

r↦→ 𝑣@𝐸 ∗ GraphFacts(𝑒, os, vr, x, 𝑣, 𝑒𝑤 , 𝑒po, srcsctrl, 𝑑, regs) ∗
𝑒 ↬ 𝑃 (x, 𝑣, 𝑒𝑤)

tid,Φ
Fig. 22. A proof rule of AxSL

Arm
for the MemRead microinstruction, specialised for a thread that has no writes to the location read.

The changes to SCExt-ht-micro-memread are highlighted.

The first two clauses of the precondition capture the specialisation mentioned above: 1 NoLocalWrites(x) captures
the fact that there are no thread-local writes on the same address x up until this point in the program order; with

this in hand, one knows that only external writes can be read from by this MemRead, and thus resource transfer

along obs is possible. This fact is unchanged after the MemRead, and is thus restored by the postcondition as 8 . 2

𝑑 = (dom(regs), ∅) requires that this MemRead depends on exactly the registers in the domain of the (partial) register

file regs of 4 (non-involved registers can be framed off to apply this rule via the normal frame rule familiar from

separation logics), and not on any intra-instruction memory read (the ∅ of event IDs). The collection of register points-to

for regs of 4 is unchanged and thus restored in the postcondition as 9 . Note that a register points-to assertion now

also maps a register to a set of events 𝐸 that are the sources of its data, with notation @𝐸. This change captures the

𝑒po

𝑚

𝑒
lob

regs
𝑟 r↦→ _@{𝑒

lob
}

𝑒

po

𝑃
lob

∗ 𝑃 ′↫→

{
𝑒po

𝑚

𝑒
lob

regs
𝑟 r↦→ _@{𝑒

lob
}

𝑒𝑤 :W_ x 𝑣

𝑒:Ros,vr x 𝑣

po

addr ⊆ lob

𝑃
lobrfe

Φ(x, 𝑣, 𝑒𝑤) 𝑃 (x, 𝑣, 𝑒𝑤)↫→

𝑃 ′↫→

Fig. 23. A visualisation of ht-micro-memread-rdep-ext for external read event 𝑒 , with logical annotations and newly gained graph

facts highlighted.{ indicates the update of resources from the precondition to the postcondition. The protocol specifies Φ(x, 𝑣, 𝑒𝑤)
transferred along the rfe edge to 𝑒 , which is returned to be transferred to other potential reads. Local events 𝑒

lob
, which are shown to

become lob predecessors due to the use of some register 𝑟 , let the corresponding 𝑃
lob

resource, previously tied to 𝑒
lob

, flow along the

newly-learned lob edge, to be combined with the protocol, and the result 𝑃 (x, 𝑣, 𝑒𝑤) gets tied to 𝑒 .

Manuscript submitted to ACM

An Axiomatic Basis for Computer Programming on Relaxed Hardware Architectures: The AxSL Logics 27

corresponding extension to the register file in the opax semantics. The GraphFacts predicate in 5 now takes more

arguments, and gives more graph assertions like the dependency edges. Bookkeeping assertion 3 CtrlPreds(srcs𝑐𝑡𝑟𝑙)
captures the srcs

ctrl
part of the opax thread state 𝑇 which works like PoPred. The user-supplied 𝑚 constrained by

Po(dom(𝑚), 𝑒) in SCExt-ht-micro-memread is now constrained by 6 Lob which instead requires the domain of𝑚 to

consist of lob predecessors of the read. The flow equation 7 and FlowSCR explained in AxSL
SCExt

share the same

definition.

The post condition is parametrised by an additional dependency set 𝐷 (the set of event IDs that 𝑣 stems from)

for intra-instruction dependencies. In this rule, this set is {𝑒}, where 𝑒 is the existentially quantified event ID of the

associated memory read event, which is passed to the continuation, to, for instance, a register read to establish the

dependency from this read event to the register’s data.

5.4.2 Specialising Proof Rules for Examples. The Arm-A memory model is intrinsically complex, so there is no ‘perfect’

rule that is both simple and general. Therefore, we again derive some further specialised instruction rules for reasoning

about examples.

We explain how AxSL
Arm

can be used to reason about Arm-A concurrency compositionally, using two key examples:

message-passing (§5.5) and versions of load buffering (§5.6), describing our high-level proof rules along the way.

These examples also demonstrate two styles of proof: a low-level proof for (Arm’s version of) MP that is similar to

that of AxSL
SCExt

, showing how one can tackle subtle reasoning about the Arm-A memory model if needed; and a

high-level proof for LB that abstracts physical state with simple, easy-to-use ghost state, demonstrating the convenience

of AxSL
Arm

. For MP, we only sketch the proof of the receiving thread, highlighting the differences to the MP proof

done in AxSL
SCExt

. For LB, we go through the proof in more detail, and present the specialised rules for the instructions

used in the proof along the way, and explain how it fails (as desired) if the necessary synchronisation is removed.

5.5 Graph Reasoning in AxSLArm: MP+rel+addr

𝑎: str [data] 42 𝑐: 𝑟1 := ldr [flag]
𝑏: str

rel
[flag] 1 𝑑 : 𝑟2 := ldr [data + 𝑟1 − 𝑟1]

Fig. 24. MP+rel+addr: 𝑟1 = 1 → 𝑟2 = 42

We give an example illustrating more complex reasoning

about the memory event graph, on an Arm-A version of mes-

sage passing. Comparing to the SC counterpart, two synchro-

nisations are inserted to ensure intra-thread order. The flag

write of the sending thread is a release write to ensure that

the two writes are suitably ordered (this can also be achieved

in other ways, for example with a dmb st). The two reads of the receiving thread are ordered by using the result of the

flag read to compute the address of the data read, resulting in an address dependency between the two reads. In this

example, the address dependency is artificial, but similar shapes arise naturally when a message-passing idiom is used

to transfer a pointer to a data structure between threads.

Overview. The proof has roughly the same shape as the previous ones, in particular we conclude 𝑟2 is 42 with a

contradiction on the validity of the graph in the case of reading the initial value 0 from data when the flag is set.

Protocol. The protocol we specify is almost identical to the one used for the SC variant, except for two minor

adjustments (highlighted in orange) at flag due to the now relaxed memory model.

Φ(flag, 𝑣, 𝑒) ≜ Initial(𝑒) ∨
(
𝑣 = 1 ∗ 𝑒:W flag 1 ∗ (tid (𝑒) = 1) ∗ ∃𝑒′ . 𝑒′:W

rel
data 42 ∗ 𝑒′ po 𝑒

)
Manuscript submitted to ACM

28 Zongyuan Liu, Angus Hammond, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod

First, we additionally require in the right disjunct that the write is from Thread 1 (the sending thread) with tid (𝑒) = 1.

This allows us to conclude that the load of flag on the receiving side has to read from this external write, resulting in an

rfe edge which contributes to the later graph reasoning because it ensures inter-thread synchronisation (in contrast, rfi

in Arm-A does not enforce such a synchronisation). Second, for the same reason, we strengthen the write to data to be

a release write, which allows us to conclude a lob edge between the two writes of the sending thread.

Proof Sketch. We look at the proof sketch of the receiving thread, focusing on the reasoning of the data dependency

between two loads, and the Arm version of the contradiction proof. We learn 𝑟1
r↦→ 𝑣@{𝑐} after reading from the flag,

and 𝑐 ↬ Φ(flag, 𝑣, 𝑏) for some 𝑏. The @{𝑐} part of the register points-to tells us that the value 𝑣 comes from 𝑐 . Therefore,

when we consider the data read, we have 𝑐 data 𝑑 because of the artificial data dependency using 𝑟1. The fact that

data is in lob allows us to use the resources tied to 𝑐 . We learn 𝑟2
r↦→ 𝑣 ′@{𝑑} and 𝑑 ↬ Φ(data, 𝑣 ′, 𝑒) for some 𝑣 ′ and 𝑒 ,

and are required to prove 𝑣 = 1 → 𝑣 ′ = 42. Case splitting on Φ(data, 𝑣 ′, 𝑒), we have 𝑣 ′ = 42 immediately in the right

case. In the left case, we derive a contradiction from Initial(𝑒) and 𝑣 = 1. In detail, the contradiction is as follows: from

Φ(flag, 1, 𝑏) we learn 𝑏:W
rel

flag 1 and 𝑎:W data 42 for some 𝑎 such that 𝑎 po 𝑏. Since 𝑒 is an initial write to the same

address as 𝑎, we know 𝑒 co 𝑎, and since 𝑒 rf 𝑑 , we know 𝑑 fr 𝑎 and therefore 𝑑 ob 𝑎, since 𝑑 and 𝑎 are on different threads.

Because 𝑏 is a release write po-after 𝑎, we have 𝑎 ob 𝑏; because 𝑐 reads from 𝑏 on a different thread (recall the new bits

of the protocol), we have 𝑏 ob 𝑐; and finally, because there is a data dependency between 𝑐 and 𝑑 , we have 𝑐 ob 𝑑 . By

transitivity of ob, we obtain 𝑎 ob 𝑑 , and together with 𝑑 ob 𝑎, we obtain 𝑑 ob 𝑑 , which contradicts the irreflexivity of ob.

5.6 High-Level Reasoning in AxSLArm: Load Buffering

We detail how to obtain a high-level proof of LB+artificialdata+data (Fig. 25), a version of the LB litmus test with an

artificial (but still architecturally respected) data dependency on Thread 1, and a normal data dependency on Thread 2.

This version of LB is interesting because this specification cannot be proven using just an invariant about the values of

the write, as it can for LB+datas [Jeffrey and Riely 2016, §6]: it requires reasoning about the order of the writes.

Specification. We would like to show that the example exhibits no load buffering behaviour on Arm-A, i.e., that

Thread 1 cannot read 1 (while Thread 2 can read either the initial value 0, or the value 1 that Thread 1 writes), as in the

Fig. 25 specification. We give two versions of the postcondition: one still involving tied assertions, corresponding to

the final state of the threads, and one where the assertions have been pulled out, as used in our formal definition of

weakest preconditions, as we describe in §6.5.5.

Thread 1 Thread 2

{𝑟1 r↦→ _ ∗ some ghost state} {𝑟2 r↦→ _ ∗ some ghost state}
𝑎: 𝑟1 := ldr [𝑥] 𝑐: 𝑟2 := ldr [𝑦]
𝑏: str [𝑦] (1 + 𝑟1 − 𝑟1) 𝑑 : str [𝑥] 𝑟2
{∃𝑣1 . 𝑟1 r↦→ 𝑣1@{𝑎} ∗ 𝑎 ↬ (𝑣1 = 0)} {∃𝑣2 . 𝑟2 r↦→ 𝑣2@{𝑐} ∗ 𝑐 ↬ (𝑣2 = 0 ∨ 𝑣2 = 1)}
{𝑟1 r↦→ 0@_} {∃𝑣2 . 𝑟2 r↦→ 𝑣2@_ ∗ (𝑣2 = 0 ∨ 𝑣2 = 1)}

Fig. 25. LB+artificialdata+data and its (informal) specification

Protocol. The first step of the proof is to come up with an appropriate protocol Φ that abstracts the interference

of the threads, and thus enables thread-modular reasoning. For this LB shape, it suffices to transfer the information

that the write of 1 by Thread 1 has been executed, in the sense that this write is ob-before the event to which this

Manuscript submitted to ACM

An Axiomatic Basis for Computer Programming on Relaxed Hardware Architectures: The AxSL Logics 29

information is tied. To capture this logically, we use a simple form of ghost state: the ‘oneshot resource algebra’ of

Iris [Jung et al. 2018, §2]. The oneshot has two states: pending represents the exclusive permission to make a decision to

choose a value, and shot(𝑣) represents the information that the decision has been made to choose value 𝑣 . In particular,

pending ∗ pending is a contradiction, and so is pending ∗ shot(𝑣) , but we can view-shift pending into shot(𝑣),
pending ⇛ shot(𝑣) , to express the logical decision to commit to 𝑣 . Using this, we can formalise our protocol: for

both locations 𝑥 and 𝑦, either the value is 0, or it is 1, in which case we also have shot(1) .

Φ(_, 𝑣, _) ≜ 𝑣 = 0 ∨ (𝑣 = 1 ∗ shot(1))
Thread 1:

1

{
𝑟1

r↦→ _ ∗ NoLocalWrites(𝑥) ∗ pending ∗ . . .
}

2
(
𝑣1 = 0 ∨

(
𝑣1 = 1 ∗ shot(1)

))
∗ pending

⇛

3 𝑣1 = 0 ∗ pending

4 𝑎: 𝑟1 := ldr [𝑥]
5

{
∃𝑣1 . 𝑟1 r↦→ 𝑣1@{𝑎} ∗ 𝑎 ↬

(
𝑣1 = 0 ∗ pending

)
∗ . . .

}
6 pending

⇛

7 shot(1)
8 𝑏: str [𝑦] (1 + 𝑟1 − 𝑟1)
9 {∃𝑣1 . 𝑟1 r↦→ 𝑣1@{𝑎} ∗ 𝑎 ↬ (𝑣1 = 0)}
Thread 2:

10 {𝑟2 r↦→ _ ∗ NoLocalWrites(𝑦) ∗ . . .}
11 𝑐: 𝑟2 := ldr [𝑦]
12 {∃𝑣2 . 𝑟2 r↦→ 𝑣2@{𝑐} ∗ 𝑐 ↬ Φ(𝑦, 𝑣2, 𝑐) ∗ . . .}
13 𝑑 : str [𝑥] 𝑟2
14

{
∃𝑣2 . 𝑟2 r↦→ 𝑣2@{𝑐} ∗ 𝑐 ↬

(
𝑣2 = 0 ∨

(
𝑣2 = 1 ∗ shot(1)

))}
Fig. 26. Proof sketch of LB+artificialdata+data.

Proof sketch. Using this protocol, the proof follows the sketch in Fig. 26 using the specialised instruction proof rules

explained later in §5.6.1. On line 1, we give Thread 1 the exclusive permission pending to choose a value, which it will

need when it writes 1; moreover, we will use pending in the flow implication of the load from 𝑥 in line 4 to show that it

must read 0.
4
Line 2 states the incoming resources of the flow implication: the disjunction obtained from the protocol,

and the pending from the context. In the flow implication, we can then do a case analysis on the disjunction, and in the

case of 𝑣1 ≠ 0, we can derive a contradiction by combining pending with shot(𝑣); therefore, we must be in the case

𝑣1 = 0, still with pending in hand, as per line 3. On line 5, because we have used the pending from the context in the

flow implication for 𝑎, we get it back, but tied to 𝑎. This deals with the load. Now, for the store on line 8, we need, as

part of the flow implication, to establish the protocol for the written value, 1. For our protocol, we have to take the

second disjunct, and so we have to provide shot(1). Because of the artificial dependency, the flow implication gives

access to the resources tied to 𝑎, and thus to pending, as per line 6. The pending can be view-shifted, as part of the flow

implication, into any shot(𝑣), and thus in particular into shot(1), as per line 7. This satisfies the flow implication, and

thus concludes the proof sketch for Thread 1.

4
We also start Thread 1 with the knowledge that it has made no writes to location 𝑥 , and symmetrically Thread 2 to 𝑦, to exclude an internal reads-from.

Internal reads-from do not imply ob on Arm-A, and thus has a significantly weaker premise for its flow implication, without Φ(𝑥, 𝑣1, _) .
Manuscript submitted to ACM

30 Zongyuan Liu, Angus Hammond, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod

Thread 2 relies on the same dependencies, but is much simpler: given our protocol Φ, we have Φ(𝑦, 𝑣2, 𝑐) = Φ(𝑥, 𝑣2, 𝑑),
so Thread 2 merely forwards this Φ(_, 𝑣2, _) from the load to the store, which the flow implication for the write allows

because of the data dependency.

Abstraction. Using the oneshot resource algebra allows us to reason thread-modularly: the proof of Thread 1 does

not involve any graph reasoning about the intricacies of the Arm-A memory model, merely reasoning about abstract

state. This is already useful for this small proof sketch (and the corresponding mechanised proof). Thread 2 does not

require any inspection of the value or the resource being forwarded, merely plumbing through the flow implication,

and the derivation of the contradiction in the impossible case of the load of Thread 1 relies on simple ghost theory.

Moreover, the proof is quite flexible: the proof sketch only requires trivial modifications if (e.g.) we replace the store of

1 + 𝑟1 − 𝑟1 by a store of 𝑟1.

The proof sketch above crucially relies on the artificial data dependency of the store on the load, as it should: without

it, if the store were merely str [𝑦] 1, it could be executed out of order with respect to the load, thus making the relaxed

load behaviour observable. More concretely, without the dependency, the flow implication for the store would not

include the resource tied to the memory read event 𝑎, and would therefore be of the shape ⊤ ⇛ shot(1) , which is not

provable.

5.6.1 Proof Rules for Instructions. We explain the specialised instruction proof rules used in the LB proof, focusing on

(highlighted in orange) how the rules for Arm-A (Fig. 27) differ from the (non-specialised) rules for SC (Fig. 15).

Load. The proof rule that we use for the load in both threads, ht-ins-ldr-pln-ext, is specialised to the instruction: a

plain, non-exclusive load with an immediate address 𝑥 . It is further specialised to the assumption that there are no prior

writes to 𝑥 by this thread, as otherwise the memory model guarantees no synchronisation and thus makes resource

transfer unsound.

The first line of the precondition deals with bookkeeping of the po-predecessor, the program counter, and the local

writes. The second line requires ownership of the register 𝑟 that will be written to by the load, and requires the flow

implication for this instruction, which flows the protocol Φ for this address to the 𝑅 that will be tied to this event —

with the appropriate address, value, and memory event parameters. The postcondition then updates the bookkeeping of

line 1 accordingly, and keeps the fact that this thread has no writes to 𝑥 . The key part of the postcondition, highlighted

on the last line, is that 𝑅 is then tied the new memory read event 𝑒 , which is the source of the contents of register 𝑟 .

Store. The proof rule that we use for the store in Thread 1, ht-ins-str-pln-artificialdata, is similarly specialised

to the instruction: a plain, non-exclusive store with an immediate address 𝑥 and an artificial value dependency on

register 𝑟 with result 𝑣 . It is further specialised to the assumption that there is an assertion 𝑃 that is tied to the source

of register 𝑟 . Again, the first lines of the pre- and postcondition deal with bookkeeping. The second lines deal with

the latest write to the address. The key of the precondition, highlighted on line 3, requires (1) ownership of register 𝑟

together with the knowledge that its source is some memory event 𝑒𝑑 , (2) 𝑃 is tied to the source memory event 𝑒𝑑 , and

(3) the flow implication, which flows the resource 𝑃 into the protocol for the written value. The postcondition is then

just bookkeeping, 𝑃 having been consumed by the instruction.

The proof rule for the store in Thread 2 is almost identical, merely requiring knowing the value 𝑣 ′ of register 𝑟 , and

the flow implication requiring the protocol be established for that value, Φ(𝑥, 𝑣 ′, 𝑒).
Manuscript submitted to ACM

An Axiomatic Basis for Computer Programming on Relaxed Hardware Architectures: The AxSL Logics 31

ht-ins-ldr-pln-ext{
PoPred(𝑒po) ∗ NoLocalWrites(𝑥) ∗ 𝑟 r↦→ _ ∗
∀𝑒, 𝑣, 𝑒𝑤 . (Φ(𝑥, 𝑣, 𝑒𝑤) ⇛ 𝑅(𝑥, 𝑣, 𝑒𝑤) ∗ Φ(𝑥, 𝑣, 𝑒𝑤))

}
a: 𝑟 := ldr [𝑥]{
a + 4: ∃𝑣, 𝑒𝑤 .

