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Why Study Programs?
Software correctness is essential for security

• Bugs, compromising security can occur in implementations, even if the high-level 
models and protocols are correct.


• Example: the infamous Hearbleed bug


• A memory safety bug


• The entire stack should be secure


• February 2024: the White House issued a memorandum 
recommending memory safety and using formal methods

Hardware Security

Software Correctness

Secure Algorithms, 
Models, Protocols, etc.
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Example of Security Vulnerability in Implementation: Heartbleed

A bug in OpenSSL’s implementation of the heartbeat feature:

! One side sends a heartbeat request message m together with a number l
! The other side sends the !rst l characters of m back to signal that it is alive

A simpli!ed version implementation:
void answer__heartbeat(SSL *req, unsigned int l){
if(l > req->length){return;}
send__reply(l, req->data);

}

What happens if l > length(m)?

m->data Other data in memory including passwords, security keys, etc.

l bytes

Memory:

The !x

This is a memory violation and would have been
caught had the program been veri!ed.

Formal and foundational techniques

apply to the entire stack



Why Study Programs?
Not just security: robustness of infrastructural software

• Some companies, notably AWS, have 
embraced formal reasoning


• The formal guarantees give them a 
competitive edge in the market
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Why Study Programs?
Not just security: robustness of infrastructural software

• Some companies have not


• Leading to data corruption, service unavailability, etc.


• Can incur to a hefty cost


• Catastrophic example: the CrowdStrike outage


• Affected the operation of airports, hospitals, etc.


• Another memory safety bug
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Photo by the user Smishra1 on wikimedia.org under under the Creative 
Commons Attribution-Share Alike 4.0 International license.

Blue screens of death at LGA airport from 
the CrowdStrike 2024 July outage



How Do We Prove a Program Correct?
This program should compute n!
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// assume n > 0, i = 1, f = 1
while(i <= n){
    f = f * i;
    i = i + 1;
}
// f = n!



How Do We Prove a Program Correct?
This program should compute n!
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// assume n > 0, i = 1, f = 1

while(i <= n){

    f = f * i;

    i = i + 1;

}

// f = n!

n > 0 ∧ f = (i − 1)! ∧ i ≤ n + 1

n > 0 ∧ f = (i − 1)! ∧ i ≤ n

n > 0 ∧ f = i! ∧ i ≤ n

n > 0 ∧ f = (i − 1)! ∧ i ≤ n + 1

n > 0 ∧ f = (i − 1)! ∧ i ≤ n + 1 ∧ i > n

Key Insight: 

For each statement C, 
if the condition above C holds, 
then after running C the condition below it holds
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// assume n > 0, i = 1, f = 1

while(i <= n){

    f = f * i;

    i = i + 1;

}

// f = n!

n > 0 ∧ f = (i − 1)! ∧ i ≤ n + 1

n > 0 ∧ f = (i − 1)! ∧ i ≤ n

n > 0 ∧ f = i! ∧ i ≤ n

n > 0 ∧ f = (i − 1)! ∧ i ≤ n + 1

n > 0 ∧ f = (i − 1)! ∧ i ≤ n + 1 ∧ i > n

Generalized

Key Insight: 

For each statement C, 
if the condition above C holds, 
then after running C the condition below it holds



How Do We Prove a Program Correct?
This program should compute n!
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// assume n > 0, i = 1, f = 1

while(i <= n){

    f = f * i;

    i = i + 1;

}

// f = n!

n > 0 ∧ f = (i − 1)! ∧ i ≤ n + 1

n > 0 ∧ f = (i − 1)! ∧ i ≤ n

n > 0 ∧ f = i! ∧ i ≤ n

n > 0 ∧ f = (i − 1)! ∧ i ≤ n + 1

n > 0 ∧ f = (i − 1)! ∧ i ≤ n + 1 ∧ i > n

Key Insight: 

For each statement C, 
if the condition above C holds, 
then after running C the condition below it holds

