
1

Iris, Iris proof mode and Program verification in
Iris

Amin Timany1,2

iMec-DistriNet, KU Leuven

IFIP 1.9 meeting

May 12th 2017

KU Leuven

1Iris is joint work with: Ralf Jung, Robbert Krebbers, Jacques-Hendri
Jourdan, Aleš Bizjak, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron
Turon, Derek Dreyer, and Lars Birkedal

2Based on slides of Robebrt Krebbers’ talks at TTT’17 and POPL’17

2

What is Iris?

Language independent higher-order
separation logic with a simple foundations
for modular reasoning about fine-grained
concurrency in Coq.

I Fine-grained concurrency: synchronization primitives and
lock-free data structures are implemented

I Modular: reusable and composable specifications

I Language independent: parametrized by the language

I Simple foundations: small set of primitive rules

I Coq: provides practical support for doing proofs in Iris

2

What is Iris?

Language independent higher-order
separation logic with a simple foundations
for modular reasoning about fine-grained
concurrency in Coq.

I Fine-grained concurrency: synchronization primitives and
lock-free data structures are implemented

I Modular: reusable and composable specifications

I Language independent: parametrized by the language

I Simple foundations: small set of primitive rules

I Coq: provides practical support for doing proofs in Iris

2

What is Iris?

Language independent higher-order
separation logic with a simple foundations
for modular reasoning about fine-grained
concurrency in Coq.

I Fine-grained concurrency: synchronization primitives and
lock-free data structures are implemented

I Modular: reusable and composable specifications

I Language independent: parametrized by the language

I Simple foundations: small set of primitive rules

I Coq: provides practical support for doing proofs in Iris

2

What is Iris?

Language independent higher-order
separation logic with a simple foundations
for modular reasoning about fine-grained
concurrency in Coq.

I Fine-grained concurrency: synchronization primitives and
lock-free data structures are implemented

I Modular: reusable and composable specifications

I Language independent: parametrized by the language

I Simple foundations: small set of primitive rules

I Coq: provides practical support for doing proofs in Iris

2

What is Iris?

Language independent higher-order
separation logic with a simple foundations
for modular reasoning about fine-grained
concurrency in Coq.

I Fine-grained concurrency: synchronization primitives and
lock-free data structures are implemented

I Modular: reusable and composable specifications

I Language independent: parametrized by the language

I Simple foundations: small set of primitive rules

I Coq: provides practical support for doing proofs in Iris

2

What is Iris?

Language independent higher-order
separation logic with a simple foundations
for modular reasoning about fine-grained
concurrency in Coq.

I Fine-grained concurrency: synchronization primitives and
lock-free data structures are implemented

I Modular: reusable and composable specifications

I Language independent: parametrized by the language

I Simple foundations: small set of primitive rules

I Coq: provides practical support for doing proofs in Iris

3

The versatility of Iris

The scope of Iris goes beyond proving traditional program
correctness using Hoare triples:

I The Rust type system (Jung, Jourdan, Dreyer, Krebbers)

I Logical relations (Krogh-Jespersen, Svendsen, Timany, Birkedal, Tassarotti, Jung, Krebbers)

I Weak memory concurrency (Kaiser, Dang, Dreyer, Lahav, Vafeiadis)

I Object calculi (Swasey, Dreyer, Garg)

I Logical atomicity (Krogh-Jespersen, Zhang, Jung)

I Defining Iris (Krebbers, Jung, Jourdan, Bizjak, Dreyer, Birkedal)

Most of these projects are formalized in Iris in Coq

4

This talk

I Program verification in Iris

I Iris Proof mode: facilitating proofs in Coq

5

Preview of the rules of the Iris base logic
Laws of (affine) bunched implications

True ∗ P a` P
P ∗ Q ` Q ∗ P

(P ∗ Q) ∗ R ` P ∗ (Q ∗ R)
P1 ` Q1 P2 ` Q2

P1 ∗ P2 ` Q1 ∗ Q2

P ∗ Q ` R

P ` Q −∗ R

P ` Q −∗ R

P ∗ Q ` R

Laws for resources and validity

Own(a) ∗ Own(b) a` Own(a · b) True ` Own(ε) Own(a) ` 2 Own(|a|)
Own(a) ` V(a) V(a · b) ` V(a) V(a) ` 2V(a)

Laws for the basic update modality

P ` Q

|VP ` |VQ
P ` |VP |V|VP ` |VP

Q ∗ |VP ` |V(Q ∗ P)
a B

Own(a) ` |V∃b ∈ B.Own(b)

Laws for the always modality

P ` Q

2 P ` 2Q
2 P ` P

True ` 2 True
2 (P ∧ Q) ` 2 (P ∗ Q)
2 P ∧ Q ` 2 P ∗ Q

2 P ` 22 P
∀x. 2 P ` 2 ∀x. P
2 ∃x. P ` ∃x. 2 P

Laws for the later modality

P ` Q

. P ` .Q
(. P ⇒ P) ` P

∀x. . P ` . ∀x. P
. ∃x. P ` . False ∨ ∃x. . P

. (P ∗ Q) a` . P ∗ .Q
2 . P a` .2 P

Laws for timeless assertions

. P ` . False ∨ (. False⇒ P) .Own(a) ` ∃b.Own(b) ∧ .(a = b)

6

Part #1: brief introduction to
concurrent separation logic (CSL)

7

Hoare triples

Hoare triples for partial program correctness:

{P}e{w .Q}

Precondition

Binder for return value

Postcondition

If the initial state satisfies P, then:

I e does not get stuck/crash

I if e terminates with value v , the final state satisfies Q[v/w]

8

Separation logic [O’Hearn, Reynolds, Yang]

The points-to connective x 7→ v

I provides the knowledge that location x has value v , and

I provides exclusive ownership of x

Separating conjunction P ∗ Q: the state consists of disjoint
parts satisfying P and Q

Example:

{x 7→ v1 ∗ y 7→ v2}swap(x, y){w .w = () ∧ x 7→ v2 ∗ y 7→ v1}

the ∗ ensures that x and y are different

8

Separation logic [O’Hearn, Reynolds, Yang]

The points-to connective x 7→ v

I provides the knowledge that location x has value v , and

I provides exclusive ownership of x

Separating conjunction P ∗ Q: the state consists of disjoint
parts satisfying P and Q

Example:

{x 7→ v1 ∗ y 7→ v2}swap(x, y){w .w = () ∧ x 7→ v2 ∗ y 7→ v1}

the ∗ ensures that x and y are different

9

Concurrent separation logic [O’Hearn]

The par rule:
{P1}e1{Q1} {P2}e2{Q2}
{P1 ∗ P2}e1||e2{Q1 ∗ Q2}

For example:
{x 7→ 4 ∗ y 7→ 6}

x := ! x + 2 y := ! y + 2

{x 7→ 6 ∗ y 7→ 8}

Works great for concurrent programs without shared memory:
concurrent quick sort, concurrent merge sort, . . .

9

Concurrent separation logic [O’Hearn]

The par rule:
{P1}e1{Q1} {P2}e2{Q2}
{P1 ∗ P2}e1||e2{Q1 ∗ Q2}

For example:
{x 7→ 4 ∗ y 7→ 6}

x := ! x + 2 y := ! y + 2

{x 7→ 6 ∗ y 7→ 8}

Works great for concurrent programs without shared memory:
concurrent quick sort, concurrent merge sort, . . .

9

Concurrent separation logic [O’Hearn]

The par rule:
{P1}e1{Q1} {P2}e2{Q2}
{P1 ∗ P2}e1||e2{Q1 ∗ Q2}

For example:
{x 7→ 4 ∗ y 7→ 6}

{x 7→ 4} {y 7→ 6}
x := ! x + 2 y := ! y + 2

{x 7→ 6 ∗ y 7→ 8}

Works great for concurrent programs without shared memory:
concurrent quick sort, concurrent merge sort, . . .

9

Concurrent separation logic [O’Hearn]

The par rule:
{P1}e1{Q1} {P2}e2{Q2}
{P1 ∗ P2}e1||e2{Q1 ∗ Q2}

For example:
{x 7→ 4 ∗ y 7→ 6}

{x 7→ 4} {y 7→ 6}
x := ! x + 2 y := ! y + 2
{x 7→ 6} {y 7→ 8}
{x 7→ 6 ∗ y 7→ 8}

Works great for concurrent programs without shared memory:
concurrent quick sort, concurrent merge sort, . . .

9

Concurrent separation logic [O’Hearn]

The par rule:
{P1}e1{Q1} {P2}e2{Q2}
{P1 ∗ P2}e1||e2{Q1 ∗ Q2}

For example:
{x 7→ 4 ∗ y 7→ 6}

{x 7→ 4} {y 7→ 6}
x := ! x + 2 y := ! y + 2
{x 7→ 6} {y 7→ 8}
{x 7→ 6 ∗ y 7→ 8}

Works great for concurrent programs without shared memory:
concurrent quick sort, concurrent merge sort, . . .

10

What about shared state/racy programs?

A classic problem:

{True}

let x = ref(0) in

{x 7→ 0}
{??} {??}

fetchandadd(x, 2) fetchandadd(x, 2)

{??} {??}

! x

{w .w = 4}

Where fetchandadd(x, y) is the atomic version of x := ! x + y.

Problem: can only give ownership of x to one thread

10

What about shared state/racy programs?

A classic problem:

{True}
let x = ref(0) in

{x 7→ 0}
{??} {??}

fetchandadd(x, 2) fetchandadd(x, 2)

{??} {??}

! x
{w .w = 4}

Where fetchandadd(x, y) is the atomic version of x := ! x + y.

Problem: can only give ownership of x to one thread

10

What about shared state/racy programs?

A classic problem:

{True}
let x = ref(0) in
{x 7→ 0}

{??} {??}

fetchandadd(x, 2) fetchandadd(x, 2)

{??} {??}

! x
{w .w = 4}

Where fetchandadd(x, y) is the atomic version of x := ! x + y.

Problem: can only give ownership of x to one thread

10

What about shared state/racy programs?

A classic problem:

{True}
let x = ref(0) in
{x 7→ 0}
{??} {??}
fetchandadd(x, 2) fetchandadd(x, 2)
{??} {??}
! x
{w .w = 4}

Where fetchandadd(x, y) is the atomic version of x := ! x + y.

Problem: can only give ownership of x to one thread

11

Invariants

The invariant assertion R

N

expresses that R is maintained
as an invariant on the state

Invariant opening:

{R ∗ P} e {R ∗ Q}

E

e atomic

R

N

` {P} e {Q}

E]N

Invariant allocation:

R

N

` {P} e {Q}

E

{R ∗ P} e {Q}

E

Technical detail: names are needed to avoid reentrancy, i.e.,
opening the same invariant twice
Other technical detail: the later . is needed to support

impredicative invariants, i.e., . . . R
N2
. . .

N1

11

Invariants

The invariant assertion R

N

expresses that R is maintained
as an invariant on the state

Invariant opening:

{R ∗ P} e {R ∗ Q}

E

e atomic

R

N

` {P} e {Q}

E]N

Invariant allocation:

R

N

` {P} e {Q}

E

{R ∗ P} e {Q}

E

Technical detail: names are needed to avoid reentrancy, i.e.,
opening the same invariant twice
Other technical detail: the later . is needed to support

impredicative invariants, i.e., . . . R
N2
. . .

N1

11

Invariants

The invariant assertion R

N

expresses that R is maintained
as an invariant on the state

Invariant opening:

{R ∗ P} e {R ∗ Q}

E

e atomic

R

N

` {P} e {Q}

E]N

Invariant allocation:

R

N

` {P} e {Q}

E

{R ∗ P} e {Q}

E

Technical detail: names are needed to avoid reentrancy, i.e.,
opening the same invariant twice
Other technical detail: the later . is needed to support

impredicative invariants, i.e., . . . R
N2
. . .

N1

11

Invariants

The invariant assertion R
N

expresses that R is maintained
as an invariant on the state

Invariant opening:

{R ∗ P} e {R ∗ Q}E e atomic

R
N ` {P} e {Q}E]N

Invariant allocation:

R
N ` {P} e {Q}E
{R ∗ P} e {Q}E

Technical detail: names are needed to avoid reentrancy, i.e.,
opening the same invariant twice

Other technical detail: the later . is needed to support

impredicative invariants, i.e., . . . R
N2
. . .

N1

11

Invariants

The invariant assertion R
N

expresses that R is maintained
as an invariant on the state

Invariant opening:

{.R ∗ P} e {.R ∗ Q}E e atomic

R
N ` {P} e {Q}E]N

Invariant allocation:

R
N ` {P} e {Q}E
{.R ∗ P} e {Q}

E

Technical detail: names are needed to avoid reentrancy, i.e.,
opening the same invariant twice
Other technical detail: the later . is needed to support

impredicative invariants, i.e., . . . R
N2
. . .

N1

12

Invariants in action

Let us consider a simpler problem first:

{True}
let x = ref(0) in

{x 7→ 0}
allocate ∃n. x 7→ n ∧ even(n)

{True} {True}
{x 7→ n ∧ even(n)}

fetchandadd(x, 2)

{x 7→ n + 2 ∧ even(n + 2)}

{x 7→ n ∧ even(n)}

fetchandadd(x, 2)

{x 7→ n + 2 ∧ even(n + 2)}
{True} {True}
{x 7→ n ∧ even(n)}

! x

{n. x 7→ n ∧ even(n)}

{n. even(n)}

Problem: still cannot prove it returns 4

12

Invariants in action

Let us consider a simpler problem first:

{True}
let x = ref(0) in
{x 7→ 0}

allocate ∃n. x 7→ n ∧ even(n)

{True} {True}
{x 7→ n ∧ even(n)}

fetchandadd(x, 2)

{x 7→ n + 2 ∧ even(n + 2)}

{x 7→ n ∧ even(n)}

fetchandadd(x, 2)

{x 7→ n + 2 ∧ even(n + 2)}
{True} {True}
{x 7→ n ∧ even(n)}

! x

{n. x 7→ n ∧ even(n)}

{n. even(n)}

Problem: still cannot prove it returns 4

12

Invariants in action

Let us consider a simpler problem first:

{True}
let x = ref(0) in
{x 7→ 0}
allocate ∃n. x 7→ n ∧ even(n)

{True} {True}
{x 7→ n ∧ even(n)}

fetchandadd(x, 2)

{x 7→ n + 2 ∧ even(n + 2)}

{x 7→ n ∧ even(n)}

fetchandadd(x, 2)

{x 7→ n + 2 ∧ even(n + 2)}
{True} {True}
{x 7→ n ∧ even(n)}

! x

{n. x 7→ n ∧ even(n)}

{n. even(n)}

Problem: still cannot prove it returns 4

12

Invariants in action

Let us consider a simpler problem first:

{True}
let x = ref(0) in
{x 7→ 0}
allocate ∃n. x 7→ n ∧ even(n)

{True} {True}

{x 7→ n ∧ even(n)}

fetchandadd(x, 2)

{x 7→ n + 2 ∧ even(n + 2)}

{x 7→ n ∧ even(n)}

fetchandadd(x, 2)