PoPred(𝑎) ∗ NoLocalWrites(𝑥) ∗
𝑎 ↬ (𝑅(𝑥, 𝑣, 𝑒𝑤)) ∗ 𝑟 r↦→ 𝑣@{𝑎}

}
tid,Φ

ht-ins-str-pln-artificialdata
PoPred(𝑒po)∗
(NoLocalWrites(𝑥) ∨ LastLocalWrite(𝑥, _)) ∗
𝑟 r↦→ _@{𝑒𝑑 } ∗ 𝑒𝑑 ↬ 𝑃 ∗ ∀𝑒. (𝑃 ⇛ Φ(𝑥, 𝑣, 𝑒))


a: str [𝑥] (𝑣 + 𝑟 − 𝑟){
a + 4:

PoPred(𝑎) ∗ LastLocalWrite(𝑥, 𝑎) ∗
𝑟 r↦→ _@{𝑒𝑑 }

}
tid,Φ

Fig. 27. Proof rules for the instructions in the left thread of LB+artificialdata+data.

5.7 Supporting Exclusives

We describe how the logic we have seen so far can be extended, with only minor changes, with new proof rules for

Arm-A exclusives.

Arm-A features atomic read-modify-write operations in two forms: atomic instructions (compare-and-swap, fetch-

and-add, etc.), and the combination of load-exclusive/store-exclusive pairs. The rules we have described so far only

support ‘non-exclusive’ loads and stores. We now explain how we can give strong rules for read-modify-writes that

support transfer of non-duplicable resources: a load exclusive 𝑎 of 𝑣 from 𝑥 should, if the subsequent store exclusive

succeeds, give a non-duplicable resource 𝑃 which does not need to be given back because of the exclusivity.

trylock(ℓ) ≜
𝑟1 := ldrx [ℓ]
if (𝑟1 ≠ unlocked) return false

𝑟2 := strx [ℓ] locked
dmb sy

return (𝑟2 = success)

unlock(ℓ) ≜ str
rel

[ℓ] unlocked

Fig. 28. Try-lock pseudocode

if trylock(ℓ) { if trylock(ℓ) {
str [𝑥] 1 𝑟1 := ldr [𝑥]
str [𝑦] 1 𝑟2 := ldr [𝑦]
unlock(ℓ) unlock(ℓ)

} }

Fig. 29. Example of mutual exclusion with postcondition 𝑟1 = 𝑟2

To support atomic read-modify-writes, we do not need to change our definition of protocols, but merely to pick a

specific shape of protocol. The protocol relies on invariants, which we implement using the standard Iris construction

combining higher-order ghost state and appropriate view shifts in the definition of weakest precondition [Jung et al.

2018]. Given a proposition 𝑃 , 𝑃 is an invariant containing 𝑃 , which is duplicable, and which can thus be transferred

using our protocols. Using an invariant, we can then use the escrow pattern [Kaiser et al. 2017] to trade an exclusive

token for the non-duplicable resource, with enough bookkeeping to capture the uniqueness of a successful read-modify-

write on a given write. Therefore, the only change we need to make to support exclusives is merely to associate, in the

definition of weakest precondition, an exclusive token ExTok(𝑒) to each event 𝑒 , and to make that token available to the

rule for that event. We implement this idea in §6.5.4.

Using our proof rules, we prove the classical specification for simple try-lock (see Fig. 28), which we then use to

prove a basic mutual exclusion example (in Fig. 29): if a writer takes the lock before writing to two variables, then a

reader that takes the lock and reads from the two variables has to read the values before or after, but not a mixture.

Manuscript submitted to ACM

32 Zongyuan Liu, Angus Hammond, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod

5.8 Further Examples

To validate how AxSL
Arm

works generally with the memory model of Arm-A, how it is likely to continue working with

future changes, and how it could be ported to other memory models, we verify further examples that exercise different

parts of the memory model. LB+dmbsy+data (Fig. 30) relies on the po; [dmb.full]; po clause of bob (see Fig. 4) to obtain

the key lob edge on the left, but the proof is otherwise the same as for LB+artificialdata+data in §5.6. LB+ctrls (Fig. 31)

relies on the ctrl; [W] clause of dob in both threads, but is otherwise the same. Similarly, MP+rel+dmbsy (Fig. 32) relies

on bob in the right thread, and so does MP+rel+ctrl-isb (Fig. 33) via the more complex (ctrl| (addr; po)); [ISB]; po; [R]
edge which appears incrementally, but their proofs are otherwise as in §5.5. To illustrate that AxSL

Arm
can reason about

communication between many threads, we verify an iterated version of MP, namely ISA2+rel+data+acq (Fig. 34) [Sarkar

et al. 2011]; the proof is just an iterated version of the proof of MP. Finally, to illustrate that reasoning about coherence

is still possible, albeit unpleasant (which we discuss further in §8.3), we verify two coherence tests: CoWW (Fig. 35) and

CoRR (Fig. 36); the proofs work by symbolic execution followed by discarding the executions with cycles in co.

𝑎: 𝑟1 := ldr [𝑥] 𝑑 : 𝑟2 := ldr [𝑦]
𝑏: dmb sy 𝑒: str [𝑥] 𝑟2
𝑐: str [𝑦] 1

Fig. 30. LB+dmbsy+data: 𝑟1 = 0 ∧ (𝑟2 = 0 ∨ 𝑟2 = 1)

𝑎: 𝑟1 := ldr [𝑥] 𝑑 : 𝑟2 := ldr [𝑦]
𝑏: if (𝑟1 == 0) 𝑒: if (𝑟2 == 1)
𝑐: str [𝑦] 1 𝑓 : str [𝑥] 𝑟2

Fig. 31. LB+ctrls: 𝑟1 = 0 ∧ (𝑟2 = 0 ∨ 𝑟2 = 1)

𝑎: str [data] 42 𝑐: 𝑟1 := ldr [flag]
𝑏: str

rel
[flag] 1 𝑑 : dmb sy

𝑒: 𝑟2 := ldr [data]

Fig. 32. MP+rel+dmbsy: 𝑟1 = 1 → 𝑟2 = 42

𝑎: str [data] 42 𝑐: 𝑟1 := ldr [flag]
𝑏: str

rel
[flag] 1 𝑑 : if (𝑟1 == 1)

𝑒: isb

𝑓 : 𝑟2 := ldr [data]

Fig. 33. MP+rel+ctrl-isb: 𝑟1 = 1 → 𝑟2 = 42

𝑎: str [x] 42 𝑐: 𝑟1 := ldr [y] 𝑒: 𝑟2 := ldr [z]
𝑏: str

rel
[𝑦] 1 𝑏: str [𝑧] 𝑟1 𝑑 : 𝑟3 := ldr [𝑥]

Fig. 34. ISA2+rel+data+acq: 𝑟2 = 1 → 𝑟3 = 42

𝑎: str [x] 37
𝑏: str [x] 42

Fig. 35. CoWW: 𝑎
co→ 𝑏

𝑎: str [x] 42 𝑏: 𝑟1 := ldr [x]
𝑐: 𝑟2 := ldr [x]

Fig. 36. CoRR: 𝑟1 = 42 → 𝑟2 = 42

6 MODEL AND SOUNDNESS

A model of Hoare triples for a language of microinstructions is said to be sound if the following two conditions hold: (1)

the model must allow us to show that proof rules are valid with respect to the language semantics (soundness), i.e. that

the transformation of logical resources reflects the transition of physical states; (2) we must be able to show that, if a

Manuscript submitted to ACM

An Axiomatic Basis for Computer Programming on Relaxed Hardware Architectures: The AxSL Logics 33

program is verified against a Hoare triple, then all valid executions of the program indeed satisfy certain properties

(adequacy).

With these two principles in mind, we present the semantic models of the three logics presented in the previous

section. We also sketch how to prove the soundness of proof rules using the models, and briefly touch on how the

model definitions contribute to adequacy (we leave the details to §7).

Following the structure of the previous section, we build up the model of AxSL
Arm

in Iris gradually with several

intermediate steps, tackling one challenge at a time.

First, we recall the model of usual Iris logics built atop of a heap-based operational semantics, in a setting with SC

concurrency and a fixed number of threads. We emphasise some core components of the model that are crucial for

soundness and adequacy.

Next, we sketch the model of AxSL
SC

based on our opax semantics for TinySc. We explain how it deals with the

shape of opax semantics to achieve modular graph-based reasoning, and give an intuitive explanation on why models

as such do not scale to the relaxed concurrency of Arm.

Then, we present the model of AxSL
SCExt

which is fundamentally distinct, due to our now explicit treatment of

resource flowing. We concentrate on the flow implications, on how it works together with tied-to assertions to ensure

soundness, and why this idea scales to relaxed concurrency.

Finally, we show the full semantic model of AxSL
Arm

, which shares the same structure as that of AxSL
SCExt

, but

differs due to the shift of the synchronisation order from SC’s sc to Arm’s ob. We omit the soundness proof of the proof

rules of AxSL
Arm

as it is mostly orthogonal to the memory model, thus similar to the one for AxSL
SCExt

.

This section presupposes some basic knowledge of Iris. See [Jung et al. 2018] for background on Iris.

6.1 Preliminary: A General Recipe for Building Logics Using Iris

Iris can be instantiated by an operational semantics respecting a few conditions. The framework comes with a recipe

for building logics and their adequacy proofs for typical heap-based operational semantics. We now recall this recipe,

which we refer to as the general recipe. Readers who are familiar with this general recipe may skip this subsection.

Base operational semantics. To instantiate Iris, one normally needs to provide a concurrent language whose semantics

has:

• a set of expressions Exp, and values 𝑣 : Val ⊆ Exp

• a notion of physical state 𝜎 : St shared among all threads

• a per-thread step relation →tid ⊆ (Exp × St) × (Exp × St) that specifies how the program of thread tid may

transform the shared state for a primitive step

For simplicity, we only consider a language with a fixed number of threads, i.e. without the ability to fork new threads.

Weakest precondition. Given such a semantics, one can follow the general recipe to first define a notion of weakest

precondition. Here, we only show the key parts of the definition, and we refer the reader to [Jung et al. 2018] for a full

definition that supports concurrency. Intuitively, wp 𝑒 {𝑄}tid requires post condition 𝑄 to hold if 𝑒 terminates with

a value in thread tid. A Hoare triple {𝑃} 𝑒 {𝑄}𝑡𝑖𝑑 is then defined as �(𝑃 −∗ wp 𝑒 {𝑄}tid). The definition of weakest

precondition has two cases, depending on whether the program 𝑒 is a value:

• If 𝑒 is a value, the weakest precondition requires that the postcondition holds after a resource update: ¤|⇛𝑄 (𝑒)
Manuscript submitted to ACM

34 Zongyuan Liu, Angus Hammond, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod

• Otherwise, for all physical updates from global state 𝑠 , the logical resources are required to be updated to mirror

them, using a state interpretation (SI) which is a predicate that gives the physical state a logical interpretation in

Iris:

SI (𝑠) ⇛ (∀𝑒′, 𝑠′ . (𝑒, 𝑠) →tid (𝑒′, 𝑠′) ⇛ SI (𝑠′) ∗ wp 𝑒′ {𝑄}tid)

Formally, it says that for any physical transition (𝑒, 𝑠) →tid (𝑒′, 𝑠′) of thread tid, there must be a corresponding

logical transition formulated as a view shift SI (𝑠) ⇛ SI (𝑠′). The recursive occurrence of the weakest precondition
further requires this correspondence to hold for all subsequent steps of the thread. (Here we omit substantial

technical details dealing with invariants and guarded recursion.)

State interpretation. Normally, to achieve local reasoning, one would define SI as an authoritative view of the physical

state 𝑠 , and only reason about fragmental views distributed to threads, separating 𝑠 so that one does not need to

reason about the parts of 𝑠 that are not touched by a thread (known as framing). For instance, for an SC language

with a global abstract heap (a map from locations to values) 𝑠 , one can define the full view over 𝑠 as SI (𝑠) ≜ •𝑠
and a fragmental view for an individual location 𝑙 as 𝑙 ↦→ 𝑣 ≜ ◦{𝑙 ↦→ 𝑣} using the Auth ghost state constructor

of Iris, such that (1) the two views are consistent: SI (𝑠) ∗ 𝑙 ↦→ 𝑣 ⊢ 𝑠 (𝑙) = 𝑣 , and (2) we can update them together:

SI (𝑠) ∗ 𝑙 ↦→ 𝑣 ⇛ SI (𝑠 [𝑙 ↦→ 𝑣 ′]) ∗ 𝑙 ↦→ 𝑣 ′.

Adequacy. Next, we show the statement of a typical adequacy theorem, and highlight the role of the state interpretation

SI in the proof of the theorem. The theorem has the following notable assumptions (again, we omit substantial details):

• a thread pool step relation→tp ⊆ (list(Exp) × St) × (list(Exp) × St) that specifies the scheduling of threads —
all possible interleavings of primitive steps,

• a terminating thread pool trace ([𝑒0, · · · , 𝑒𝑛], 𝑠𝑖) →∗
tp

([𝑒′
0
, · · · , 𝑒′𝑛], 𝑠𝑡) where 𝑠𝑖 is the initial state, 𝑠𝑡 is the

terminating state, and all 𝑒′s are values,

• a series of weakest preconditions with post conditions 𝜙0, . . . , 𝜙𝑛 , one for each thread

The conclusion is that the post conditions 𝜙𝑖 (𝑒′𝑖) for all 𝑖 hold. This theorem allows one to extract meta-logical results

from the program logic, showing that verification done in the program logic is valid with respect to the meta logic.

Proof of adequacy. The proof of adequacy proceeds by allocating the initial logical interpretation SI (𝑠𝑖) to establish

the physical-logical correspondence for 𝑠𝑖 . We then continue by induction on the trace to show that the correspondence

is preserved throughout the execution. In the induction case, when we have a head step (𝑒𝑖 , 𝑠) →tid (𝑒′
𝑖
, 𝑠′) for thread

tid and SI (𝑠), we unfold the definition of weakest precondition of thread 𝑖 , which gives us SI (𝑠) ⇛ SI (𝑠′). Since we
own SI (𝑠), we apply the view shift to obtain SI (𝑠′). The case is concluded by applying the induction hypothesis which

requires SI (𝑠′) and the remaining reduction steps. In the end, we reach the final state 𝑠𝑡 , at which point we get the post

condition by the value case of the weakest precondition.

Two orders. A crucial observation about this proof that will become relevant when we adapt the general recipe to

work with an opax semantics is that the proof implicitly works with two orders: the order that the physical state evolves

in, and the order in which the transformations of the corresponding logical interpretations are collected by weakest

preconditions. The first order is induced by the thread pool reduction →tp of the semantics, which is a serialisation of

all accesses to the physical state (from the perspective of the axiomatic model, a linear extension of sc). The second

order is program order. From the model of the weakest precondition, we can see that a view shift is required for each

Manuscript submitted to ACM

An Axiomatic Basis for Computer Programming on Relaxed Hardware Architectures: The AxSL Logics 35

(𝑒0,0, 𝑠0)

(𝑒0,1, 𝑠1)

(𝑒0,2, 𝑠4)

0

0

(𝑒1,0, 𝑠2)

(𝑒1,1, 𝑠3)

(𝑒1,2, 𝑠5)

1

1

SI (𝑠2)

SI (𝑠3)

SI (𝑠5)

SI (𝑠0)

SI (𝑠1)

SI (𝑠4)

Fig. 37. An example program execution with two threads, above an SC memory model. →0 and →1 are the head reductions (the

program order and the reasoning order) of the two threads. The indices of 𝑠 indicate the global order of updating 𝑠 (induced from

→tp), and⇛ indicates the order we update the logical interpretations of 𝑠 in the adequacy proof. These two orders coincide, and

they subsume the reasoning order.

local reduction →tid of the semantics. Fig. 37 illustrates the relationship between these two orders. More generally, we

observe that, in most logics, the second order is program order, since it is intuitive to reason about programs along

program order, whereas the first order may vary depending on the concurrency model.

Now, a crucial observation is the following: the reason we can complete the proof in one pass (with one induction),

with a single induction on the former order, is that in the case of SC, the second order is included in the first: po ⊆ sc.

As discussed in §3, in the case of Arm, these two orders are incompatible, in the sense that their union may be cyclic,

and so they together do not form an inductive structure that we can rely on in the proof. This poses a challenge to the

adequacy proof, and partially explains why the general recipe does not work for the relaxed concurrency of Arm.

6.2 Notations for Weakest Preconditions

In the rest of this section, we discuss variants of weakest preconditions, for our three logics at two abstraction levels.

We now clarify the convention of notations we will use for them. We will use superscripts SC, SCExt, and Arm to

denote that assertions we are talking about belong to AxSL
SC

, AxSL
SCExt

, and AxSL
Arm

respectively.

6.3 Model and Soundness of AxSLSC

AxSL
SC

has a simple semantic model and a one-pass adequacy proof similar to most Iris program logics. AxSL
SC

shares

the exact core idea of updating logical resources respecting the transformation of physical states as in the general recipe.

Following the recipe, we let the thread state of the opax semantics s be the expression; the complete state Done ⟨_⟩ be
the value; the pair of execution graph and instruction memory ⟨X , 𝐼 ⟩ be the physical state 𝜎 ; and tid−−→

h
be the per-thread

step. The notation s
tid,X ,𝐼−−−−−→

h
s′ used in Fig. 11 is syntactic sugar for ⟨s, ⟨X , 𝐼 ⟩⟩ tid−−→

h
⟨s′, ⟨X , 𝐼 ⟩⟩. With this configuration,

we define a base weakest precondition wpb
SC

tid,Φ s {𝑄} that takes an opax state s (the “expression”) and a post condition𝑄

which is a predicate over the terminating state, in the spirit of the aforementioned general recipe, in Fig. 38.

A clearer interface. On top of wpb
SC

, which we will explain soon, we define the weakest precondition wp
SC

tid,Φ 𝑝 {𝑄}
that merely takes a microinstruction program 𝑝 , as a cleaner interface hiding s away. We implement this using usual

Iris machinery:

wp
SC

tid,Φ 𝑝 {𝑄} ≜ ∀𝑇 . 1 LSI(𝑇)tid ⇛ wpb
SC

tid,Φ Ctd ⟨𝑝,𝑇 ⟩
{
𝑇 ′ . 𝑄 ∗ 2 LSI(𝑇 ′)tid

}
tid,Φ

Manuscript submitted to ACM

36 Zongyuan Liu, Angus Hammond, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod

We have a local state interpretation 1 LSI(𝑇)tid interpreting 𝑇 for the current thread tid. LSI relates (local) logical

assertions to the corresponding part of 𝑇 . It allows us to universally quantify 𝑇 and use the assertions to only track the

parts that are necessary for further reduction from the opax state. The 2 LSI(𝑇 ′)tid in the post condition of the wp
SC

requires a new interpretation for the updated local state 𝑇 ′
. Note that it is a thread-local predicate which only involves

assertions of a thread (indexed by a thread ID) (for Iris experts, thread-local assertions use distinct ghost names).

wpb
SC

tid,Φ 𝑠 {𝑄} ≜
(
𝑠 = Done 𝑇 ∧ ¤|⇛𝑄 (𝑇)

)
∨©­­­­­­«

𝑠 = Ctd 𝐶 ∧©­­­­«
∀𝜎. 3 Valid(𝜎.X) −∗ 4 (� SI (𝜎)) −∗ ∀𝑠′ . 5 ⟨𝑠, 𝜎⟩ tid−−→

h
⟨𝑠′, 𝜎⟩ −∗

∀𝑒 = ⟨tid,𝐶.𝑇 .IT .cntr⟩,
(
IsValidEid(𝑒,X) ∗ 6 𝑠pg ⊇ Sc(𝜎.X , 𝑒) ∧ 𝑒 ∉ 𝑠pg .

7 SIP(Φ, 𝜎 .X , 𝑠pg) ⇛ SIP(Φ, 𝜎 .X , 𝑠pg ∪ {𝑒}) ∗ 8 wpb
SC

tid,Φ 𝑠
′ {𝑄}

)
∨(9 ¬IsValidEid(𝑒,X) ∗ wpbSCtid,Φ 𝑠

′ {𝑄})

ª®®®®¬
ª®®®®®®¬

Fig. 38. The model of wpb
SC
. Technical details regarding guarded recursion are omitted.