Loop Invariant



How Do We Prove a Program Correct?
This program should compute n!
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// assume n > 0, i = 1, f = 1

while(i <= n){

    f = f * i;

    i = i + 1;

}

// f = n!

n > 0 ∧ f = (i − 1)! ∧ i ≤ n + 1

n > 0 ∧ f = (i − 1)! ∧ i ≤ n

n > 0 ∧ f = i! ∧ i ≤ n

n > 0 ∧ f = (i − 1)! ∧ i ≤ n + 1

n > 0 ∧ f = (i − 1)! ∧ i ≤ n + 1 ∧ i > n

Same as before the loop + 
the condition holds

Key Insight: 

For each statement C, 
if the condition above C holds, 
then after running C the condition below it holds



How Do We Prove a Program Correct?
This program should compute n!
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// assume n > 0, i = 1, f = 1

while(i <= n){

    f = f * i;

    i = i + 1;

}

// f = n!

n > 0 ∧ f = (i − 1)! ∧ i ≤ n + 1

n > 0 ∧ f = (i − 1)! ∧ i ≤ n

n > 0 ∧ f = i! ∧ i ≤ n

n > 0 ∧ f = (i − 1)! ∧ i ≤ n + 1

n > 0 ∧ f = (i − 1)! ∧ i ≤ n + 1 ∧ i > n

Same as before the loop + 
the condition doesn’t hold

Key Insight: 

For each statement C, 
if the condition above C holds, 
then after running C the condition below it holds



How Do We Prove a Program Correct?
This program should compute n!
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// assume n > 0, i = 1, f = 1

while(i <= n){

    f = f * i;

    i = i + 1;

}

// f = n!

n > 0 ∧ f = (i − 1)! ∧ i ≤ n + 1

n > 0 ∧ f = (i − 1)! ∧ i ≤ n

n > 0 ∧ f = i! ∧ i ≤ n

n > 0 ∧ f = (i − 1)! ∧ i ≤ n + 1

n > 0 ∧ f = (i − 1)! ∧ i ≤ n + 1 ∧ i > n

Key Insight: 

For each statement C, 
if the condition above C holds, 
then after running C the condition below it holds

Implies



Factorial: The First Program Verified
[Turing 1949]: Checking a Large Routine

• Verifies a factorial program with two nested loops


• Uses a “flow diagram” to write the program


• Turing’s work goes unnoticed for decades
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Floyd Independently Rediscovers Turing’s Ideas
[Floyd 1967]: Assigning Meaning to Programs

• Introduces verification conditions: 


• Describes how to massage verification conditions 
so that  they match (can be laid on a flow chart)

Vc(P, Q)
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K J J J J ú D ? =

ASSIGNING MEANINGS OF PROGRAMS 

- - - - - - - - n E J+ (J+ is the set of positive integers) 

--------n E J+ /\ i = 1/\8 = 0 
i-I 

--------nEJ+ /\iEJ+ /\i ú å H =1/\8= Laj 

j-I 

i-I n 

67 

úÉ ë =
- - - n E J+ /\ i = n + 1/\8 = L aj; Le., 8 = L aj 

j-I j_1 
HALT 

i-I 

--------nEJ+ /\i E J+ /\i ú =n/\8 = L aj 

j-I 

i 

--------n E J+ /\ i EJ+ /\i ú =n/\8 = L aj 

j-I 

i<-i+1 i-I 

--------n EJ+ /\iEJ+ /\2 ú =i ú =n + 1/\8 = L aj 

j-I 

Fig. 1. Flowchart of program to compute S = l: 1- I aj (n ú =0). 

statement is entered, the tag of the exit selected will be true after 
execution of the statement. 