{x 7→ n + 2 ∧ even(n + 2)}

{True} {True}

{x 7→ n ∧ even(n)}

! x

{n. x 7→ n ∧ even(n)}

{n. even(n)}

Problem: still cannot prove it returns 4

12

Invariants in action

Let us consider a simpler problem first:

{True}
let x = ref(0) in
{x 7→ 0}
allocate ∃n. x 7→ n ∧ even(n)

{True} {True}
{x 7→ n ∧ even(n)}
fetchandadd(x, 2)
{x 7→ n + 2 ∧ even(n + 2)}

{x 7→ n ∧ even(n)}

fetchandadd(x, 2)

{x 7→ n + 2 ∧ even(n + 2)}

{True} {True}

{x 7→ n ∧ even(n)}

! x

{n. x 7→ n ∧ even(n)}

{n. even(n)}

Problem: still cannot prove it returns 4

12

Invariants in action

Let us consider a simpler problem first:

{True}
let x = ref(0) in
{x 7→ 0}
allocate ∃n. x 7→ n ∧ even(n)

{True} {True}
{x 7→ n ∧ even(n)}
fetchandadd(x, 2)
{x 7→ n + 2 ∧ even(n + 2)}

{x 7→ n ∧ even(n)}
fetchandadd(x, 2)
{x 7→ n + 2 ∧ even(n + 2)}

{True} {True}

{x 7→ n ∧ even(n)}

! x

{n. x 7→ n ∧ even(n)}

{n. even(n)}

Problem: still cannot prove it returns 4

12

Invariants in action

Let us consider a simpler problem first:

{True}
let x = ref(0) in
{x 7→ 0}
allocate ∃n. x 7→ n ∧ even(n)

{True} {True}
{x 7→ n ∧ even(n)}
fetchandadd(x, 2)
{x 7→ n + 2 ∧ even(n + 2)}

{x 7→ n ∧ even(n)}
fetchandadd(x, 2)
{x 7→ n + 2 ∧ even(n + 2)}

{True} {True}
{x 7→ n ∧ even(n)}
! x
{n. x 7→ n ∧ even(n)}
{n. even(n)}

Problem: still cannot prove it returns 4

12

Invariants in action

Let us consider a simpler problem first:

{True}
let x = ref(0) in
{x 7→ 0}
allocate ∃n. x 7→ n ∧ even(n)

{True} {True}
{x 7→ n ∧ even(n)}
fetchandadd(x, 2)
{x 7→ n + 2 ∧ even(n + 2)}

{x 7→ n ∧ even(n)}
fetchandadd(x, 2)
{x 7→ n + 2 ∧ even(n + 2)}

{True} {True}
{x 7→ n ∧ even(n)}
! x
{n. x 7→ n ∧ even(n)}
{n. even(n)}

Problem: still cannot prove it returns 4

13

Ghost variables
Consider the invariant:

∃n. x 7→ n ∗ . . .

How to relate the quantified value to the state of the threads?

Solution: ghost variables

Ghost variables are allocated in pairs:

True ≡−∗ ∃γ. γ ↪→• n︸ ︷︷ ︸
in the invariant

∗ γ ↪→◦ n︸ ︷︷ ︸
in the Hoare triple

When you own both parts you obtain that the values are equal and
can update both parts:

γ ↪→• n ∗ γ ↪→◦ m ⇒ n = m

γ ↪→• n ∗ γ ↪→◦ m ≡−∗ γ ↪→• n′ ∗ γ ↪→◦ n′

13

Ghost variables
Consider the invariant:

∃n. x 7→ n ∗ . . .

How to relate the quantified value to the state of the threads?

Solution: ghost variables

Ghost variables are allocated in pairs:

True ≡−∗ ∃γ. γ ↪→• n︸ ︷︷ ︸
in the invariant

∗ γ ↪→◦ n︸ ︷︷ ︸
in the Hoare triple

When you own both parts you obtain that the values are equal and
can update both parts:

γ ↪→• n ∗ γ ↪→◦ m ⇒ n = m

γ ↪→• n ∗ γ ↪→◦ m ≡−∗ γ ↪→• n′ ∗ γ ↪→◦ n′

13

Ghost variables
Consider the invariant:

∃n. x 7→ n ∗ . . .

How to relate the quantified value to the state of the threads?

Solution: ghost variables

Ghost variables are allocated in pairs:

True ≡−∗ ∃γ. γ ↪→• n︸ ︷︷ ︸
in the invariant

∗ γ ↪→◦ n︸ ︷︷ ︸
in the Hoare triple

When you own both parts you obtain that the values are equal and
can update both parts:

γ ↪→• n ∗ γ ↪→◦ m ⇒ n = m

γ ↪→• n ∗ γ ↪→◦ m ≡−∗ γ ↪→• n′ ∗ γ ↪→◦ n′

13

Ghost variables
Consider the invariant:

∃n1, n2. x 7→ (n1 + n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2

How to relate the quantified value to the state of the threads?

Solution: ghost variables

Ghost variables are allocated in pairs:

True ≡−∗ ∃γ. γ ↪→• n︸ ︷︷ ︸
in the invariant

∗ γ ↪→◦ n︸ ︷︷ ︸
in the Hoare triple

When you own both parts you obtain that the values are equal and
can update both parts:

γ ↪→• n ∗ γ ↪→◦ m ⇒ n = m

γ ↪→• n ∗ γ ↪→◦ m ≡−∗ γ ↪→• n′ ∗ γ ↪→◦ n′

13

Ghost variables
Consider the invariant:

∃n1, n2. x 7→ (n1 + n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2

How to relate the quantified value to the state of the threads?

Solution: ghost variables

Ghost variables are allocated in pairs:

True ≡−∗ ∃γ. γ ↪→• n︸ ︷︷ ︸
in the invariant

∗ γ ↪→◦ n︸ ︷︷ ︸
in the Hoare triple

When you own both parts you obtain that the values are equal and
can update both parts:

γ ↪→• n ∗ γ ↪→◦ m ⇒ n = m

γ ↪→• n ∗ γ ↪→◦ m ≡−∗ γ ↪→• n′ ∗ γ ↪→◦ n′

14

Ghost variables in action

{True}
let x = ref(0) in

{x 7→ 0}
{x 7→ 0 ∗ γ1 ↪→• 0 ∗ γ1 ↪→◦ 0 ∗ γ2 ↪→• 0 ∗ γ2 ↪→◦ 0}
allocate ∃n1, n2. x 7→ n1 + n2 ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2

{γ1 ↪→◦ 0 ∗ γ2 ↪→◦ 0}
{γ1 ↪→◦ 0} {γ2 ↪→◦ 0}
{γ1 ↪→◦ 0 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 0 ∗ x 7→ n2 ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}

fetchandadd(x, 2)

{γ1 ↪→◦ 0 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 2 ∗ γ2 ↪→• n2}

{. . .}

fetchandadd(x, 2)

{. . .}

{γ1 ↪→◦ 2} {γ2 ↪→◦ 2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

! x

{n. n = 4 ∧ γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

{n. n = 4}

14

Ghost variables in action

{True}
let x = ref(0) in
{x 7→ 0}

{x 7→ 0 ∗ γ1 ↪→• 0 ∗ γ1 ↪→◦ 0 ∗ γ2 ↪→• 0 ∗ γ2 ↪→◦ 0}
allocate ∃n1, n2. x 7→ n1 + n2 ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2

{γ1 ↪→◦ 0 ∗ γ2 ↪→◦ 0}
{γ1 ↪→◦ 0} {γ2 ↪→◦ 0}
{γ1 ↪→◦ 0 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 0 ∗ x 7→ n2 ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}

fetchandadd(x, 2)

{γ1 ↪→◦ 0 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 2 ∗ γ2 ↪→• n2}

{. . .}

fetchandadd(x, 2)

{. . .}

{γ1 ↪→◦ 2} {γ2 ↪→◦ 2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

! x

{n. n = 4 ∧ γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

{n. n = 4}

14

Ghost variables in action

{True}
let x = ref(0) in
{x 7→ 0}
{x 7→ 0 ∗ γ1 ↪→• 0 ∗ γ1 ↪→◦ 0 ∗ γ2 ↪→• 0 ∗ γ2 ↪→◦ 0}

allocate ∃n1, n2. x 7→ n1 + n2 ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2

{γ1 ↪→◦ 0 ∗ γ2 ↪→◦ 0}
{γ1 ↪→◦ 0} {γ2 ↪→◦ 0}
{γ1 ↪→◦ 0 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 0 ∗ x 7→ n2 ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}

fetchandadd(x, 2)

{γ1 ↪→◦ 0 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 2 ∗ γ2 ↪→• n2}

{. . .}

fetchandadd(x, 2)

{. . .}

{γ1 ↪→◦ 2} {γ2 ↪→◦ 2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

! x

{n. n = 4 ∧ γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

{n. n = 4}

14

Ghost variables in action

{True}
let x = ref(0) in
{x 7→ 0}
{x 7→ 0 ∗ γ1 ↪→• 0 ∗ γ1 ↪→◦ 0 ∗ γ2 ↪→• 0 ∗ γ2 ↪→◦ 0}
allocate ∃n1, n2. x 7→ n1 + n2 ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2

{γ1 ↪→◦ 0 ∗ γ2 ↪→◦ 0}
{γ1 ↪→◦ 0} {γ2 ↪→◦ 0}
{γ1 ↪→◦ 0 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 0 ∗ x 7→ n2 ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}

fetchandadd(x, 2)

{γ1 ↪→◦ 0 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 2 ∗ γ2 ↪→• n2}

{. . .}

fetchandadd(x, 2)

{. . .}

{γ1 ↪→◦ 2} {γ2 ↪→◦ 2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

! x

{n. n = 4 ∧ γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

{n. n = 4}

14

Ghost variables in action

{True}
let x = ref(0) in
{x 7→ 0}
{x 7→ 0 ∗ γ1 ↪→• 0 ∗ γ1 ↪→◦ 0 ∗ γ2 ↪→• 0 ∗ γ2 ↪→◦ 0}
allocate ∃n1, n2. x 7→ n1 + n2 ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2

{γ1 ↪→◦ 0 ∗ γ2 ↪→◦ 0}

{γ1 ↪→◦ 0} {γ2 ↪→◦ 0}
{γ1 ↪→◦ 0 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 0 ∗ x 7→ n2 ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}

fetchandadd(x, 2)

{γ1 ↪→◦ 0 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 2 ∗ γ2 ↪→• n2}

{. . .}

fetchandadd(x, 2)

{. . .}

{γ1 ↪→◦ 2} {γ2 ↪→◦ 2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

! x

{n. n = 4 ∧ γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

{n. n = 4}

14

Ghost variables in action

{True}
let x = ref(0) in
{x 7→ 0}
{x 7→ 0 ∗ γ1 ↪→• 0 ∗ γ1 ↪→◦ 0 ∗ γ2 ↪→• 0 ∗ γ2 ↪→◦ 0}
allocate ∃n1, n2. x 7→ n1 + n2 ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2

{γ1 ↪→◦ 0 ∗ γ2 ↪→◦ 0}
{γ1 ↪→◦ 0} {γ2 ↪→◦ 0}

{γ1 ↪→◦ 0 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 0 ∗ x 7→ n2 ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}

fetchandadd(x, 2)

{γ1 ↪→◦ 0 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 2 ∗ γ2 ↪→• n2}

{. . .}

fetchandadd(x, 2)

{. . .}

{γ1 ↪→◦ 2} {γ2 ↪→◦ 2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

! x

{n. n = 4 ∧ γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

{n. n = 4}

14

Ghost variables in action

{True}
let x = ref(0) in
{x 7→ 0}
{x 7→ 0 ∗ γ1 ↪→• 0 ∗ γ1 ↪→◦ 0 ∗ γ2 ↪→• 0 ∗ γ2 ↪→◦ 0}
allocate ∃n1, n2. x 7→ n1 + n2 ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2

{γ1 ↪→◦ 0 ∗ γ2 ↪→◦ 0}
{γ1 ↪→◦ 0} {γ2 ↪→◦ 0}

{γ1 ↪→◦ 0 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 0 ∗ x 7→ n2 ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}

fetchandadd(x, 2)

{γ1 ↪→◦ 0 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 2 ∗ γ2 ↪→• n2}

{. . .}

fetchandadd(x, 2)

{. . .}

{γ1 ↪→◦ 2} {γ2 ↪→◦ 2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2}

{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

! x

{n. n = 4 ∧ γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

{n. n = 4}

14

Ghost variables in action

{True}
let x = ref(0) in
{x 7→ 0}
{x 7→ 0 ∗ γ1 ↪→• 0 ∗ γ1 ↪→◦ 0 ∗ γ2 ↪→• 0 ∗ γ2 ↪→◦ 0}
allocate ∃n1, n2. x 7→ n1 + n2 ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2

{γ1 ↪→◦ 0 ∗ γ2 ↪→◦ 0}
{γ1 ↪→◦ 0} {γ2 ↪→◦ 0}
{γ1 ↪→◦ 0 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}

{γ1 ↪→◦ 0 ∗ x 7→ n2 ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}

fetchandadd(x, 2)

{γ1 ↪→◦ 0 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 2 ∗ γ2 ↪→• n2}

{. . .}

fetchandadd(x, 2)

{. . .}

{γ1 ↪→◦ 2} {γ2 ↪→◦ 2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2}

{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

! x

{n. n = 4 ∧ γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

{n. n = 4}

14

Ghost variables in action

{True}
let x = ref(0) in
{x 7→ 0}
{x 7→ 0 ∗ γ1 ↪→• 0 ∗ γ1 ↪→◦ 0 ∗ γ2 ↪→• 0 ∗ γ2 ↪→◦ 0}
allocate ∃n1, n2. x 7→ n1 + n2 ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2

{γ1 ↪→◦ 0 ∗ γ2 ↪→◦ 0}
{γ1 ↪→◦ 0} {γ2 ↪→◦ 0}
{γ1 ↪→◦ 0 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}

{γ1 ↪→◦ 0 ∗ x 7→ n2 ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}

fetchandadd(x, 2)

{γ1 ↪→◦ 0 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 2 ∗ γ2 ↪→• n2}

{. . .}

fetchandadd(x, 2)

{. . .}

{γ1 ↪→◦ 2} {γ2 ↪→◦ 2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2}

{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

! x

{n. n = 4 ∧ γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

{n. n = 4}

14

Ghost variables in action

{True}
let x = ref(0) in
{x 7→ 0}
{x 7→ 0 ∗ γ1 ↪→• 0 ∗ γ1 ↪→◦ 0 ∗ γ2 ↪→• 0 ∗ γ2 ↪→◦ 0}
allocate ∃n1, n2. x 7→ n1 + n2 ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2

{γ1 ↪→◦ 0 ∗ γ2 ↪→◦ 0}
{γ1 ↪→◦ 0} {γ2 ↪→◦ 0}
{γ1 ↪→◦ 0 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 0 ∗ x 7→ n2 ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}
fetchandadd(x, 2)

{γ1 ↪→◦ 0 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 2 ∗ γ2 ↪→• n2}

{. . .}

fetchandadd(x, 2)