Overall structure. Following the general recipe, the definition of wpb
SC

has two cases, depending on whether 𝑠 is a

“value”. In the value case, we just get the local state 𝑇 and assert post condition 𝑄 (𝑇) after a ghost update. In the other

case, there are two aspects of the definition which are somewhat non-standard compared to the general recipe: (1) it

maintains consistency between the execution of the thread in the opax semantics and the global execution graph, to

ensure sound graph reasoning; (2) it enforces rely-guarantee protocols on the graph to implement resource transfer.

Persistent graph as memory. Having an ongoing execution Ctd 𝐶 , we obtain assertions over the “physical state”

𝜎 . However, unlike in the recipe when we just assume SI (𝜎) for heap 𝜎 , now we have 4 � SI (𝜎). It is a persistent
interpretation of 𝜎 , a pair of execution graph (the “shared memory”) and instruction memory, reflecting the fact that

in opax both of them are constant. Additionally, 3 Valid(𝜎.X) assumes the validity condition of the execution graph,

which helps us rule out ill-formed or inconsistent graphs — we discard a graph when we obtain information from the

semantics that conflicts with this assumption (as demonstrated at the logic level in examples in §5). Next, as in the

general recipe, we assume that we can make progress by taking a per-thread step (5), which updates the state to 𝑠′.

The weakest precondition should hold recursively for 𝑠′ (as 8) — the weakest precondition predicate is defined as

the (guarded) fixed point satisfying the recursive equation.
5
We also need a case distinction using IsValidEid to check

whether the event ID 𝑒 corresponds to an event. In the case when we run out of microinstructions and have to reload

(the microinstruction program of) the next instruction (namely 𝑒 is invalid, as 9), we simply proceed with 𝑠′. This case

disctinction is just our ad-hoc way of handling the reloading step of opax, and there might be other more systematic

solutions.

Enforcing protocols. Finally, we have to show that for the current microinstruction (the first one in𝐶.𝑝), the associated

event with ID 𝑒 preserves the protocol Φ for the rely-guarantee style reasoning. Concretely, we use the progress set

𝑠pg , a set of event IDs, to track how far we are from enforcing the protocol on all nodes of the guessed graph 𝜎.X ,

and from checking the consistency between the guessed graph 𝜎.X and the program. It contains the set of the events

that have been confirmed to conform the protocol and have corresponding microinstructions. We need to show that

for an 𝑠pg that contains (at least) all sc predecessors but not 𝑒 , as assumed by 6 , the protocol holds on 𝑒 (so we make

5
Our definition does not require that 𝑠 can take a step in that case; thus, our definition does not enforce progress.

Manuscript submitted to ACM

An Axiomatic Basis for Computer Programming on Relaxed Hardware Architectures: The AxSL Logics 37

progress by adding 𝑒) given it holds on all events in 𝑠pg (as 7), as illustrated in Fig. 39. The predicate SIP(Φ,X , 𝑠pg)
is an interpretation of the progress set given a protocol Φ, which enforces the protocol on all write events in 𝑠pg , as

captured by:

SIP(Φ,X , 𝑠pg) ≜ ∗𝑒∈𝑠pg ∀𝑥, 𝑣 . (X .lab(𝑒) = W 𝑥 𝑣) ⇛ Φ(𝑥, 𝑣, 𝑒)

The view shift 7 means that we can rely on all sc-before events (i.e. those that are visible to the current event) conforming

the protocol to guarantee that 𝑒 also conforms the protocol. This view shift is crucial for proving the soundness of

resource transfer happening in the proof rules. In particular, in the case of 𝑒 being a read event, 𝑠pg ⊇ Sc(X , 𝑒) of 6

ensures that the protocol holds at all possible writes that it may read from (since they are all sc-before), which allows

us to transfer the protocol resource along the rf from the actual write to this read. In the case of 𝑒 being a write event,

SIP(. . . , 𝑠pg ∪ {𝑒}) requires the protocol resource of 𝑒 .

𝑠pg

𝑒po
Sc(X , 𝑒)

𝑒

po𝑒𝑤

rf

{

𝑠pg ∪ {𝑒}

𝑒

Fig. 39. An illustration on the evolving of the progress set 𝑠pg at a read event 𝑒 .

6.3.1 Soundness of Proof Rules. In the elaboration of the model above, we have intentionally left the precise definition

of the predicates LSI and SI undefined, since their implementations are irrelevant to the model (and to the adequacy

proof), and only pertain to the soundness of the proof rules. Indeed, to show soundness of the proof rules for AxSL
SC

,

it suffices that the predicates satisfy the selection of properties in Fig. 40. We refer readers to Appendix C for a concrete

definition of the predicates that satisfies all these properties.

LSI-reg-agree

LSI(𝑇)tid ∗ 𝑟 r↦→ 𝑣 ⊢ 𝑇 .regs(𝑟) = 𝑣

LSI-reg-update

𝑇 ′ .regs = 𝑇 .regs[𝑟 ↦→ 𝑣 ′]
LSI(𝑇)tid ∗ 𝑟 r↦→ 𝑣 ⇛ LSI(𝑇 ′)tid ∗ 𝑟 r↦→ 𝑣 ′

LSI-po-agree

LSI(𝑇)tid ∗ PoPred(𝑒) ⊢ ⟨tid,𝑇 .IT .cntr⟩ > 𝑒

LSI-po-update

⟨tid,𝑇 ′ .IT .cntr⟩ > 𝑒′

LSI(𝑇)tid ∗ PoPred(𝑒) ⇛ LSI(𝑇 ′)tid ∗ PoPred(𝑒′)

SI-edge-agree

Rel is a relation

SI (𝜎) ∗ 𝑎 Rel 𝑏 ⊢ (𝑎, 𝑏) ∈ 𝜎.X .Rel

SI-edge-alloc

Rel is a relation (𝑎, 𝑏) ∈ 𝜎.X .Rel
SI (𝜎) ⊢ 𝑎 Rel 𝑏

Fig. 40. Selected properties of state interpretation and local state interpretation. Generally speaking, for mutable fields of 𝑇 , we

require agreement and update rules, while for the immutable graph X , we do not require an update rule.

Single-step weakest preconditions. Weakest preconditions specify the behaviours of a whole microinstruction program

execution, while we need a mechanism to specify the behaviours of a single microinstruction to formulate the proof

rules for it. Inspired by previous verification work for low-level languages [Erbsen et al. 2021; Jensen et al. 2013; Liu

Manuscript submitted to ACM

38 Zongyuan Liu, Angus Hammond, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod

et al. 2023; Myreen and Gordon 2007], we use single-step base weakest precondition sswpb
SC

tid,Φ 𝑠 {𝑠
′ . 𝑄} which means

that 𝑄 holds after taking one reduction step (namely executing one microinstruction) from state 𝑠 . We define sswpb
SC

simply by replacing the recursive occurrence of wpb
SC

with𝑄 in the definition of wpb
SC

. The single-step base weakest

precondition formally corresponds to a single unfolding of the base weakest precondition, as captured by:

sswpb-wpb

sswpb
SC

tid,Φ 𝑠
{
𝑠′ .wpbSCtid,Φ 𝑠

′ {𝑄}
}
⊣⊢ wpbSCtid,Φ 𝑠 {𝑄}

Crucially, the right-to-left direction allows us to decompose a microinstruction program to only focus on one microin-

struction at a time. This essentially plays the role of the bind rule in logics for high-level languages.

Further, we define the single-step weakest precondition sswp
SC 𝑝 {𝑄}tid,Φ, and finally define the microinstruction

Hoare triple used by the proof rule for microinstruction 𝑖 as

{𝑃} 𝑖 {𝑄}tid,Φ ≜ �
(
∀𝑝. (𝑃 ∗ ∃𝐾. (Next 𝑖 𝐾) = 𝑝) −∗ sswpSCtid,Φ 𝑝 {𝑄}

)
where we require that the first microinstruction of 𝑝 is 𝑖 .

We use single-step microinstruction Hoare triples to specify proof rules, and then show the soundness result of

AxSL
SC

:

Theorem 6.1. The AxSLSC proof rules for microinstructions are sound.

Proof sketch. We describe the general approach for a proof of soundness of a proof rule here. There are four major

steps in the proof after unfolding the model of assertions. First, we use the agreement rules (Fig. 40) between the

assertions in the precondition and the interpretation to partially recover the state 𝑠 . Next, we take the opax step for the

microinstruction, obtaining new facts about the execution graph and an updated state 𝑠′. At the same time, we perform

resource transfer according to the protocol Φ. Finally, we allocate and update assertions to mirror the update of the

local state (again using the LSI and SI rules in Fig. 40) and the resource transfer. □

6.4 Model and Soundness of AxSLSCExt

The AxSL
SCExt

logic extends the assertion language of AxSL
SC

with tied-to assertions, which make it possible to reason

about resource flowing between nodes. As a logic also built atop of an opax shape semantics, its model shares substantial

similarities with that of AxSL
SC
. The key difference is how it keeps track of all tied-to assertions to enable sound

transfer of tied resources between events. As noted, explicitly tracking resource transfer between events does not add

more expressive power to AxSL
SCExt

, but makes it more general in the sense that both its model and adequacy result

are robust for more (relaxed) concurrency models. This is reminiscent of how invariants are tracked in the weakest

precondition for the standard Iris program logic [Jung et al. 2018]. We present the model in Fig. 41 and highlight how

the model manages tied-to assertions below.

Interpretation for tied resources. SIT of 1 interprets the full authoritative view of all tied assertions, 𝜏 , which we keep

as a logical map from event IDs to Iris propositions. Since 𝜏 mentions Iris propositions and itself is interpreted as an Iris

proposition, we leverage Iris’ support for higher-order ghost states to implement SIT. The predicate SIT is defined in

such a way that, together with the fragmental tied-to-assertions, it enjoys agreement and update rules similar to those

of the register map shown before. (For Iris experts we remark that the rules are slightly different since 𝜏 is higher-order:

specifically, we can only obtain the agreement later.) The next line essentially allows us to update a fragment of 𝜏 (to 𝜏 ′,

Manuscript submitted to ACM

An Axiomatic Basis for Computer Programming on Relaxed Hardware Architectures: The AxSL Logics 39

wpb
SCExt

tid,Φ 𝑠 {𝑄} ≜
(
𝑠 = Done 𝑇 ∧ ¤|⇛𝑄 (𝑇)

)
∨©­­­­­­«

𝑠 = Ctd 𝐶 ∧©­­­­«
∀𝜎.Valid(𝜎.X) −∗ (� SI (𝜎)) −∗ ∀𝑠′ . ⟨𝑠, 𝜎⟩ tid−−→

h
⟨𝑠′, 𝜎⟩ −∗

∀𝑒 = ⟨tid,𝐶.𝑇 .IT .cntr⟩, 𝜏 .
(
IsValidEid(𝑒,X) ∗ 1 SIT (𝜏) ⇛

∃𝜏 ′ . 2 SIT (𝜏 ′) ∗ 3 FlowImp(𝜎.X ,Φ, 𝑒, 𝜏, 𝜏 ′) ∗ wpbSCExttid,Φ 𝑠′ {𝑄}
)

∨(¬IsValidEid(𝑒,X) ∗ wpbSCExttid,Φ 𝑠′ {𝑄})

ª®®®®¬
ª®®®®®®¬

FlowImp(𝑒,X ,Φ, 𝜏, 𝜏 ′) ≜ ∃𝜏in, 𝜏res, 𝑅. 4 Detach(X , 𝑒, 𝜏, 𝜏in, 𝜏res) ∗ 5 𝜏 ′ = 𝜏res [𝑒 ↦→ 𝑅] ∗
∀𝑠pg ⊇ PredOf (X .sc, 𝑒) ∧ 𝑒 ∉ 𝑠pg .

6

(∗(𝑒 ↦→𝑅in) ∈𝜏in 𝑅in
)
∗ SIP(Φ,X , 𝑠pg) ⇛ SIP(Φ,X , 𝑠pg ∪ {𝑒}) ∗ 7 𝑅

Fig. 41. The model of base weakest precondition of AxSL
SCExt

. The key changes to that of AxSL
SC

are highlighted in orange. Again,

the details handling guarded recursion are omitted.

as 2) and the associated tied assertions. Crucially, the update has to follow the flow implication 3 FlowImp, which we

now explain.

Flow implication. The FlowImp(X ,Φ, 𝑒, 𝜏, 𝜏 ′) predicate regulates the flow and update of resources (from 𝜏 to 𝜏 ′) that

may happen at memory event 𝑒 . Intuitively, the rule expresses that the sum of resources pushed to 𝑒 along its incoming

sc edges implies (with a view shift) the resources given out along outgoing sc edges, plus the leftovers tied to 𝑒 .

𝑎 𝑃 ∗ 𝑃 ′↫→ 𝑏 𝑄 ∗𝑄 ′↫→
𝜏

𝑎 𝑃 ′↫→ 𝑏 𝑄 ′↫→
𝜏res 𝑎 𝑃↫→

𝑏 𝑄↫→

𝜏in(1)detach

SIP(. . . , 𝑠pg)∗

SIP(. . . , 𝑠pg ∪ {𝑒})∗𝑒 𝑅↫→

po ⇛

(2)exchange

𝑎 𝑃 ′↫→ 𝑏 𝑄 ′↫→
𝑒 𝑅↫→

𝜏 ′

(3)tie

Fig. 42. A visualisation of the three actions of updating 𝜏 to 𝜏 ′ , where we flow 𝑃 and𝑄 to 𝑒 along po from 𝑎 and 𝑏 respectively. 𝑅 is

eventually tied to 𝑒 after exchange.

We divide the update from resource map 𝜏 to 𝜏 ′ into a sequence of three actions: detach, exchange, and tie, as

illustrated in Fig. 42. The 4 Detach predicate captures the detachment:

Detach(X , 𝑒, 𝜏, 𝜏in, 𝜏res) ≜ dom(𝜏in) ⊆ PredOf (X .po, 𝑒) ∗ ∀(𝑒 ↦→ 𝑅in) ∈ 𝜏in .
∃𝑅res = 𝜏res (𝑒), 𝑅 = 𝜏 (𝑒) . 𝑅 −∗ (𝑅in ∗ 𝑅res)

Manuscript submitted to ACM

40 Zongyuan Liu, Angus Hammond, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod

𝜏 is split into 𝜏in and 𝜏res , where 𝜏in is a fragment of 𝜏 which represents the resources detached from the po predecessors

of 𝑒 , as determined by the user-provided tied assertions, and 𝜏res is the remaining global map, after detaching 𝜏in.
6
The

last two lines do the resource exchange, which is an augmented version of the view shift presented in the model of

AxSL
SC

. It now has the local resources of 𝜏in explicitly given on the left as 6 , and the resource 7 𝑅 remaining on event

𝑒 on the right. The map update 5 does the tying: the remaining resource 𝑅 is tied to 𝑒 , by extending the map 𝜏res .

6.4.1 Stratification. The key difference between AxSL
SC

and AxSL
SCExt

is the tied-to assertions: 𝑎 ↬ 𝑃 . The intent

of 𝑎 ↬ 𝑃 is to express that 𝑃 holds at event 𝑎, which is po-before the current event (if we ignore the case where 𝑃 is

transferred to another thread). In AxSL
SCExt

, this then allows us to transfer 𝑃 to the current event, or to any future

event of the thread, and so 𝑎 ↬ 𝑃 amounts exactly to 𝑃 . However, when we consider an actual relaxed memory model

in AxSL
Arm

, this transfer step will be conditional on ordering (in lob) from 𝑎 to the current event, and the indirection

induced by 𝑎 ↬ 𝑃 allows us to express that 𝑃 is available under this condition.

The effect of tying 𝑃 to 𝑎 in AxSL
SCExt

is to constrain the use of 𝑃 : it isolates 𝑃 from the reasoning along po that we

do using wp
SCExt

. This stratification is reflected in the model wpb
SCExt

: the update of tied resources as performed by

the view shift in FlowImp cannot affect the recursive wpb
SCExt

for 𝑠′: we cannot use the updated resource to directly

reason about 𝑠′. In Fig. 41, this is reflected by wpb
SCExt

being pulled out of the view shift. This is to contrast with

AxSL
SC

(see Fig. 38), where wpb
SC

is on the right side of the view shift, and can therefore observe the update. This

stratification is crucial for how we structure adequacy of AxSL
Arm

, as we will show in the next section.

6.4.2 Soundness of Proof Rules. Like in AxSL
SC

, we need to implement logical interpretation predicates and define a

notion of single-step weakest precondition and Hoare triple. The soundness proofs for proof rules are then unsurprising,

thanks to the substantial similarity between the models of the two wpbs, except that now more effort is needed to show

that the update of 𝜏 to 𝜏 ′ satisfies the FlowImp predicate.

Theorem 6.2. The AxSLSCExt proof rules for microinstructions are sound.

6.5 Model and Soundness of AxSLArm

The model for AxSL
SCExt

is almost parametric in the memory model, in the sense that it almost works directly for

AxSL
Arm

, a logic for TinyArm with relaxed Arm-A concurrency. We elaborate the two key changes we make to adapt

the AxSL
SCExt

model to Arm-A below. This demonstrates that the structure of the model can easily be adapted to

another axiomatic memory model in which the synchronisation order (ob) and its local fragment (lob) are specified.

6.5.1 Hoare Triples. As in the other two logics, we define our Hoare triple of AxSL
Arm

for a microinstruction program

using its weakest precondition wp
Arm

; and define the weakest precondition using a base weakest precondition wpb
Arm

for an ongoing local execution state.

The model of the base weakest precondition wpb
Arm

has the same overall structure as in AxSL
SCExt

, with a notable

difference: because it targets the relaxed memory model of Arm-A, resources can only flow along the ob ordering. To

enforce this, we make two changes in the definition of wpb
Arm

, as depicted in Fig. 43:

• In FlowImp, we now require the quantified progress set 𝑠pg to include only ob predecessors, so that one can only

flow resources from nodes ordered with respect to the current event.

6
Since 𝜏 is higher-order, the official definition actually includes a later modality on the right of the separation implication in the definition of Detach, but

we have omitted that from the presentation for simplicity.

Manuscript submitted to ACM

An Axiomatic Basis for Computer Programming on Relaxed Hardware Architectures: The AxSL Logics 41

• In Detach, we require the user-provided 𝜏in to mention only lob predecessors of 𝑒 , to further constrain the flow

of local resources.

wpb
Arm

tid,Φ 𝑠 {𝑄} ≜
(
𝑠 = Done 𝑇 ∧ ¤|⇛𝑄 (𝑇)

)
∨©­­­­­­«

𝑠 = Ctd 𝐶 ∧©­­­­«
∀𝜎.Valid(𝜎.X) −∗ (� SI (𝜎)) −∗ ∀𝑠′ . ⟨𝑠, 𝜎⟩ tid−−→

h
⟨𝑠′, 𝜎⟩ −∗

∀𝑒 = ⟨tid,𝐶.𝑇 .IT .cntr⟩, 𝜏 .
(
IsValidEid(𝑒,X) ∗ SIT (𝜏) ⇛

∃𝜏 ′ . SIT (𝜏 ′) ∗ FlowImp(𝜎.X ,Φ, 𝑒, 𝜏, 𝜏 ′) ∗ wpbArmtid,Φ 𝑠
′ {𝑄}

)
∨(¬IsValidEid(𝑒,X) ∗ wpbArmtid,Φ 𝑠

′ {𝑄})

ª®®®®¬
ª®®®®®®¬

FlowImp(𝑒,X ,Φ, 𝜏, 𝜏 ′) ≜∃𝜏in, 𝜏res, 𝑅.Detach(X , 𝑒, 𝜏, 𝜏in, 𝜏res) ∗ 𝜏 ′ = 𝜏res [𝑒 ↦→ 𝑅] ∗
∀𝑠pg ⊇ PredOf (X .ob, 𝑒) ∧ 𝑒 ∉ 𝑠pg .(∗(𝑒 ↦→𝑅in) ∈𝜏in 𝑅in

)
∗ SIP(Φ,X , 𝑠pg) ⇛ SIP(Φ,X , 𝑠pg ∪ {𝑒}) ∗ 𝑅

Detach(X , 𝑒, 𝜏, 𝜏in, 𝜏res) ≜dom(𝜏in) ⊆ PredOf (X .lob, 𝑒) ∗ ∀(𝑒 ↦→ 𝑅in) ∈ 𝜏in .
∃𝑅res = 𝜏res (𝑒), 𝑅 = 𝜏 (𝑒). 𝑅 −∗ (𝑅in ∗ 𝑅res)

Fig. 43. The model of base weakest precondition of AxSL
Arm

. The diff from AxSL
SCExt

(highlighted in orange) reflects the shift of the

synchronisation order from sc to ob.