A counterexample to a particular interpretation of a single command 
is an assignment of values (e.g., numbers in most programming lan-
guages) to the free variables of the interpretation, and a choice of 
entrance, such that on entry to the command, the tag of the entrance is 
true, but on exit, the tag of the exit is false for the (possibly altered) 
values of the free variables. A semantic definition is consistent if there 
is no counterexample to any interpretation of any command which 
satisfies its verification condition. A semantic definition is complete if 
there is a counterexample to any interpretation of any command which 



Hoare Builds on Floyd’s work
[Hoare 1969]: An Axiomatic Basis for Computer Programming

• Abandons flow charts


• An axiomatic system based on “Hoare triples”: 


• Hoare emphasizes modularity


• Decompose the problem into smaller, more manageable parts


• Proof reuse

{P}e{Q}
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{P}e1{Q} {Q}e2{R}
{P}e1; e2{R}

{I ∧ B}e{I}
{I}𝚆𝚑𝚒𝚕𝚎(B)𝚍𝚘 e{I ∧ ¬B}



Separation Logic: Reasoning About Aliasing
[Reynolds 2002]: Separation Logic: A Logic for Shared Mutable Data Structures 
[O’Hearn 2004]: Resources, Concurrency and Local Reasoning

• Our earlier argument was not very rigorous


• We are implicitly relying on non-aliasing


• Memory storing , , and  are disjointn f i
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// assume n > 0, i = 1, f = 1

while(i <= n){

    f = f * i;

    i = i + 1;

// f = n!

n > 0 ∧ f = (i − 1)! ∧ i ≤ n + 1

n > 0 ∧ f = (i − 1)! ∧ i ≤ n

n > 0 ∧ f = i! ∧ i ≤ n

n > 0 ∧ f = (i − 1)! ∧ i ≤ n + 1

n > 0 ∧ f = (i − 1)! ∧ i ≤ n + 1 ∧ i > n

}



Separation Logic: Reasoning About Aliasing
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// assume n > 0, i = 1, f = 1

while(i <= n){

    f = f * i;

    i = i + 1;

}

// f = n!

n > 0 ∧ f = (i − 1)! ∧ i ≤ n + 1

n > 0 ∧ f = (i − 1)! ∧ i ≤ n

n > 0 ∧ f = i! ∧ i ≤ n

n > 0 ∧ f = (i − 1)! ∧ i ≤ n + 1

n > 0 ∧ f = (i − 1)! ∧ i ≤ n + 1 ∧ i > n

[Reynolds 2002]: Separation Logic: A Logic for Shared Mutable Data Structures 
[O’Hearn 2004]: Resources, Concurrency and Local Reasoning



Separation Logic: Reasoning About Aliasing
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// assume n > 0, i = 1, f = 1

while(i <= n){

    f = f * i;

    i = i + 1;

// f = n!

n ↦ 𝕂 ⋆ 𝕂 > 0 ⋆ f ↦ (𝕃 − 1)! ⋆ i ↦ 𝕃 ⋆ 𝕃 ≤ 𝕂 + 1

n ↦ 𝕂 ⋆ 𝕂 > 0 ⋆ f ↦ (𝕃 − 1)! ⋆ i ↦ 𝕃 ⋆ 𝕃 ≤ 𝕂

n ↦ 𝕂 ⋆ 𝕂 > 0 ⋆ f ↦ 𝕃! ⋆ i ↦ 𝕃 ⋆ 𝕃 ≤ 𝕂

n ↦ 𝕂 ⋆ 𝕂 > 0 ⋆ f ↦ 𝕃! ⋆ i ↦ 𝕃 + 1 ⋆ 𝕃 ≤ 𝕂

n ↦ 𝕂 ⋆ 𝕂 > 0 ⋆ f ↦ (𝕃 − 1)! ⋆ i ↦ 𝕃 ⋆ 𝕃 ≤ 𝕂 + 1 ⋆ 𝕃 > 𝕂
}

Key Points: 

Distinguish between 
address and value:  

Separating conjunction: 

↦

⋆

[Reynolds 2002]: Separation Logic: A Logic for Shared Mutable Data Structures 
[O’Hearn 2004]: Resources, Concurrency and Local Reasoning



Verification of Concurrent and Distributed Programs
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Taken from wikimedia.org, by Ilya Sergey
Description by the author: This image depicts the "flow of ideas" that have been implemented in various logical frameworks for proving correctness of concurrent 
and distributed programs.



