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Introduction

As PL researchers we study programs and PL’s

An important part of this is proving our programs and PL’s are correct

We use mathematical tools:

— De�ne the semantics of programs, e.g., operational semantics

— State theorems about programs and PL’s in semantics terms, e.g., safety,
functional correctness, type safety, etc.

— Prove these properties using di�erent tools and techniques

Program logics are important tools

— Provide a formal framework for stating and proving properties of programs

— In this talk: the Iris program logic
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Some Interesting Properties

Safety: program does not crash

Safe(e) , ∀e′. e→∗ e′⇒ Val(e′) ∨ ∃e′′. e′→ e′′

zero or more steps

one step of computation

(small-step operational semantics)

— Example: Safe(letrec f x = f x in f 4)
— Counterexample: ¬Safe(if “a” then 2 else 3)

Functional Correctness: safe, and upon termination postcondition holds

Correct𝜙 (e) , Safe(e) ∧ ∀v. Val(v) ∧ e→∗ v ⇒ 𝜙 (v)

— Example: CorrectisEven(3 + 5)
Type safety: well-typed programs are safe

In this talk: Iris and how it helps us prove such properties
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What is Iris?

A Framework for Higher-order Concurrent Separation Logics

Coq

Iris Base Logic Operational Semantics

Program Logic

Program Correctness→ : Built on top of

safety/functional correctness→ : Iris’s adequacy theorem

Custom Program Logic

: User-de�ned

Used e.g. in reasoning about:
– a Haskell-style ST monad (POPL’18)
– termination insensitive non-interference (POPL’21)
– termination sensitive non-interference (S&P’21)
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Versatility of Iris

Iris have been used in many projects:
I Reasoning about session types (@CPP’21)

I Reasoning about capability machines (hardware language) (@POPL’21)

I Reasoning about non-interference (a security property) (@POPL’21)

I Reasoning about distributed systems (@POPL’21)

I Proving properties of gradual typing systems (@POPL’21)

I Reasoning about algebraic e�ect handlers (@POPL’21)

I Reasoning principles for weak memory

I Proving properties of DOT (core of Scala)

I Proving properties of the Rust programming language

I etc.

This versatility is due to Iris’s expressivity.
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Iris Base Logic

A logic with features designed for de�ning program logics:

P ::= True | False | P ∨ P | P ∧ P | P → P | ∀x . P | ∃x . P | (higher-order logic)

P ∗ P | (separation logic)

a 𝛾 | |VP | (user-de�ned resources)

⊲ P | 𝜇r .P | (step indexing)

P (invariants)

Base logic inference rules:

Löb-ind

⊲ P ` P
` P

⊲-intro

P ` ⊲ P

⊲-mono

P ` Q
⊲ P ` ⊲Q

∗-true
P ∗ True a` P

∗-elim-L
P ∗ Q ` P

∗-elim-R
P ∗ Q ` Q

∗-mono
P1 ` P2 Q1 ` Q2

P1 ∗ Q1 ` P2 ∗ Q2

∗-comm
P ∗ Q ` Q ∗ P

∗-assoc
(P ∗ Q) ∗ R ` P ∗ (Q ∗ R)

∧-intro
P ` Q P ` R

P ` Q ∧ R

`-refl
P ` P

`-trans
P ` Q Q ` R

P ` R

`-true
P ` True

`-falso
False ` P

∧-true
P ∧ True a` P

∧-elim-L
P ∧ Q ` P

∧-elim-R
P ∧ Q ` Q

∧-mono
P1 ` P2 Q1 ` Q2

P1 ∧ Q1 ` P2 ∧ Q2

∧-comm
P ∧ Q ` Q ∧ P

∧-assoc
(P ∧ Q) ∧ R ` P ∧ (Q ∧ R)

∨-intro-L
P ` Q

P ` Q ∨ R

∨-intro-R
P ` R

P ` Q ∧ R

∨-false
P ∨ False a` P

∨-elim
P ` R Q ` R

P ∨ Q ` R

∨-mono
P1 ` P2 Q1 ` Q2

P1 ∨ Q1 ` P2 ∨ Q2

∨-comm
P ∨ Q ` Q ∨ P

∨-assoc
(P ∨ Q) ∨ R ` P ∨ (Q ∨ R)
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Program Logic

A Hoare-style logic:
{P} e {x . Q}

precondition

program

binder for return value

postcondition

Examples: {n ≥ 0} fact n {x . x = n!} {True} letrec f x = f x in f 4 {x . False}

Theorem (Adequacy)

If we prove
` {True} e {x . 𝜙 (x)}

in Iris for a suitable 𝜙 , then Correct𝜙 (e)

Proof rules for reasoning about programs:
Hoare-Frame

{P} e {x . Q}
{P ∗ R} e {x . Q ∗ R}

Hoare-Bind

{P} e {x . Q} ∀v. {Q[v/x]}K [v] {x . R}
{P}K [e] {x . R}

Hoare-Conseqence

{P} e {x . Q} P ′ ` P ∀v. Q[v/x] ` Q′[v/x]
{P ′} e {x . Q′}

Hoare-rec

⊲ {P} e[(rec f x = e)/f ] [v/x] {x . Q}
{P} (rec f x = e) v {x . Q}

Hoare-if-true

{P} e1 {x . Q}
{P} if true then e1 else e2 {x . Q}

Hoare-if-false

{P} e2 {x . Q}
{P} if false then e1 else e2 {x . Q}

Hoare-alloc

{True} ref v {x . ∃ℓ . x = ℓ ∗ ℓ ↦→ v}
Hoare-load

{ℓ ↦→ v} ! ℓ {x . x = v ∗ ℓ ↦→ v}
Hoare-store

{ℓ ↦→ v} ℓ ← w {x . x = () ∗ ℓ ↦→ w}
Hoare-faa

{ℓ ↦→ n} faa ℓ m {x . ℓ ↦→ (n +m)}

Hoare-par

{P1} e1 {x . Q1} {P2} e2 {x . Q2}
{P1 ∗ P2} e1‖e2 {x . ∃v1, v2. x = (v1, v2) ∗ Q1 [v1/x] ∗ Q2 [v2/x]}