6.5.2 Soundness of Proof Rules. With these minor modifications from AxSL
SCExt

, this model works for AxSL
Arm

, and

we can prove soundness of the proof rules for microinstructions:

Theorem 6.3. The AxSLArm proof rules for microinstructions are sound.

Proof sketch. The proof is the same as the one for AxSL
SCExt

, except that now we flow resources along lob/ob
instead of po/sc (which is possible thanks to the stratification implemented by the model, as we remarked in §6.4), and

we need to deal with the dependency edges of Arm-A. □

6.5.3 Supporting Framing and Invariants. In the same way that one is used to splitting resources in separation logic, one

would expect to be able to split𝑎 ↬ (𝑃∗𝑄) into (𝑎 ↬ 𝑃)∗(𝑎 ↬ 𝑄). Recall that it is useful for proving examples (see Fig. 8).

Modeling such splitting is, however, quite challenging due to its higher-order nature. (Interested readers may find our

complex implementation using a combination of various Iris CMRAs in Appendix C.2) We address this challenge by first

implementing splitting with the help of the interpretation SIT: 𝑒 ↬ (𝑃 ∗𝑄) −∗ (∀𝜏 . SIT (𝜏) ⇛ (SIT (𝜏) ∗𝑒 ↬ 𝑃 ∗𝑒 ↬ 𝑄))).
Here, the view shift allows us to update tied assertions and the interpretation without changing the value of the global

map 𝜏 . Then, the view shift structure is hidden by adapting the definition of the weakest precondition to close it under

this pattern.

Supporting invariants, on the other hand, only requires minor updates to the weakest precondition definition: we just

replace the plain view shift in FlowImp with a more expressive view shift (a combination of the ‘later’ modality and the

‘fancy update’ modality) that allows opening and closing of invariants, similar to [Jung et al. 2018]. Importantly, these

invariants do not enable resource transfer (which would be unsound), as they did in CSL for non-relaxed concurrency.

Instead, we mainly use them to construct persistent wrappers for non-persistent resources that we want to transfer via

AxSL
Arm

protocols, like escrows in GPS [Kaiser et al. 2017; Turon et al. 2014].

Manuscript submitted to ACM

42 Zongyuan Liu, Angus Hammond, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod

6.5.4 Supporting Exclusives. We use the escrow pattern to support transferring non-duplicable resources at a successful

read-modify-write of a given write, as outlined in §5.

Given a location 𝑥 on which to use read-modify-writes to transfer an exclusive resource 𝑃 , we put 𝑃 into the following

invariant, as part of the protocol of 𝑥 :

Φ(𝑥, _, 𝑒𝑤) ≜ 𝑃 ∨
(
∃𝑒𝑟 , 𝑒′𝑤 . 𝑒𝑤 ((rf; [𝑒𝑟]; rmw) & co) 𝑒′𝑤 ∗ ExTok(𝑒′𝑤)

)
∗ . . .

A store 𝑒𝑤 to this location merely needs to establish the invariant by sending 𝑃 away (to satisfy the left disjunct). A

load exclusive 𝑒𝑟 reading from 𝑒𝑤 can obtain the invariant, but cannot do anything more with it by itself. A po-later

successful store exclusive 𝑒′′𝑤 that pairs with 𝑒𝑟 is guaranteed to be the unique store exclusive paired with a load that

reads-from the same 𝑒𝑤 . This unicity implies that 𝑒′′𝑤 is the quantified 𝑒′𝑤 (by graph reasoning), which allows us to

open the invariant and refute the right disjunct: With the exclusive token ExTok(𝑒′𝑤) obtained from the rule(as rmw

is in ob), and the same token from the protocol, we conclude a contradiction. Therefore, a successful store exclusive

makes it possible to get 𝑃 from the left disjunct when opening the invariant.

We now describe the neededminor adaptions to the language semantics and the logic. (1)We add an extra bookkeeping

field srcsrmw (of type option(Eid)) to the thread state 𝑇 of the opax. This new field is to remember the candidate load

exclusive 𝑒 that the next store exclusive may pair with, which we track with a new bookkeeping assertion RmwPred(𝑒),
similar to how we track srcs

ctrl
with CtrlPreds. (2) We extend SIT with a new interpretation for the domain of the global

tied-to map 𝜏 , such that it, together with ExTok(𝑒), satisfy the following properties that guarantee the uniquness of a

token

SIT-extok-alloc

𝑒 ∉ dom(𝜏) 𝜏 ′ = 𝜏 [𝑒 ↦→ _]

SIT (𝜏) ⇛ SIT (𝜏 ′) ∗ ExTok(𝑒)
extok-excl

ExTok(𝑒) ∗ ExTok(𝑒) ⊢ ⊥

6.5.5 Pulling Out Tied Resources. In some situations, for example when considering the postcondition of a whole

program, knowing exactly which event which resource comes from is not helpful. Instead, one can use a ‘normal’ post-

condition by pulling out the tied resources from tied-to assertions (which means that we cannot reuse the specification

in the proof of a larger program anymore). This only requires a minor change to the semantics of wpb
Arm

: we replace

the ¤|⇛𝑄 in the case handling termination with PullOutTied(tid, 𝑄):

PullOutTied(tid, 𝑄) ≈ ∀𝜏 . SIT (𝜏) −∗
(
SIT (𝜏) ∗

(∗{𝑅 | (𝑒 ↦→𝑅) ∈𝜏∧tid=𝑒.tid} 𝑅 ⇛ 𝑄

))
PullOutTied requires us to establish the postcondition 𝑄 , assuming that the predicates pulled out from local tied

assertions hold. Technically, the definition of PullOutTied(tid, 𝑄) makes use of the agreement rule for a local event

𝑒 , which roughly says that SIT (𝜏) ∗ 𝑒 ↬ 𝑅 implies that 𝑒 ↦→ 𝑅 is in 𝜏 and thus that 𝑅 holds (this is an approximate

description, the formal details are a bit more subtle because of the higher-order nature of the 𝜏 map mentioned above) —

we have already seen an example of how this is used, namely in the final reasoning step (in each thread) in Fig. 25.

6.5.6 Stuckness and Infinite Executions. As described in §4.3.5, we assume non-stuckness in the model of our weakest

preconditions. We do not need to show that the program does not get stuck, since we only consider terminated opax

traces, as we will see in the adequacy statement in the next section.

Besides, because of the open problem with infinite executions in the memory model (discussed in §4.3.6), our

definitions of weakest preconditions does not take measures to handle infinite executions either.

Manuscript submitted to ACM

An Axiomatic Basis for Computer Programming on Relaxed Hardware Architectures: The AxSL Logics 43

7 ADEQUACY

The adequacy of Iris logics is usually expressed as a meta-level theorem. Generally speaking, this theorem about a

program logic (in our case, Iris) extracts, from a program specifications proven in the logic, a result in the meta logic in

which the program logic is implemented (in our case, this meta logic is Coq). This theorem shows that the program

logic is sound, in the sense that the properties of programs proved in the logic hold in the meta logic.

The crux of the adequacy proof is to compose thread-local reasoning results, specified as weakest preconditions. For

classic concurrent separation logics (including most Iris-based program logics using the standard weakest precondition

construction, including iGPS), the proof of adequacy works by induction on the program execution trace, as described

in the general recipe in §6.1. The adequacy proofs of AxSL
Arm

differs from — and, we argue, generalises — the general

recipe (basically, the general recipe is our approach, instantiated with the same order twice, see §7.2.4 for an example)

in two respects: our novel opax semantics, and the semantics model.

In this section, we first explain how to work with an opax semantics by showing the adequacy of AxSL
SC

. In this

adequacy proof, we need to handle the opax shape, and the rely-guarantee style resource transfer. Next, we show the

adequacy proof of AxSL
Arm

; we skip AxSL
SCExt

, since it has an almost identical semantic model, and thus proof, to

AxSL
Arm

. This proof significantly differs from the previous general recipe, due to the new semantic model that enforces

stratification (as described in §6.4.1). Because the stratification isolates the reasoning order (po) and the resource flowing

order (ob), we have to do two separate inductions on these two separate orders.

7.1 Adequacy of AxSLSC

The statement of adequacy of AxSL
SC

is as follows:

Theorem 7.1 (Adeqacy of AxSL
SC

). For any initial thread states ®𝐶 (each is a pair ⟨𝑝,𝑇 ⟩), meta-level propositions ®𝑃
(one for each thread), and valid execution graph X, we have(

1

∧𝑛
tid=1 Ctd

®𝐶 (tid) tid,X ,𝐼−−−−−→∗
h
Done _

)
⇒

2 ∃Φ. ⊢
(
3 InitRes(Φ) ∗ (4 � SI (⟨X , 𝐼 ⟩)) ∗

∗𝑛
tid=1

(
5 LSI(®𝐶 (𝑡𝑖𝑑).𝑇)tid ∗ 6 wp

S

tid,Φ
®𝐶 (tid).𝑝

{⌈
®𝑃 (tid)

⌉})) ⇒(
7

∧𝑛
tid=1

®𝑃 (tid)
)

Here, ®𝑇 is a sequence of initial thread states (one for each thread). The first hypothesis 1 ensures that the memory

graph X reflects the behaviours of a complete program by assuming terminating executions of all threads starting

from Ctd ®𝐶 . The second line assumes that we have proofs in AxSL
SC

of weakest preconditions (as 6), one for each

thread, using the same protocol Φ. This is where we require that the same protocol Φ is agreed upon between the

thread-local proofs of the weakest preconditions for each thread (as 2), as well as agreement about the execution

graph X and instruction memory 𝐼 via the state interpretation (4). In addition, we also require the allocation of initial

protocol resources 3 (for all initial writes). The weakest preconditions 6 are for microinstructions, which takes the

microinstruction program ®𝐶 (tid) .𝑝 . The post conditions are assumed to be the meta-level propositions ®𝑃 , lifted to

AxSL
SC

by ⌈_⌉. (This lifting is similar to what happens in other Iris-based program logics: it simply embeds a proposition

𝑃 from the meta-level as the corresponding proposition in AxSL
SC

.) Next to the weakest precondition of the thread, we

require the local state interpretation 5 for the initial thread state ®𝐶 (tid).𝑇 . From these, adequacy tells us that 7
®𝑃 hold

in the meta-logic as well.

Manuscript submitted to ACM

44 Zongyuan Liu, Angus Hammond, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod

𝑎

𝑏

𝑐

po

po

𝑑

𝑒

𝑓

po

po

{𝑎, 𝑏, 𝑑}

{𝑎, 𝑏, 𝑑, 𝑒}

{𝑎, 𝑏, 𝑑, 𝑒, 𝑐, 𝑓 }

{𝑎}

{𝑎, 𝑏}

{𝑎, 𝑏, 𝑑, 𝑒, 𝑐}

Fig. 44. An example program execution graph with two threads, above an SC memory model. Assuming sc edges from 𝑏 to 𝑑 , from 𝑒

to 𝑐 , and from 𝑐 to 𝑓 ,⇛ indicates the order we update SIP(Φ,X , 𝑠pg) , the interpretation of the progress set in the adequacy proof,

where the sets of nodes indicates the advance of the progress omitting initial nodes.

The value of the adequacy theorem is that it means that we do not need to trust or even understand the intricacies of

AxSL
SC

: once we have proved weakest preconditions for each thread using the AxSL
SC

proof rules, then the adequacy

theorem guarantees that the postconditions ®𝑃 do indeed hold at the meta-level (assuming each thread’s execution

terminates).

Proof Sketch. The overall proof strategy is that we first show ¤|⇛
⌈∧𝑛

tid=1
®𝑃 (tid)

⌉
, that is the goal lifted to AxSL

SC
,

and then show that all lifted meta level propositions (under certain Iris modalities) hold in the meta logic. We only look

at the first part, as the latter is exactly the soundness result of the Iris base logic.

The proof starts by allocating SIP(Φ,X , 𝑠pg), where 𝑠pg is the set of all initial (write) events, which means that we

have to establish the protocol resources on all initial nodes. This is derivable from InitRes(Φ) which essentially states

the same thing. Next, we can unfold the model of every wp. Given the local interpretation LSI, we obtain one wpb from

one wp. We then do induction on the sc order. The proof then proceeds in a way that closely follows the adequacy

proof of the general recipe, as illustrated in Fig. 44. That is, we follow the sc order, which is the order that the program

executes, to update logical resources using the view shift which we obtain by unfolding the model of wpb. One major

difference is that, unlike SI in the general recipe, the resource we update now is SIP. Respecting the sc order, we collect

events into 𝑠pg via the update, and at the same time ensure that the protocol Φ is maintained by all nodes. □

Crucially, the proof would not go through if we did induction on the program execution trace, which is what

the general recipe does. This is because traces of the opax semantics do not contain interleaving (they are merely

thread-local traces), but the resource transformation depends on interleaving. We therefore have to do induction on

a structure that contains the interleaving information, which is the sc relation of the execution graph. Technically,

the 𝑠pg ⊇ Pred(X .sc, 𝑒) condition in the model of wpb enforces that one can only perform the resource update for 𝑒

(making a progress) after all sc predecessors of 𝑒 have been handled.

7.2 Adequacy of AxSLSCExt and AxSLArm

We cover the adequacy of AxSL
SCExt

and AxSL
Arm

together, as the similarities between their semantic models mean

that their adequacy proofs also proceed similarly. We focus on the adequacy proof of AxSL
Arm

, and only describe its

difference to the one for AxSL
SCExt

at the end of this subsection.

The statement of adequacy for AxSL
Arm

is identical to Theorem 7.1, except for that we now additionally require an

SIT for an empty tied-to map in the second hypothesis, meaning that, at the beginning, no resources are associated with

Manuscript submitted to ACM

An Axiomatic Basis for Computer Programming on Relaxed Hardware Architectures: The AxSL Logics 45

𝑎

𝑏

po

𝑐

𝑑

po

{𝑏, 𝑐}

{𝑏, 𝑐, 𝑑}

{𝑎, 𝑏, 𝑐, 𝑑}

{𝑏}

Fig. 45. An example program execution graph with two threads, above Arm-A memory model. Assuming ob edges from 𝑏 to 𝑐 , from 𝑐

to 𝑑 , and from 𝑑 to 𝑎,⇛ indicates the order we update SIP(Φ,X , 𝑠pg) in the second phase of the adequacy proof, where the sets of

nodes indicate the advance of 𝑠pg .

any events. However, the proof of adequacy significantly diverges from that of Theorem 7.1, because of the stratification

enforced by the semantic model of AxSL
Arm

.

Theorem 7.2 (Adeqacy of AxSL
Arm

). For any initial thread states ®𝐶 , meta-level propositions ®𝑃 (one for each thread),

and valid execution graph X, we have(∧𝑛
tid=1 Ctd

®𝐶 (tid) tid,X ,𝐼−−−−−→∗
h
Done _

)
⇒

∃Φ. ⊢
(
InitRes(Φ) ∗ SIT (∅) ∗ (� SI (⟨X , 𝐼 ⟩)) ∗

∗𝑛
tid=1

(
LSI(®𝐶 (𝑡𝑖𝑑).𝑇) ∗ wpAtid,Φ Ctd ®𝐶 (tid).𝑝

{⌈
®𝑃 (tid)

⌉})) ⇒(∧𝑛
tid=1

®𝑃 (tid)
)

7.2.1 Overview of the Proof. Following the stratification of the semantics model, our novel adequacy proof is also

stratified into two phases. We now outline the two phases informally.

Phase one, informally. First, like in some previous logics based on axiomatic models, including RSL [Vafeiadis and

Narayan 2013] and GPS [Turon et al. 2014], we construct an annotated execution graph. This follows directly from the

fact that the opax semantics is essentially an operational wrapper on top of an axiomatic model. Then we construct an

annotation of the execution graph using flow implications from our weakest precondition. At each reduction step of

the semantics, the weakest precondition remembers a flow implication for each node in the graph, and ensures that all

these flow implications can be chained.

Thus, we can collect the needed flow implications at all nodes by unfolding the weakest preconditions of all threads

along program order, and then connect them together to obtain a full annotation. During the annotation construction,

our protocol plays a crucial role, since it specifies how resources flow across threads and is agreed upon between them,

guaranteeing that the flow implications of different threads are compatible.

Phase two, informally. Second, to get an Iris-style adequacy statement in which we show all pure postconditions

hold in the meta logic, we need to actually perform all the resource transformations (namely the flow implications)

of the annotated graph, starting from the initial resources. This step of our proof is novel, since usually the resource

transformations are simply performed on the fly in stronger settings, thanks to the acyclicity of po∪ rfe in these memory

models. In those settings, it is possible to update resources between program points according to the flow implications

(i.e. apply them to the resources) in po ∪ rfe during the unfolding, since this order includes the po order in which

weakest preconditions collect the flow implications.

On the other hand, when working with a relaxed model like that of Arm-A, the order that we rely on is ob, which

does not include po, and our tied-to assertions are employed to restrict po resource flow in AxSL
Arm

. However, we still

Manuscript submitted to ACM

46 Zongyuan Liu, Angus Hammond, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod

want syntax-oriented weakest preconditions which collect flow implications along po, as illustrated in Fig. 45. This

tension poses the main challenge to the proof of adequacy, since one cannot do induction on the potentially cyclic

po∪ ob. We resolve this tension by stratifying the usual proof procedure described in the general recipe into two phases:

phase one collects flow implications along po, and phase two applies them along ob. We argue that this stratification,

and the semantic model of AxSL
Arm

that enables it, are a generalisation of the usual Iris-based CSLs and their one-pass

adequacy proofs.

In the rest of the section, we explain our novel two-phase adequacy proof in more detail, and leave the discussion on

the relation to other adequacy proofs to related work (§9).

7.2.2 Phase One. The goal of phase one is to show the following lemma, from which we show the final adequacy

statement in phase two.

Lemma 7.3. For a valid execution graph X,

∃𝜖, 𝜏 . 1 SIT (𝜏) ∗ (2 dom(𝜏) = dom(𝜖) = AllNodes(X)) ∗

(3 ∀𝑒 ↦→𝑚 ∈ 𝜖. dom(𝑚) ⊆ PredOf (X .lob, e)) ∗

∀𝑒 ↦→ 𝑅 ∈ 𝜏 .