My Work
Investigating and developing the logical foundations of program verification
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• Aneris: a framework for reasoning about distributed systems [ESOP’2020]

• A verified load balancer

• A verified two-phase commit protocol


• Verified causally-consistent distributed key-value store [POPL’21]

• Verified conflict-free replicated data types (CRDTs) [OOPSLA’22; ECOOP’23]

• Reliable communication on top of an unreliable channel [ICFP’23]


Current/future work 

• Verified transactional databases

• Verified transport protocols (QUIC)

• Liveness properties of distributed systems (using Trillium) 

Verification of Distributed Systems (the Aneris project)

• Trillium: a framework for establishing refinement [POPL’24]

• Verification of a consensus algorithm against TLA+ specs

• Proof of termination of concurrent programs


Current/future work


• Modular verification of liveness properties of concurrent 
and distributed systems

Refinement-Based Reasoning (the Trillium project)

• Reasoning about non-interference (programs don’t leak secrets) [POPL’21]

• Using hardware capabilities to enforce security of control flow [POPL’21]

• Using hardware capabilities to secure DMA devices [CSF’22]

• Purity in the presence of encapsulated memory access [OOPSLA’22]

• Using capabilities to confine untrusted (attacker) code [JACM 2023]

• Robust safety of core Hafnium functionalities (Google’s hypervisor) [PLDI’23]

• Logical characterization of call stacks (well-bracketedness of control) [POPL’24]

• Denotational semantics suitable higher-order language interactions [POPL’24]

• A logical approach to type soundness [JACM 2024]


Current/future work 

• Extending denotational semantics to other effects

• Correctness and security of compilers

Language-level properties and security



Verification of Distributed Systems
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The Aneris Program Logic
[Krogh-Jespersen, Timany, Ohlenbusch, Gregersen, and Birkedal 2020]: Aneris: A Mechanised Logic for Modular Reasoning about 
Distributed Systems.

• The key to Aneris’s modularity (in addition to Hoare triples, separation logic, etc.):


• so-called “socket protocols”


• Sending message  to address : we should prove 


• Receiving message  on a socket bound to : we know 

m a Φ(m)

m a Φ(m)

15

The address
The socket protocol, a 
predicate on messages 

a⤇Φ



The Aneris Program Logic
[Krogh-Jespersen, Timany, Ohlenbusch, Gregersen, and Birkedal 2020]: Aneris: A Mechanised Logic for Modular Reasoning about 
Distributed Systems.
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• A verified load balancer


• What is a good specification for a general-purpose load balancer?


• Should act exactly as the server does

18 Krogh-Jespersen et al.

5 Case Study 1: A Load Balancer

AnerisLang supports concurrent execution of threads on nodes through the
fork {e} primitive. We will illustrate the benefits of node-local concurrency
by presenting an example of server-side load balancing.

Load balancer

C1

...

Cn

Clients

z0

z1T1 : serve

zkTk : serve

...
...

S1

Sk

Servers

socket node
communication thread

Fig. 4. The architecture of a distributed system with a load balancer and two servers.

Implementation. In the case of server-side load balancing, the work distribution
is implemented by a program listening on a socket that clients send their requests
to. The program forwards the requests to an available server, waits for the
response from the server, and sends the answer back to the client. In order to
handle requests from several clients simultaneously, the load balancer can employ
concurrency by forking off a new thread for every available server in the system
that is capable of handling such requests. Each of these threads will then listen
for and forward requests. The architecture of such a system with two servers and
n clients is illustrated in Fig. 4.

An implementation of a load balancer is shown in Fig. 5. The load balancer is
parameterized over an IP address, a port, and a list of servers. It creates a socket
(corresponding to z0 in Fig. 4), binds the address, and folds a function over the
list of servers. This function forks off a new thread (corresponding to T1 and T2

in Fig. 4) for each server that runs the serve function with the newly-created
socket, the given IP address, a fresh port number, and a server as arguments.