{. . .}

{γ1 ↪→◦ 2} {γ2 ↪→◦ 2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2}

{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

! x

{n. n = 4 ∧ γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

{n. n = 4}

14

Ghost variables in action

{True}
let x = ref(0) in
{x 7→ 0}
{x 7→ 0 ∗ γ1 ↪→• 0 ∗ γ1 ↪→◦ 0 ∗ γ2 ↪→• 0 ∗ γ2 ↪→◦ 0}
allocate ∃n1, n2. x 7→ n1 + n2 ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2

{γ1 ↪→◦ 0 ∗ γ2 ↪→◦ 0}
{γ1 ↪→◦ 0} {γ2 ↪→◦ 0}
{γ1 ↪→◦ 0 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 0 ∗ x 7→ n2 ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}
fetchandadd(x, 2)

{γ1 ↪→◦ 0 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 2 ∗ γ2 ↪→• n2}

{. . .}

fetchandadd(x, 2)

{. . .}

{γ1 ↪→◦ 2} {γ2 ↪→◦ 2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2}

{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

! x

{n. n = 4 ∧ γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

{n. n = 4}

14

Ghost variables in action

{True}
let x = ref(0) in
{x 7→ 0}
{x 7→ 0 ∗ γ1 ↪→• 0 ∗ γ1 ↪→◦ 0 ∗ γ2 ↪→• 0 ∗ γ2 ↪→◦ 0}
allocate ∃n1, n2. x 7→ n1 + n2 ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2

{γ1 ↪→◦ 0 ∗ γ2 ↪→◦ 0}
{γ1 ↪→◦ 0} {γ2 ↪→◦ 0}
{γ1 ↪→◦ 0 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 0 ∗ x 7→ n2 ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}
fetchandadd(x, 2)
{γ1 ↪→◦ 0 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}

{γ1 ↪→◦ 2 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 2 ∗ γ2 ↪→• n2}

{. . .}

fetchandadd(x, 2)

{. . .}

{γ1 ↪→◦ 2} {γ2 ↪→◦ 2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2}

{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

! x

{n. n = 4 ∧ γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

{n. n = 4}

14

Ghost variables in action

{True}
let x = ref(0) in
{x 7→ 0}
{x 7→ 0 ∗ γ1 ↪→• 0 ∗ γ1 ↪→◦ 0 ∗ γ2 ↪→• 0 ∗ γ2 ↪→◦ 0}
allocate ∃n1, n2. x 7→ n1 + n2 ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2

{γ1 ↪→◦ 0 ∗ γ2 ↪→◦ 0}
{γ1 ↪→◦ 0} {γ2 ↪→◦ 0}
{γ1 ↪→◦ 0 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 0 ∗ x 7→ n2 ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}
fetchandadd(x, 2)
{γ1 ↪→◦ 0 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}

{γ1 ↪→◦ 2 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 2 ∗ γ2 ↪→• n2}

{. . .}

fetchandadd(x, 2)

{. . .}

{γ1 ↪→◦ 2} {γ2 ↪→◦ 2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2}

{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

! x

{n. n = 4 ∧ γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

{n. n = 4}

14

Ghost variables in action

{True}
let x = ref(0) in
{x 7→ 0}
{x 7→ 0 ∗ γ1 ↪→• 0 ∗ γ1 ↪→◦ 0 ∗ γ2 ↪→• 0 ∗ γ2 ↪→◦ 0}
allocate ∃n1, n2. x 7→ n1 + n2 ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2

{γ1 ↪→◦ 0 ∗ γ2 ↪→◦ 0}
{γ1 ↪→◦ 0} {γ2 ↪→◦ 0}
{γ1 ↪→◦ 0 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 0 ∗ x 7→ n2 ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}
fetchandadd(x, 2)
{γ1 ↪→◦ 0 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 2 ∗ γ2 ↪→• n2}

{. . .}

fetchandadd(x, 2)

{. . .}

{γ1 ↪→◦ 2} {γ2 ↪→◦ 2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2}

{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

! x

{n. n = 4 ∧ γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

{n. n = 4}

14

Ghost variables in action

{True}
let x = ref(0) in
{x 7→ 0}
{x 7→ 0 ∗ γ1 ↪→• 0 ∗ γ1 ↪→◦ 0 ∗ γ2 ↪→• 0 ∗ γ2 ↪→◦ 0}
allocate ∃n1, n2. x 7→ n1 + n2 ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2

{γ1 ↪→◦ 0 ∗ γ2 ↪→◦ 0}
{γ1 ↪→◦ 0} {γ2 ↪→◦ 0}
{γ1 ↪→◦ 0 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 0 ∗ x 7→ n2 ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}
fetchandadd(x, 2)
{γ1 ↪→◦ 0 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 2 ∗ γ2 ↪→• n2}

{. . .}
fetchandadd(x, 2)
{. . .}

{γ1 ↪→◦ 2} {γ2 ↪→◦ 2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2}

{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

! x

{n. n = 4 ∧ γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

{n. n = 4}

14

Ghost variables in action

{True}
let x = ref(0) in
{x 7→ 0}
{x 7→ 0 ∗ γ1 ↪→• 0 ∗ γ1 ↪→◦ 0 ∗ γ2 ↪→• 0 ∗ γ2 ↪→◦ 0}
allocate ∃n1, n2. x 7→ n1 + n2 ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2

{γ1 ↪→◦ 0 ∗ γ2 ↪→◦ 0}
{γ1 ↪→◦ 0} {γ2 ↪→◦ 0}
{γ1 ↪→◦ 0 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 0 ∗ x 7→ n2 ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}
fetchandadd(x, 2)
{γ1 ↪→◦ 0 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 2 ∗ γ2 ↪→• n2}

{. . .}
fetchandadd(x, 2)
{. . .}

{γ1 ↪→◦ 2} {γ2 ↪→◦ 2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}

{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

! x

{n. n = 4 ∧ γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

{n. n = 4}

14

Ghost variables in action

{True}
let x = ref(0) in
{x 7→ 0}
{x 7→ 0 ∗ γ1 ↪→• 0 ∗ γ1 ↪→◦ 0 ∗ γ2 ↪→• 0 ∗ γ2 ↪→◦ 0}
allocate ∃n1, n2. x 7→ n1 + n2 ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2

{γ1 ↪→◦ 0 ∗ γ2 ↪→◦ 0}
{γ1 ↪→◦ 0} {γ2 ↪→◦ 0}
{γ1 ↪→◦ 0 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 0 ∗ x 7→ n2 ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}
fetchandadd(x, 2)
{γ1 ↪→◦ 0 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 2 ∗ γ2 ↪→• n2}

{. . .}
fetchandadd(x, 2)
{. . .}

{γ1 ↪→◦ 2} {γ2 ↪→◦ 2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}

{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

! x

{n. n = 4 ∧ γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

{n. n = 4}

14

Ghost variables in action

{True}
let x = ref(0) in
{x 7→ 0}
{x 7→ 0 ∗ γ1 ↪→• 0 ∗ γ1 ↪→◦ 0 ∗ γ2 ↪→• 0 ∗ γ2 ↪→◦ 0}
allocate ∃n1, n2. x 7→ n1 + n2 ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2

{γ1 ↪→◦ 0 ∗ γ2 ↪→◦ 0}
{γ1 ↪→◦ 0} {γ2 ↪→◦ 0}
{γ1 ↪→◦ 0 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 0 ∗ x 7→ n2 ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}
fetchandadd(x, 2)
{γ1 ↪→◦ 0 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 2 ∗ γ2 ↪→• n2}

{. . .}
fetchandadd(x, 2)
{. . .}

{γ1 ↪→◦ 2} {γ2 ↪→◦ 2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}
! x

{n. n = 4 ∧ γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

{n. n = 4}

14

Ghost variables in action

{True}
let x = ref(0) in
{x 7→ 0}
{x 7→ 0 ∗ γ1 ↪→• 0 ∗ γ1 ↪→◦ 0 ∗ γ2 ↪→• 0 ∗ γ2 ↪→◦ 0}
allocate ∃n1, n2. x 7→ n1 + n2 ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2

{γ1 ↪→◦ 0 ∗ γ2 ↪→◦ 0}
{γ1 ↪→◦ 0} {γ2 ↪→◦ 0}
{γ1 ↪→◦ 0 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 0 ∗ x 7→ n2 ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}
fetchandadd(x, 2)
{γ1 ↪→◦ 0 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 2 ∗ γ2 ↪→• n2}

{. . .}
fetchandadd(x, 2)
{. . .}

{γ1 ↪→◦ 2} {γ2 ↪→◦ 2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}
! x

{n. n = 4 ∧ γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}

{n. n = 4}

14

Ghost variables in action

{True}
let x = ref(0) in
{x 7→ 0}
{x 7→ 0 ∗ γ1 ↪→• 0 ∗ γ1 ↪→◦ 0 ∗ γ2 ↪→• 0 ∗ γ2 ↪→◦ 0}
allocate ∃n1, n2. x 7→ n1 + n2 ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2

{γ1 ↪→◦ 0 ∗ γ2 ↪→◦ 0}
{γ1 ↪→◦ 0} {γ2 ↪→◦ 0}
{γ1 ↪→◦ 0 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 0 ∗ x 7→ n2 ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}
fetchandadd(x, 2)
{γ1 ↪→◦ 0 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 2 ∗ γ2 ↪→• n2}

{. . .}
fetchandadd(x, 2)
{. . .}

{γ1 ↪→◦ 2} {γ2 ↪→◦ 2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}
! x
{n. n = 4 ∧ γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}
{n. n = 4}

14

Ghost variables in action

{True}
let x = ref(0) in
{x 7→ 0}
{x 7→ 0 ∗ γ1 ↪→• 0 ∗ γ1 ↪→◦ 0 ∗ γ2 ↪→• 0 ∗ γ2 ↪→◦ 0}
allocate ∃n1, n2. x 7→ n1 + n2 ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2

{γ1 ↪→◦ 0 ∗ γ2 ↪→◦ 0}
{γ1 ↪→◦ 0} {γ2 ↪→◦ 0}
{γ1 ↪→◦ 0 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 0 ∗ x 7→ n2 ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}
fetchandadd(x, 2)
{γ1 ↪→◦ 0 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 0 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ x 7→ (2+n2) ∗ γ1 ↪→• 2 ∗ γ2 ↪→• n2}

{. . .}
fetchandadd(x, 2)
{. . .}

{γ1 ↪→◦ 2} {γ2 ↪→◦ 2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ (n1 +n2) ∗ γ1 ↪→• n1 ∗ γ2 ↪→• n2}
{γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}
! x
{n. n = 4 ∧ γ1 ↪→◦ 2 ∗ γ2 ↪→◦ 2 ∗ x 7→ 4 ∗ γ1 ↪→• 2 ∗ γ2 ↪→• 2}
{n. n = 4}

15

Ghost variables with fractional permissions [Boyland]

What if we have n threads? Using n different ghost variables,
results in different proofs for each thread. That is not modular.

Better way: ghost variables with a fractional permission (0, 1]Q:

γ
π1+π2
↪−−−→◦ (n1 + n2) ⇔ γ

π1
↪−→◦ n1 ∗ γ

π2
↪−→◦ n2

You only get the equality when you have full ownership (π = 1):

γ ↪→• n ∗ γ
1
↪−→◦ m ⇒ n = m

Updating is possible with partial ownership (0 < π ≤ 1):

γ ↪→• n ∗ γ
π
↪−→◦ m ≡−∗ γ ↪→• (n + i) ∗ γ π

↪−→◦ (m + i)

Keeps the invariant that all γ
πi
↪−→◦ ni sum up to γ ↪→•

∑
ni

15

Ghost variables with fractional permissions [Boyland]

What if we have n threads? Using n different ghost variables,
results in different proofs for each thread. That is not modular.

Better way: ghost variables with a fractional permission (0, 1]Q:

γ
π1+π2
↪−−−→◦ (n1 + n2) ⇔ γ

π1
↪−→◦ n1 ∗ γ

π2
↪−→◦ n2

You only get the equality when you have full ownership (π = 1):

γ ↪→• n ∗ γ
1
↪−→◦ m ⇒ n = m

Updating is possible with partial ownership (0 < π ≤ 1):

γ ↪→• n ∗ γ
π
↪−→◦ m ≡−∗ γ ↪→• (n + i) ∗ γ π

↪−→◦ (m + i)

Keeps the invariant that all γ
πi
↪−→◦ ni sum up to γ ↪→•

∑
ni

15

Ghost variables with fractional permissions [Boyland]

What if we have n threads? Using n different ghost variables,
results in different proofs for each thread. That is not modular.

Better way: ghost variables with a fractional permission (0, 1]Q:

γ
π1+π2
↪−−−→◦ (n1 + n2) ⇔ γ

π1
↪−→◦ n1 ∗ γ

π2
↪−→◦ n2

You only get the equality when you have full ownership (π = 1):

γ ↪→• n ∗ γ
1
↪−→◦ m ⇒ n = m

Updating is possible with partial ownership (0 < π ≤ 1):

γ ↪→• n ∗ γ
π
↪−→◦ m ≡−∗ γ ↪→• (n + i) ∗ γ π

↪−→◦ (m + i)

Keeps the invariant that all γ
πi
↪−→◦ ni sum up to γ ↪→•

∑
ni

15

Ghost variables with fractional permissions [Boyland]

What if we have n threads? Using n different ghost variables,
results in different proofs for each thread. That is not modular.

Better way: ghost variables with a fractional permission (0, 1]Q:

γ
π1+π2
↪−−−→◦ (n1 + n2) ⇔ γ

π1
↪−→◦ n1 ∗ γ

π2
↪−→◦ n2

You only get the equality when you have full ownership (π = 1):

γ ↪→• n ∗ γ
1
↪−→◦ m ⇒ n = m

Updating is possible with partial ownership (0 < π ≤ 1):

γ ↪→• n ∗ γ
π
↪−→◦ m ≡−∗ γ ↪→• (n + i) ∗ γ π

↪−→◦ (m + i)

Keeps the invariant that all γ
πi
↪−→◦ ni sum up to γ ↪→•

∑
ni

16

Fractional ghost variables in action

{True}
let x = ref(0) in

{x 7→ 0}{
x 7→ 0 ∗ γ ↪→• 0 ∗ γ 1

↪−→◦ 0
}

allocate ∃n. x 7→ n ∗ γ ↪→• n{
γ

1/k

↪−→◦ 0
} {

γ
1/k

↪−→◦ 0
}

{
γ

1/k

↪−→◦ 0 ∗ x 7→ n ∗ γ ↪→• n
}

fetchandadd(x, 2)

{
γ

1/k

↪−→◦ 2 ∗ x 7→ (2+n) ∗ γ1 ↪→• (2+n)
} {. . .}

fetchandadd(x, 2)

{. . .}

. . .