∀𝑠pg ⊇ PredOf (X .ob, 𝑒) ∧ 𝑒 ∉ 𝑠pg .
(
SIP(Φ,X , 𝑠pg) ∗ 4 ∗_↦→𝑅𝑖 ∈𝜖 [𝑒] 𝑅𝑖

)
⇛(

SIP(Φ,X , 𝑠pg ∪ {𝑒}) ∗ 5 ∗𝑒𝑜 ∈SuccOf (X .lob,e) 𝜖 [𝑒𝑜] [𝑒] ∗ 𝑅
)

Generally speaking, the lemma requires a well-formed annotation on every lob edge of the execution graph. The

edge annotation 𝜖 (of type Eid → Eid → iProp) records the history of how resources evolve and are transferred soundly

along lob in a complete program execution (e.g. 𝜖 [𝑒] [𝑒′] is the annotation of 𝑒′ lob 𝑒), as inspired by RSL/FSL. The first

line of the lemma also requires a tied-to map 𝜏 , and its logical interpretation 1 SIT (𝜏). This map is the final one after

checking all events, which records the resources that remain on the events after flowing all the resources. To enforce

that this map is indeed final, 2 requires that the domain of 𝜏 and 𝜖 is all the nodes of the execution graph X . In the next

line, we impose a well-formedness condition on 𝜖 : 3 says that, for all mappings of 𝑒 to𝑚 in 𝜖 ,𝑚 is a node-to-resource

map specifying the resources that flow to 𝑒 from its lob predecessors. The last three lines relate 𝜏 and 𝜖 : for all dangling

resources 𝑅 on node 𝑒 in 𝜏 , a variant of the view shift part of FlowImp holds for the protocol Φ, where 4 is the local

resources flowing into 𝑒 , and 5 is the resources flowing out from 𝑒 , both along lob.

Thanks to our definition of weakest precondition, the local edge annotations for an event, which is essentially a

resource transformer, can be easily derived from the corresponding tied-to map update specified by the flow implication:

we take 𝜏in as 𝜖 [𝑒] for every node 𝑒 . Furthermore, the fact that every such update follows the flow implication guarantees

that these local annotations can be composed both vertically (in po) and horizontally (between threads) to get a global

edge annotation, which is captured as the lemma above.

Proof Sketch. In each thread, vertical composition is done by induction on the thread’s trace to unfold the recur-

sively defined weakest precondition. This allows us to collect local annotations along po to obtain an annotation for the

thread. Next, the derived annotations are glued horizontally (between threads, by taking the union of the local ones) to

obtain a global annotation 𝜖 , which is possible since all resource exchange across threads (as annotated on obs) are

specified by the same rely-guarantee protocol Φ. □

Manuscript submitted to ACM

An Axiomatic Basis for Computer Programming on Relaxed Hardware Architectures: The AxSL Logics 47

7.2.3 Phase Two. Given the edge annotation 𝜖 from phase one, phase two stitches the flow implications together by

induction on ob, as illustrated in Fig. 45.

Proof Sketch. For the base case of the induction, we require the user to show that the resources specified by Φ for

the initial events of all memory locations can be established. The allocated resources are then used as the starting point

for the application of the flow implications along (an order extension of) ob. Finally, we combine the remaining tied-to

assertions at the end of the process to show the postconditions. □

7.2.4 Adequacy of AxSLSCExt. The adequacy proof of AxSL
SCExt

differs from that of AxSL
Arm

only in phase two: we

just need to make the induction of phase two follow sc instead of ob. This proof is effectively the proof of adequacy of

AxSL
SC

, but divided into two phases due to the stratification imposed by the model. Recall that in the AxSL
SC

proof,

we do induction on the sc relation to collect flow implications and apply them on-the-fly. Here in this proof, we collect

the flow implications in phase one along po and apply them in the sc order in phase two.

8 TECHNICAL REMARKS AND LIMITATIONS

8.1 Technical Improvements to the Original AxSLArm

Although the syntax of AxSL
Arm

in §5 is almost identical to the original AxSL
Arm

[Hammond et al. 2024], the model

presented in §6 is new, and factored cleanly around well-defined abstractions. This has two benefits: first, it makes the

proof of adequacy significantly simpler, and second, it allows us to apply the same recipe to different memory models,

which we illustrate using SC in AxSL
SCExt

.

Concretely, in the old model, we enforce the protocol on exactly the obs predecessors of the current node, which

causes two major inconveniences. First, in the proof of adequacy, we have to unfold the (old) FlowImp predicate, and

reason about the protocol resources tied to the obs predecessors of a node explicitly. For instance, we have to reason

about whether an obs predecessor of a node 𝑒 is also an obs predecessor of another node 𝑒′ (e.g., when two loads read

from the same write) in the phase two of the adequacy proof. This adds extra complexity to the proof.

Second, users of the logic can only send away persistent resources with the (old) proof rule for stores. This is because

we have to require the protocol resources to be persistent, ensuring that they remained unchanged after applying the

flow implication (so they can be transferred to other nodes) in the adequacy proof.

With the improved model of this paper, we use the progress set 𝑠pg to track the set of events on which we have

ensured that the protocol holds, and abstract the enforcement of the protocol on 𝑠pg with SIP. This abstraction avoids

unfolding the definition of SIP and reduces explicit resources reasoning.

8.2 Proof Effort for AxSLArm

Much of the effort was in the overall design of the logic to overcome the challenge to soundness posed by load buffering.

Shaping the idea to fit Iris, and detailing the model of assertions and the definition of weakest preconditions, took over

a person-year, but the result has been robust to small changes, for example to add exclusives. The adequacy theorem

has the most significant proof: it took two or three person-months to mechanise the original proof of the POPL 2024

paper after initial design work. Afterwards, the proof was simplified thanks to the improvement to the model described

in §8.1, which took around a week. Writing and proving an instruction proof rule takes about half a person-day now

that we have enough of them to flesh out a pattern. Finding an overall proof structure for a new shape of litmus test

Manuscript submitted to ACM

48 Zongyuan Liu, Angus Hammond, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod

takes a few person-days; in fact, it is very similar to what is needed for example in RSL. Adapting a proof from one

variant of a litmus test to another is just a few hours’ work, and less than a hundred lines of Coq.

Overall, the mechanisation for AxSL
Arm

is divided as follows:

Item LoC
Prelude (incl. outcome interface and infrastructure) ∼4800
Language definition and lemmas ∼1100
Axiomatic model and lemmas ∼3000
Iris CMRAs ∼900
WPs and assertions ∼3700
Proof rules and their soundness proofs ∼2700
Adequacy ∼1100
Examples ∼3300

The purpose of this table is to give readers an impression on the scale of the mechanisation. The numbers in this

tabular are not intended for direct numerical comparison with the numbers reported in the POPL 2024 paper [Hammond

et al. 2024], since the mechanisation has experienced refactoring and is therefore more flexible than before.

8.3 Coherence

The memory model of Arm-A involves two main axioms: external, which requires ordered-before to be acyclic, and

internal, which requires po-loc|ca|rf to be acyclic, which effectively enforces per-location sequential consistency

(the atomicity axiom is much more ‘local’ and easier to use, as per §5.7). This latter order is sometimes also called

coherence, or (to avoid confusion with the coherence relation, co, which is merely part of it) extended coherence.

The way AxSL
Arm

is defined in Iris above the opax semantics using the memory model of Fig. 4 means that it captures

both axioms. However, the design of the logic focuses on the external axiom, and leverages the acyclicity of ob to allow

sound transfer of resources along ob. This means that AxSL
Arm

cannot soundly allow transfer resources along the

potentially cyclic combination of ob and extended coherence, as the phase two induction proof of the adequacy needs

an acyclic order. It is always possible to reason about extended coherence by brute force in AxSL
Arm

, by explicit graph

reasoning (as in §5.5), but this is unsatisfactory. This is a definite limitation of AxSL
Arm

, as many common programming

and reasoning idioms rely on reasoning about coherence, in particular full GPS protocols and the notion of non-atomics.

9 RELATEDWORK

There is extensive work on verification of relaxed memory models. Here wemainly discuss the line of work on separation

logics starting from RSL, and only mention some other work that is closely related.

Overview. RSL [Vafeiadis and Narayan 2013], GPS [Turon et al. 2014]/GPS+ [He et al. 2016], and FSL [Doko and

Vafeiadis 2016]/FSL++ [Doko 2021; Doko and Vafeiadis 2017] are defined with respect to an axiomatic memory model,

namely that of C11/RC11, and their proofs of soundness are built from the ground up using non-standard models of

separation logic, which (as described by Kaiser et al. [Kaiser et al. 2017, §1.2]) requires significant effort. Later logics like

iGPS [Kaiser et al. 2017], Cosmos [Mével et al. 2020], and iRC11 [Dang et al. 2020], rely on (re)formulating the target

relaxed memory model as an operational model to obtain an Iris-based logic with advanced features like higher-order

ghost states ‘for free’.

Manuscript submitted to ACM

An Axiomatic Basis for Computer Programming on Relaxed Hardware Architectures: The AxSL Logics 49

Very relaxed hardware memory models. The proofs of adequacy of RSL and FSL are somewhat similar to ours, also

being based on chaining flow implications along a global acyclic synchronisation relation, C11’s happens-before (hb).

However, the memory model of C11 is substantially different from that of Arm, and in particular, despite a similar role,

hb is substantially different from ob: it is defined as hb ≜ (sb ∪ sw)+, where sb is C11’s counterpart to po, and sw is

C11’s loose counterpart to obs. This allows them to freely persist resources along program order, and so their flow

implications refer to immediate program order successors and predecessors of instructions, which means that they

have their postcondition immediately in hand, and do not need to collect tied resources. It also means that, unlike ours,

their proof of adequacy can be along program order.

FSL [Doko and Vafeiadis 2016] extends RSL to make it possible to transfer resources using C11 ‘relaxed’ access

that are suitably fenced by guarding resources with modalities: a relaxed load, which imposes little order by itself,

merely obtains ∇𝑃 , which is not usable by itself, but which an acquire fence turns into 𝑃 . Symmetrically, 𝑃 itself cannot

be sent away by a mere relaxed store, but a release fence turns 𝑃 into Δ𝑃 , which a relaxed store can send away. Our

𝑎 ↬ 𝑃 assertion can be seen as an indexed version of ∇𝑃 , keeping track of the source of the assertion in a way that is

compatible with ghost state, even with cycles in po ∪ rf.

FSL++ [Doko 2021; Doko and Vafeiadis 2017] extends FSL with a form of ghost state (albeit one not as expressive as

that of Iris), but this makes it unsound for memory models that exhibit load buffering, and so FSL++ targets RC11 [Lahav

et al. 2017], a significant strengthening of C11 that requires that po ∪ rf is acyclic.

In a sense, FSL and FSL++ both allow reasoning along po, but put some guards to limit transfer of physical resources.

For FSL, which has no other resources, this limits its expressivity but poses no soundness problem. For FSL++, this

imposes strong requirements on the underlying memory model.

Our flow implications are inspired by those of RSL and FSL. However, thanks to the phrasing of the memory model

of Arm-A, we give a single, generic definition, instead of one based on case analysis of instructions. In addition, the

pervasive effect of undefined behaviour (stemming from data races on non-atomics and uninitialised reads) in C11

substantially complicates the definition of flow implications of RSL and FSL.

Very relaxed programming language models. SLR [Svendsen et al. 2018] targets the Promising Semantics [Kang et al.

2017] designed to fix the out-of-thin-air problem of C11. SLR takes advantage of the extra strength to enable coherence

(sc-per-location) reasoning on relaxed accesses, but does not allow resource transfer using relaxed accesses. SLR features

an assertion to keep track of writes that is somewhat similar to our NoLocalWrites and LastLocalWrite assertions:

𝑊 𝜋 (𝑥,𝑋) imposes a lower bound 𝑋 on the set of writes done so far to location 𝑥 ; however, they use it for coherence

reasoning, rather than to bound internal reads.

Less relaxed memory models. GPS [Turon et al. 2014] targets the subset of C11 featuring release stores, acquire loads,

and non-atomic accesses (on which data races are undefined behaviour). GPS features ghost state (which is sound

because po ∪ rf is acyclic), per-location protocols (carrying state transition system tokens), and escrows. Kaiser et

al. [Kaiser et al. 2017] describe how the protocols and escrows of GPS can be defined in terms of simpler components

(like invariants) in Iris, and this is part of our motivation for using Iris.

To enrich GPS with the expressive power of Iris ‘for free’, iGPS [Kaiser et al. 2017] is based on an operational

reformulation of release-acquire. One of our contributions is to show how to reason about an axiomatic memory model

directly in Iris, avoiding this operational reformulation. iRC11 [Dang et al. 2020] combines iGPS with FSL++. It targets

ORC11, an operational reformulation of a fragment of RC11.

Manuscript submitted to ACM

50 Zongyuan Liu, Angus Hammond, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod

Compass [Dang et al. 2022] is a specification framework for the ORC11 memory model that gives programs specifi-

cations in terms of event graphs the inter-thread edges of which are induced by data structure operations, for example

from an enqueue to the dequeue of the same value, which generalises rf.

Cosmo [Mével et al. 2020] is a logic for the multicore OCaml memory model. The OCaml memory model is stronger

and simpler than that of C11 in many respects which Cosmo leverages extensively to derive simple but powerful

reasoning rules. Following iGPS, Cosmo is an instantiation of the standard Iris framework with an operational semantics,

following the general recipe, and has a layered design featuring a base logic exposing memory model details and a

high-level logic with almost standard CSL proof rules.

Very strong models. For other stronger models like TSO that have a simple operational model, working that close

to the axiomatic model is probably more a burden, although possible. Significantly different abstractions would need

to be built on top to capture this strength so that the logic is usable [Jacobs 2014; Ridge 2010; Sieczkowski et al. 2015;

Wehrman 2012; Wehrman and Berdine 2011; Zhang and Feng 2014].

Per-location protocols. As the name suggests, a per-location protocol in GPS and iGPS [Kaiser et al. 2017; Turon et al.

2014] is a logical assertion dedicated to resource transfer between memory operations of a location, in contrast to

invariants, which are implicitly shared among all locations. Per-location protocols make it possible to bind the physical

value of a location to an abstract state of a state transition system (STS), and ensures that the evolution of the value

is consistent with the transitions of the STS. This abstraction usually enables more high-level proofs (compared to

their counterparts in AxSL), and can be implemented using basic Iris building blocks (invariants and ghost states),

as in iGPS. The idea is based on the memory model assumption that the accesses to individual locations have SC

behaviours (SC-per-location is also known coherence) which is often phrased in axiomatic memory models as an

acyclicity requirement on the (extended) coherence order, eco (e.g. the Internal visibility requirement of Arm-A in

Fig. 4). Intuitively, given a pre-agreed STS, the axiom prevents reading from an old state and forces to make a valid and

consistent transition when writing. In the fragments of C11 that GPS and iGPS are based on, the synchronisation order

po ∪ rf is included in eco, and so threads can exchange resources describing the abstract states of the same location

along the eco edges by rely-guarantee reasoning.

As noted in §5.1, our AxSL protocol Φ is heavily inspired by GPS, but tailored to only support relatively simple

resource transfer, due to the limited support for the coherence reasoning described in §8.3. Concretely, our logic is

parametric by a concrete stateless protocol whose implementation does not rely on the coherence axiom. We leave

implementing full stateful protocols in AxSL as future work, since enabling meaningful proof rules with stateful

protocols requires a non-trivial extension to AxSL that solves more challenging circularity issues. Fundamentally, such

an extended logic would need to support flowing resources not only along the coherence order and the synchronisation

order respectively, but also between the two orders — even though the union of these two orders is potentially cyclic,

as in Arm-A.

Dealing with backtracking. The trick we use to express an axiomatic memory model as an operational semantics of

the shape that Iris expects is inspired by how Islaris treats its event-enriched SMT language [Sammler et al. 2022]. A

(declare-const 𝑥); 𝑠 program can take a step to 𝑠 [𝑥 ↦→ 𝑣] for any value 𝑣 , and an (assert 𝑒); 𝑠 program can take a step in

one of two ways: if 𝑒 evaluates to true, the program takes a step to 𝑠; and if 𝑒 evaluates to false, the assert steps to the

‘execution discarded’ state. The definition of postcondition in Islaris then ignores discarded states.

Manuscript submitted to ACM

An Axiomatic Basis for Computer Programming on Relaxed Hardware Architectures: The AxSL Logics 51

Tracking ordering and flowing. The Lace logic [Bornat et al. 2015] shares the same core idea of explicitly tracking

ordering between memory events (which they call ‘laces’), and of flowing assertions along edges (which they call

‘embroidery’) of an axiomatic memory model. Their setup looks quite different on the surface, as their approach to

ordering is top-down (in the style of Crary and Sullivan [Crary and Sullivan 2015]), stating which instructions they

require ordering from, rather than our bottom-up approach, in which we infer order from the instructions of the

program. The main difference is that they try to talk about variables (memory locations), and so, to soundly flow

assertions along edges, they need to check for interference on said variables, which is a whole-program check. In

addition, they leave supporting separation as future work, and thus feature no notion of transfer of resources. However,

Lace features modalities to ease reasoning about coherence, whereas it has to be done by graph reasoning in our logic.

Lace was implemented using a custom proof checker, with no proof of its soundness.

Tracking memory events. The Ogre and Pythia invariance proof method [Alglave and Cousot 2017] refines Owicki-

Gries without auxiliary variables (which are unsound for relaxed memory [Lahav and Vafeiadis 2015]) by working with

memory events (via program counters), and their “pythia” variables keep track of the values of reads. Their method is

parameterised by an axiomatic memory model expressed by relational algebra in the .cat format [Alglave et al. 2014].

They show that their proof method is sound and relatively complete, but their invariants are whole-program, and they

leave development of abstractions that make proofs tractable as future work.

Tied-tos and flow implications. We conjecture that the unpublished extension of ribbon proofs to relaxed memory

mentioned in [Wickerson et al. 2013] would have had some similarities to our setup, with unclosed ribbons standing for

tied assertions, and flow implications imposing conditions on when ribbons can be joined.

10 CONCLUSION

The very relaxed concurrency memory models of hardware architectures like Arm-A, in which synchronisation (ob for

Arm-A) does not follow program order, make syntax-directed and thread-modular reasoning challenging. The need to

program directly to the hardware architecture for performance and for access to systems features makes this challenge

unavoidable. Our family of logics, AxSL, addresses this challenge through assertions that track how synchronisation is

induced by the program text, and makes reasoning tractable by flowing higher-order ghost state along synchronisation.

This allows us to capture and thus validate key synchronisation idioms. Moreover, as demonstrated by our instantiation

of AxSL to different memory models, our approach relies essentially just on the acyclicity of the synchronisation order,

and should therefore apply to many hardware architectures.

This opens up a potential approach for reasoning about a wide range of axiomatic models, and there are many

important extensions to explore, e.g. to integrate with the full Arm-A or RISC-V ISAs, to cover mixed-size accesses, and

to cover systems features including instruction-fetch and virtual memory. An important challenge is to tackle reasoning

involving not only synchronisation but also coherence, in particular as leveraged by non-atomics, even though the

union of synchronisation and coherence can have cycles.

Manuscript submitted to ACM

52 Zongyuan Liu, Angus Hammond, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod

A FURTHER PROOF RULES

A.1 MemWrite Rule

ht-micro-memwrite
1 (LastLocalWrite(x, 𝑣

last
) ∨ NoLocalWrites(x)) ∗ 𝑑 = (dom(regs), ∅) ∗

PoPred(𝑒po) ∗ CtrlPreds(srcsctrl) ∗∗(𝑟 ↦→(𝑣,𝐸)) ∈regs 𝑟
r↦→ 𝑣@𝐸 ∗ ∗(𝑒lob ↦→𝑃lob) ∈𝑚 (𝑒

lob
↬ 𝑃

lob
) ∗

∀𝑒.
(

2 GraphFacts
′ (os, vr, x, 𝑣, 𝑒, 𝑒po, srcsctrl, 𝑑, regs) −∗(

Lob(dom(𝑚), 𝑒) ∗ 3 Flow
′
Φ (𝑒, x, 𝑣,𝑚, 𝑃)

))


MemWrite os vr x 𝑣 𝑑(), 𝐷.
∃𝑒. 𝐷 = {𝑒} ∗ 4 LastLocalWrite(x, 𝑣) ∗ PoPred(𝑒) ∗ CtrlPreds(srcs

ctrl
) ∗

5 ∗(𝑟 ↦→(𝑣,𝐸)) ∈regs 𝑟
r↦→ 𝑣@𝐸 ∗ 6 GraphFacts

′ (os, vr, x, 𝑣, 𝑒, 𝑒po, srcsctrl, 𝑑, regs)∗
7 𝑒 ↬ 𝑃 (x, 𝑣)

tid,Φ
Fig. 46. A proof rule of AxSL

Arm
for the MemWrite microinstruction. As for the MemRead rule in Fig. 22 the user provides𝑚, a

thread-local map from events to the resources consumed.