The serve function creates a new socket (corresponding to z1 and z2 in Fig. 4),
binds the given address to the socket, and continuously tries to receive a client
request on the main socket (z0) given as input. If a request is received, it forwards
the request to its server and waits for an answer. The answer is passed on to
the client via the main socket. In this way, the entire load balancing process is
transparent to the client, whose view will be the same as if it was communicating
with just a single server handling all requests itself as the load balancer is simply
relaying requests and responses.

Specification and Protocols. To provide a general, reusable specification of the
load balancer, we will parameterize its socket protocol by two predicates Pin

and Pout that are both predicates on a message m and a meta-language value



The Aneris Program Logic
[Krogh-Jespersen, Timany, Ohlenbusch, Gregersen, and Birkedal 2020]: Aneris: A Mechanised Logic for Modular Reasoning about 
Distributed Systems.
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ΦLB(m) = ΦSRV(m) ⋆ ∃Ψ . 𝗌𝖾𝗇𝖽𝖾𝗋(m)⤇Ψ ⋆ ∀m′ . 𝗌𝖾𝗋𝗏𝖾𝗋_𝗋𝖾𝗌𝗉𝗈𝗇𝗌𝖾(m, m′ ) ⟹ Ψ(m′ )

How do we state this formally?

Higher-order: quantifies over protocols to define a protocol

Necessary for modularity: no need to specify upfront who can contact a node

Accepts any message  accepted by 
the server behind the load balancer

m As long as the sender’s socket 
protocol  accepts server’s responseΨ



Refinement-Based Reasoning to 
Strengthen Program Logics

18



Limitation of Higher-Order Program Logics
[Timany, Gregersen, Stefanesco, Hinrichsen, Gondelman, Nieto, and Birkedal 2024]: Trillium: Higher-Order Concurrent and Distributed 
Separation Logic for Intensional Refinement.

• Safety versus liveness properties


• Safety properties: nothing “bad” ever happens


• Example: the program does not crash


• Liveness properties: something “good” will eventually happen


• Example: the server will eventually respond to all requests


• Trillium: a higher-order program logic capable of liveness reasoning


• This was thought to be impossible prior to Trillium
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Limitation of Higher-Order Program Logics
[Timany, Gregersen, Stefanesco, Hinrichsen, Gondelman, Nieto, and Birkedal 2024]: Trillium: Higher-Order Concurrent and Distributed 
Separation Logic for Intensional Refinement.

20

e0 → e1 → e2 → ⋯P0
P1

P2
P3

When proving , we prove :P ∀n . Pn

This works for safety properties but not liveness.

• Recall the inherent circularity in high-order specs:


• State-of-the-art program logics use the so-called “step-indexing” technique:


• Break the cycle by stratifying the program logic along program execution 

ΦLB(m) = ΦSRV(m) ⋆ ∃Ψ . 𝗌𝖾𝗇𝖽𝖾𝗋(m)⤇Ψ ⋆ ∀m′ . 𝗌𝖾𝗋𝗏𝖾𝗋_𝗋𝖾𝗌𝗉𝗈𝗇𝗌𝖾(m, m′ ) ⟹ Ψ(m′ )



Limitation of Higher-Order Program Logics
[Timany, Gregersen, Stefanesco, Hinrichsen, Gondelman, Nieto, and Birkedal 2024]: Trillium: Higher-Order Concurrent and Distributed 
Separation Logic for Intensional Refinement.
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Trillium: a novel higher-order (based on step-indexing) program logic


• To establish refinements between programs and a high-level models (LTSs)


• Properties (including liveness) satisfied by the LTS are also satisfied by the 
program


• Supports both safety and liveness properties

void incr_loop(unsigned int *p){ 
    while(1) 
        (*p)++; 
}

Refinement

Visits every number arbitrarily many times without skipping

0 1 2 ⋯ UINT_MAX



Formal and Foundational Proofs
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Formal and Foundational Proofs
All proofs we develop are mechanized in the proof assistant Coq

• Why?