Hoare-inv-alloc

{P ∗ R } e {x . Q}
{P ∗ R} e {x . Q}

Hoare-inv-open

{P ∗ R} e {x . Q ∗ R} e is atomic

{P ∗ R } e {x . Q}
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Expressivity: Higher-Order Logic

Specifying abstract data types:1

∃isStack : Val→ list (Val→ Prop) → Prop.

{True} mk_stack() {s.isStack(s, [])}∧
∀s.∀Φ.∀Φs.{isStack(s,Φs) ∗ Φ(x)} push(x, s) {v.v = () ∧ isStack(s,Φ :: Φs)}∧
∀s.∀Φ.∀Φs.{isStack(s,Φ :: Φs)} pop(s) {v.Φ(v) ∗ isStack(s,Φs)}

Note the higher-order quanti�cation of a predicate that takes a list of predicates

1
Taken verbatim from Iris lecture notes.
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Expressivity: Separation Logic

Separating conjunction:

P ∗ Q
separating conjunction

P ∗ Q holds if P and Q hold for disjoint resources

Example: exclusive ownership of a memory location (points-to proposition)

ℓ ↦→ v ∗ ℓ ′ ↦→ v′ ` ℓ ≠ ℓ ′

Hoare-alloc

{True} ref v {x . ∃ℓ . x = ℓ ∗ ℓ ↦→ v}
Hoare-load

{ℓ ↦→ v} ! ℓ {x . x = v ∗ ℓ ↦→ v}

Hoare-store

{ℓ ↦→ v} ℓ ← w {x . x = () ∗ ℓ ↦→ w}
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Expressivity: Separation Logic

In separation logic a Hoare triple speci�es footprint of the program.

Hence the frame rule:

Hoare-Frame

{P} e {x . Q}
{P ∗ R} e {x . Q ∗ R}

Important for modular veri�cation:
Verify modules working on separate parts of memory in isolation and combine proofs

What if two modules share memory?
We use invariants (and resources) to specify sharing protocols
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Expressivity: User-De�ned Resources

Users can introduce resources as partial commutative monoids (PCM’s)

a 𝛾 ∗ b 𝛾 a` a · b 𝛾

user-de�ned operationlogical equivalence

|VP holds if P holds after updating resources

update modality

Idea: for verifying stateful programs we need a stateful logic
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Expressivity: Step-Indexing and Invariants

Iris invariants are impredicative:

P

P can be any proposition;

it may also including invariants

Step-indexing is necessary for impredicative invariants to avoid self-referential paradoxes

These features are necessary for de�ning logical relations models for programming

languages with advanced features
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Expressivity: Step-Indexing and Invariants (Logical Relations)

Goal: we want to prove type safety (well-typed programs do not crash)

Using logical relations:
We prove by induction on typing derivation:

e : 𝜏 ⇒ LR𝜏 (e)

where

LR𝜏 (e) ⇒ Safe(e)

However, we cannot take LR𝜏 (e) to be Safe(e):

Safe(e1) ∧ Safe(e2) 6⇒ Safe(e1 − e2)

Counter example: Safe(true) and Safe(3) but ¬Safe(true − 3)
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Expressivity: Step-Indexing and Invariants (Logical Relations)

We should take LR𝜏 to be:

LR𝜏 (e) , CorrectJ𝜏K(e)

where J𝜏K (v) means that v is a value of type 𝜏 .

Ideally, we should de�ne this by induction on types:

JintK (v) , v ∈ Z
J(𝜏1 × 𝜏2)K (v) , ∃v1, v2.v = (v1, v2) ∧ J𝜏1K (v1) ∧ J𝜏2K (v2)

...

J𝜇X . 𝜏K (v) , ∃w. v = fold (w) ∧ J𝜏KX Z⇒J𝜇X . 𝜏K (w)
Jref(𝜏)K (v) , ∃ℓ . v = ℓ ∧ ℓ always stores a value of 𝜏

circular de�nition

how do we express this?
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Expressivity: Step-Indexing and Invariants (Logical Relations)

We use Iris and de�ne

LR𝜏 (e) , {True} e {x . J𝜏K (v)}
We de�ne J𝜏K (v) inductively as follows:

JintK (v) , v ∈ Z
J(𝜏1 × 𝜏2)K (v) , ∃v1, v2.v = (v1, v2) ∧ J𝜏1K (v1) ∧ J𝜏2K (v2)

...