{
γ

1/k

↪−→◦ 2
} {

γ
1/k

↪−→◦ 2
}

{
γ

1
↪−→◦ 2k ∗ x 7→ n ∗ γ ↪→• n

}

! x

{
n. n = 2k ∧ γ 1

↪−→◦ 2k ∗ x 7→ 2k ∗ γ ↪→• 2k
}

{n. n = 2k}

16

Fractional ghost variables in action

{True}
let x = ref(0) in
{x 7→ 0}

{
x 7→ 0 ∗ γ ↪→• 0 ∗ γ 1

↪−→◦ 0
}

allocate ∃n. x 7→ n ∗ γ ↪→• n{
γ

1/k

↪−→◦ 0
} {

γ
1/k

↪−→◦ 0
}

{
γ

1/k

↪−→◦ 0 ∗ x 7→ n ∗ γ ↪→• n
}

fetchandadd(x, 2)

{
γ

1/k

↪−→◦ 2 ∗ x 7→ (2+n) ∗ γ1 ↪→• (2+n)
} {. . .}

fetchandadd(x, 2)

{. . .}

. . .

{
γ

1/k

↪−→◦ 2
} {

γ
1/k

↪−→◦ 2
}

{
γ

1
↪−→◦ 2k ∗ x 7→ n ∗ γ ↪→• n

}

! x

{
n. n = 2k ∧ γ 1

↪−→◦ 2k ∗ x 7→ 2k ∗ γ ↪→• 2k
}

{n. n = 2k}

16

Fractional ghost variables in action

{True}
let x = ref(0) in
{x 7→ 0}{
x 7→ 0 ∗ γ ↪→• 0 ∗ γ 1

↪−→◦ 0
}

allocate ∃n. x 7→ n ∗ γ ↪→• n{
γ

1/k

↪−→◦ 0
} {

γ
1/k

↪−→◦ 0
}

{
γ

1/k

↪−→◦ 0 ∗ x 7→ n ∗ γ ↪→• n
}

fetchandadd(x, 2)

{
γ

1/k

↪−→◦ 2 ∗ x 7→ (2+n) ∗ γ1 ↪→• (2+n)
} {. . .}

fetchandadd(x, 2)

{. . .}

. . .

{
γ

1/k

↪−→◦ 2
} {

γ
1/k

↪−→◦ 2
}

{
γ

1
↪−→◦ 2k ∗ x 7→ n ∗ γ ↪→• n

}

! x

{
n. n = 2k ∧ γ 1

↪−→◦ 2k ∗ x 7→ 2k ∗ γ ↪→• 2k
}

{n. n = 2k}

16

Fractional ghost variables in action

{True}
let x = ref(0) in
{x 7→ 0}{
x 7→ 0 ∗ γ ↪→• 0 ∗ γ 1

↪−→◦ 0
}

allocate ∃n. x 7→ n ∗ γ ↪→• n

{
γ

1/k

↪−→◦ 0
} {

γ
1/k

↪−→◦ 0
}

{
γ

1/k

↪−→◦ 0 ∗ x 7→ n ∗ γ ↪→• n
}

fetchandadd(x, 2)

{
γ

1/k

↪−→◦ 2 ∗ x 7→ (2+n) ∗ γ1 ↪→• (2+n)
} {. . .}

fetchandadd(x, 2)

{. . .}

. . .

{
γ

1/k

↪−→◦ 2
} {

γ
1/k

↪−→◦ 2
}

{
γ

1
↪−→◦ 2k ∗ x 7→ n ∗ γ ↪→• n

}

! x

{
n. n = 2k ∧ γ 1

↪−→◦ 2k ∗ x 7→ 2k ∗ γ ↪→• 2k
}

{n. n = 2k}

16

Fractional ghost variables in action

{True}
let x = ref(0) in
{x 7→ 0}{
x 7→ 0 ∗ γ ↪→• 0 ∗ γ 1

↪−→◦ 0
}

allocate ∃n. x 7→ n ∗ γ ↪→• n{
γ

1/k

↪−→◦ 0
} {

γ
1/k

↪−→◦ 0
}

{
γ

1/k

↪−→◦ 0 ∗ x 7→ n ∗ γ ↪→• n
}

fetchandadd(x, 2)

{
γ

1/k

↪−→◦ 2 ∗ x 7→ (2+n) ∗ γ1 ↪→• (2+n)
} {. . .}

fetchandadd(x, 2)

{. . .}

. . .

{
γ

1/k

↪−→◦ 2
} {

γ
1/k

↪−→◦ 2
}

{
γ

1
↪−→◦ 2k ∗ x 7→ n ∗ γ ↪→• n

}

! x

{
n. n = 2k ∧ γ 1

↪−→◦ 2k ∗ x 7→ 2k ∗ γ ↪→• 2k
}

{n. n = 2k}

16

Fractional ghost variables in action

{True}
let x = ref(0) in
{x 7→ 0}{
x 7→ 0 ∗ γ ↪→• 0 ∗ γ 1

↪−→◦ 0
}

allocate ∃n. x 7→ n ∗ γ ↪→• n{
γ

1/k

↪−→◦ 0
} {

γ
1/k

↪−→◦ 0
}

{
γ

1/k

↪−→◦ 0 ∗ x 7→ n ∗ γ ↪→• n
}

fetchandadd(x, 2)

{
γ

1/k

↪−→◦ 2 ∗ x 7→ (2+n) ∗ γ1 ↪→• (2+n)
} {. . .}

fetchandadd(x, 2)

{. . .}

. . .

{
γ

1/k

↪−→◦ 2
} {

γ
1/k

↪−→◦ 2
}

{
γ

1
↪−→◦ 2k ∗ x 7→ n ∗ γ ↪→• n

}

! x

{
n. n = 2k ∧ γ 1

↪−→◦ 2k ∗ x 7→ 2k ∗ γ ↪→• 2k
}

{n. n = 2k}

16

Fractional ghost variables in action

{True}
let x = ref(0) in
{x 7→ 0}{
x 7→ 0 ∗ γ ↪→• 0 ∗ γ 1

↪−→◦ 0
}

allocate ∃n. x 7→ n ∗ γ ↪→• n{
γ

1/k

↪−→◦ 0
} {

γ
1/k

↪−→◦ 0
}

{
γ

1/k

↪−→◦ 0 ∗ x 7→ n ∗ γ ↪→• n
}

fetchandadd(x, 2){
γ

1/k

↪−→◦ 2 ∗ x 7→ (2+n) ∗ γ1 ↪→• (2+n)
}

{. . .}

fetchandadd(x, 2)

{. . .}

. . .

{
γ

1/k

↪−→◦ 2
} {

γ
1/k

↪−→◦ 2
}

{
γ

1
↪−→◦ 2k ∗ x 7→ n ∗ γ ↪→• n

}

! x

{
n. n = 2k ∧ γ 1

↪−→◦ 2k ∗ x 7→ 2k ∗ γ ↪→• 2k
}

{n. n = 2k}

16

Fractional ghost variables in action

{True}
let x = ref(0) in
{x 7→ 0}{
x 7→ 0 ∗ γ ↪→• 0 ∗ γ 1

↪−→◦ 0
}

allocate ∃n. x 7→ n ∗ γ ↪→• n{
γ

1/k

↪−→◦ 0
} {

γ
1/k

↪−→◦ 0
}

{
γ

1/k

↪−→◦ 0 ∗ x 7→ n ∗ γ ↪→• n
}

fetchandadd(x, 2){
γ

1/k

↪−→◦ 2 ∗ x 7→ (2+n) ∗ γ1 ↪→• (2+n)
} {. . .}

fetchandadd(x, 2)
{. . .}

. . .

{
γ

1/k

↪−→◦ 2
} {

γ
1/k

↪−→◦ 2
}

{
γ

1
↪−→◦ 2k ∗ x 7→ n ∗ γ ↪→• n

}

! x

{
n. n = 2k ∧ γ 1

↪−→◦ 2k ∗ x 7→ 2k ∗ γ ↪→• 2k
}

{n. n = 2k}

16

Fractional ghost variables in action

{True}
let x = ref(0) in
{x 7→ 0}{
x 7→ 0 ∗ γ ↪→• 0 ∗ γ 1

↪−→◦ 0
}

allocate ∃n. x 7→ n ∗ γ ↪→• n{
γ

1/k

↪−→◦ 0
} {

γ
1/k

↪−→◦ 0
}

{
γ

1/k

↪−→◦ 0 ∗ x 7→ n ∗ γ ↪→• n
}

fetchandadd(x, 2){
γ

1/k

↪−→◦ 2 ∗ x 7→ (2+n) ∗ γ1 ↪→• (2+n)
} {. . .}

fetchandadd(x, 2)
{. . .}

. . .

{
γ

1/k

↪−→◦ 2
} {

γ
1/k

↪−→◦ 2
}

{
γ

1
↪−→◦ 2k ∗ x 7→ n ∗ γ ↪→• n

}
! x

{
n. n = 2k ∧ γ 1

↪−→◦ 2k ∗ x 7→ 2k ∗ γ ↪→• 2k
}

{n. n = 2k}

16

Fractional ghost variables in action

{True}
let x = ref(0) in
{x 7→ 0}{
x 7→ 0 ∗ γ ↪→• 0 ∗ γ 1

↪−→◦ 0
}

allocate ∃n. x 7→ n ∗ γ ↪→• n{
γ

1/k

↪−→◦ 0
} {

γ
1/k

↪−→◦ 0
}

{
γ

1/k

↪−→◦ 0 ∗ x 7→ n ∗ γ ↪→• n
}

fetchandadd(x, 2){
γ

1/k

↪−→◦ 2 ∗ x 7→ (2+n) ∗ γ1 ↪→• (2+n)
} {. . .}

fetchandadd(x, 2)
{. . .}

. . .

{
γ

1/k

↪−→◦ 2
} {

γ
1/k

↪−→◦ 2
}

{
γ

1
↪−→◦ 2k ∗ x 7→ n ∗ γ ↪→• n

}
! x{
n. n = 2k ∧ γ 1

↪−→◦ 2k ∗ x 7→ 2k ∗ γ ↪→• 2k
}

{n. n = 2k}

17

Part #2: generalizing ownership

[Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen,
Aaron Turon, Lars Birkedal and Derek Dreyer. Iris: Monoids and
Invariants as an Orthogonal Basis for Concurrent Reasoning. In
POPL’15]

[Ralf Jung, Robbert Krebbers, Lars Birkedal and Derek Dreyer.
Higher-Order Ghost State. In ICFP’16]

18

Mechanisms for concurrent reasoning

We have seen so far:

I Invariants R
N

I Ghost variables γ ↪→• n and γ ↪→◦ n
I Fractional ghost variables γ ↪→• n and γ

π
↪−→◦ n

Where do these mechanisms come from?

19

There are many CSLs with more powerful mechanisms. . .

Owicki-Gries (1976)

CSL (2004)Rely-Guarantee (1983)

SAGL (2007)

RGSep (2007)

Deny-Guarantee (2009)

CAP (2010)

Liang-Feng (2013)

LRG (2009)

SCSL (2013)
HOCAP (2013)

iCAP (2014)

Iris (2015)

CaReSL (2013)

FCSL (2014)

TaDA (2014)

CoLoSL (2015)

Gotsman-al (2007)

HLRG (2010)

Bornat-al (2005)

RGSim (2012)

GPS (2014)
Total-TaDA (2016)

Iris 2.0 (2016)

FTCSL (2015)

Jacobs-Piessens (2011)

RSL (2013)

LiLi (2016)

Bell-al (2010)

Hobor-al (2008)

FSL (2016)

Iris 3.0 (2016)

Picture by Ilya Sergey

20

. . . and very complicated primitive rules

21

The Iris story

Owicki-Gries (1976)

CSL (2004)Rely-Guarantee (1983)

SAGL (2007)

RGSep (2007)

Deny-Guarantee (2009)

CAP (2010)

Liang-Feng (2013)

LRG (2009)

SCSL (2013)
HOCAP (2013)

iCAP (2014)

Iris (2015)

CaReSL (2013)

FCSL (2014)

TaDA (2014)

CoLoSL (2015)

Gotsman-al (2007)

HLRG (2010)

Bornat-al (2005)

RGSim (2012)

GPS (2014)
Total-TaDA (2016)

Iris 2.0 (2016)

FTCSL (2015)

Jacobs-Piessens (2011)

RSL (2013)

LiLi (2016)

Bell-al (2010)

Hobor-al (2008)

FSL (2016)

Iris 3.0 (2016)

Picture by Ilya Sergey

The Iris story: all of these mechanisms can be encoded using a
simple mechanism of resource ownership

22

Generalizing ownership

All forms of ownership have common properties:

I Ownership of different threads can be composed
For example:

γ
π1+π2
↪−−−→◦ (n1 + n2) ⇔ γ

π1
↪−→◦ n1 ∗ γ

π2
↪−→◦ n2

I Composition of ownership is associative and commutative
Mirroring that parallel composition and separating conjunction
is associative and commutative

I Combinations of ownership that do not make sense are ruled
out
For example:

γ ↪→• 5 ∗ γ
1/2

↪−→◦ 3 ∗ γ
1/2

↪−→◦ 4 ⇒ False

(because 5 6= 3 + 4)

22

Generalizing ownership

All forms of ownership have common properties:

I Ownership of different threads can be composed
For example:

γ
π1+π2
↪−−−→◦ (n1 + n2) ⇔ γ

π1
↪−→◦ n1 ∗ γ

π2
↪−→◦ n2

I Composition of ownership is associative and commutative
Mirroring that parallel composition and separating conjunction
is associative and commutative

I Combinations of ownership that do not make sense are ruled
out
For example:

γ ↪→• 5 ∗ γ
1/2

↪−→◦ 3 ∗ γ
1/2

↪−→◦ 4 ⇒ False

(because 5 6= 3 + 4)

22

Generalizing ownership

All forms of ownership have common properties:

I Ownership of different threads can be composed
For example:

γ
π1+π2
↪−−−→◦ (n1 + n2) ⇔ γ

π1
↪−→◦ n1 ∗ γ

π2
↪−→◦ n2

I Composition of ownership is associative and commutative
Mirroring that parallel composition and separating conjunction
is associative and commutative

I Combinations of ownership that do not make sense are ruled
out
For example:

γ ↪→• 5 ∗ γ
1/2

↪−→◦ 3 ∗ γ
1/2

↪−→◦ 4 ⇒ False

(because 5 6= 3 + 4)

23

Resource algebras

Resource algebra with carrier M:

I Composition (·) : M → M → M

I Validity predicate V ⊆ M

Satisfying:

a · b = b · a a · (b · c) = (a · b) · c (a · b) ∈ V ⇒ a ∈ V

Iris has ghost variables a : M
γ

for each resource algebra M

a ∈ V ≡−∗ ∃γ. a γ
a
γ ∗ b

γ ⇔ a · b γ
a
γ ⇒ V(a)

∀af . a · af ∈ V ⇒ b · af ∈ V
a
γ ≡−∗ b

γ

23

Resource algebras

Resource algebra with carrier M:

I Composition (·) : M → M → M

I Validity predicate V ⊆ M

Satisfying:

a · b = b · a a · (b · c) = (a · b) · c (a · b) ∈ V ⇒ a ∈ V

Iris has ghost variables a : M
γ

for each resource algebra M

a ∈ V ≡−∗ ∃γ. a γ
a
γ ∗ b

γ ⇔ a · b γ
a
γ ⇒ V(a)

∀af . a · af ∈ V ⇒ b · af ∈ V
a
γ ≡−∗ b

γ

24

Ghost variables revisited
Resource algebra for ghost variables:

M , • n | ◦ n | ⊥ | •◦ n
V , {a 6= ⊥ | a ∈ M}

• n · ◦ n′ = ◦ n′ · • n ,

{
•◦ n if n = n′

⊥ otherwise

other combinations , ⊥

And define:

γ ↪→• n , • n
γ

γ ↪→◦ n , ◦ n
γ

The ghost variable rules follow directly from the general rules:

True ≡−∗ ∃γ. γ ↪→• n ∗ γ ↪→◦ n

γ ↪→• n ∗ γ ↪→◦ m⇒ n = m

24

Ghost variables revisited
Resource algebra for ghost variables:

M , • n | ◦ n | ⊥ | •◦ n
V , {a 6= ⊥ | a ∈ M}

• n · ◦ n′ = ◦ n′ · • n ,

{
•◦ n if n = n′

⊥ otherwise

other combinations , ⊥

And define:

γ ↪→• n , • n
γ

γ ↪→◦ n , ◦ n
γ

The ghost variable rules follow directly from the general rules:

True ≡−∗ ∃γ. γ ↪→• n ∗ γ ↪→◦ n

γ ↪→• n ∗ γ ↪→◦ m⇒ n = m

24

Ghost variables revisited
Resource algebra for ghost variables:

M , • n | ◦ n | ⊥ | •◦ n
V , {a 6= ⊥ | a ∈ M}

• n · ◦ n′ = ◦ n′ · • n ,

{
•◦ n if n = n′

⊥ otherwise

other combinations , ⊥

And define:

γ ↪→• n , • n
γ

γ ↪→◦ n , ◦ n
γ

The ghost variable rules follow directly from the general rules:

True ≡−∗ ∃γ. •◦ n γ ≡−∗ ∃γ. γ ↪→• n ∗ γ ↪→◦ n

γ ↪→• n ∗ γ ↪→◦ m⇒ n = m

24

Ghost variables revisited
Resource algebra for ghost variables:

M , • n | ◦ n | ⊥ | •◦ n
V , {a 6= ⊥ | a ∈ M}

• n · ◦ n′ = ◦ n′ · • n ,

{
•◦ n if n = n′

⊥ otherwise

other combinations , ⊥

And define:

γ ↪→• n , • n
γ

γ ↪→◦ n , ◦ n
γ

The ghost variable rules follow directly from the general rules:

True ≡−∗ ∃γ. •◦ n γ ≡−∗ ∃γ. γ ↪→• n ∗ γ ↪→◦ n
γ ↪→• n ∗ γ ↪→◦ m⇒ n = m

24

Ghost variables revisited
Resource algebra for ghost variables:

M , • n | ◦ n | ⊥ | •◦ n
V , {a 6= ⊥ | a ∈ M}

• n · ◦ n′ = ◦ n′ · • n ,

{
•◦ n if n = n′

⊥ otherwise

other combinations , ⊥

And define:

γ ↪→• n , • n
γ

γ ↪→◦ n , ◦ n
γ

The ghost variable rules follow directly from the general rules:

True ≡−∗ ∃γ. •◦ n γ ≡−∗ ∃γ. γ ↪→• n ∗ γ ↪→◦ n
γ ↪→• n ∗ γ ↪→◦ m⇒ (• n · ◦m) ∈ V ⇒ n = m

25

Updating resources

Resources can be updated using frame-preserving updates:

∀af . a · af ∈ V ⇒ b · af ∈ V
a
γ ≡−∗ b

γ

Key idea: a resource can be updated if the update does not
invalidate the resources of concurrently-running threads

Thread 1 Thread 2 . . . Thread n
a1 · a2 · . . . · an ∈ V

b1 · a2 · . . . · an ∈ V

The rule γ ↪→• n ∗ γ ↪→◦ m ≡−∗ γ ↪→• n′ ∗ γ ↪→◦ n′ follows directly

25

Updating resources

Resources can be updated using frame-preserving updates:

∀af . a · af ∈ V ⇒ b · af ∈ V
a
γ ≡−∗ b

γ

Key idea: a resource can be updated if the update does not
invalidate the resources of concurrently-running threads

Thread 1 Thread 2 . . . Thread n
a1 · a2 · . . . · an ∈ V

b1 · a2 · . . . · an ∈ V

The rule γ ↪→• n ∗ γ ↪→◦ m ≡−∗ γ ↪→• n′ ∗ γ ↪→◦ n′ follows directly

26

In the papers

I The full definition of a resource algebra (RA)

I Combinators (fractions, products, finite maps, agreement,
etc.) to modularly build many RAs

I Encoding of state transition systems as RAs

I Encoding of a
γ

in terms of something even simpler

I Higher order ghost state: RAs that circularly depend on iProp,
the type of propositions

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

Iris: Monoids and Invariants as an
Orthogonal Basis for Concurrent Reasoning

Ralf Jung
MPI-SWS &

Saarland University
jung@mpi-sws.org

David Swasey
MPI-SWS

swasey@mpi-sws.org

Filip Sieczkowski
Aarhus University

filips@cs.au.dk

Kasper Svendsen
Aarhus University

ksvendsen@cs.au.dk

Aaron Turon
Mozilla Research

aturon@mozilla.com

Lars Birkedal
Aarhus University
birkedal@cs.au.dk

Derek Dreyer
MPI-SWS

dreyer@mpi-sws.org

Abstract
We present Iris, a concurrent separation logic with a simple premise:
monoids and invariants are all you need. Partial commutative
monoids enable us to express—and invariants enable us to enforce—
user-defined protocols on shared state, which are at the conceptual
core of most recent program logics for concurrency. Furthermore,
through a novel extension of the concept of a view shift, Iris supports
the encoding of logically atomic specifications, i.e., Hoare-style
specs that permit the client of an operation to treat the operation
essentially as if it were atomic, even if it is not.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.3.3 [Programming
Languages]: Language Constructs and Features; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reasoning
about Programs

Keywords Separation logic, fine-grained concurrency, atomicity,
partial commutative monoids, invariants, higher-order logic, compo-
sitional verification.

1. Introduction
Concurrency is fundamentally about shared state. This is true not
only for shared-memory concurrency, where the state takes the form
of a “heap” that threads may write to and read from, but also for
message-passing concurrency, where the state takes the form of a
“network” that threads may send to and receive from (or a sequence
of “events” on which threads may synchronize). Thus, to scalably
verify concurrent programs of any stripe, we need compositional
methods for reasoning about shared state.

This goal has sparked a long line of work, especially in recent
years, during which a synthesis of rely-guarantee reasoning [21] and
separation logic [31, 28] has led to a series of increasingly advanced
program logics for concurrency: RGSep [37], SAGL [13], LRG [12],
CAP [10], HLRG [15], CaReSL [34], iCAP [33], FCSL [27],

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
POPL ’15, January 15–17, 2015, Mumbai, India.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3300-9/15/01. . . $15.00.
http://dx.doi.org/10.1145/2676726.2676980

TaDA [8], and others. In this paper, we present a logic called Iris that
explains some of the complexities of these prior separation logics in
terms of a simpler unifying foundation, while also supporting some
new and powerful reasoning principles for concurrency.

Before we get to Iris, however, let us begin with a brief overview
of some key problems that arise in reasoning compositionally about
shared state, and how prior approaches have dealt with them.

1.1 Invariants and their limitations
The canonical model of concurrency is sequential consistency [23]:
threads take turns interacting with the shared state (reading/writing,
sending/receiving), with each turn lasting for one step of computa-
tion.1 Although the semantics of sequentially consistent (SC) con-
currency is simple to define, that does not mean it is easy to reason
about. In particular, the key question is how to do thread-local
reasoning—that is, verifying one thread at a time—even though
other threads may interfere with (i.e., mutate) the shared state in
between each step of computation in the thread we are verifying.

The invariant rule. The simplest (and oldest) way in which
concurrent program logics account for such interference is via
invariants [5]. An invariant is a property that holds of some piece of
shared state at all times: each thread accessing the state may assume
the invariant holds before each step of its computation, but it must
also ensure that it continues to hold after each step.

Formally, in concurrent separation logics, the invariant rule looks
something like the following (omitting some important details that
we explain later in §4):

{R ∗ P } e {R ∗Q} e physically atomic

R ` {P } e {Q}

Here, the assertion R states the knowledge that there exists an
invariant R governing some piece of shared state. Given this
knowledge, the rule tells us that e may gain (exclusive) control of
the shared state satisfying R, so long as it ensures that R continues
to hold of it when it is finished executing. Note the crucial side
condition that e be physically atomic, meaning that it takes exactly
one step of computation. If e were not physically atomic, then
another thread might access the shared state governed by R during
e’s execution, in which case it would not be safe for the rule to grant
e exclusive control of the shared state throughout its execution.

1 There is much recent work on weaker models of concurrency, which are in
many ways more realistic, but in this paper we focus on SC concurrency.

1

Higher-Order Ghost State

Ralf Jung
MPI-SWS, Germany
jung@mpi-sws.org

Robbert Krebbers
Aarhus University, Denmark
mail@robbertkrebbers.nl

Lars Birkedal
Aarhus University, Denmark

birkedal@cs.au.dk

Derek Dreyer
MPI-SWS, Germany
dreyer@mpi-sws.org

Abstract
The development of concurrent separation logic (CSL) has sparked a
long line of work on modular verification of sophisticated concurrent
programs. Two of the most important features supported by several
existing extensions to CSL are higher-order quantification and
custom ghost state. However, none of the logics that support both
of these features reap the full potential of their combination. In
particular, none of them provide general support for a feature we
dub “higher-order ghost state”: the ability to store arbitrary higher-
order separation-logic predicates in ghost variables.

In this paper, we propose higher-order ghost state as a interesting
and useful extension to CSL, which we formalize in the framework
of Jung et al.’s recently developed Iris logic. To justify its soundness,
we develop a novel algebraic structure called CMRAs (“cameras”),
which can be thought of as “step-indexed partial commutative
monoids”. Finally, we show that Iris proofs utilizing higher-order
ghost state can be effectively formalized in Coq, and discuss the
challenges we faced in formalizing them.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs

Keywords Separation logic, fine-grained concurrency, higher-
order logic, compositional verification, interactive theorem proving

1. Introduction
Over a decade ago, O’Hearn made a critical observation: separation
logic—developed to simplify the verification of sequential, heap-
manipulating programs—can help simplify the verification of con-
current programs as well. In concurrent separation logic (CSL) [28],
assertions denote not only facts about the state of the program, but
also ownership of a piece of that state. Concretely, this means that
if a thread t can assert ` 7→ v, then t knows not only that location
` currently points to v, but also that it “owns” `, so no other thread
can read or write ` concurrently. Given this ownership assertion, t
can perform local (and essentially sequential) reasoning on accesses
to `, completely ignoring concurrently operating threads.

Of course at some point threads have to communicate through
some kind of shared state (such as a mutable heap or message-
passing channels). To reason modularly about such communication,
the original CSL used a simple form of resource invariants, which

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

ICFP ’16, September 18–22, 2016, Nara, Japan.
Copyright c© 2016 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4219-3/16/09. . . $15.00.
DOI: http://dx.doi.org/10.1145/2951913.2951943

were tied to a “conditional critical region” construct for synchro-
nization. Since O’Hearn’s pioneering (and Gödel-award-winning)
paper, there has been an avalanche of follow-on work extending
CSL with more sophisticated mechanisms for modular reasoning,
which allow shared state to be accessed at a finer granularity (e.g.,
atomic compare-and-swap instructions) and which support the ver-
ification of more “daring” (less clearly synchronized) concurrent
programs [40, 17, 16, 13, 18, 38, 35, 27, 11, 24].

In this paper, we focus on two of the most important extensions
to CSL—higher-order quantification and custom ghost state—and
observe that, although several logics support both of these exten-
sions, none of them reap the full potential of their combination. In
particular, none of them provide general support for a feature we
dub “higher-order ghost state”.

Higher-order quantification is the ability to quantify logical
assertions (universally and existentially) over other assertions and,
in general, over arbitrary higher-order predicates. Several recent
extensions to CSL have incorporated higher-order quantification [36,
35, 24, 21, 27], in part because it leads to more generic and reusable
specifications of concurrent data structures (see §4), and in part
because it is seemingly necessary for verifying some higher-order
concurrency paradigms [35, 38, 31].

Ghost state is “logical state”, i.e., state that is essential to
maintain in the proof of a program but is not part of the physical state
manipulated by the program itself. It is a fixture of Hoare logics since
the work of Owicki and Gries [29] in the 1970s, and is useful for
a variety of purposes: for encoding various kinds of “permissions”,
for recording information about the trace of the computation, for
describing “protocols” on how threads may interact with shared
state, and more. Traditionally, ghost state was manipulated by
instrumenting a program with updates to “ghost” (or “auxiliary”)
variables. Although this approach is convenient for integration into
automatic verification tools [10], it is unnecessarily low-level: there
is no reason logical state needs to be manipulated in exactly the
same way as physical state, and doing so makes it harder to reason
about updates to shared logical state in a modular fashion.

Recently, a number of researchers have argued that a more high-
level, general, and flexible way to represent ghost state is via partial
commutative monoids (PCMs). Intuitively, PCMs are a natural
fit for ghost state because they impose only the bare minimum
requirements on something that should be “ownable” in a separation
logic, while leaving lots of room for proof-specific customization.
Several newer extensions to CSL [24, 27, 12] thus give users the
freedom to define ghost state on a per-proof basis in terms of an
arbitrary PCM of their choosing. Furthermore, the Iris logic [24] has
established that PCMs (together with simple invariants) are flexible
enough to derive several advanced reasoning mechanisms that were
built in as primitive in prior logics.

Unfortunately, a limitation arises when one uses PCMs to support
custom ghost state in the context of a logic with higher-order
quantification. Specifically, PCMs yield a model of ghost state that
is first-order. By this we mean that there is an inherent stratification:

1

27

[Robbert Krebbers, Ralf Jung, Aleš Bizjak, Jacques-Henri Jourdan,
Derek Dreyer, and Lars Birkedal. The Essence of Higher-Order
Concurrent Separation Logic. In ESOP’17]

The Essence of
Higher-Order Concurrent Separation Logic

Robbert Krebbers1, Ralf Jung2, Aleš Bizjak3,
Jacques-Henri Jourdan2, Derek Dreyer2, and Lars Birkedal3

1 Delft University of Technology, The Netherlands
2 Max Planck Institute for Software Systems (MPI-SWS), Germany

3 Aarhus University, Denmark

Abstract. Concurrent separation logics (CSLs) have come of age, and
with age they have accumulated a great deal of complexity. Previous
work on the Iris logic attempted to reduce the complex logical mecha-
nisms of modern CSLs to two orthogonal concepts: partial commutative
monoids (PCMs) and invariants. However, the realization of these con-
cepts in Iris still bakes in several complex mechanisms—such as weakest
preconditions and mask-changing view shifts—as primitive notions.