Perhaps surprisingly, the basic rule for MemWrite is extremely similar to that for MemRead given in Fig. 22, so we

only highlight the key differences here. Unlike the read rule, the write rule is not affected by the presence of previous

local writes, and so can take either a NoLocalWrites or a LastLocalWrite resource in 1 . Because a new local write is

produced, whichever resource is passed in 1 , a LastLocalWrite carrying the new event is returned 4 . The definition

of GraphFacts
′
at 2 and 6 differs from the version used in Fig. 22 because write events induce a different collection

of incoming edges, most importantly lacking an incoming rf edge. Similarly the definition of Flow
′

3 is changed

from showing the incoming tied resources and protocol imply the new tied resource to showing the incoming tied

resources imply the new tied resource and the outgoing protocol. Finally we note that the produced tied resource 7 is

parameterised only on the value written and the identifier of the new node, not on the identifier of some write event

being read from.

A.2 MemRead Rule with Local Writes

ht-micro-memread-rdep-ext-local
1 LastLocalWrite(x, 𝑣 ′) ∗ 𝑑 = (dom(regs), ∅) ∗
PoPred(𝑒po) ∗ CtrlPreds(srcsctrl) ∗∗(𝑟 ↦→(𝑣,𝐸)) ∈regs 𝑟

r↦→ 𝑣@𝐸 ∗ ∗(𝑒lob ↦→𝑃lob) ∈𝑚 (𝑒 ↬ 𝑃
lob

) ∗

∀𝑒, 𝑣, 𝑒𝑤 .
(
GraphFacts(𝑒, os, vr, x, 𝑣, 𝑒𝑤 , 𝑒po, srcsctrl, 𝑑, regs) −∗
(Lob(dom(𝑚), 𝑒) ∗ FlowΦ (𝑒, x, 𝑣, 𝑒𝑤 ,𝑚, 𝑃))

)


MemRead os vr x 𝑑(𝑣, 𝐷) .
∃𝑒, 𝑒𝑤 . 𝐷 = {𝑒} ∗ 2 LastLocalWrite(x, 𝑣 ′) ∗ PoPred(𝑒) ∗ CtrlPreds(srcs

ctrl
) ∗

GraphFacts(𝑒, os, vr, x, 𝑣, 𝑒𝑤 , 𝑒po, srcsctrl, 𝑑, regs) ∗ ∗(𝑟 ↦→(𝑣,𝐸)) ∈regs 𝑟
r↦→ 𝑣@𝐸 ∗

3 ((𝑒 ↬ 𝑃 (x, 𝑣, 𝑒𝑤)) ∨ 𝑣 = 𝑣 ′)

tid,Φ
Fig. 47. A proof rule of AxSL

Arm
for the MemRead microinstruction, similar to that shown in Fig. 22, but specialised to handle the

case where the current thread contains a previous local write to the address being read from.

Manuscript submitted to ACM

An Axiomatic Basis for Computer Programming on Relaxed Hardware Architectures: The AxSL Logics 53

Fig. 47 shows a variant of the MemRead rule in Fig. 22 which allows for a previous local write to the address being

read from. The prerequisites of the rule differ only in that it requires LastLocalWrite 1 instead of NoLocalWrites,

which is still returned unchanged 2 . The conclusion becomes a disjunction 3 , if an external write is read from then

the rule produces the expected tied resource. However if the local write is read from no resource transfer takes place,

because thread local reads do not provide ob ordering, so we learn only that the value read is equal to the value written

in the most recent local write. While this does not provide as powerful a mechanism for resource transfer as might be

desired, we do expect it to allow some reasoning since in synchronisation primitives it will generally be necessary for

an external thread to write distinct values to those written by the local thread.

B RECOVERING POINTS-TOS IN AXSLSC

In this section, we discuss the connection between the graph reasoning of opax-based logics and the heap reasoning of

standard CSLs. Concretely, we show formally that we can build a notion of points-tos with abstractions in AxSL
SC

.

Standard CSL points-tos. We first recap the points-to assertion and two standard proof rules using it in CSL. A usual

CSL points-to assertion 𝑥 ↩→ 𝑣 means that the latest value of location 𝑥 is 𝑣 on the shared heap. Owning this assertion

grants one the exclusive right to access 𝑥 with the two standard rules in Appendix B. Our goal is to obtain a definition

of points-to that satisfies the same rules in AxSL
SC

.

Std-ht-micro-memread

{𝑥 ↩→ 𝑣}MemRead x {𝑤.𝑤 = 𝑣 ∗ 𝑥 ↩→ 𝑣}tid,Φ
Std-ht-micro-memwrite

{𝑥 ↩→ 𝑣}MemWrite x 𝑣 ′
{
_. 𝑥 ↩→ 𝑣 ′

}
tid,Φ

Fig. 48. Standard CSL read and write rules with points-tos (if we omit the protocol Φ). We reformulate them with the microinstruction

language and assume a fixed number of hardware threads.

B.0.1 Raw Definition. In AxSL
SC

, we model 𝑥 ↩→ 𝑣 by leveraging the fact that all observed writes on location 𝑥 are

ordered by co, forming a sequence of write events, and that one can only read from the latest write (head) of the

sequence with value 𝑣 : reading from outdated writes would violate the acyclicity requirement. We define a raw points-to

to capture these observations:

𝑥 ↩→raw 𝑣@𝑒lst ≜ ∃𝛾𝑥 . ◦ [𝑥 ↦→ 𝛾𝑥]
𝛾 ∗ ∃ch. • (𝑒lst :: ch)

𝛾𝑥 ∗ IsLastWrite(𝑒lst , ch) ∗ 𝑒lst :W 𝑥 𝑣

This raw definition asserts that the globally co-latest write of 𝑥 has event ID 𝑒lst and value 𝑣 . We use two ghost states in

the definition to capture this. ◦ [𝑥 ↦→ 𝛾𝑥]
𝛾
is a persistent fact binding location 𝑥 to an unique ghost name 𝛾𝑥 . 𝛾𝑥 is the

ghost name of a list of event IDs • (𝑒lst :: 𝑐ℎ)
𝛾𝑥

which models the sequence of writes of 𝑥 (the head is the lastest). This

ghost list ensures that updates of the sequence of the writes are monotone (list only grows), and one can at anytime

take (persistent) snapshots of the list: ◦ 𝑐ℎ′ 𝛾𝑥
such that 𝑐ℎ′ is a sub-list. The IsLastWrite predicate establishes that 𝑒lst

is indeed the co-latest write in the list with graph facts, and finally, 𝑒lst :W 𝑥 𝑣 remembers the value 𝑣 .

Leveraging protocol. To ensure that the sequence of writes is well-synchronised with the program execution, that is,

all writes one has reasoned about were added to the sequence, and, dually, reads can only read from the writes in the

sequence, we use our rely-guarantee protocol Φ. As a first step, we fix the protocol using a new predicateWriteOf (𝑥, 𝑒)
as Φ(𝑥, 𝑣, 𝑒) ≜ WriteOf (𝑥, 𝑒) (this can be further generalised, but we keep it simple for now):

WriteOf (𝑥, 𝑒) ≜ ∃𝛾𝑥 . ◦ [𝑥 ↦→ 𝛾𝑥]
𝛾 ∗ ∃ch. ◦ (𝑒 :: ch) 𝛾𝑥 ∗ 𝑒:W 𝑥 𝑣

Manuscript submitted to ACM

54 Zongyuan Liu, Angus Hammond, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod

The new predicate asserts that 𝑒 is an observed write event of 𝑥 , and thus is included in the write sequence, depicted as

SC-pt-raw-ag. As we will see below, this is crucial for concluding that only the latest write is readable, mimicking the

semantics of points-tos.

SC-pt-raw-ag

𝑥 ↩→raw 𝑣@𝑒 ∗WriteOf (𝑥, 𝑒′)
𝑒′ co∗ 𝑒

SC-pt-raw-sht

𝑥 ↩→raw 𝑣@𝑒 ⇛ WriteOf (𝑥, 𝑒)

SC-pt-raw-upd

𝑒 co 𝑒′ ∗ 𝑒′:W 𝑥 𝑣 ′

𝑥 ↩→raw 𝑣@𝑒 ⇛ 𝑥 ↩→raw 𝑣 ′@𝑒′

SC-pt-wo-pers

WriteOf (𝑥, 𝑒)
WriteOf (𝑥, 𝑒) ∗WriteOf (𝑥, 𝑒)

Fig. 49. Selected operations of the raw points-to and WriteOf

B.0.2 Full Definition. The full points-to assertion is modeled as a monotone predicate over the po-latest event 𝑒 of a

thread, using the raw definition:

J𝑥 ↩→ 𝑣K ≜ 𝜆𝑒. ∃𝑒lst . 𝑥 ↩→raw 𝑣@𝑒lst ∗ 𝑒lst ≤sc 𝑒

where the notation 𝑒 ≤R 𝑒′ means that either the two events are identical, or 𝑒 is R-ordered before 𝑒′ (in contrast, ≥
means identical or after). We instantiate this relation to sc, requiring that the latest write 𝑒lst happens before 𝑒 . We also

need to monotonise all other assertions of the base AxSL
SC

logic. Most of them are standard, for instance below is how

we monotonise the weakest precondition.

J{𝑃}𝑖 {𝑤.𝑄 (𝑤)}tid,ΦK ≜

𝜆𝑒.∀𝑒′ ≥po 𝑒.
{
J𝑃K(𝑒′) ∗ PoPred(𝑒′)

}
𝑖
{
𝑣 . ∃𝑒′′ ≥po 𝑒

′ . J𝑄 (𝑣)K(𝑒′′) ∗ PoPred(𝑒′′)
}
tid,Φ

B.0.3 Proving Standard CSL Rules. We now sketch the soundness proof of the two classic CSL rules in AxSL
SC

. The

proof starts with unfolding all the monotone predicates then proceeds using AxSL
SC

proof rules.

Store. For Std-ht-micro-memwrite, after unfolding, we need to show:{
PoPred(𝑒) ∗ ∃𝑒lst . 𝑥 ↩→raw 𝑣@𝑒lst ∗ 𝑒lst ≤sc 𝑒

}
MemWrite 𝑥 𝑣 ′{
(). ∃𝑒′ ≥po 𝑒. PoPred(𝑒′) ∗ ∃𝑒lst . 𝑥 ↩→raw 𝑣 ′@𝑒lst ∗ 𝑒lst ≤sc 𝑒

′
}
tid,Φ

We proceed with the base rule SC-ht-micro-memwrite, picking 𝑒 as 𝑒po. We have the following view shift as a sub-goal,

which guarantees that the protocol is enforced on the new write (namely the new write is added to the sequence as the

latest):

∀𝑒𝑤 .
(
GraphFactsW(𝑒𝑤 , x, 𝑣 ′, 𝑒) ∗ ∃𝑒lst . 𝑥 ↩→raw 𝑣@𝑒lst ∗ 𝑒lst ≤sc 𝑒

)
⇛ (WriteOf (𝑥, 𝑒𝑤)) ∗ ∃𝑒lst . 𝑥 ↩→raw 𝑣 ′@𝑒lst ∗ 𝑒lst ≤sc 𝑒𝑤

We update the raw points-to assertion to 𝑥 ↩→raw 𝑣 ′@𝑒𝑤 by SC-pt-raw-upd and then take a snapshot with SC-pt-raw-sht.

The remaining goal 𝑒𝑤 ≤sc 𝑒𝑤 is trivial. Finally, we conclude the proof with the rule of consequence.

Manuscript submitted to ACM

An Axiomatic Basis for Computer Programming on Relaxed Hardware Architectures: The AxSL Logics 55

Load. In the case of Std-ht-micro-memread, we need to show:{
PoPred(𝑒) ∗ ∃𝑒lst . 𝑥 ↩→raw 𝑣@𝑒lst ∗ 𝑒lst ≤sc 𝑒

}
MemRead 𝑥{
𝑤. ∃𝑒′ ≥po 𝑒. 𝑤 = 𝑣 ∗ PoPred(𝑒′) ∗ ∃𝑒lst . 𝑥 ↩→raw 𝑣@𝑒lst ∗ 𝑒lst ≤sc 𝑒

′
}
tid,Φ

We proceed by applying SC-ht-micro-memread. We need to prove the following view shift which captures that we are

reading from a write that is in the sequence:

∀𝑒𝑟 ,𝑤, 𝑒𝑤 . (GraphFactsR(𝑒𝑟 , x, 𝑣, 𝑒𝑤 , 𝑒) ∗ ∃𝑒lst . 𝑥 ↩→raw 𝑣@𝑒lst ∗ 𝑒lst ≤sc 𝑒 ∗WriteOf (𝑥, 𝑒𝑤))

⇛ 𝑤 = 𝑣 ∗ ∃𝑒lst . 𝑥 ↩→raw 𝑣@𝑒lst ∗ 𝑒lst ≤sc 𝑒𝑟 ∗WriteOf (𝑥, 𝑒𝑤)

By SC-pt-raw-ag, we know 𝑒𝑤 ≤co 𝑒lst , namely the write 𝑒𝑤 that we are reading from is one of the observed writes.

We show 𝑤 = 𝑣 by showing 𝑒𝑤 = 𝑒lst , that is, we can only read from the latest write. This is done by showing a

violation of the acyclicity of sc in the other case when reading from an old write (𝑒𝑤 co 𝑒lst). The problematic cycle is

𝑒lst sc 𝑒 po 𝑒𝑟 fr 𝑒lst where 𝑒𝑟 fr 𝑒lst is induced from 𝑒𝑤 rf 𝑒𝑟 and 𝑒𝑤 co 𝑒lst . Again, we conclude the proof with the rule

of consequence.

C AN IMPLEMENTATION OF LOGICAL INTERPRETATIONS AND ASSERTIONS FOR AXSLArm

This section requires knowledge on the built-in CMRA constructors of Iris
7
.

C.1 Reserved Ghost Names

We have a collection of reserved ghost names that assert ownership of various ghost resources, which are used to

implement state interpretations and assertions of AxSL
Arm

. We list their notations and usages in Fig. 50.

Notation Global Notation Local

𝛾𝐺 Graph facts 𝛾𝑅 Register points-tos

𝛾𝐼 Instruction points-tos 𝛾𝐿 Local writes

𝛾T Tied-tos 𝛾𝑃 po predecessors

𝛾𝐸 Exclusive tokens 𝛾𝐶 ctrl predecessors

𝛾𝑀 rmw predecessors

Fig. 50. Each thread has its own set of local ghost names.

C.2 Global Assertions, SI, and SIT

Persistent facts. The Ag constructor of Iris is used to implement graph and instruction memory. The ghost resources

and state interpretation SI using it are therefore persistent.

7
There is not a comprehensive documentation for all the constructors, we therefore refer readers to the Iris Coq repository for details: https://gitlab.mpi-

sws.org/iris/iris/-/tree/master/iris/algebra.

Manuscript submitted to ACM

https://gitlab.mpi-sws.org/iris/iris/-/tree/master/iris/algebra
https://gitlab.mpi-sws.org/iris/iris/-/tree/master/iris/algebra

56 Zongyuan Liu, Angus Hammond, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod

SI (𝜎) ≜ ag(𝜎.X) : Ag(Graph) 𝛾𝐺 ∗ ag(𝜎.𝐼) : Ag(InstMem) 𝛾𝐼

𝑎 R 𝑏 ≜ ∃X . ag(X) : Ag(Graph) 𝛾𝐺 ∗ (𝑎, 𝑏) ∈ X .R (R is a relation)

𝑎:E ≜ ∃X . ag(X) : Ag(Graph) 𝛾𝐺 ∗ X (𝑎) = E (E is an event)

𝑎 i↦→ 𝑖 ≜ ∃𝐼 . ag(𝐼) : Ag(InstMem) 𝛾𝐼 ∗ 𝐼 (𝑎) = 𝑖

Tied-to. We interpret the tied-to map 𝜏 (of type Eid → iProp) with two levels of indirection. First, instead of

constructing a complex CMRA that directly takes the map, we use a simpler CMRA GhostMapAg for a map 𝑒𝑚 that only

goes to GName from Eid, where GName is used to manage more ghost states using simpler CMRAs. GhostMapAg is a

standard authoritative ghost map CMRA constructor except for being insert-only (the fragmental views are persistent).

Second, for every 𝑒 : Eid, the corresponding ghost name 𝛾 = 𝑒𝑚(𝑒) is used to track another map 𝛾𝑚 from GName

to iProp. This map allows us to track fractions of the proposition that tied to 𝑒 , which is crucial for splitting tied-to

assertions. We use SetDisjAuth and SavedProp of Iris for this map. SetDisjAuth is an authoritative ghost set (with disjoint

union) CMRA constructor that we use to track a collection of ghost names, each of which owns a fraction of the tied

proposition of a node using the SavedProp CMRA.

SIT (𝜏) ≜ ∃𝑒𝑚 : Eid → GName. •𝑒𝑚 : GhostMapAg(Eid,GName) 𝛾T ∗ dom(𝑒𝑚) = 𝜏 ∗

∗(𝑒 ↦→𝛾) ∈𝑒𝑚
(
∃𝛾𝑚 : GName → iProp. •dom(𝛾𝑚) : SetDisjAuth(Eid) 𝛾 ∗

∗(𝛾 ′ ↦→𝑅) ∈𝛾𝑚 sp(1/2, 𝑅) : SavedProp 𝛾 ′
∗ ⊲�(𝜏 (𝑒) −∗ ∗(_ ↦→𝑅) ∈𝛾𝑚 𝑅)

)
𝑎 ↬ 𝑃 ≜ ∃𝛾,𝛾 ′ . ◦𝑒 ↦→ 𝛾 : GhostMapAg(Eid,GName) 𝛾T ∗ ◦{𝛾 ′} : SetDisjAuth(Eid) 𝛾 ∗

sp(1/2, 𝑃) : SavedProp 𝛾 ′

Token for exclusives. We extend SIT with •(dom(𝜏)) : SetDisjAuth 𝛾𝐸
, and define ExTok(𝑒) as ◦{𝑒} : SetDisjAuth 𝛾𝐸

.

C.3 Local Assertions and LSI

Register points-to. We interpret the register file and define a register points-to using the standard authoritative ghost

map CMRA constructor of Iris, GhostMap.

𝑟 r↦→ 𝑣@𝐸 ≜ ◦𝑟 ↦→ (𝑣, 𝐸) : GhostMap(RegName,Val × Set(Eid)) 𝛾𝑅

Local writes. We implement the local write assertions using the same ghost map CMRA, but on a map 𝑙𝑚 from Addr

to option(Eid), which we associate with the execution graph in LW in LSI. LW contains the authoritative view of the

map, requiring that for any location 𝑎 if 𝑎 ↦→ Some(𝑒) ∈ 𝑙𝑚 then 𝑒 is indeed the latest write of 𝑎 that the thread has

been observed at the current program point; and if 𝑎 ↦→ None ∈ 𝑙𝑚, no writes of 𝑎 have been observed.

LW(cntr)tid ≜ ∃X . ag(X) : Ag(Graph) 𝛾𝐺 ∗ ∃𝑙𝑚 : Addr → option(Eid).