J𝜇X . 𝜏K , 𝜇r . 𝜆v. ∃w. v = fold (w) ∧ ⊲ J𝜏KX Z⇒r (w)
Jref(𝜏)K (v) , ∃ℓ . v = ℓ ∧ ∃w. ℓ ↦→ w ∗ J𝜏K (w)

Iris’s guarded recursion

may include invariants
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Expressivity: Step-Indexing and Invariants (Logical Relations)

JΞ ` 𝛼KΔ (v, v′) , Δ(𝛼) (v, v′)

JΞ ` NKΔ (v, v′) , v = v′ ∈ N

JΞ ` 𝜏1 × 𝜏2KΔ (v, v′) , ∃v1, v2, v′1, v′2. v = (v1, v2) ∧ v′ = (v′1, v′2)∧
JΞ ` 𝜏1KΔ (v1, v′) ∧ JΞ ` 𝜏2KΔ (v2, v′2)

JΞ ` 𝜏1 → 𝜏2KΔ (v, v′) , ∀w,w′. �(JΞ ` 𝜏1KΔ (w,w′) −∗ EJΞ ` 𝜏2KΔ (v w, v′ w′))

JΞ ` ∀𝛼. 𝜏KΔ (v, v′) , ∀f . �(J𝛼,Ξ ` 𝜏KΔ [𝛼 ↦→f ] (v _, v′ _))

JΞ ` 𝜇𝛼. 𝜏KΔ (v, v′) , 𝜇f . ∃w,w′. v = fold w ∧ v′ = fold w′∧
⊲J𝛼,Ξ ` 𝜏KΔ [𝛼 ↦→f ] (w,w′)

JΞ ` ref(𝜏)KΔ (v, v′) , ∃ℓ . v = ℓ ∧ v′ = ℓ ′∧

∃w,w′. ℓ ↦→ w ∗ ℓ ′ ↦→ w′ ∗ JΞ ` 𝜏KΔ (w,w′) N.ℓ

EJΞ ` 𝜏KΔ (e, e′) ,∀𝜌, j,K, {spec_inv(𝜌) ∗ j Z⇒ e′}
e

{v. ∃v′. j Z⇒ v′ ∗ JΞ ` 𝜏KΔ (v, v′)}

20 D. Dreyer et al.

HeapAtomn
def
= {(W,h1,h2) | W ∈ Worldn}

HeapReln
def
= {ψ ⊆ HeapAtomn | ∀(W,h1,h2) ∈ ψ. ∀W W. (W ,h1,h2) ∈ ψ}

Islandn
def
= {ι = (s,δ ,ϕ, ,H) | s ∈ State∧δ ⊆ State2 ∧ϕ ⊆ δ ∧δ ,ϕ reflexive∧

δ ,ϕ transitive∧ ⊆ State∧H ∈ State → HeapReln}
Worldn

def
= {W = (k,Σ1,Σ2,ω) | k < n∧∃m. ω ∈ Islandm

k }
ContAtomn[τ1,τ2]

def
= {(W,K1,K2) | W ∈ Worldn ∧W.Σ1; ·; K1 ÷τ1 ∧W.Σ2; ·; K2 ÷τ2}

TermAtomn[τ1,τ2]
def
= {(W,e1,e2) | W ∈ Worldn ∧W.Σ1; ·; e1 : τ1 ∧W.Σ2; ·; e2 : τ2}

HeapAtom[τ1,τ2]
def
= n HeapAtomn[τ1,τ2]

World
def
= n Worldn

ContAtom[τ1,τ2]
def
= n ContAtomn[τ1,τ2]

TermAtom[τ1,τ2]
def
= n TermAtomn[τ1,τ2]

ValRel[τ1,τ2]
def
= {r ⊆ TermAtomval[τ1,τ2] | ∀(W,v1,v2) ∈ r. ∀W W. (W ,v1,v2) ∈ r}

SomeValRel
def
= {R = (τ1,τ2,r) | r ∈ ValRel[τ1,τ2]}

(ι1, . . . , ιm) k
def
= ( ι1 k, . . . , ιm k) H k

def
= λ s. H(s) k

(s,δ ,ϕ, ,H) k
def
= (s,δ ,ϕ, , H k) ψ k

def
= {(W,h1,h2) ∈ r | W.k < k}

(k+1,Σ1,Σ2,ω)
def
= (k,Σ1,Σ2, ω k)

r
def
= {(W,e1,e2) | W.k > 0 ⇒ ( W,e1,e2) ∈ r}

(k ,Σ1,Σ2,ω ) (k,Σ1,Σ2,ω)
def
= k ≤ k∧Σ1 ⊇ Σ1 ∧Σ2 ⊇ Σ2 ∧ω ω k

(ι1, . . . , ιm ) (ι1, . . . , ιm)
def
= m ≥ m∧∀ j ∈ {1, . . . ,m}. ι j ι j

(s ,δ ,ϕ , ,H ) (s,δ ,ϕ, ,H)
def
= (δ ,ϕ , ,H ) = (δ ,ϕ, ,H)∧ (s,s ) ∈ δ

(k ,Σ1,Σ2,ω ) pub (k,Σ1,Σ2,ω)
def
= k ≤ k∧Σ1 ⊇ Σ1 ∧Σ2 ⊇ Σ2 ∧ω pub ω k

(ι1, . . . , ιm ) pub (ι1, . . . , ιm)
def
= m ≥ m∧∀ j ∈ {1, . . . ,m}. ι j

pub ι j ∧
∀ j ∈ {m+1, . . . ,m }. safe(ι j)

(s ,δ ,ϕ , ,H ) pub (s,δ ,ϕ, ,H)
def
= (δ ,ϕ , ,H ) = (δ ,ϕ, ,H)∧ (s,s ) ∈ ϕ

safe(W )
def
= ∀ι ∈W.ω. safe(ι) safe(ι) def

= ∀s . (ι .s,s ) ∈ ι .ϕ ⇒ s /∈ ι .

consistent(W )
def
= ι ∈W.ω. ι .s ∈ ι .