In this paper, we take the Iris story to its (so to speak) logical conclu-
sion, applying the reductionist methodology of Iris to Iris itself. Specifi-
cally, we define a small, resourceful base logic, which distills the essence
of Iris: it comprises only the assertion layer of vanilla separation logic,
plus a handful of simple modalities. We then show how the much fancier
logical mechanisms of Iris—in particular, its entire program specification
layer—can be understood as merely derived forms in our base logic. This
approach helps to explain the meaning of Iris’s program specifications
at a much higher level of abstraction than was previously possible. We
also show that the step-indexed “later” modality of Iris is an essential
source of complexity, in that removing it leads to a logical inconsistency.
All our results are fully formalized in the Coq proof assistant.

1 Introduction

In his paper The Next 700 Separation Logics, Parkinson [27] observed that “sep-
aration logic has brought great advances in the world of verification. However,
there is a disturbing trend for each new library or concurrency primitive to re-
quire a new separation logic.” He argued that what is needed is a general logic
for concurrent reasoning, into which a variety of useful specifications can be en-
coded via the abstraction facilities of the logic. “By finding the right core logic,”
he wrote, “we can concentrate on the difficult problems.”

The logic he suggested as a potential candidate for such a core concurrency
logic was deny-guarantee [12]. Deny-guarantee was indeed groundbreaking in its
support for “fictional separation”—the idea that even if threads are concurrently
manipulating the same shared piece of physical state, one can view them as oper-
ating on logically disjoint pieces of it and use separation logic to reason modularly
about those pieces. It was, however, far from the last word on the subject. Rather,

You can find:

I Encoding Hoare triples using higher-order ghost state

I Encoding of invariants P
N

using higher-order ghost state

I All about the modalities 2, . and |V
I Adequacy of weakest preconditions

I Paradox showing that . is ‘needed’ for impredicative invariants

28

Part #3: Iris Proof Mode (IPM) in Coq

[Robbert Krebbers, Amin Timany, and Lars Birkedal. Interactive
proofs in higher-order concurrent separation logic. In POPL’17]

29

Goal of this part
Many POPL papers about complicated program logics come with
mechanized soundness proofs, but how to reason in these logics?

Goal: reasoning in an object logic in the same style as reasoning in
Coq

How?

I Extend Coq with (spatial and
non-spatial) named proof contexts
for an object logic

I Tactics for introduction and
elimination of all connectives of the
object logic

I Entirely implemented using
reflection, type classes and Ltac
(no OCaml plugin needed)

Iris: language independent higher-order separation logic for
modular reasoning about fine-grained concurrency in Coq

29

Goal of this part
Many POPL papers about complicated program logics come with
mechanized soundness proofs, but how to reason in these logics?

Goal: reasoning in an object logic in the same style as reasoning in
Coq

How?

I Extend Coq with (spatial and
non-spatial) named proof contexts
for an object logic

I Tactics for introduction and
elimination of all connectives of the
object logic

I Entirely implemented using
reflection, type classes and Ltac
(no OCaml plugin needed)

Iris: language independent higher-order separation logic for
modular reasoning about fine-grained concurrency in Coq

29

Goal of this part
Many POPL papers about complicated program logics come with
mechanized soundness proofs, but how to reason in these logics?

Goal: reasoning in an object logic in the same style as reasoning in
Coq

How?

I Extend Coq with (spatial and
non-spatial) named proof contexts
for an object logic

I Tactics for introduction and
elimination of all connectives of the
object logic

I Entirely implemented using
reflection, type classes and Ltac
(no OCaml plugin needed)

Iris: language independent higher-order separation logic for
modular reasoning about fine-grained concurrency in Coq

29

Goal of this part

Many POPL papers about complicated program logics come with
mechanized soundness proofs, but how to reason in these logics?

Goal: reasoning in Iris in the same style as reasoning in Coq

How?

I Extend Coq with (spatial and
non-spatial) named proof contexts
for Iris

I Tactics for introduction and
elimination of all connectives of Iris

I Entirely implemented using
reflection, type classes and Ltac
(no OCaml plugin needed)

Iris: language independent higher-order separation logic for
modular reasoning about fine-grained concurrency in Coq

30

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A →
iProp) :

P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .
Proof .

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

(1/1)
P ∗ (∃ a : A , Ψ a) ∗ R−∗ ∃ a : A , Ψ a ∗ P

Logical notations overridden in scope for Iris

Notation for deeply embedded context

30

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A →
iProp) :

P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .
Proof .

iIntros "[HP [HΨ HR]]".

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

(1/1)
P ∗ (∃ a : A , Ψ a) ∗ R−∗ ∃ a : A , Ψ a ∗ P

Logical notations overridden in scope for Iris

Notation for deeply embedded context

30

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A →
iProp) :

P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .
Proof .

iIntros "[HP [HΨ HR]]".

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

(1/1)
"HP" : P

"HΨ" : ∃ a : A , Ψ a

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , Ψ a ∗ P

Logical notations overridden in scope for Iris

Notation for deeply embedded context

30

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A →
iProp) :

P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .
Proof .

iIntros "[HP [HΨ HR]]".

iDestruct "HΨ" as (x) "HΨ".

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

(1/1)
"HP" : P

"HΨ" : ∃ a : A , Ψ a

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , Ψ a ∗ P

Logical notations overridden in scope for Iris

Notation for deeply embedded context

30

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A →
iProp) :

P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .
Proof .

iIntros "[HP [HΨ HR]]".

iDestruct "HΨ" as (x) "HΨ".

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

x : A

(1/1)
"HP" : P

"HΨ" : Ψ x

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , Ψ a ∗ P

Logical notations overridden in scope for Iris

Notation for deeply embedded context

30

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A →
iProp) :

P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .
Proof .

iIntros "[HP [HΨ HR]]".

iDestruct "HΨ" as (x) "HΨ".

iExists x.

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

x : A

(1/1)
"HP" : P

"HΨ" : Ψ x

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , Ψ a ∗ P

Logical notations overridden in scope for Iris

Notation for deeply embedded context

30

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A →
iProp) :

P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .
Proof .

iIntros "[HP [HΨ HR]]".

iDestruct "HΨ" as (x) "HΨ".

iExists x.

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

x : A

(1/1)
"HP" : P

"HΨ" : Ψ x

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
Ψ x ∗ P

Logical notations overridden in scope for Iris

Notation for deeply embedded context

30

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A →
iProp) :

P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .
Proof .

iIntros "[HP [HΨ HR]]".

iDestruct "HΨ" as (x) "HΨ".

iExists x.

iSplitL "HΨ".

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

x : A

(1/1)
"HP" : P

"HΨ" : Ψ x

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
Ψ x ∗ P

Logical notations overridden in scope for Iris

Notation for deeply embedded context

30

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A →
iProp) :

P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .
Proof .

iIntros "[HP [HΨ HR]]".

iDestruct "HΨ" as (x) "HΨ".

iExists x.

iSplitL "HΨ".

2 subgoals

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

x : A

(1/2)
"HΨ" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
Ψ x

(2/2)
"HP" : P

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
P

Logical notations overridden in scope for Iris

Notation for deeply embedded context

30

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A →
iProp) :

P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .
Proof .

iIntros "[HP [HΨ HR]]".

iDestruct "HΨ" as (x) "HΨ".

iExists x.

iSplitL "HΨ".

-

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

x : A

(1/1)
"HΨ" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
Ψ x

Logical notations overridden in scope for Iris

Notation for deeply embedded context

30

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A →
iProp) :

P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .
Proof .

iIntros "[HP [HΨ HR]]".

iDestruct "HΨ" as (x) "HΨ".

iExists x.

iSplitL "HΨ".

- iAssumption.

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

x : A

(1/1)
"HΨ" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
Ψ x

Logical notations overridden in scope for Iris

Notation for deeply embedded context

30

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A →
iProp) :

P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .
Proof .

iIntros "[HP [HΨ HR]]".

iDestruct "HΨ" as (x) "HΨ".

iExists x.

iSplitL "HΨ".

- iAssumption.

This subproof is complete , but there are some

unfocused goals :

(1/1)
"HP" : P

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
P

Logical notations overridden in scope for Iris

Notation for deeply embedded context

30

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A →
iProp) :

P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .
Proof .

iIntros "[HP [HΨ HR]]".

iDestruct "HΨ" as (x) "HΨ".

iExists x.

iSplitL "HΨ".

- iAssumption.

-

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

x : A

(1/1)
"HP" : P

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
P

Logical notations overridden in scope for Iris

Notation for deeply embedded context

30

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A →
iProp) :

P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .
Proof .

iIntros "[HP [HΨ HR]]".

iDestruct "HΨ" as (x) "HΨ".

iExists x.

iSplitL "HΨ".

- iAssumption.

- iAssumption.

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

x : A

(1/1)
"HP" : P

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
P

Logical notations overridden in scope for Iris

Notation for deeply embedded context

30

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A →
iProp) :

P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .
Proof .

iIntros "[HP [HΨ HR]]".

iDestruct "HΨ" as (x) "HΨ".

iExists x.

iSplitL "HΨ".

- iAssumption.

- iAssumption.

No more subgoals .

Logical notations overridden in scope for Iris

Notation for deeply embedded context

30

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A →
iProp) :

P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .
Proof .

iIntros "[HP [HΨ HR]]".

iDestruct "HΨ" as (x) "HΨ".

iExists x.

iSplitL "HΨ".

- iAssumption.

- iAssumption.

Qed.

No more subgoals .

Logical notations overridden in scope for Iris

Notation for deeply embedded context

30

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A →
iProp) :

P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .
Proof .

iIntros "[HP [HΨ HR]]".

iDestruct "HΨ" as (x) "HΨ".

iExists x.

iSplitL "HΨ".

- iAssumption.

- iAssumption.

Qed.

Logical notations overridden in scope for Iris

Notation for deeply embedded context

30

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A →
iProp) :

P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .
Proof .

iIntros "[HP [HΨ HR]]".

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

(1/1)
"HP" : P

"HΨ" : ∃ a : A , Ψ a

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , Ψ a ∗ P

Logical notations overridden in scope for Iris

Notation for deeply embedded context

30

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A →
iProp) :

P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .
Proof .

iIntros "[HP [HΨ HR]]".

Unset Printing Notations.

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

(1/1)
"HP" : P

"HΨ" : ∃ a : A , Ψ a

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , Ψ a ∗ P

Logical notations overridden in scope for Iris

Notation for deeply embedded context

30

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A →
iProp) :

P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .
Proof .

iIntros "[HP [HΨ HR]]".

Unset Printing Notations.

1 subgoal

M : ucmraT

A : Type@{Top.105}
P , R : uPred M

Ψ : forall : A , uPred M

(1/1)
@uPred entails M

(@of envs M

(@Envs M (@Enil (uPred M))
(@Esnoc (uPred M)

(@Esnoc (uPred M)
(@Esnoc (uPred M) (@Enil (uPred M))

(String
(Ascii false false false true false false

true

false)
(String

(Ascii false false false false true

false true

false) EmptyString)) P)
(String

(Ascii false false false true false false

true false)
(String

(Ascii false true true true false false

true true)
(String

(Ascii false false false true false true

false

true) EmptyString)))
(@uPred exist M A (fun a : A =>Ψ a)))

(String
(Ascii false false false true false false

true false)
(String

(Ascii false true false false true false

true false)
EmptyString)) R)))

(@uPred exist M A (fun a : A => @uPred sep M (Ψ a)
P))

Logical notations overridden in scope for Iris

Notation for deeply embedded context

31

Motivation

Why should we care about interactive proofs? Why not
automate everything?

Infeasible to automate everything, for example:

I Concurrent algorithms in Iris (Jung, Krebbers, Swasey, Timany)

I The Rust type system in Iris (Jung, Jourdan, Dreyer, Krebbers)

I Logical relations in Iris (Krogh-Jespersen, Svendsen, Timany, Birkedal, Tassarotti, Jung,

Krebbers)

I Weak memory concurrency in Iris (Kaiser, Dang, Dreyer, Lahav, Vafeiadis)

I Object calculi in Iris (Swasey, Dreyer, Garg)

I Logical atomicity in Iris (Krogh-Jespersen, Zhang, Jung)

I Defining Iris in Iris (Krebbers, Jung, Jourdan, Bizjak, Dreyer, Birkedal)

Most of these projects are formalized in IPM

32

How to do such proofs in a proof assistant?

Current proof assistant support is limited to basic separation logic:

I Macros for manipulating Hoare triples: Appel, Wright,
Charge!, . . .

I Heavy automation: Bedrock, Rtac, . . .

Iris has many complicated connectives that are beyond basic
separation logic

33

How to embed a logic into a proof assistant

Deep embedding Shallow embedding

Inductive form : Type :=
| iAnd : form → form → form

| iForall : string → form → form → form

Definition iProp : Type :=
(* predicates over states *) .

Definition iAnd : iProp → iProp → iProp

:=
(* semantic interpretation *) .

Definition iForall : ∀ A , (A → iProp) →
iProp :=

(* semantic interpretation *) .

Traverse formulas using Coq func-
tions (fast)

Traverse formulas on the meta
level (slow)

Reflective tactics (fast) Tactics on the meta level (slow)

Need to explicitly encode binders Reuse binders of Coq

Need to embed features like lists Piggy-back on features like lists
from Coq

Grammar of formulas fixed once
and forall

Easily extensible with new con-
nectives

Context manipulation is the prime task of tactics:
Deeply embed contexts, shallowly embed the logic

33

How to embed a logic into a proof assistant

Deep embedding Shallow embedding

Inductive form : Type :=
| iAnd : form → form → form

| iForall : string → form → form → form

Definition iProp : Type :=
(* predicates over states *) .

Definition iAnd : iProp → iProp → iProp

:=
(* semantic interpretation *) .

Definition iForall : ∀ A , (A → iProp) →
iProp :=

(* semantic interpretation *) .

Traverse formulas using Coq func-
tions (fast)

Traverse formulas on the meta
level (slow)

Reflective tactics (fast) Tactics on the meta level (slow)

Need to explicitly encode binders Reuse binders of Coq

Need to embed features like lists Piggy-back on features like lists
from Coq

Grammar of formulas fixed once
and forall

Easily extensible with new con-
nectives

Context manipulation is the prime task of tactics:
Deeply embed contexts, shallowly embed the logic

33

How to embed a logic into a proof assistant

Deep embedding Shallow embedding

Inductive form : Type :=
| iAnd : form → form → form

| iForall : string → form → form → form

Definition iProp : Type :=
(* predicates over states *) .

Definition iAnd : iProp → iProp → iProp

:=
(* semantic interpretation *) .

Definition iForall : ∀ A , (A → iProp) →
iProp :=

(* semantic interpretation *) .

Traverse formulas using Coq func-
tions (fast)

Traverse formulas on the meta
level (slow)

Reflective tactics (fast) Tactics on the meta level (slow)

Need to explicitly encode binders Reuse binders of Coq

Need to embed features like lists Piggy-back on features like lists
from Coq

Grammar of formulas fixed once
and forall

Easily extensible with new con-
nectives

Context manipulation is the prime task of tactics:
Deeply embed contexts, shallowly embed the logic

33

How to embed a logic into a proof assistant

Deep embedding Shallow embedding

Inductive form : Type :=
| iAnd : form → form → form

| iForall : string → form → form → form

Definition iProp : Type :=
(* predicates over states *) .

Definition iAnd : iProp → iProp → iProp

:=
(* semantic interpretation *) .