•𝑙𝑚 : GhostMap(Addr, option(Eid)) 𝛾𝐿 ∗

(∀𝑎 ↦→ Some(𝑒) ∈ 𝑙𝑚. IsLastWriteOn(𝑎, 𝑒,OldWrites(X , cntr)tid)) ∗

(∀𝑎 ↦→ None ∈ 𝑙𝑚.NoWritesOn(𝑎,OldWrites(X , cntr)tid))

OldWrites(X , cntr)tid ≜filter (𝜆(𝑒, 𝐸) . 𝑒 .tid = tid ∧ 𝑒.cntr < cntr ∧ IsWrite(𝐸)) X .E

Manuscript submitted to ACM

An Axiomatic Basis for Computer Programming on Relaxed Hardware Architectures: The AxSL Logics 57

We define the assertions as just fragmental views of the map.

NoLocalWrites(𝑎) ≜ ◦𝑎 ↦→ None : GhostMap(Addr, option(Eid)) 𝛾𝐿

LastLocalWrite(𝑎, 𝑒) ≜ ◦𝑎 ↦→ Some(𝑒) : GhostMap(Addr, option(Eid)) 𝛾𝐿

po predecessors. Wedefine a newCMRAMonoNatPair for implementing PoPredwhich tracks the latest po predecessor.

This CMRA is inspired by the MonoNat CMRA of Iris, which ensures that a natural number is increment-only. We

take the idea, and modify it to take a pair of natural numbers, and change the order to the lexicographical order. We

use the CMRA to track a lower bound of IT .cntr , the counter used to generate fresh Eid, in an indirect way in the PoP

predicate in LSI. We have a tweaked oneshot CMRA 𝑜
𝛾𝑃

where 𝑜 can be a splittable pending or shot(𝛾). In the latter

case, 𝛾 owns a half of the authoritative view of cntr: •1/2 cntr : MonoNatPair 𝛾
. We use the other half to implement

the PoPred assertion. The assertion has a persistent variant PoPred
′
which we implement using the fragmental view,

which can also be used to form po edges.

PoPred(𝑎) ≜ ∃𝛾 . shot(𝛾) 𝛾𝑃 ∗ •1/2 𝑎.cntr : MonoNatPair 𝛾

PoPred(−) ≜ 1/2 pending 𝛾𝑃

PoPred
′ (𝑎) ≜ ∃𝛾 . shot(𝛾) 𝛾𝑃 ∗ ◦𝑎.cntr : MonoNatPair 𝛾

PoP(cntr)tid ≜ ∃X . ag(X) : Ag(Graph) 𝛾𝐺 ∗ 1/2 pending 𝛾𝑃 ∨
(
∃𝛾, cntr′ < cntr .

shot(𝛾) 𝛾𝑃 ∗ •1/2 cntr′ : MonoNatPair
𝛾 ∗ IsValidEid(⟨tid, cntr′⟩,X)

)
ctrl predecessors. We use DfracAgree(Set(Eid)) to implement CtrlPreds. CtrlPreds contains half of the CMRA, and

CoP contains the other half to track 𝑇 .srcs
ctrl

.

CtrlPreds(𝑠) ≜ ∃𝑠′ ⊇ 𝑠 . 1/2 𝑠′ : DfracAgree(Set(Eid)) 𝛾𝐶

CoP(srcs
ctrl

) ≜ 1/2 srcs
ctrl

: DfracAgree(Set(Eid)) 𝛾𝐶

rmw predecessors. We use DfracAgree(option(Eid)) to implement RmwPred. Similar to how CtrlPreds is implemented,

we divide the CMRA into two halves, put one half in LSI, and use the other as the assertion.

RmwPred(𝑒) ≜ 1/2 Some(𝑒) : DfracAgree(option(Eid)) 𝛾𝑀

RmwPred(−) ≜ 1/2 None : DfracAgree(option(Eid)) 𝛾𝑀

RoP(srcsrmw) ≜ 1/2 srcsrmw : DfracAgree(option(Eid)) 𝛾𝑀

mrd. We omitmrd in the presentation of the proof rules. We can have a ghost state usingDfracAgree(Set(Eid)) to track
the set of instruction internal memory reads, or we can just expose it to the weakest preconditions for microinstructions,

and later hide it in the proof rules for instructions (since it is always empty at the beginning of an instruction).

Local state interpretation. Finally, we define LSI:

LSI(𝑇)tid ≜ •𝑇 .regs : GhostMap(RegName,Val × Set(Eid)) 𝛾𝑅 ∗ PoP(𝑇 .IT .cntr)tid ∗

CoP(𝑇 .srcs
ctrl

) ∗ RoP(𝑇 .srcsrmw) ∗ LW(𝑇 .IT .cntr)tid
Manuscript submitted to ACM

58 Zongyuan Liu, Angus Hammond, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod

ACKNOWLEDGMENTS

We thank Amin Timany for helpful discussions concerning framing.

This work was supported in part by Google, through ASPIRE faculty awards and other funding to Birkedal, Pichon-

Pharabod, and Sewell; in part by Arm (Sewell); by the European Research Council (ERC) under the European Union’s

Horizon 2020 research and innovation programme (grant agreement No. 789108, AdG ELVER, Sewell); by a Villum

Investigator grant (no. 25804), Center for Basic Research in Program Verification (CPV), from the VILLUM Foundation

(Birkedal); by an AUFF starter grant (Pichon-Pharabod); and by the Innovate UK project Digital Security by Design

(DSbD) Technology Platform Prototype, 105694.

REFERENCES
Jade Alglave and Patrick Cousot. 2017. Ogre and Pythia: an invariance proof method for weak consistency models. In Proceedings of the 44th ACM

SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon

(Eds.). ACM, 3–18. https://doi.org/10.1145/3009837.3009883

Jade Alglave, Will Deacon, Richard Grisenthwaite, Antoine Hacquard, and Luc Maranget. 2021. Armed Cats: Formal Concurrency Modelling at Arm.

ACM Trans. Program. Lang. Syst. 43, 2 (2021), 8:1–8:54. https://doi.org/10.1145/3458926

Jade Alglave, Luc Maranget, Paul E. McKenney, Andrea Parri, and Alan S. Stern. 2018. Frightening Small Children and Disconcerting Grown-ups:

Concurrency in the Linux Kernel. In Proceedings of the Twenty-Third International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2018, Williamsburg, VA, USA, March 24-28, 2018, Xipeng Shen, James Tuck, Ricardo Bianchini, and Vivek Sarkar (Eds.).

ACM, 405–418. https://doi.org/10.1145/3173162.3177156

Jade Alglave, Luc Maranget, Susmit Sarkar, and Peter Sewell. 2010. Fences in Weak Memory Models. In Computer Aided Verification, 22nd International
Conference, CAV 2010, Edinburgh, UK, July 15-19, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6174), Tayssir Touili, Byron Cook, and

Paul B. Jackson (Eds.). Springer, 258–272. https://doi.org/10.1007/978-3-642-14295-6_25

Jade Alglave, Luc Maranget, and Michael Tautschnig. 2014. Herding Cats: Modelling, Simulation, Testing, and Data Mining for Weak Memory. ACM
Trans. Program. Lang. Syst. 36, 2 (2014), 7:1–7:74. https://doi.org/10.1145/2627752

Arm Ltd. 2023. ARM Architecture Reference Manual (for A-profile architecture). Arm Ltd. ARM DDI 0487J.a (ID042523), https://developer.arm.com/

documentation/ddi0487/latest/, Accessed 2023-07-04.

Alasdair Armstrong, Brian Campbell, Ben Simner, Christopher Pulte, and Peter Sewell. 2021. Isla: Integrating Full-Scale ISA Semantics and Axiomatic

Concurrency Models. In Computer Aided Verification - 33rd International Conference, CAV 2021, Virtual Event, July 20-23, 2021, Proceedings, Part I (Lecture
Notes in Computer Science, Vol. 12759), Alexandra Silva and K. Rustan M. Leino (Eds.). Springer, 303–316. https://doi.org/10.1007/978-3-030-81685-8_14

Mark Batty, Kayvan Memarian, Kyndylan Nienhuis, Jean Pichon-Pharabod, and Peter Sewell. 2015. The Problem of Programming Language Concurrency

Semantics. In ESOP. 283–307. https://doi.org/10.1007/978-3-662-46669-8_12

Mark Batty, Kayvan Memarian, Scott Owens, Susmit Sarkar, and Peter Sewell. 2012. Clarifying and compiling C/C++ concurrency: from C++11 to POWER.

In Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2012, Philadelphia, Pennsylvania, USA,
January 22-28, 2012, John Field and Michael Hicks (Eds.). ACM, 509–520. https://doi.org/10.1145/2103656.2103717

Mark Batty, Scott Owens, Susmit Sarkar, Peter Sewell, and Tjark Weber. 2011. Mathematizing C++ concurrency. In Proceedings of the 38th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 26-28, 2011, Thomas Ball and Mooly Sagiv

(Eds.). ACM, 55–66. https://doi.org/10.1145/1926385.1926394

P. Becker (Ed.). 2011. Programming Languages — C++. ISO/IEC 14882:2011. http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf.

Hans-Juergen Boehm and Sarita V. Adve. 2008. Foundations of the C++ concurrency memory model. In Proceedings of the ACM SIGPLAN 2008 Conference
on Programming Language Design and Implementation, Tucson, AZ, USA, June 7-13, 2008, Rajiv Gupta and Saman P. Amarasinghe (Eds.). ACM, 68–78.

https://doi.org/10.1145/1375581.1375591

Richard Bornat, Jade Alglave, and Matthew J. Parkinson. 2015. New Lace and Arsenic: adventures in weak memory with a program logic. CoRR
abs/1512.01416 (2015). arXiv:1512.01416 http://arxiv.org/abs/1512.01416

Stephen Brookes and Peter W. O’Hearn. 2016. Concurrent separation logic. ACM SIGLOG News 3, 3 (2016), 47–65. https://doi.org/10.1145/2984450.2984457

Soham Chakraborty and Viktor Vafeiadis. 2019. Grounding thin-air reads with event structures. Proc. ACM Program. Lang. 3, POPL (2019), 70:1–70:28.

https://doi.org/10.1145/3290383

Minki Cho, Sung-Hwan Lee, Dongjae Lee, Chung-Kil Hur, and Ori Lahav. 2022. Sequential reasoning for optimizing compilers under weak memory

concurrency. In PLDI ’22: 43rd ACM SIGPLAN International Conference on Programming Language Design and Implementation, San Diego, CA, USA, June
13 - 17, 2022, Ranjit Jhala and Isil Dillig (Eds.). ACM, 213–228. https://doi.org/10.1145/3519939.3523718

Karl Crary and Michael J. Sullivan. 2015. A Calculus for Relaxed Memory. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015, Sriram K. Rajamani and David Walker (Eds.). ACM, 623–636.

https://doi.org/10.1145/2676726.2676984

Manuscript submitted to ACM

https://doi.org/10.1145/3009837.3009883
https://doi.org/10.1145/3458926
https://doi.org/10.1145/3173162.3177156
https://doi.org/10.1007/978-3-642-14295-6_25
https://doi.org/10.1145/2627752
https://developer.arm.com/documentation/ddi0487/latest/
https://developer.arm.com/documentation/ddi0487/latest/
https://doi.org/10.1007/978-3-030-81685-8_14
https://doi.org/10.1007/978-3-662-46669-8_12
https://doi.org/10.1145/2103656.2103717
https://doi.org/10.1145/1926385.1926394
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
https://doi.org/10.1145/1375581.1375591
https://arxiv.org/abs/1512.01416
http://arxiv.org/abs/1512.01416
https://doi.org/10.1145/2984450.2984457
https://doi.org/10.1145/3290383
https://doi.org/10.1145/3519939.3523718
https://doi.org/10.1145/2676726.2676984

An Axiomatic Basis for Computer Programming on Relaxed Hardware Architectures: The AxSL Logics 59

Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, and Derek Dreyer. 2020. RustBelt meets relaxed memory. Proc. ACM Program. Lang. 4, POPL
(2020), 34:1–34:29. https://doi.org/10.1145/3371102

Hoang-Hai Dang, Jaehwang Jung, Jaemin Choi, Duc-Than Nguyen, William Mansky, Jeehoon Kang, and Derek Dreyer. 2022. Compass: strong and

compositional library specifications in relaxed memory separation logic. In PLDI ’22: 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, San Diego, CA, USA, June 13 - 17, 2022, Ranjit Jhala and Isil Dillig (Eds.). ACM, 792–808. https://doi.org/10.1145/

3519939.3523451

Will Deacon. 2016. The ARMv8 Application Level Memory Model. https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat.

Thomas Dinsdale-Young, Lars Birkedal, Philippa Gardner, Matthew J. Parkinson, and Hongseok Yang. 2013. Views: compositional reasoning for concurrent

programs. In The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’13, Rome, Italy - January 23 - 25,
2013, Roberto Giacobazzi and Radhia Cousot (Eds.). ACM, 287–300. https://doi.org/10.1145/2429069.2429104

Thomas Dinsdale-Young, Mike Dodds, Philippa Gardner, Matthew J. Parkinson, and Viktor Vafeiadis. 2010. Concurrent Abstract Predicates. In ECOOP
2010 - Object-Oriented Programming, 24th European Conference, Maribor, Slovenia, June 21-25, 2010. Proceedings (Lecture Notes in Computer Science,
Vol. 6183), Theo D’Hondt (Ed.). Springer, 504–528. https://doi.org/10.1007/978-3-642-14107-2_24

Marko Doko. 2021. Program Logic for Weak Memory Concurrency. Ph. D. Dissertation. Kaiserslautern University of Technology, Germany. https:

//kluedo.ub.rptu.de/frontdoor/index/index/docId/6679

Marko Doko and Viktor Vafeiadis. 2016. A Program Logic for C11 Memory Fences. In Verification, Model Checking, and Abstract Interpretation - 17th
International Conference, VMCAI 2016, St. Petersburg, FL, USA, January 17-19, 2016. Proceedings (Lecture Notes in Computer Science, Vol. 9583), Barbara
Jobstmann and K. Rustan M. Leino (Eds.). Springer, 413–430. https://doi.org/10.1007/978-3-662-49122-5_20

Marko Doko and Viktor Vafeiadis. 2017. Tackling Real-Life Relaxed Concurrency with FSL++. In Programming Languages and Systems - 26th European
Symposium on Programming, ESOP 2017, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden,
April 22-29, 2017, Proceedings (Lecture Notes in Computer Science, Vol. 10201), Hongseok Yang (Ed.). Springer, 448–475. https://doi.org/10.1007/978-3-

662-54434-1_17

Andres Erbsen, Samuel Gruetter, Joonwon Choi, Clark Wood, and Adam Chlipala. 2021. Integration verification across software and hardware for a

simple embedded system. In PLDI ’21: 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation, Virtual
Event, Canada, June 20-25, 2021, Stephen N. Freund and Eran Yahav (Eds.). ACM, 604–619. https://doi.org/10.1145/3453483.3454065

Robert W. Floyd. 1967. Assigning Meanings to Programs. In Proceedings of the Symposium in Applied Mathematics, Vol. 19. American Mathematical

Society, 19–32.

Shaked Flur, Susmit Sarkar, Christopher Pulte, Kyndylan Nienhuis, Luc Maranget, Kathryn E. Gray, Ali Sezgin, Mark Batty, and Peter Sewell. 2017.

Mixed-size concurrency: ARM, POWER, C/C++11, and SC. In Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages,
POPL 2017, Paris, France, January 18-20, 2017, Giuseppe Castagna and Andrew D. Gordon (Eds.). ACM, 429–442. https://doi.org/10.1145/3009837.3009839

Kourosh Gharachorloo. 1995. Memory Consistency Models for Shared-Memory Multiprocessors. Ph. D. Dissertation. Stanford University.

Kathryn E. Gray, Gabriel Kerneis, Dominic P. Mulligan, Christopher Pulte, Susmit Sarkar, and Peter Sewell. 2015. An integrated concurrency and

core-ISA architectural envelope definition, and test oracle, for IBM POWER multiprocessors. In Proceedings of the 48th International Symposium on
Microarchitecture, MICRO 2015, Waikiki, HI, USA, December 5-9, 2015, Milos Prvulovic (Ed.). ACM, 635–646. https://doi.org/10.1145/2830772.2830775

Angus Hammond, Zongyuan Liu, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod. 2024. An Axiomatic Basis for Computer

Programming on the Relaxed Arm-A Architecture: The AxSL Logic. Proc. ACM Program. Lang. 8, POPL, Article 21 (jan 2024), 34 pages. https:

//doi.org/10.1145/3632863

Mengda He, Viktor Vafeiadis, Shengchao Qin, and João F. Ferreira. 2016. Reasoning about Fences and Relaxed Atomics. In 24th Euromicro International
Conference on Parallel, Distributed, and Network-Based Processing, PDP 2016, Heraklion, Crete, Greece, February 17-19, 2016. IEEE Computer Society,

520–527. https://doi.org/10.1109/PDP.2016.103

Lisa Higham, LillAnne Jackson, and Jalal Kawash. 2007. Specifying memory consistency of write buffer multiprocessors. ACM Trans. Comput. Syst. 25, 1
(2007), 1. https://doi.org/10.1145/1189736.1189737

C. A. R. Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM 12, 10 (1969), 576–580. https://doi.org/10.1145/363235.363259

Bart Jacobs. 2014. Verifying TSO Programs (Report CW660). Technical Report.
Alan Jeffrey and James Riely. 2016. On Thin Air Reads Towards an Event Structures Model of Relaxed Memory. In Proceedings of the 31st Annual ACM/IEEE

Symposium on Logic in Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016, Martin Grohe, Eric Koskinen, and Natarajan Shankar (Eds.).

ACM, 759–767. https://doi.org/10.1145/2933575.2934536

Jonas B. Jensen, Nick Benton, and Andrew Kennedy. 2013. High-Level Separation Logic for Low-Level Code. In Proceedings of the 40th Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Rome, Italy) (POPL ’13). Association for Computing Machinery, New York, NY,

USA, 301–314. https://doi.org/10.1145/2429069.2429105

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, and Derek Dreyer. 2018. Iris from the ground up: A modular foundation

for higher-order concurrent separation logic. J. Funct. Program. 28 (2018), e20. https://doi.org/10.1017/S0956796818000151

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, and Derek Dreyer. 2015. Iris: Monoids and Invariants as an

Orthogonal Basis for Concurrent Reasoning. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2015, Mumbai, India, January 15-17, 2015, Sriram K. Rajamani and David Walker (Eds.). ACM, 637–650. https://doi.org/10.1145/

2676726.2676980

Manuscript submitted to ACM

https://doi.org/10.1145/3371102
https://doi.org/10.1145/3519939.3523451
https://doi.org/10.1145/3519939.3523451
https://github.com/herd/herdtools7/blob/master/herd/libdir/aarch64.cat
https://doi.org/10.1145/2429069.2429104
https://doi.org/10.1007/978-3-642-14107-2_24
https://kluedo.ub.rptu.de/frontdoor/index/index/docId/6679
https://kluedo.ub.rptu.de/frontdoor/index/index/docId/6679
https://doi.org/10.1007/978-3-662-49122-5_20
https://doi.org/10.1007/978-3-662-54434-1_17
https://doi.org/10.1007/978-3-662-54434-1_17
https://doi.org/10.1145/3453483.3454065
https://doi.org/10.1145/3009837.3009839
https://doi.org/10.1145/2830772.2830775
https://doi.org/10.1145/3632863
https://doi.org/10.1145/3632863
https://doi.org/10.1109/PDP.2016.103
https://doi.org/10.1145/1189736.1189737
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/2933575.2934536
https://doi.org/10.1145/2429069.2429105
https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1145/2676726.2676980
https://doi.org/10.1145/2676726.2676980

60 Zongyuan Liu, Angus Hammond, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod

Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, and Viktor Vafeiadis. 2017. Strong Logic forWeakMemory: Reasoning About Release-Acquire

Consistency in Iris. In 31st European Conference on Object-Oriented Programming, ECOOP 2017, June 19-23, 2017, Barcelona, Spain (LIPIcs, Vol. 74), Peter
Müller (Ed.). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 17:1–17:29. https://doi.org/10.4230/LIPIcs.ECOOP.2017.17

Jeehoon Kang, Chung-Kil Hur, Ori Lahav, Viktor Vafeiadis, and Derek Dreyer. 2017. A promising semantics for relaxed-memory concurrency. In

Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming Languages, POPL 2017, Paris, France, January 18-20, 2017, Giuseppe
Castagna and Andrew D. Gordon (Eds.). ACM, 175–189. https://doi.org/10.1145/3009837.3009850

Prince Kohli, Gil Neiger, and Mustaque Ahamad. 1993. A Characterization of Scalable Shared Memories. In Proceedings of the 1993 International Conference
on Parallel Processing, Syracuse University, NY, USA, August 16-20, 1993. Volume I: Architecture, C. Y. Roger Chen and P. Bruce Berra (Eds.). CRC Press,

332–335. https://doi.org/10.1109/ICPP.1993.15

Ori Lahav and Viktor Vafeiadis. 2015. Owicki-Gries Reasoning for Weak Memory Models. In Automata, Languages, and Programming - 42nd International
Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 9135), Magnús M. Halldórsson, Kazuo

Iwama, Naoki Kobayashi, and Bettina Speckmann (Eds.). Springer, 311–323. https://doi.org/10.1007/978-3-662-47666-6_25

Ori Lahav, Viktor Vafeiadis, Jeehoon Kang, Chung-Kil Hur, and Derek Dreyer. 2017. Repairing sequential consistency in C/C++11. In Proceedings of the
38th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2017, Barcelona, Spain, June 18-23, 2017, Albert Cohen and

Martin T. Vechev (Eds.). ACM, 618–632. https://doi.org/10.1145/3062341.3062352

Leslie Lamport. 1977. Proving the Correctness of Multiprocess Programs. IEEE Trans. Software Eng. 3, 2 (1977), 125–143. https://doi.org/10.1109/TSE.1977.