ψ ⊗ψ def
= {(W,h1 h1,h2 h2) | (W,h1,h2) ∈ ψ ∧ (W,h1,h2) ∈ ψ }

(h1,h2) : W
def
= h1 : W.Σ1 h2 : W.Σ2 ∧ (W.k > 0 ⇒ ( W,h1,h2) ∈ {ι .H(ι .s) | ι ∈W.ω})

Fig. 5. Worlds and auxiliary definitions.

it is defined on a particular set of “states of interest”—whether there is other junk

in the State space is irrelevant.

Based on the two transition relations (full and public), we define two notions

of future worlds (aka world extension). First, we say that W ′ extends W , written

W ′ � W , iff it contains the same islands as W (and possibly more), and for each

island in W , the new state s′ of that island in W ′—which is the only aspect of the

22 D. Dreyer et al.

V α ρ def
= ρ(α).r

V b ρ def
= {(W,v,v) ∈ TermAtom[b,b]}

V τ ×τ ρ def
= {(W, v1,v1 , v2,v2 ) ∈ TermAtom[ρ1(τ ×τ ),ρ2(τ ×τ )] |

(W,v1,v2) ∈ V τ ρ ∧ (W,v1,v2) ∈ V τ ρ}
V τ → τ ρ def

= {(W,λx:τ1.e1,λx:τ2.e2) ∈ TermAtom[ρ1(τ → τ),ρ2(τ → τ)] |
∀W ,v1,v2. W W ∧ (W ,v1,v2) ∈ V τ ρ ⇒
(W ,e1[v1/x],e2[v2/x]) ∈ E τ ρ}

V ∀α.τ ρ def
= {(W,Λα.e1,Λα.e2) ∈ TermAtom[ρ1(∀α.τ),ρ2(∀α.τ)] |

∀W W. ∀(τ1,τ2,r) ∈ SomeValRel.
(W ,e1[τ1/α],e2[τ2/α]) ∈ E τ ρ,α (τ1,τ2,r)}

V ∃α.τ ρ def
= {(W,pack τ1,v1 as τ1,pack τ2,v2 as τ2) ∈ TermAtom[ρ1(∃α.τ),ρ2(∃α.τ)] |

∃r. (τ1,τ2,r) ∈ SomeValRel∧ (W,v1,v2) ∈ V τ ρ,α (τ1,τ2,r)}
V µα.τ ρ def

= {(W, rollτ1 v1, rollτ2 v2) ∈ TermAtom[ρ1(µα.τ),ρ2(µα.τ)] |
(W,v1,v2) ∈ V τ [µα.τ/α] ρ}

V ref τ ρ def
= {(W, l1, l2) ∈ TermAtom[ρ1(ref τ),ρ2(ref τ)] | ∃i. ∀W W.

(l1, l2) ∈ bij(W (i).s)∧∃ψ. W (i).H(W (i).s) =
ψ ⊗{(W ,{l1 v1},{l2 v2}) ∈ HeapAtom | (W ,v1,v2) ∈ V τ ρ}}

O
def
= {(W,e1,e2) | ∀h1,h2. (h1,h2) : W h1;e1

<W.k⇒ consistent(W ) h2;e2

K τ ρ def
= {(W,K1,K2) ∈ ContAtom[ρ1(τ),ρ2(τ)] |

∀W ,v1,v2. W pub W ∧ (W ,v1,v2) ∈ V τ ρ ⇒ (W ,K1[v1],K2[v2]) ∈ O}

E τ ρ def
= {(W,e1,e2) ∈ TermAtom[ρ1(τ),ρ2(τ)] |

∀K1,K2. (W,K1,K2) ∈ K τ ρ ⇒ (W,K1[e1],K2[e2]) ∈ O}

G · ρ def
= {(W, /0) | W ∈ World}

G Γ,x:τ ρ def
= {(W,(γ ,x (v1,v2))) | (W,γ) ∈ G Γ ρ ∧ (W,v1,v2) ∈ V τ ρ}

D · def
= { /0}

D ∆,α def
= {ρ,α R | ρ ∈ D ∆ ∧R ∈ SomeValRel}

S · def
= World

Σ;∆;Γ e1 log e2 : τ def
= Σ;∆;Γ e1 : τ ∧Σ;∆;Γ e2 : τ ∧

∀W,ρ,γ . W ∈ S Σ ∧ρ ∈ D ∆ ∧ (W,γ) ∈ G Γ ρ ⇒
(W,ρ1γ1e1,ρ2γ2e2) ∈ E τ ρ

S Σ, l:τ def
= S Σ ∩{W ∈ World | (W, l, l) ∈ V ref τ /0}}

Fig. 6. A step-indexed biorthogonal Kripke logical relation for HOS.

Our formulation of V�ref τ�ρ is slightly different from ADR’s and a bit more

flexible—e.g., ours can be used to prove Bohr’s “local state release” example (Bohr,

2007) (see the technical appendix, Dreyer et al., 2012), whereas ADR’s cannot—

but this added flexibility does not affect any of our “headlining” examples from

Sections 3–6.

As explained in Section 4, the value relation is lifted to a term relation via

biorthogonality. Concretely, we define the continuation relation K�τ�ρ based on

V�τ�ρ, and then the term relation E�τ�ρ based on K�τ�ρ:

This approach to type safety is called semantic type safety

It has been used for reasoning about correctness of the Rust type system.