• Both the programs we study, and the program logics we use to study them are 
complex and not always intuitive!
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Formal and Foundational Proofs
All proofs we develop are mechanized in the proof assistant Coq

• Why?


• Both the programs we study, and the program logics we use to study them are 
complex and not always intuitive!

• Advantage of using proof assistants:


• You do not need to rely on intuition
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Formal and Foundational Proofs
All proofs we develop are mechanized in the proof assistant Coq

• Why?


• Both the programs we study, and the program logics we use to study them are 
complex and not always intuitive!

• Advantage of using proof assistants:


• You do not need to rely on intuition

• Disadvantage of using proof assistants:


• You cannot rely on intuition

23

5

The Proof Assistant Coq

A proof assistant based on the Calculus of Inductive Constructions
! Coq is itself a programming language:

! Curry-Howard correspondence (types are theorems programs are proofs)
! It has an interesting meta-theory called type theory

! Proofs written and checked against foundational mathematical principles:
! Coq only understands functions and the concept of induction

An example:
! Commutativity of addition for natural numbers

(proven together with Pre-Talent track students)
! Proof automation can help but still this demonstrates

the level of formality

Inductive day :=
| Monday
| Tuesday
| Wednesday
| Thursday
| Friday
| Saturday
| Sunday.

About day.

About Friday.

Definition next_day (d : day) : day :=
  match d with
  | Monday => Tuesday
  | Tuesday => Wednesday
  | Wednesday => Thursday
  | Thursday => Friday
  | Friday => Saturday
  | Saturday => Sunday
  | Sunday => Monday
  end.

Eval compute in next_day Tuesday.
Eval compute in next_day (next_day Tuesday).

Theorem next_day_monday : next_day Monday = Tuesday.
Proof.
  reflexivity.
Qed.

Definition previous_day (d : day) : day :=
  match d with
  | Monday => Sunday
  | Tuesday => Monday
  | Wednesday => Tuesday
  | Thursday => Wednesday
  | Friday => Thursday
  | Saturday => Friday
  | Sunday => Saturday
  end.

Theorem previous_next_day : forall d, previous_day (next_day d) =
d.
Proof.
  intros d; destruct d; reflexivity.
Qed.

Fixpoint plus (n m : nat) : nat :=
match n with
| O => m
| S x => S (plus x m)
end.

Theorem S_plus_one n : S n = plus n 1.
Proof.
  induction n as [|x IHx].
  - simpl. reflexivity.
  - simpl. rewrite IHx. reflexivity.
Qed.

Print "+".

Theorem add_com n m : n + m = m + n.
Proof.
  revert m.
  induction n as [|n IHn].
  - intros m.
    simpl.
    induction m as [|m IHm].
    + simpl. trivial.
    + simpl. rewrite <- IHm. reflexivity.
  - intros m.
    induction m as [|m IHm].
    + simpl.
      rewrite IHn. simpl. reflexivity.
    + simpl.
      rewrite IHn.
      simpl.
      rewrite <- IHm.
      simpl.
      rewrite IHn.
      reflexivity.
Qed.

Theorem add_com' n m : n + m = m + n.
Proof.
  revert m.
  induction n; induction m; auto.
  simpl; rewrite IHn; simpl; rewrite <- IHm; simpl; auto.
Qed.

Require Import Coq.micromega.Lia.

Theorem add_com'' n m : n + m = m + n.
Proof. lia. Qed.

Theorem thm : forall x y, x < y -> (x + y) - 2 * x < 2 * y.
Proof. lia. Qed.