229904

Sung-Hwan Lee, Minki Cho, Anton Podkopaev, Soham Chakraborty, Chung-Kil Hur, Ori Lahav, and Viktor Vafeiadis. 2020. Promising 2.0: global

optimizations in relaxed memory concurrency. In Proceedings of the 41st ACM SIGPLAN International Conference on Programming Language Design and
Implementation, PLDI 2020, London, UK, June 15-20, 2020, Alastair F. Donaldson and Emina Torlak (Eds.). ACM, 362–376. https://doi.org/10.1145/

3385412.3386010

Zongyuan Liu, Sergei Stepanenko, Jean Pichon-Pharabod, Amin Timany, Aslan Askarov, and Lars Birkedal. 2023. VMSL: A Separation Logic for

Mechanised Robust Safety of Virtual Machines Communicating above FF-A. In Proceedings of the 44th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2023, Orlando, Florida, June 17-21, 2023. ACM, 1438–1462. https://doi.org/10.1145/3591279

Yatin A. Manerkar, Caroline Trippel, Daniel Lustig, Michael Pellauer, and Margaret Martonosi. 2016. Counterexamples and Proof Loophole for the C/C++

to POWER and ARMv7 Trailing-Sync Compiler Mappings. CoRR abs/1611.01507 (2016). arXiv:1611.01507 http://arxiv.org/abs/1611.01507

Paul E. McKenney, Ulrich Weigand, Andrea Parri, Boqun Feng, and Alan Stern. 2020. Linux-Kernel Memory Model. ISO/IEC JTC1 SC22 WG21 P0124R7

https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0124r7.html.

Glen Mével, Jacques-Henri Jourdan, and François Pottier. 2020. Cosmo: a concurrent separation logic for multicore OCaml. Proc. ACM Program. Lang. 4,
ICFP, Article 96 (aug 2020), 29 pages. https://doi.org/10.1145/3408978

F.L. Morris and C.B. Jones. 1984. An Early Program Proof by Alan Turing. Annals of the History of Computing 6, 2 (1984), 139–143. https://doi.org/10.

1109/MAHC.1984.10017

Magnus O. Myreen. 2009. Formal verification of machine-code programs. Ph. D. Dissertation. University of Cambridge.

Magnus O. Myreen, Anthony C. J. Fox, and Michael J. C. Gordon. 2007. Hoare Logic for ARM Machine Code. In Fundamentals of Software Engineering
(FSEN), Farhad Arbab and Marjan Sirjani (Eds.). Springer, 272–286.

Magnus O. Myreen and Michael J. C. Gordon. 2007. Hoare Logic for Realistically Modelled Machine Code. In Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), Orna Grumberg and Michael Huth (Eds.). Springer, 568–582.

Magnus O. Myreen, Michael J. C. Gordon, and Konrad Slind. 2008. Machine-Code Verification for Multiple Architectures - An Application of Decompilation

into Logic. In Formal Methods in Computer-Aided Design (FMCAD), Alessandro Cimatti and Robert B. Jones (Eds.). IEEE, 1–8.

Peter Naur. 1966. Proofs of algorithms by general snapshots. BIT 6, 310–316.

Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local Reasoning about Programs that Alter Data Structures. In Computer Science Logic,
15th International Workshop, CSL 2001. 10th Annual Conference of the EACSL, Paris, France, September 10-13, 2001, Proceedings (Lecture Notes in Computer
Science, Vol. 2142), Laurent Fribourg (Ed.). Springer, 1–19. https://doi.org/10.1007/3-540-44802-0_1

Scott Owens, Susmit Sarkar, and Peter Sewell. 2009. A Better x86 Memory Model: x86-TSO. In Theorem Proving in Higher Order Logics, 22nd International
Conference, TPHOLs 2009, Munich, Germany, August 17-20, 2009. Proceedings (Lecture Notes in Computer Science, Vol. 5674), Stefan Berghofer, Tobias

Nipkow, Christian Urban, and Makarius Wenzel (Eds.). Springer, 391–407. https://doi.org/10.1007/978-3-642-03359-9_27

Susan S. Owicki and David Gries. 1976. An Axiomatic Proof Technique for Parallel Programs I. Acta Informatica 6 (1976), 319–340. https://doi.org/10.

1007/BF00268134

Marco Paviotti, Simon Cooksey, Anouk Paradis, Daniel Wright, Scott Owens, and Mark Batty. 2020. Modular Relaxed Dependencies in Weak Memory

Concurrency. In Programming Languages and Systems - 29th European Symposium on Programming, ESOP 2020, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings (Lecture Notes in Computer Science, Vol. 12075),
Peter Müller (Ed.). Springer, 599–625. https://doi.org/10.1007/978-3-030-44914-8_22

Jean Pichon-Pharabod and Peter Sewell. 2016. A concurrency semantics for relaxed atomics that permits optimisation and avoids thin-air executions. In

Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January
20 - 22, 2016, Rastislav Bodík and Rupak Majumdar (Eds.). ACM, 622–633. https://doi.org/10.1145/2837614.2837616

Manuscript submitted to ACM

https://doi.org/10.4230/LIPIcs.ECOOP.2017.17
https://doi.org/10.1145/3009837.3009850
https://doi.org/10.1109/ICPP.1993.15
https://doi.org/10.1007/978-3-662-47666-6_25
https://doi.org/10.1145/3062341.3062352
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1109/TSE.1977.229904
https://doi.org/10.1145/3385412.3386010
https://doi.org/10.1145/3385412.3386010
https://doi.org/10.1145/3591279
https://arxiv.org/abs/1611.01507
http://arxiv.org/abs/1611.01507
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p0124r7.html
https://doi.org/10.1145/3408978
https://doi.org/10.1109/MAHC.1984.10017
https://doi.org/10.1109/MAHC.1984.10017
https://doi.org/10.1007/3-540-44802-0_1
https://doi.org/10.1007/978-3-642-03359-9_27
https://doi.org/10.1007/BF00268134
https://doi.org/10.1007/BF00268134
https://doi.org/10.1007/978-3-030-44914-8_22
https://doi.org/10.1145/2837614.2837616

An Axiomatic Basis for Computer Programming on Relaxed Hardware Architectures: The AxSL Logics 61

Christopher Pulte. 2018. The Semantics of Multicopy Atomic ARMv8 and RISC-V. Ph. D. Dissertation. University of Cambridge, UK. https://doi.org/10.

17863/CAM.39379

Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter Sewell. 2018. Simplifying ARM concurrency: multicopy-atomic

axiomatic and operational models for ARMv8. Proc. ACM Program. Lang. 2, POPL (2018), 19:1–19:29. https://doi.org/10.1145/3158107

Christopher Pulte, Jean Pichon-Pharabod, Jeehoon Kang, Sung Hwan Lee, and Chung-Kil Hur. 2019. Promising-ARM/RISC-V: a simpler and faster

operational concurrency model. In Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2019,
Phoenix, AZ, USA, June 22-26, 2019, Kathryn S. McKinley and Kathleen Fisher (Eds.). ACM, 1–15. https://doi.org/10.1145/3314221.3314624

John C. Reynolds. 2002. Separation Logic: A Logic for Shared Mutable Data Structures. In 17th IEEE Symposium on Logic in Computer Science (LICS 2002),
22-25 July 2002, Copenhagen, Denmark, Proceedings. IEEE Computer Society, 55–74. https://doi.org/10.1109/LICS.2002.1029817

Tom Ridge. 2010. A Rely-Guarantee Proof System for x86-TSO. In Verified Software: Theories, Tools, Experiments, Third International Conference, VSTTE
2010, Edinburgh, UK, August 16-19, 2010. Proceedings (Lecture Notes in Computer Science, Vol. 6217), Gary T. Leavens, Peter W. O’Hearn, and Sriram K.

Rajamani (Eds.). Springer, 55–70. https://doi.org/10.1007/978-3-642-15057-9_4

Michael Sammler, Angus Hammond, Rodolphe Lepigre, Brian Campbell, Jean Pichon-Pharabod, Derek Dreyer, Deepak Garg, and Peter Sewell. 2022.

Islaris: verification of machine code against authoritative ISA semantics. In PLDI ’22: 43rd ACM SIGPLAN International Conference on Programming
Language Design and Implementation, San Diego, CA, USA, June 13 - 17, 2022, Ranjit Jhala and Isil Dillig (Eds.). ACM, 825–840. https://doi.org/10.1145/

3519939.3523434

Susmit Sarkar, Kayvan Memarian, Scott Owens, Mark Batty, Peter Sewell, Luc Maranget, Jade Alglave, and Derek Williams. 2012. Synchronising C/C++

and POWER. In ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI ’12, Beijing, China - June 11 - 16, 2012, Jan
Vitek, Haibo Lin, and Frank Tip (Eds.). ACM, 311–322. https://doi.org/10.1145/2254064.2254102

Susmit Sarkar, Peter Sewell, Jade Alglave, Luc Maranget, and Derek Williams. 2011. Understanding POWER multiprocessors. In Proceedings of the 32nd
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2011, San Jose, CA, USA, June 4-8, 2011, Mary W. Hall and

David A. Padua (Eds.). ACM, 175–186. https://doi.org/10.1145/1993498.1993520

Susmit Sarkar, Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Tom Ridge, Thomas Braibant, Magnus O. Myreen, and Jade Alglave. 2009. The

semantics of x86-CCmultiprocessor machine code. In Proceedings of the 36th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL 2009, Savannah, GA, USA, January 21-23, 2009, Zhong Shao and Benjamin C. Pierce (Eds.). ACM, 379–391. https://doi.org/10.1145/1480881.1480929

Filip Sieczkowski, Kasper Svendsen, Lars Birkedal, and Jean Pichon-Pharabod. 2015. A Separation Logic for Fictional Sequential Consistency. In

Programming Languages and Systems - 24th European Symposium on Programming, ESOP 2015, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings (Lecture Notes in Computer Science, Vol. 9032), Jan Vitek (Ed.). Springer,

736–761. https://doi.org/10.1007/978-3-662-46669-8_30

Ben Simner, Alasdair Armstrong, Jean Pichon-Pharabod, Christopher Pulte, Richard Grisenthwaite, and Peter Sewell. 2022. Relaxed virtual memory

in Armv8-A. In Programming Languages and Systems - 31st European Symposium on Programming, ESOP 2022, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April 2-7, 2022, Proceedings (Lecture Notes in Computer Science, Vol. 13240),
Ilya Sergey (Ed.). Springer, 143–173. https://doi.org/10.1007/978-3-030-99336-8_6

Ben Simner, Shaked Flur, Christopher Pulte, Alasdair Armstrong, Jean Pichon-Pharabod, Luc Maranget, and Peter Sewell. 2020. ARMv8-A System

Semantics: Instruction Fetch in Relaxed Architectures. In Programming Languages and Systems - 29th European Symposium on Programming, ESOP 2020,
Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings (Lecture
Notes in Computer Science, Vol. 12075), Peter Müller (Ed.). Springer, 626–655. https://doi.org/10.1007/978-3-030-44914-8_23

Kasper Svendsen and Lars Birkedal. 2014. Impredicative Concurrent Abstract Predicates. In Programming Languages and Systems - 23rd European Symposium
on Programming, ESOP 2014, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2014, Grenoble, France, April 5-13,
2014, Proceedings (Lecture Notes in Computer Science, Vol. 8410), Zhong Shao (Ed.). Springer, 149–168. https://doi.org/10.1007/978-3-642-54833-8_9

Kasper Svendsen, Jean Pichon-Pharabod, Marko Doko, Ori Lahav, and Viktor Vafeiadis. 2018. A Separation Logic for a Promising Semantics. In

Programming Languages and Systems - 27th European Symposium on Programming, ESOP 2018, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings (Lecture Notes in Computer Science, Vol. 10801), Amal Ahmed

(Ed.). Springer, 357–384. https://doi.org/10.1007/978-3-319-89884-1_13

Runzhou Tao, Jianan Yao, Xupeng Li, Shih-Wei Li, Jason Nieh, and Ronghui Gu. 2021. Formal Verification of a Multiprocessor Hypervisor on Arm Relaxed

Memory Hardware. In SOSP ’21: ACM SIGOPS 28th Symposium on Operating Systems Principles, Virtual Event / Koblenz, Germany, October 26-29, 2021,
Robbert van Renesse and Nickolai Zeldovich (Eds.). ACM, 866–881. https://doi.org/10.1145/3477132.3483560

Alan M. Turing. 1949. Checking a large routine. In Report of a Conference on High Speed Automatic Calculating Machines. Mathematical Laboratory,

Cambridge, UK, 67–69. https://turingarchive.kings.cam.ac.uk/publications-lectures-and-talks-amtb/amt-b-8

Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. 2014. GPS: navigating weak memory with ghosts, protocols, and separation. In Proceedings of the 2014
ACM International Conference on Object Oriented Programming Systems Languages & Applications, OOPSLA 2014, part of SPLASH 2014, Portland, OR,
USA, October 20-24, 2014, Andrew P. Black and Todd D. Millstein (Eds.). ACM, 691–707. https://doi.org/10.1145/2660193.2660243

Viktor Vafeiadis and Chinmay Narayan. 2013. Relaxed separation logic: a program logic for C11 concurrency. In Proceedings of the 2013 ACM SIGPLAN
International Conference on Object Oriented Programming Systems Languages & Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN, USA,
October 26-31, 2013, Antony L. Hosking, Patrick Th. Eugster, and Cristina V. Lopes (Eds.). ACM, 867–884. https://doi.org/10.1145/2509136.2509532

Manuscript submitted to ACM

https://doi.org/10.17863/CAM.39379
https://doi.org/10.17863/CAM.39379
https://doi.org/10.1145/3158107
https://doi.org/10.1145/3314221.3314624
https://doi.org/10.1109/LICS.2002.1029817
https://doi.org/10.1007/978-3-642-15057-9_4
https://doi.org/10.1145/3519939.3523434
https://doi.org/10.1145/3519939.3523434
https://doi.org/10.1145/2254064.2254102
https://doi.org/10.1145/1993498.1993520
https://doi.org/10.1145/1480881.1480929
https://doi.org/10.1007/978-3-662-46669-8_30
https://doi.org/10.1007/978-3-030-99336-8_6
https://doi.org/10.1007/978-3-030-44914-8_23
https://doi.org/10.1007/978-3-642-54833-8_9
https://doi.org/10.1007/978-3-319-89884-1_13
https://doi.org/10.1145/3477132.3483560
https://turingarchive.kings.cam.ac.uk/publications-lectures-and-talks-amtb/amt-b-8
https://doi.org/10.1145/2660193.2660243
https://doi.org/10.1145/2509136.2509532

62 Zongyuan Liu, Angus Hammond, Thibaut Pérami, Peter Sewell, Lars Birkedal, and Jean Pichon-Pharabod

Andrew Waterman and Krste Asanović. 2019. The RISC-V Instruction Set Manual, Volume I: Unprivileged ISA, Document Version 20191213. Technical Report.
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf

Ian Wehrman. 2012. Weak-Memory Local Reasoning (Dissertation draft). Ph. D. Dissertation. University of Texas at Austin.

Ian Wehrman and Josh Berdine. 2011. A proposal for weak-memory local reasoning. In Low-level languages and applications (LOLA).
John Wickerson, Mike Dodds, and Matthew J. Parkinson. 2013. Ribbon Proofs for Separation Logic. In Programming Languages and Systems - 22nd

European Symposium on Programming, ESOP 2013, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013, Rome,
Italy, March 16-24, 2013. Proceedings (Lecture Notes in Computer Science, Vol. 7792), Matthias Felleisen and Philippa Gardner (Eds.). Springer, 189–208.

https://doi.org/10.1007/978-3-642-37036-6_12

Yang Zhang and Xinyu Feng. 2014. Program Logic for Local Reasoning in TSO. Technical Report.

Manuscript submitted to ACM

https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://doi.org/10.1007/978-3-642-37036-6_12

	Abstract
	1 Introduction
	2 Context: Program Logics and Relaxed Concurrency
	3 Key Ideas
	3.1 The First Problem: Relaxed Thread-local Ordering
	3.2 The Second Problem: Operationalising the Relaxed Arm-A Model
	3.3 The Third Problem: Structuring the Adequacy Proof

	4 The Languages
	4.1 The Elaboration Semantics of Instructions into the Sail Outcome Interface
	4.2 The Conventional Axiomatic Concurrency Model Semantics
	4.3 Our Opax Concurrency Model Semantics

	5 The Logics
	5.1 Resource Transfer with Protocols
	5.2 Dealing with Opax Semantics: The AxSLSC Logic
	5.3 Tracking Flow of Resources: The AxSLSCExt Logic
	5.4 Handling Arm-A Concurrency: The AxSLArm Logic
	5.5 Graph Reasoning in AxSLArm: MP+rel+addr
	5.6 High-Level Reasoning in AxSLArm: Load Buffering
	5.7 Supporting Exclusives
	5.8 Further Examples

	6 Model and Soundness
	6.1 Preliminary: A General Recipe for Building Logics Using Iris
	6.2 Notations for Weakest Preconditions
	6.3 Model and Soundness of AxSLSC
	6.4 Model and Soundness of AxSLSCExt
	6.5 Model and Soundness of AxSLArm

	7 Adequacy
	7.1 Adequacy of AxSLSC
	7.2 Adequacy of AxSLSCExt and AxSLArm

	8 Technical Remarks and Limitations
	8.1 Technical Improvements to the Original AxSLArm
	8.2 Proof Effort for AxSLArm
	8.3 Coherence

	9 Related Work
	10 Conclusion
	A Further Proof Rules
	A.1 MemWrite Rule
	A.2 MemRead Rule with Local Writes

	B Recovering Points-Tos in AxSLSC
	C An Implementation of Logical Interpretations and Assertions for AxSLArm
	C.1 Reserved Ghost Names
	C.2 Global Assertions, SI, and SIT
	C.3 Local Assertions and LSI

	Acknowledgments
	References