See Derek Dreyer’s POPL’18 keynote for more details.
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Example: Shared Memory Concurrency

Consider the following concurrent program where threads share memory:

let c = ref 0 in

(faa c 1‖faa c 2) ;
! c

atomic fetch and add operation
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Example: Shared Memory Concurrency

Consider the following concurrent program where threads share memory:

{True}
let c = ref 0 in

(faa c 1‖faa c 2) ;
! c

{x . x ≥ 0}
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Example: Shared Memory Concurrency

Consider the following concurrent program where threads share memory:
{True}

let c = ref 0 in

{c ↦→ 0}
{∃n. n ≥ 0 ∗ c ↦→ n }

©­­­­­«
{∃n. n ≥ 0 ∗ c ↦→ n }
{∃n. n ≥ 0 ∗ c ↦→ n}

faa c 1

{x . ∃n. n ≥ 0 ∗ c ↦→ n}












{∃n. n ≥ 0 ∗ c ↦→ n }
{∃n. n ≥ 0 ∗ c ↦→ n}

faa ℓ 2

{x . ∃n. n ≥ 0 ∗ c ↦→ n}

ª®®®®®¬
;

{∃n. n ≥ 0 ∗ c ↦→ n }
! c

{x . x ≥ 0}
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Example: Shared Memory Concurrency (Stronger Postcondition)

Can we also prove the following stronger specs for our code?

{True}
let c = ref 0 in

(faa c 1‖faa c 2) ;
! c

{x . x = 3}
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Example: Shared Memory Concurrency (Stronger Postcondition)

Can we also prove the following stronger specs for our code?

{True}
let c = ref 0 in

(faa c 1‖faa c 2) ;
! c

{x . x = 3}

With which invariant should we proceed?

∃n. n ≥ 0 ∗ c ↦→ n c ↦→ 3

Neither works. We need to be able to refer to the value outside the invariant!
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Example: Shared Memory Concurrency (Stronger Postcondition)

Can we also prove the following stronger specs for our code?

{True}
let c = ref 0 in

(faa c 1‖faa c 2) ;
! c

{x . x = 3}

We use user-de�ned resources to de�ne the following:

Sum𝛾 Le�𝛾 Right𝛾

Contr-alloc

` |V∃𝛾 . Sum𝛾 (0) ∗ Le�𝛾 (0) ∗ Right𝛾 (0)
Contr-sum

Sum𝛾 (n) ∗ Le�𝛾 (m) ∗ Right𝛾 (k) ` n = m + k

Contr-incr-left

Sum𝛾 (n) ∗ Le�𝛾 (m) ` |VSum𝛾 (n + k) ∗ Le�𝛾 (m + k)

Contr-incr-right

Sum𝛾 (n) ∗ Right𝛾 (m) ` |VSum𝛾 (n + k) ∗ Right𝛾 (m + k)

Sum of contributions contributions of

the left thread

contributions of

the right thread
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Example: Shared Memory Concurrency (Stronger Postcondition)

Can we also prove the following stronger specs for our code?

{True}
let c = ref 0 in

(faa c 1‖faa c 2) ;
! c

{x . x = 3}
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Example: Shared Memory Concurrency (Stronger Postcondition)

Can we also prove the following stronger specs for our code?

{True}
let c = ref 0 in

{c ↦→ 0}
{c ↦→ 0 ∗ Sum𝛾 (0) ∗ Le�𝛾 (0) ∗ Right𝛾 (0)}
{∃n. c ↦→ n ∗ Sum𝛾 (n) ∗ Le�𝛾 (0) ∗ Right𝛾 (0)}

©­­«
{∃n. c ↦→ n ∗ Sum𝛾 (n) ∗ Le�𝛾 (0)}

faa c 1

{x . Le�𝛾 (1)}









{∃n. c ↦→ n ∗ Sum𝛾 (n) ∗ Right𝛾 (0)}

faa c 2

{x . Right𝛾 (2)}

ª®®¬ ;
{∃n. c ↦→ n ∗ Sum𝛾 (n) ∗ Le�𝛾 (1) ∗ Right𝛾 (2)}
! c

{x . x = 3}
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Proofs and Iris Proof Mode

I I simpli�ed the proofs that I just presented

I However, Iris features a Proof Mode (IPM)

I IPM makes program veri�cation in Coq very

close to what I presented

I To the right: screenshot of the proofs

we just saw in Iris in Coq
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Online resources

I hope this talk has made you interested in

learning more about Iris, separation logic,

program veri�cation, etc.

See http://iris-project.org

Iris Project
Iris is a Higher-Order Concurrent Separation Logic Framework, 

implemented and verified in the Coq proof assistant.

Coq Formalization  Technical Documentation (v3.3)  Mailing List  Chat

Learning Iris  Events  Publications  PhD dissertations  Other material

Iris is a framework that can be used for reasoning about safety of concurrent programs, as the logic in logical relations, to reason
about type-systems, data-abstraction etc. In case of questions, please contact us on the Iris Club list or in our chat room.

Learning Iris
Some useful resources designed to learn Iris and its Coq implementation:

The Iris lecture notes provide a tutorial style introduction to Iris, including a number of exercises (but most of it not in Coq).
The Iris Tutorial at POPL'18 contains a number of exercises to practice the Iris tactics in Coq.
The Iris Tutorial at POPL'20 shows how to use Iris to build logical relations for establishing type safety.

A selection of papers that are suited to get started with Iris:

The Iris From The Ground Up paper contains an extensive description of the rules and the model of the Iris logic.
The Iris Proofmode paper (Section 3) contains a brief tutorial to the Iris tactics in Coq.
The Iris Proof Mode (IPM) / MoSeL and the HeapLang documentation provide a reference of the Iris tactics in Coq.