Definition iForall : ∀ A , (A → iProp) →
iProp :=

(* semantic interpretation *) .

Traverse formulas using Coq func-
tions (fast)

Traverse formulas on the meta
level (slow)

Reflective tactics (fast) Tactics on the meta level (slow)

Need to explicitly encode binders Reuse binders of Coq

Need to embed features like lists Piggy-back on features like lists
from Coq

Grammar of formulas fixed once
and forall

Easily extensible with new con-
nectives

Context manipulation is the prime task of tactics:
Deeply embed contexts, shallowly embed the logic

33

How to embed a logic into a proof assistant

Deep embedding Shallow embedding

Inductive form : Type :=
| iAnd : form → form → form

| iForall : string → form → form → form

Definition iProp : Type :=
(* predicates over states *) .

Definition iAnd : iProp → iProp → iProp

:=
(* semantic interpretation *) .

Definition iForall : ∀ A , (A → iProp) →
iProp :=

(* semantic interpretation *) .

Traverse formulas using Coq func-
tions (fast)

Traverse formulas on the meta
level (slow)

Reflective tactics (fast) Tactics on the meta level (slow)

Need to explicitly encode binders Reuse binders of Coq

Need to embed features like lists Piggy-back on features like lists
from Coq

Grammar of formulas fixed once
and forall

Easily extensible with new con-
nectives

Context manipulation is the prime task of tactics:
Deeply embed contexts, shallowly embed the logic

34

Deeply embedded contexts in IPM

Visible goal in IPM:

~x : ~φ Variables and pure Coq hypotheses

~Hpersistent : ~P Persistent hypotheses in object logic
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
~Hspatial : ~Q Spatial hypotheses in object logic
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
R Goal in object logic

Propositions that enjoy P ⇔ P ∗ P

Actual Coq goal (without pretty printing):

~xi : ~φi

of envs (Envs) ` R

where:

Record envs :=
Envs { env persistent : env iProp ; env spatial : env iProp }.

Coercion of envs (∆ : envs) : iProp :=
(p envs wf ∆q ∗ 2 [∗] env persistent ∆ ∗ [∗] env spatial ∆)%I .

Association list of shallowly embedded propositions

Folded separating conjunction

34

Deeply embedded contexts in IPM

Visible goal in IPM:

~x : ~φ Variables and pure Coq hypotheses

~Hpersistent : ~P Persistent hypotheses in object logic
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
~Hspatial : ~Q Spatial hypotheses in object logic
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
R Goal in object logic

Propositions that enjoy P ⇔ P ∗ P

Actual Coq goal (without pretty printing):

~xi : ~φi

of envs (Envs) ` R

where:

Record envs :=
Envs { env persistent : env iProp ; env spatial : env iProp }.

Coercion of envs (∆ : envs) : iProp :=
(p envs wf ∆q ∗ 2 [∗] env persistent ∆ ∗ [∗] env spatial ∆)%I .

Association list of shallowly embedded propositions

Folded separating conjunction

34

Deeply embedded contexts in IPM

Visible goal in IPM:

~x : ~φ Variables and pure Coq hypotheses

~Hpersistent : ~P Persistent hypotheses in object logic
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
~Hspatial : ~Q Spatial hypotheses in object logic
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
R Goal in object logic

Propositions that enjoy P ⇔ P ∗ P

Actual Coq goal (without pretty printing):

~xi : ~φi

of envs (Envs) ` R

where:

Record envs :=
Envs { env persistent : env iProp ; env spatial : env iProp }.

Coercion of envs (∆ : envs) : iProp :=
(p envs wf ∆q ∗ 2 [∗] env persistent ∆ ∗ [∗] env spatial ∆)%I .

Association list of shallowly embedded propositions

Folded separating conjunction

34

Deeply embedded contexts in IPM

Visible goal in IPM:

~x : ~φ Variables and pure Coq hypotheses

~Hpersistent : ~P Persistent hypotheses in object logic
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
~Hspatial : ~Q Spatial hypotheses in object logic
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
R Goal in object logic

Propositions that enjoy P ⇔ P ∗ P

Actual Coq goal (without pretty printing):

~xi : ~φi

of envs (Envs) ` R

where:

Record envs :=
Envs { env persistent : env iProp ; env spatial : env iProp }.

Coercion of envs (∆ : envs) : iProp :=
(p envs wf ∆q ∗ 2 [∗] env persistent ∆ ∗ [∗] env spatial ∆)%I .

Association list of shallowly embedded propositions

Folded separating conjunction

34

Deeply embedded contexts in IPM

Visible goal in IPM:

~x : ~φ Variables and pure Coq hypotheses

~Hpersistent : ~P Persistent hypotheses in object logic
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
~Hspatial : ~Q Spatial hypotheses in object logic
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
R Goal in object logic

Propositions that enjoy P ⇔ P ∗ P

Actual Coq goal (without pretty printing):

~xi : ~φi

of envs (Envs) ` R

where:

Record envs :=
Envs { env persistent : env iProp ; env spatial : env iProp }.

Coercion of envs (∆ : envs) : iProp :=
(p envs wf ∆q ∗ 2 [∗] env persistent ∆ ∗ [∗] env spatial ∆)%I .

Association list of shallowly embedded propositions

Folded separating conjunction

35

The iSplit tactic

Lemma and exist sep {A} P R (Ψ: A →
iProp) :

P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .
Proof .

iIntros "[HP [HΨ HR]]" .
iDestruct "HΨ" as (x) "HΨ" .
iExists x .

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

x : A

(1/1)
"HP" : P

"HΨ" : Ψ x

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
Ψ x ∗ P

35

The iSplit tactic

Lemma and exist sep {A} P R (Ψ: A →
iProp) :

P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .
Proof .

iIntros "[HP [HΨ HR]]" .
iDestruct "HΨ" as (x) "HΨ" .
iExists x .
iSplitL "HΨ".

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

x : A

(1/1)
"HP" : P

"HΨ" : Ψ x

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
Ψ x ∗ P

35

The iSplit tactic

Lemma and exist sep {A} P R (Ψ: A →
iProp) :

P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .
Proof .

iIntros "[HP [HΨ HR]]" .
iDestruct "HΨ" as (x) "HΨ" .
iExists x .
iSplitL "HΨ".

2 subgoals

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

x : A

(1/2)
"HΨ" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
Ψ x

(2/2)
"HP" : P

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
P

36

Implementation of the iSplit tactic

Tactics implemented by reflection as mere lemmas:

Lemma tac sep split ∆ ∆1 ∆2 lr js Q1 Q2 :
envs split lr js ∆ = Some (∆1,∆2) →
(∆1 ` Q1) → (∆2 ` Q2) → ∆ ` Q1 ∗ Q2 .

Context splitting implemented as a computable Coq function

Ltac wrappers around the reflective tactic:

Tactic Notation "iSplitL" constr(Hs) :=
let Hs := words Hs in

eapply tac sep split with false Hs ;
[env cbv ; reflexivity | |
fail "iSplitL: hypotheses" Hs "not found in the context"

| (* goal 1 *)

| (* goal 2 *)] .
Report sensible error to the user

36

Implementation of the iSplit tactic

Tactics implemented by reflection as mere lemmas:

Lemma tac sep split ∆ ∆1 ∆2 lr js Q1 Q2 :
envs split lr js ∆ = Some (∆1,∆2) →
(∆1 ` Q1) → (∆2 ` Q2) → ∆ ` Q1 ∗ Q2 .

Context splitting implemented as a computable Coq function

Ltac wrappers around the reflective tactic:

Tactic Notation "iSplitL" constr(Hs) :=
let Hs := words Hs in

eapply tac sep split with false Hs ;
[env cbv ; reflexivity | |
fail "iSplitL: hypotheses" Hs "not found in the context"

| (* goal 1 *)

| (* goal 2 *)] .
Report sensible error to the user

36

Implementation of the iSplit tactic

Tactics implemented by reflection as mere lemmas:

Lemma tac sep split ∆ ∆1 ∆2 lr js Q1 Q2 :
envs split lr js ∆ = Some (∆1,∆2) →
(∆1 ` Q1) → (∆2 ` Q2) → ∆ ` Q1 ∗ Q2 .

Context splitting implemented as a computable Coq function

Ltac wrappers around the reflective tactic:

Tactic Notation "iSplitL" constr(Hs) :=
let Hs := words Hs in

eapply tac sep split with false Hs ;
[env cbv ; reflexivity | |
fail "iSplitL: hypotheses" Hs "not found in the context"

| (* goal 1 *)

| (* goal 2 *)] .

Report sensible error to the user

36

Implementation of the iSplit tactic

Tactics implemented by reflection as mere lemmas:

Lemma tac sep split ∆ ∆1 ∆2 lr js Q1 Q2 :
envs split lr js ∆ = Some (∆1,∆2) →
(∆1 ` Q1) → (∆2 ` Q2) → ∆ ` Q1 ∗ Q2 .

Context splitting implemented as a computable Coq function

Ltac wrappers around the reflective tactic:

Tactic Notation "iSplitL" constr(Hs) :=
let Hs := words Hs in

eapply tac sep split with false Hs ;
[env cbv ; reflexivity | |
fail "iSplitL: hypotheses" Hs "not found in the context"

| (* goal 1 *)

| (* goal 2 *)] .
Report sensible error to the user

37

The iFrame tactic

Lemma and exist sep {A} P R (Ψ: A →
iProp) :

P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .
Proof .

iIntros "[HP [HΨ HR]]" .
iDestruct "HΨ" as (x) "HΨ" .

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

x : A

(1/1)
"HP" : P

"HΨ" : Ψ x

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , Ψ a ∗ P

37

The iFrame tactic

Lemma and exist sep {A} P R (Ψ: A →
iProp) :

P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .
Proof .

iIntros "[HP [HΨ HR]]" .
iDestruct "HΨ" as (x) "HΨ" .
iFrame "HP".

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

x : A

(1/1)
"HP" : P

"HΨ" : Ψ x

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , Ψ a ∗ P

37

The iFrame tactic

Lemma and exist sep {A} P R (Ψ: A →
iProp) :

P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .
Proof .

iIntros "[HP [HΨ HR]]" .
iDestruct "HΨ" as (x) "HΨ" .
iFrame "HP".

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

x : A

(1/1)
"HΨ" : Ψ x

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , Ψ a

38

Implementation of the iFrame tactic

Problem: the goal is not deeply embedded, how to manipulate it?

Solution: logic programming using type classes

The lemma corresponding to the tactic in Coq:

Class Frame (R P Q : iProp) := frame : R ∗ Q ` P.

Lemma tac frame ∆ ∆’ i p R P Q :

envs lookup delete i ∆ = Some (p, R, ∆’) →
Frame R P Q →
((if p then ∆ else ∆’) ` Q) → ∆ ` P.

What we want to frame

Initial conclusion

Conclusion of the new goal in which R is framed

Note: we support framing under binders (∃, ∀, . . .) and user
defined connectives

38

Implementation of the iFrame tactic

Problem: the goal is not deeply embedded, how to manipulate it?

Solution: logic programming using type classes

The lemma corresponding to the tactic in Coq:

Class Frame (R P Q : iProp) := frame : R ∗ Q ` P.

Lemma tac frame ∆ ∆’ i p R P Q :

envs lookup delete i ∆ = Some (p, R, ∆’) →
Frame R P Q →
((if p then ∆ else ∆’) ` Q) → ∆ ` P.

What we want to frame

Initial conclusion

Conclusion of the new goal in which R is framed

Note: we support framing under binders (∃, ∀, . . .) and user
defined connectives

38

Implementation of the iFrame tactic

Problem: the goal is not deeply embedded, how to manipulate it?

Solution: logic programming using type classes

The lemma corresponding to the tactic in Coq:

Class Frame (R P Q : iProp) := frame : R ∗ Q ` P.

Lemma tac frame ∆ ∆’ i p R P Q :

envs lookup delete i ∆ = Some (p, R, ∆’) →
Frame R P Q →
((if p then ∆ else ∆’) ` Q) → ∆ ` P.

What we want to frame

Initial conclusion

Conclusion of the new goal in which R is framed

Note: we support framing under binders (∃, ∀, . . .) and user
defined connectives

39

Implementation of the iFrame tactic (2)

Consider the type class:

Class Frame (R P Q : iProp) := frame : R ∗ Q ` P.

What we want to frame

Initial conclusion

Conclusion of the new goal in which R is framed

Instances (rules of the logic program):

39

Implementation of the iFrame tactic (2)

Consider the type class:

Class Frame (R P Q : iProp) := frame : R ∗ Q ` P.

What we want to frame

Initial conclusion

Conclusion of the new goal in which R is framed

Instances (rules of the logic program):

Instance frame here R : Frame R R True .
Instance frame sep l R P1 P2 Q :
Frame R P1 Q → Frame R (P1 ∗ P2) (Q ∗ P2) .

Instance frame sep r R P1 P2 Q :
Frame R P2 Q → Frame R (P1 ∗ P2) (P1 ∗ Q) .

39

Implementation of the iFrame tactic (2)

Consider the type class:

Class Frame (R P Q : iProp) := frame : R ∗ Q ` P.

What we want to frame

Initial conclusion

Conclusion of the new goal in which R is framed

Instances (rules of the logic program):

Class MakeSep P Q PQ := make sep : P ∗ Q a` PQ .
Instance frame here R : Frame R R True .
Instance frame sep l R P1 P2 Q Q ’ :
Frame R P1 Q → MakeSep Q P2 Q ’ → Frame R (P1 ∗ P2) Q ’ .

Instance frame sep r R P1 P2 Q Q ’ :
Frame R P2 Q → MakeSep P1 Q Q ’ → Frame R (P1 ∗ P2) Q ’ .

Instance make sep true l P : MakeSep True P P | 1.
Instance make sep true r P : MakeSep P True P | 1.
Instance make sep default P Q : MakeSep P Q (P ∗ Q) | 2.

40

Proving Hoare triples

Consider:

{x 7→ v1 ∗ y 7→ v2}swap(x, y){x 7→ v2 ∗ y 7→ v1}

How to use IPM to manipulate the precondition?

Solution: define Hoare triple in terms of weakest preconditions

We let:

{P} e {Q} , 2(P −∗ wp e {Q})

where wp e {Q} gives the weakest precondition under which:

I all executions of e are safe

I the final state of e satisfies the postcondition Q

40

Proving Hoare triples

Consider:

{x 7→ v1 ∗ y 7→ v2}swap(x, y){x 7→ v2 ∗ y 7→ v1}

How to use IPM to manipulate the precondition?

Solution: define Hoare triple in terms of weakest preconditions

We let:

{P} e {Q} , 2(P −∗ wp e {Q})

where wp e {Q} gives the weakest precondition under which:

I all executions of e are safe

I the final state of e satisfies the postcondition Q

41

Proving swap using symbolic execution

Definition swap : val := λ: "x" "y" ,
let : "tmp" := !"x" in

"x" ← !"y" ; ;
"y" ← "tmp" .

Lemma swap spec l1 l2 v1 v2 :
{{ l1 7→ v1 ∗ l2 7→ v2 }} swap #l1 #l2
{{ , l1 7→ v2 ∗ l2 7→ v1 }}.