Index

This page has been generated by coqdoc

05/04/2021, 15.51
Page 1 of 1

Proof assistants are the highest standard of rigor for mathematical proofs



Rigor, 
the Foundations of Mathematics, 

and Computer Science
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Conception of Set Theory
[Cantor 1874]: Ueber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen

• Proves that there are different magnitudes of infinity


• 


• 


• This is the beginning of set theory

|Alg | = |ℕ |

|Alg | < |ℝ |

25

Taken from https://
commons.wikimedia.org/wiki/

File:Georg_Cantor3.jpg

Georg Cantor

https://commons.wikimedia.org/wiki/File:Georg_Cantor3.jpg
https://commons.wikimedia.org/wiki/File:Georg_Cantor3.jpg
https://commons.wikimedia.org/wiki/File:Georg_Cantor3.jpg


David Hilbert (1926), about set theory

“From the paradise that Cantor created for us 
no-one shall be able to expel us.”
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Taken from https://
commons.wikimedia.org/wiki/

File:Hilbert.jpg

David Hilbert

https://commons.wikimedia.org/wiki/File:Hilbert.jpg
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Frege Logicizes Arithmetic
[Frege 1884]: Die Grundlagen der Arithmetik 
[Frege 1893, 1902]: Grundgesetze der Arithmetik

• Bases all of arithmetic on set theory and logic

• Allows unrestricted comprehension:


•  where  can be any logical formula{x |P(x)} P

27

Taken from https://
commons.wikimedia.org/wiki/

File:Young_frege.jpg

Gottlob Frege

Taken from https://
commons.wikimedia.org/wiki/

File:Bertrand_Russell_in_1924.jpg

Bertrand Russel

https://commons.wikimedia.org/wiki/File:Young_frege.jpg
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https://commons.wikimedia.org/wiki/File:Young_frege.jpg
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Frege Logicizes Arithmetic
[Frege 1884]: Die Grundlagen der Arithmetik 
[Frege 1893, 1902]: Grundgesetze der Arithmetik

• Bases all of arithmetic on set theory and logic

• Allows unrestricted comprehension:


•  where  can be any logical formula{x |P(x)} P

• In 1902, Russel writes to Frege about a paradox


• Russel’s paradox: define a set  as


•

S

S := {x |x ∉ x}

• Today, set theory, e.g., ZF(C), restricts comprehension
27

Taken from https://
commons.wikimedia.org/wiki/
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Gottlob Frege

Taken from https://
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Types to Avoid Paradoxes
[Whitehead and Russel 1910–1913] Principia Mathematica

• Introduce an infinite hierarchy of types: 


• Individual elements at 


• Allows quantifying over all objects at  to define a 
collection which then is at 


• This is the first explicit, formal use of types in mathematics

tp0, tp1, tp2, …

tp0

tpi
tpi+1
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The Entscheidungsproblem (Decision Problem)
[Hilbert and Ackermann 1928]: Grundzüge der Theoretischen Logik

• Propose that there should be a system for deciding problems


• Axiomatic version: 
an axiomatic system that for any  can prove 

, or can prove 


• Computational version : 
a “program” that for any , can determine 
truth of , e.g., a program that 
returns 1 if  holds, returns 0 if  holds 

P
P ¬P

P
P

P ¬P
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Gödel’s Incompleteness Theorems
[Gödel 1931]: Über Formal Unentscheidbare Sätze der “Pincipia Mathematica” und Verwandter Systeme I

• A negative answer to the axiomatic version of the Entscheidungsproblem


• Proves that no axiomatic system, expressive enough to include 
arithmetic, can decide all propositions
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Church Proposes a System
[Church 1932]: A Set of Postulates for the Foundation of Logic

• Axioms (postulates) were intended as a sound, but not complete system


•  terms are included for succinct expression of formulasλ
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Church Proposes a System
[Church 1932]: A Set of Postulates for the Foundation of Logic

• Axioms (postulates) were intended as a sound, but not complete system


•  terms are included for succinct expression of formulasλ

• In 1935, Kleene and Rosser found an inconsistency


• In 1935–1936, Church removes the logical parts


• Uses  terms as a model of computation to refute 
Entscheidungsproblem

λ
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Church Proposes a System
[Church 1932]: A Set of Postulates for the Foundation of Logic