Events
18 January 2021: Tutorial on Iris at POPL, Virtual
20 January 2020: Tutorial on Proving Semantic Type Soundness in Iris at POPL, New Orleans, USA
28 October–1 November 2019: The First Iris Workshop, Aarhus, Denmark
8 January 2018: Tutorial on Iris at POPL, Los Angeles, USA

Publications
Below, we give an overview of the research that uses Iris one way or another.

Reasoning about Monotonicity in Separation Logic
Amin Timany, Lars Birkedal
In CPP 2021: ACM SIGPLAN International Conference on Certified Programs and Proofs

.pdf  Coq development

Machine-Checked Semantic Session Typing
Jonas Kastberg Hinrichsen, Daniël Louwrink, Robbert Krebbers, Jesper Bengtson
In CPP 2021: ACM SIGPLAN International Conference on Certified Programs and Proofs

Recipient of CPP 2021 Distinguished Paper Award

[preprint] .pdf  Coq development

Efficient and Provable Local Capability Revocation using Uninitialized Capabilities

Aïna Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin Timany, Alix Trieu, Sander Huyghebaert, Dominique
Devriese, Lars Birkedal 
In POPL 2021: ACM SIGPLAN Symposium on Principles of Programming Languages

[preprint] .pdf  Coq formalization

Mechanized Logical Relations for Termination-Insensitive Noninterference
Simon Oddershede Gregersen, Johan Bay, Amin Timany, Lars Birkedal 
In POPL 2021: ACM SIGPLAN Symposium on Principles of Programming Languages

.pdf  technical appendix  Coq formalization

Distributed Causal Memory: Modular Specification and Verification in Higher-Order Distributed Separation
Logic

Léon Gondelman, Simon Oddershede Gregersen, Abel Nieto, Amin Timany, Lars Birkedal 
In POPL 2021: ACM SIGPLAN Symposium on Principles of Programming Languages

.pdf  technical appendix  Coq formalization

Fully Abstract from Static to Gradual
Koen Jacobs, Amin Timany, Dominique Devriese
In POPL 2021: ACM SIGPLAN Symposium on Principles of Programming Languages

.pdf  Coq formalization

A Separation Logic for Effect Handlers
Paulo Emílio de Vilhena, François Pottier
In POPL 2021: ACM SIGPLAN Symposium on Principles of Programming Languages

[preprint] .pdf  Coq formalization

Safe Systems Programming in Rust: The Promise and the Challenge
Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, Derek Dreyer
To appear in CACM

[preprint] .pdf

Cosmo: A Concurrent Separation Logic for Multicore OCaml
Glen Mével, Jacques-Henri Jourdan, François Pottier
In ICFP 2020: ACM SIGPLAN International Conference on Functional Programming

.pdf  website

Scala Step-by-Step: Soundness for DOT with Step-Indexed Logical Relations in Iris
Paolo G. Giarrusso, Léo Stefanesco, Amin Timany, Lars Birkedal, Robbert Krebbers
In ICFP 2020: ACM SIGPLAN International Conference on Functional Programming

.pdf  Coq development  website

Compositional Non-Interference for Fine-Grained Concurrent Programs
Dan Frumin, Robbert Krebbers, Lars Birkedal
In S&P 2021: IEEE Symposium on Security and Privacy

[preprint] .pdf  Coq development

Verifying Concurrent Search Structure Templates
Siddharth Krishna, Nisarg Patel, Dennis Shasha, Thomas Wies
In PLDI 2020: ACM SIGPLAN Conference on Programming Language Design and Implementation

.pdf  Coq development

Aneris: A Mechanised Logic for Modular Reasoning about Distributed Systems
Morten Krogh-Jespersen, Amin Timany, Marit Edna Ohlenbusch, Simon Oddershede Gregersen, Lars Birkedal
In ESOP 2020: European Symposium on Programming

.pdf  technical appendix  Coq development

RustBelt Meets Relaxed Memory
Hoang-Hai Dang, Jacques-Henri Jourdan, Jan-Oliver Kaiser, Derek Dreyer
In POPL 2020: ACM SIGPLAN Symposium on Principles of Programming Languages

.pdf  website

Spy Game: Verifying a Local Generic Solver in Iris
Paulo Emílio de Vilhena, François Pottier, Jacques-Henri Jourdan
In POPL 2020: ACM SIGPLAN Symposium on Principles of Programming Languages

.pdf  Coq development

Actris: Session-Type Based Reasoning in Separation Logic
Jonas Kastberg Hinrichsen, Jesper Bengtson, Robbert Krebbers
In POPL 2020: ACM SIGPLAN Symposium on Principles of Programming Languages

.pdf  Coq development

The Future is Ours: Prophecy Variables in Separation Logic
Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin Timany, Derek Dreyer, Bart Jacobs
In POPL 2020: ACM SIGPLAN Symposium on Principles of Programming Languages

.pdf  website

The High-Level Benefits of Low-Level Sandboxing
Michael Sammler, Deepak Garg, Derek Dreyer, Tadeusz Litak
In POPL 2020: ACM SIGPLAN Symposium on Principles of Programming Languages

.pdf  Coq development

Verifying Concurrent, Crash-Safe Systems with Perennial
Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, Nickolai Zeldovich
In SOSP 2019: ACM Symposium on Operating Systems Principles

.pdf  Coq development

Mechanized Relational Verification of Concurrent Programs with Continuations
Amin Timany, Lars Birkedal
In ICFP 2019: ACM SIGPLAN International Conference on Functional Programming