Proof .

iIntros "!# [Hl1 Hl2]".

do 2 wp let.

wp load; wp let.

wp load.

wp store.

wp store.

iFrame.

Qed.

1 subgoal

Σ : gFunctors

H : heapG Σ
l1 , l2 : loc

v1 , v2 : val

(1/1)
{{ l1 7→ v1 ∗ l2 7→ v2 }} (swap #l1) #l2 {{ , l1 7→ v2

∗ l2 7→ v1 }}

41

Proving swap using symbolic execution

Definition swap : val := λ: "x" "y" ,
let : "tmp" := !"x" in

"x" ← !"y" ; ;
"y" ← "tmp" .

Lemma swap spec l1 l2 v1 v2 :
{{ l1 7→ v1 ∗ l2 7→ v2 }} swap #l1 #l2
{{ , l1 7→ v2 ∗ l2 7→ v1 }}.

Proof .
iIntros "!# [Hl1 Hl2]".

do 2 wp let.

wp load; wp let.

wp load.

wp store.

wp store.

iFrame.

Qed.

1 subgoal

Σ : gFunctors

H : heapG Σ
l1 , l2 : loc

v1 , v2 : val

(1/1)
"Hl1" : l1 7→ v1

"Hl2" : l2 7→ v2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
WP (swap #l1) #l2 {{ , l1 7→ v2 ∗ l2 7→ v1 }}

41

Proving swap using symbolic execution

Definition swap : val := λ: "x" "y" ,
let : "tmp" := !"x" in

"x" ← !"y" ; ;
"y" ← "tmp" .

Lemma swap spec l1 l2 v1 v2 :
{{ l1 7→ v1 ∗ l2 7→ v2 }} swap #l1 #l2
{{ , l1 7→ v2 ∗ l2 7→ v1 }}.

Proof .
iIntros "!# [Hl1 Hl2]".

do 2 wp let.

wp load; wp let.

wp load.

wp store.

wp store.

iFrame.

Qed.

1 subgoal

Σ : gFunctors

H : heapG Σ
l1 , l2 : loc

v1 , v2 : val

(1/1)
"Hl1" : l1 7→ v1

"Hl2" : l2 7→ v2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
WP

let : "tmp" := ! #l1 in

#l1 ← ! #l2 ; ;
#l2 ← "tmp" {{ , l1 7→ v2 ∗ l2 7→ v1 }}

41

Proving swap using symbolic execution

Definition swap : val := λ: "x" "y" ,
let : "tmp" := !"x" in

"x" ← !"y" ; ;
"y" ← "tmp" .

Lemma swap spec l1 l2 v1 v2 :
{{ l1 7→ v1 ∗ l2 7→ v2 }} swap #l1 #l2
{{ , l1 7→ v2 ∗ l2 7→ v1 }}.

Proof .
iIntros "!# [Hl1 Hl2]".

do 2 wp let.

wp load; wp let.

wp load.

wp store.

wp store.

iFrame.

Qed.

1 subgoal

Σ : gFunctors

H : heapG Σ
l1 , l2 : loc

v1 , v2 : val

(1/1)
"Hl1" : l1 7→ v1

"Hl2" : l2 7→ v2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
WP #l1 ← ! #l2 ; ; #l2 ← v1 {{ , l1 7→ v2 ∗ l2 7→ v1

}}

41

Proving swap using symbolic execution

Definition swap : val := λ: "x" "y" ,
let : "tmp" := !"x" in

"x" ← !"y" ; ;
"y" ← "tmp" .

Lemma swap spec l1 l2 v1 v2 :
{{ l1 7→ v1 ∗ l2 7→ v2 }} swap #l1 #l2
{{ , l1 7→ v2 ∗ l2 7→ v1 }}.

Proof .
iIntros "!# [Hl1 Hl2]".

do 2 wp let.

wp load; wp let.

wp load.

wp store.

wp store.

iFrame.

Qed.

1 subgoal

Σ : gFunctors

H : heapG Σ
l1 , l2 : loc

v1 , v2 : val

(1/1)
"Hl1" : l1 7→ v1

"Hl2" : l2 7→ v2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
WP #l1 ← v2 ; ; #l2 ← v1 {{ , l1 7→ v2 ∗ l2 7→ v1 }}

41

Proving swap using symbolic execution

Definition swap : val := λ: "x" "y" ,
let : "tmp" := !"x" in

"x" ← !"y" ; ;
"y" ← "tmp" .

Lemma swap spec l1 l2 v1 v2 :
{{ l1 7→ v1 ∗ l2 7→ v2 }} swap #l1 #l2
{{ , l1 7→ v2 ∗ l2 7→ v1 }}.

Proof .
iIntros "!# [Hl1 Hl2]".

do 2 wp let.

wp load; wp let.

wp load.

wp store.

wp store.

iFrame.

Qed.

1 subgoal

Σ : gFunctors

H : heapG Σ
l1 , l2 : loc

v1 , v2 : val

(1/1)
"Hl1" : l1 7→ v2

"Hl2" : l2 7→ v2

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
WP #l2 ← v1 {{ , l1 7→ v2 ∗ l2 7→ v1 }}

41

Proving swap using symbolic execution

Definition swap : val := λ: "x" "y" ,
let : "tmp" := !"x" in

"x" ← !"y" ; ;
"y" ← "tmp" .

Lemma swap spec l1 l2 v1 v2 :
{{ l1 7→ v1 ∗ l2 7→ v2 }} swap #l1 #l2
{{ , l1 7→ v2 ∗ l2 7→ v1 }}.

Proof .
iIntros "!# [Hl1 Hl2]".

do 2 wp let.

wp load; wp let.

wp load.

wp store.

wp store.

iFrame.

Qed.

1 subgoal

Σ : gFunctors

H : heapG Σ
l1 , l2 : loc

v1 , v2 : val

(1/1)
"Hl1" : l1 7→ v2

"Hl2" : l2 7→ v1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
l1 7→ v2 ∗ l2 7→ v1

41

Proving swap using symbolic execution

Definition swap : val := λ: "x" "y" ,
let : "tmp" := !"x" in

"x" ← !"y" ; ;
"y" ← "tmp" .

Lemma swap spec l1 l2 v1 v2 :
{{ l1 7→ v1 ∗ l2 7→ v2 }} swap #l1 #l2
{{ , l1 7→ v2 ∗ l2 7→ v1 }}.

Proof .
iIntros "!# [Hl1 Hl2]".

do 2 wp let.

wp load; wp let.

wp load.

wp store.

wp store.

iFrame.

Qed.

No more subgoals .

41

Proving swap using symbolic execution

Definition swap : val := λ: "x" "y" ,
let : "tmp" := !"x" in

"x" ← !"y" ; ;
"y" ← "tmp" .

Lemma swap spec l1 l2 v1 v2 :
{{ l1 7→ v1 ∗ l2 7→ v2 }} swap #l1 #l2
{{ , l1 7→ v2 ∗ l2 7→ v1 }}.

Proof .
iIntros "!# [Hl1 Hl2]".

do 2 wp let.

wp load; wp let.

wp load.

wp store.

wp store.

iFrame.

Qed.

42

Making IPM tactics modular using type classes
We want iDestruct "H" as "[H1 H2]" to:

I turn H : P * Q into H1 : P and H2 : Q

I turn H : .(P * Q) into H2 : . P and H2 : . Q

I turn H : l 7→ v into H1 : l
1/27−→ v and H2 : l

1/27−→ v

We use type classes to achieve that:

Class IntoAnd (p : bool) (P Q1 Q2 : uPred M) :=
into and : P ` if p then Q1 ∧ Q2 else Q1 ∗ Q2 .

Instance into and sep p P Q : IntoAnd p (P ∗ Q) P Q .
Instance into and and P Q : IntoAnd true (P ∧ Q) P Q .
Instance into and later p P Q1 Q2 : IntoAnd p P Q1 Q2 → IntoAnd p (.

P) (. Q1) (. Q2) .
Instance into and mapsto l q v : IntoAnd false (l 7→{q} v) (l 7→{q/2} v)

(l 7→{q/2} v) .

Lemma tac and destruct ∆ ∆’ i p j1 j2 P P1 P2 Q :
envs lookup i ∆ = Some (p , P) →
IntoAnd p P P1 P2 →
envs simple replace i p (Esnoc (Esnoc Enil j1 P1) j2 P2) ∆ = Some ∆’
→

(∆’ ` Q) → ∆ ` Q .

42

Making IPM tactics modular using type classes
We want iDestruct "H" as "[H1 H2]" to:

I turn H : P * Q into H1 : P and H2 : Q

I turn H : .(P * Q) into H2 : . P and H2 : . Q

I turn H : l 7→ v into H1 : l
1/27−→ v and H2 : l

1/27−→ v

We use type classes to achieve that:

Class IntoAnd (p : bool) (P Q1 Q2 : uPred M) :=
into and : P ` if p then Q1 ∧ Q2 else Q1 ∗ Q2 .

Instance into and sep p P Q : IntoAnd p (P ∗ Q) P Q .
Instance into and and P Q : IntoAnd true (P ∧ Q) P Q .
Instance into and later p P Q1 Q2 : IntoAnd p P Q1 Q2 → IntoAnd p (.

P) (. Q1) (. Q2) .
Instance into and mapsto l q v : IntoAnd false (l 7→{q} v) (l 7→{q/2} v)

(l 7→{q/2} v) .

Lemma tac and destruct ∆ ∆’ i p j1 j2 P P1 P2 Q :
envs lookup i ∆ = Some (p , P) →
IntoAnd p P P1 P2 →
envs simple replace i p (Esnoc (Esnoc Enil j1 P1) j2 P2) ∆ = Some ∆’
→

(∆’ ` Q) → ∆ ` Q .

43

IPM in summary

I Contexts are deeply
embedded

I Context manipulation is
done via computational
reflection

I IPM tactics are just Coq
lemmas

I Type classes are used to
make the tactics more
general

I Ltac is used to provide an
end-user syntax and error
reporting

These ideas are hopefully applicable to other object logics

43

IPM in summary

I Contexts are deeply
embedded

I Context manipulation is
done via computational
reflection

I IPM tactics are just Coq
lemmas

I Type classes are used to
make the tactics more
general

I Ltac is used to provide an
end-user syntax and error
reporting

These ideas are hopefully applicable to other object logics

44

In the paper and Coq formalization

I Detailed description of the implementation

I Verification of concurrent algorithms using IPM

I Formalization of unary and binary logical relations

I Proving logical refinements

IPM scales

C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

Interactive Proofs in Higher-Order
Concurrent Separation Logic

Robbert Krebbers ∗

Delft University of Technology,
The Netherlands

mail@robbertkrebbers.nl

Amin Timany
imec-Distrinet, KU Leuven, Belgium

amin.timany@cs.kuleuven.be

Lars Birkedal
Aarhus University, Denmark

birkedal@cs.au.dk

Abstract
When using a proof assistant to reason in an embedded logic – like
separation logic – one cannot benefit from the proof contexts and
basic tactics of the proof assistant. This results in proofs that are
at a too low level of abstraction because they are cluttered with
bookkeeping code related to manipulating the object logic.

In this paper, we introduce a so-called proof mode that extends
the Coq proof assistant with (spatial and non-spatial) named proof
contexts for the object logic. We show that thanks to these contexts
we can implement high-level tactics for introduction and elimination
of the connectives of the object logic, and thereby make reasoning
in the embedded logic as seamless as reasoning in the meta logic of
the proof assistant. We apply our method to Iris: a state of the art
higher-order impredicative concurrent separation logic.

We show that our method is very general, and is not just limited to
program verification. We demonstrate its generality by formalizing
correctness proofs of fine-grained concurrent algorithms, derived
constructs of the Iris logic, and a unary and binary logical relation
for a language with concurrency, higher-order store, polymorphism,
and recursive types. This is the first formalization of a binary logical
relation for such an expressive language. We also show how to use
the logical relation to prove contextual refinement of fine-grained
concurrent algorithms.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reasoning about
Programs

Keywords Separation Logic, Interactive Theorem Proving, Coq,
Fine-grained Concurrency, Logical Relations

1. Introduction
In the last decade, there has been tremendous progress on program
logics for increasingly sophisticated programming languages [42,
17, 16, 13, 18, 41, 40, 11, 31, 24, 23, 26]. Part of the success of
these logics stems from the fact that they have built-in support for
reasoning about challenging programming language features. For

∗ This research was carried out while this author was at Aarhus University.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

POPL ’17, January 18 - 20, 2017, Paris, France
Copyright c© 2017 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4660-3/17/01. . . $15.00.
DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/3009837.3009855

instance, they include separating conjunction of separation logic for
reasoning about mutable data structures, invariants for reasoning
about sharing, guarded recursion for reasoning about various forms
of recursion, and higher-order quantification for giving generic
modular specifications to libraries.

Due to these built-in features, modern program logics are very
different from the logics of general purpose proof assistants. There-
fore, to use a proof assistant to formalize reasoning in a program
logic, one needs to represent the program logic in that proof assis-
tant, and then, to benefit from the built-in features of the program
logic, use the proof assistant to reason in the embedded logic.

Reasoning in an embedded logic using a proof assistant tradition-
ally results in a lot of overhead. Most of this overhead stems from
the fact that when embedding a logic, one can no longer make use
of the proof assistant’s infrastructure for managing hypotheses. In
separation logic this overhead is evident from the fact that proposi-
tions represent resources (they are spatial) and can thus be used at
most once, which is very different from hypotheses in conventional
logic that can be duplicated at will.

To remedy this situation, we present a so-called proof mode that
extends the Coq proof assistant with (spatial and non-spatial) named
contexts for managing the hypotheses of the object logic. We show
that using our proof mode we can make reasoning in the embedded
logic as seamless as reasoning in the meta logic of Coq. Although
we believe that our proof mode is very generic, and can be applied
to a variety of different embedded logics, we apply it to a specific
logic in this paper, Iris: a state of the art impredicative higher-order
separation logic for fine-grained concurrency [24, 23, 26]. We call
the implementation on top of Iris IPM: Iris Proof Mode.

Iris is an interesting showcase for our proof mode, because
unlike conventional program logics, it cannot only be used to
reason about partial program correctness, but it also supports other
kinds of reasoning. For starters, Iris differs from other (concurrent)
program logics by not baking in particular reasoning principles,
but by providing a minimal set of primitive constructs using which
more advanced reasoning constructs can be defined in the logic.
Furthermore, Iris can be used to define unary and binary relational
interpretations of type systems and for proving theorems about those
interpretations, e.g., that if two terms are related in the relational
interpretation of a type, then they are contextually equivalent.
The type systems can range from ML-like type systems, such
as Fµ,ref ,conc (System F with recursive types, references, and
concurrency), to more expressive type-and-effect systems [27], or
sophisticated ownership-based type systems such as the Rust type
system [14]. We show that IPM supports all of these different kinds
of reasoning.

One may wonder why we develop a reasoning tool for a logic
like Iris in a general purpose proof assistant, instead of building a
standalone tool. The main reason for using a proof assistant is that

45

Thank you!

Want a ‘proof mode’ for another logic, talk to us!

Download Iris at http://iris-project.org/

http://iris-project.org/