• Axioms (postulates) were intended as a sound, but not complete system


•  terms are included for succinct expression of formulasλ

• In 1935, Kleene and Rosser found an inconsistency


• In 1935–1936, Church removes the logical parts


• Uses  terms as a model of computation to refute 
Entscheidungsproblem

λ

• In 1940, Church introduces typed lambda calculus


• As a logical system based on “type theory”
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Models of Computation and the Entscheidungsproblem
[Church 1936]: An Unsolvable Problem of Elementary Number Theory 
[Turing 1936]: On Computable Numbers, with an Application to the Entscheidungsproblem

• Gödel (1935): Herbrand–Gödel general recursive functions


• Church (1935–1936): -calculus


• The first negative answer to computation Entscheidungsproblem


• Turing (1936): Turing machines


• The second negative answer to computation Entscheidungsproblem


• Turing immediately recognizes that his machines are equivalent to -calculus


• Kleene (1936): general recursive functions are equivalent to -calculus 

λ

λ

λ
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Curry-Howard Correspondence
[Curry and Howard, 1934–1969]

• Observed that typed -calculus does not need logical principles added on top of it


• Propositions are types 

• Proofs are programs


•  Observed for propositional logic at first


• Has been extended to a myriad of other systems

λ
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Calculus of Constructions (CoC)
[Coquand, Huet 1986]: The Calculus of Constructions

• A typed -calculus with a very expressive type system (the core of the Coq proof assistant)


• CoC features a single universes (types of types): 


• Terms (programs) have types


• 


• Types are also terms, the universe is the type of types


• 


• 


• 


• CoC is a very strong system for proofs but it has limitations for programming

λ

*

0,1,2,… : nat; add : nat → nat → nat; …

nat : * ; nat → nat → nat : *

True : * ; False : * ;

(∀(n : nat) . Even(n) → Odd(n + 1)) : *
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Extended Calculus of Constructions (ECC)
[Luo, 1990]: An Extended Calculus of Construction

• Keeps the sort , renamed to  only for propositions


• Features a hierarchy of universes


• 


• The hierarchy is predicative (like in Principia)


•  
if  itself is a valid type in 


• The hierarchy is cumulative


• if  and  then 

* Prop

Type0 : Type1 : Type2 : …

(∀x : Typei . A) : Typei+1
A Typei+1

A : Typei i ≤ j A : Typej
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Predicative Calculus of Inductive Constructions (pCIC)
[Pfenning and Paulin-Moring 1990]: Inductively defined types in the Calculus of Constructions 
[Paulin-Moring 1996]: Définitions Inductives en Théorie des Types d'Ordre Supérieur

• Add inductive types to Coq (CoC; ECC)


•  whenever 


• First, only for the impredicative system (CoC)


• Using Church encoding


• Later, added as primitives in all universes

list A : Typei A : Typei
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Predicative Calculus of Cumulative Inductive Constructions (pCuIC)
[Timany and Jacobs 2015]: First Steps Towards Cumulative Inductive Types in CIC 
[Timany and Sozeau 2017-2018]: Cumulative Inductive Types In Coq

• Recall cumulativity: if  and  then A : Typei i ≤ j A : Typej
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Predicative Calculus of Cumulative Inductive Constructions (pCuIC)
[Timany and Jacobs 2015]: First Steps Towards Cumulative Inductive Types in CIC 
[Timany and Sozeau 2017-2018]: Cumulative Inductive Types In Coq

• Recall cumulativity: if  and  then A : Typei i ≤ j A : Typej

• Two versions of , one in  and one in 


• What is the relationship between them? 

list A Typei Typej
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Predicative Calculus of Cumulative Inductive Constructions (pCuIC)
[Timany and Jacobs 2015]: First Steps Towards Cumulative Inductive Types in CIC 
[Timany and Sozeau 2017-2018]: Cumulative Inductive Types In Coq

• Recall cumulativity: if  and  then A : Typei i ≤ j A : Typej

• Two versions of , one in  and one in 


• What is the relationship between them? 

list A Typei Typej

• More interesting, we can use inductive types to define the 
type  of groups whose carrier set (type) is in 


• For , what is the relationship between  and ?

Grpi : Typei Typei

i ≤ j Grpi Grpj
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type  of groups whose carrier set (type) is in 
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Thanks!
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