.pdf  Coq development

Semi-Automated Reasoning About Non-Determinism in C Expressions
Dan Frumin, Léon Gondelman, Robbert Krebbers
In ESOP 2019: European Symposium on Programming

.pdf  Coq development  website  slides

Time Credits and Time Receipts in Iris
Glen Mével, Jacques-Henri Jourdan, François Pottier
In ESOP 2019: European Symposium on Programming

.pdf  Coq development

Iron: Managing Obligations in Higher-Order Concurrent Separation Logic
Aleš Bizjak, Daniel Gratzer, Robbert Krebbers, Lars Birkedal
In POPL 2019: ACM SIGPLAN Symposium on Principles of Programming Languages

.pdf  Coq development  website

A Separation Logic for Concurrent Randomized Programs
Joseph Tassarotti, Robert Harper
In POPL 2019: ACM SIGPLAN Symposium on Principles of Programming Languages

.pdf  Coq development

Iris from the Ground Up: A Modular Foundation for Higher-Order Concurrent Separation Logic ("Iris 3.1")
Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, Derek Dreyer
Journal of Functional Programming (JFP), Volume 28, e20, November 2018 
This is a significantly revised and expanded synthesis of the Iris 2.0 and 3.0 papers.

.pdf  technical appendix

MoSeL: A General, Extensible Modal Framework for Interactive Proofs in Separation Logic

Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-Oliver Kaiser, Amin Timany, Arthur
Charguéraud, Derek Dreyer
In ICFP 2018: ACM SIGPLAN International Conference on Functional Programming

.pdf  website

Mtac2: Typed Tactics for Backward Reasoning in Coq
Jan-Oliver Kaiser, Beta Ziliani, Robbert Krebbers, Yann Régis-Gianas, Derek Dreyer
In ICFP 2018: ACM SIGPLAN International Conference on Functional Programming 
Section 5 contains a case study using the Iris Proof Mode.

.pdf  website

ReLoC: A Mechanised Relational Logic for Fine-Grained Concurrency
Dan Frumin, Robbert Krebbers, Lars Birkedal
In LICS 2018: ACM/IEEE Symposium on Logic in Computer Science 

.pdf  website  Coq development  slides

RustBelt: Securing the Foundations of the Rust Programming Language
Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, Derek Dreyer
In POPL 2018: ACM SIGPLAN Symposium on Principles of Programming Languages

.pdf  website

A Logical Relation for Monadic Encapsulation of State: Proving contextual equivalences in the presence of
runST

Amin Timany, Léo Stefanesco, Morten Krogh-Jespersen, Lars Birkedal
In POPL 2018: ACM SIGPLAN Symposium on Principles of Programming Languages

.pdf  Coq development

On Models of Higher-Order Separation Logic
Aleš Bizjak, Lars Birkedal
In MFPS 2017: Mathematical Foundations of Programming Semantics

.pdf

Robust and Compositional Verification of Object Capability Patterns
David Swasey, Deepak Garg, Derek Dreyer
In OOPSLA 2017: ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications

Recipient of OOPSLA 2017 Distinguished Paper Award

[preprint] .pdf  Coq development  Coq development (VM)

Strong Logic for Weak Memory: Reasoning About Release-Acquire Consistency in Iris
Jan-Oliver Kaiser, Hoang-Hai Dang, Derek Dreyer, Ori Lahav, Viktor Vafeiadis
In ECOOP 2017: European Conference on Object-Oriented Programming

Recipient of ECOOP 2017 Distinguished Paper Award

.pdf  website

A Higher-Order Logic for Concurrent Termination-Preserving Refinement
Joseph Tassarotti, Ralf Jung, Robert Harper
In ESOP 2017: European Symposium on Programming

.pdf  website  arXiv

The Essence of Higher-Order Concurrent Separation Logic ("Iris 3.0")
Robbert Krebbers, Ralf Jung, Aleš Bizjak, Jacques-Henri Jourdan, Derek Dreyer, Lars Birkedal
In ESOP 2017: European Symposium on Programming

.pdf  technical appendix  Coq development

Interactive Proofs in Higher-Order Concurrent Separation Logic ("Iris Proof Mode")
Robbert Krebbers, Amin Timany, Lars Birkedal
In POPL 2017: ACM SIGPLAN Symposium on Principles of Programming Languages

.pdf

A Relational Model of Types-and-Effects in Higher-Order Concurrent Separation Logic
Morten Krogh-Jespersen, Kasper Svendsen, Lars Birkedal
In POPL 2017: ACM SIGPLAN Symposium on Principles of Programming Languages

.pdf  technical appendix

Higher-Order Ghost State ("Iris 2.0")
Ralf Jung, Robbert Krebbers, Lars Birkedal, Derek Dreyer
In ICFP 2016: ACM SIGPLAN International Conference on Functional Programming

.pdf  technical appendix (1/2)  technical appendix (2/2)  Coq development  talk on youtube  slides

Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning ("Iris 1.0")
Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal, Derek Dreyer
In POPL 2015: ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

.pdf  technical appendix  (historic) Coq formalization  publisher's site  slides

PhD dissertations
Understanding and Evolving the Rust Programming Language
Ralf Jung
MPI-SWS and Saarbrücken Graduate School of Computer Science, August 2020

website

Compositional Abstractions for Verifying Concurrent Data Structures
Siddharth Krishna
New York University, September 2019

.pdf

Verifying Concurrent Randomized Algorithms
Joseph Tassarotti
Carnegie Mellon University, January 2019

.pdf

Towards Modular Reasoning for Stateful and Concurrent Programs
Morten Krogh-Jespersen
Aarhus University, September 2018

.pdf

Contributions in Programming Languages Theory
Amin Timany
KU Leuven, May 2018

.pdf

Other material
Draft papers:

Transfinite Iris: Resolving an Existential Dilemma of Step-Indexed Separation Logic
Simon Spies, Lennard Gäher, Daniel Gratzer, Joseph Tassarotti, Robbert Krebbers, Derek Dreyer, Lars Birkedal 
Submitted for publication

[preprint] .pdf  website  Coq development

RefinedC: A Foundational Refinement Type System for C Based on Separation Logic Programming
Michael Sammler, Rodolphe Lepigre, Robbert Krebbers, Kayvan Memarian, Derek Dreyer, Deepak Garg
Submitted for publication

[preprint] .pdf  website  Coq development

Actris 2.0: Asynchronous Session-Type Based Reasoning in Separation Logic
Jonas Kastberg Hinrichsen, Jesper Bengtson, Robbert Krebbers
Submitted for publication

[preprint] .pdf  Coq development

ReLoC Reloaded: A Mechanized Relational Logic for Fine-Grained Concurrency and Logical Atomicity
Dan Frumin, Robbert Krebbers, Lars Birkedal
Submitted for publication 

[preprint] .pdf  website  Coq development

Case studies, MSc theses, abstracts, talks:

Mechanized Reasoning about a Capability Machine
Aina Linn Georges, Alix Trieu, Lars Birkedal
Extended Abstract for talk at PRISC 2020: Principles of Secure Compilation

.pdf

Verifying a Concurrent Data-Structure from the Dartino Framework
Morten Krogh-Jespersen, Thomas Dinsdale-Young, Lars Birkedal

.pdf  Coq development

Formalizing Concurrent Stacks With Helping: A Case Study In Iris
Daniel Gratzer, Mathias Høier, Aleš Bizjak, Lars Birkedal

.pdf  Coq development

Verifying Hash Tables in Iris
Esben Glavind Clausen
Master's thesis at Aarhus University supervised by Lars Birkedal, June 2017

.pdf

Logical Relations in Iris
Amin Timany, Robbert Krebbers, Lars Birkedal
At CoqPL 2017: The Third International Workshop on Coq for Programming Languages, Paris, France

abstract  Coq development

Unifying Worlds and Resources
Ralf Jung, Derek Dreyer
At HOPE 2015: 4th ACM SIGPLAN Workshop on Higher-Order Programming with Effects, Vancouver, Canada

talk on youtube  slides

Main research groups involved

Grants
The Iris project has been supported by the following grants:

iris-project.org is maintained by Logic and Semantics group, Computer Science @ Aarhus University
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[5] 

[6] 

Logic and Semantics Group 
Contact: Lars Birkedal

Foundations of Programming
Group

Contact: Derek Dreyer

Department of Software Science
Contact: Robbert Krebbers

ModuRes
Modular Reasoning about Concurrent Higher-Order

Imperative Programs

Grants from The Danish Council for Independent
Research, Sapere Aude: DFF–Advanced Grant 2013
(more Information)

RustBelt
Logical Foundations for the Future of Safe Systems

Programming

2015 ERC Consolidator Grant (more information)
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I Iris Tutorial material

I Iris related publications

I PhD theses that include Iris works

I Other manuscripts

See https://cs.au.dk/~timany/talks/plmw21/
I These slides

I A list of Iris related talks at POPL’21

http://iris-project.org
https://cs.au.dk/~timany/talks/plmw21/
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Iris related talks at POPL’21 and co-events (Time in CET)

Thanks.
Toward Complete Stack Safety for Capability Machines @PriSC, on 17th at 20:12
Aïna Linn Georges, Armaël Guéneau, Alix Trieu, Lars Birkedal

Contextual Re�nement of the Micheal-Scott Queue (Proof Pearl) @CPP, on 18th at 17:00
Amin Timany, Lars Birkedal

Reasoning About Monotonicity in Separation Logic @CPP, on 18th at 17:15
Amin Timany, Lars Birkedal

[T4] Iris – A Modular Foundation for Higher-Order Concurrent Separation Logic @Tutorial, on 18th at 18:00
Tej Chajed, Ralf Jung, Joseph Tassarotti

Machine-Checked Semantic Session Typing @CPP, on 18th at 18:30
Jonas Kastberg Hinrichsen, Daniël Louwrink, Robbert Krebbers, Jesper Bengtson

Fully Abstract from Static to Gradual @POPL, on 20th at 16:00
Koen Jacobs, Amin Timany, Dominique Devriese

E�cient and Provable Local Capability Revocation using Uninitialized Capabilities @POPL, on 21st at 16:00
Aïna Linn Georges, Armaël Guéneau, Thomas Van Strydonck, Amin Timany, Alix Trieu, Sander Huyghebaert,
Dominique Devriese, Lars Birkedal

Mechanized Logical Relations for Termination-Insensitive Noninterference @POPL, on 21st at 16:10
Simon Oddershede Gregersen, Johan Bay, Amin Timany, Lars Birkedal

A Separation Logic for E�ect Handlers @POPL, on 22nd at 16:15
Paulo Emílio de Vilhena, François Pottier

Distributed Causal Memory: @POPL, on 22nd at 16:15
Modular Speci�cation and Veri�cation in Higher-Order Distributed Separation Logic
Léon Gondelman, Simon Oddershede Gregersen, Abel Nieto, Amin Timany, Lars Birkedal


