Iris, Iris proof mode and Program verification in Iris

Amin Timany ${ }^{1,2}$
iMec-DistriNet, KU Leuven

IFIP 1.9 meeting
May 12th 2017
KU Leuven

[^0]
What is Iris?

Language independent higher-order separation logic with a simple foundations for modular reasoning about fine-grained concurrency in Coq.

What is Iris?

Language independent higher-order separation logic with a simple foundations for modular reasoning about fine-grained concurrency in Coq.

- Fine-grained concurrency: synchronization primitives and lock-free data structures are implemented

What is Iris?

Language independent higher-order separation logic with a simple foundations for modular reasoning about fine-grained concurrency in Coq.

- Fine-grained concurrency: synchronization primitives and lock-free data structures are implemented
- Modular: reusable and composable specifications

What is Iris?

Language independent higher-order separation logic with a simple foundations for modular reasoning about fine-grained concurrency in Coq.

- Fine-grained concurrency: synchronization primitives and lock-free data structures are implemented
- Modular: reusable and composable specifications
- Language independent: parametrized by the language

What is Iris?

Language independent higher-order separation logic with a simple foundations for modular reasoning about fine-grained concurrency in Coq.

- Fine-grained concurrency: synchronization primitives and lock-free data structures are implemented
- Modular: reusable and composable specifications
- Language independent: parametrized by the language
- Simple foundations: small set of primitive rules

What is Iris?

Language independent higher-order separation logic with a simple foundations for modular reasoning about fine-grained concurrency in Coq.

- Fine-grained concurrency: synchronization primitives and lock-free data structures are implemented
- Modular: reusable and composable specifications
- Language independent: parametrized by the language
- Simple foundations: small set of primitive rules
- Coq: provides practical support for doing proofs in Iris

The versatility of Iris

The scope of Iris goes beyond proving traditional program correctness using Hoare triples:

- The Rust type system (Jung, Jourdan, Dreyer, Krebbers)
- Logical relations (Krogh-Jespersen, Svendsen, Timany, Birkedal, Tassarotti, Jung, Krebbers)
- Weak memory concurrency (Kaiser, Dang, Dreyer, Lahav, Vafeiadis)
- Object calculi (Swasey, Dreyer, Garg)
- Logical atomicity (Krogh-Jespersen, Zhang, Jung)
- Defining Iris (Krebbers, Jung, Jourdan, Bizjak, Dreyer, Birkedal)

Most of these projects are formalized in Iris in $\$$ Coq

This talk

- Program verification in Iris
- Iris Proof mode: facilitating proofs in \$ Coq

Preview of the rules of the Iris base logic

Laws of (affine) bunched implications

$$
\begin{gathered}
\text { True } * P \nvdash \vdash P \\
P * Q \nvdash Q * P \\
(P * Q) * R \nvdash P *(Q * R)
\end{gathered}
$$

$$
\frac{P_{1} \vdash Q_{1} \quad P_{2} \vdash Q_{2}}{P_{1} * P_{2} \vdash Q_{1} * Q_{2}}
$$

$$
\frac{P * Q \vdash R}{P \vdash Q \rightarrow R}
$$

$$
\frac{P \vdash Q \rightarrow R}{P * Q \vdash R}
$$

Laws for resources and validity

$$
\begin{array}{ccr}
\operatorname{Own}(a) * \operatorname{Own}(b) \dashv \vdash \operatorname{Own}(a \cdot b) & \operatorname{True} \vdash \operatorname{Own}(\varepsilon) & \operatorname{Own}(a) \vdash \square \operatorname{Own}(|a|) \\
\operatorname{Own}(a) \vdash \mathcal{V}(a) & \mathcal{V}(a \cdot b) \vdash \mathcal{V}(a) & \mathcal{V}(a) \vdash \square \mathcal{V}(a)
\end{array}
$$

Laws for the basic update modality

$$
\begin{array}{cc}
\frac{P \vdash Q}{\Rightarrow P \vdash झ Q} & P \vdash \nRightarrow P \\
Q * \nRightarrow P \vdash झ(Q * P) & \Rightarrow \nRightarrow P \vdash झ P \\
\hline \operatorname{Own}(a) \vdash झ \exists b \in B . \operatorname{Own}(b)
\end{array}
$$

Laws for the always modality

$$
\frac{P \vdash Q}{\square P \vdash \square Q}
$$

$\square P \vdash P$

Laws for the later modality

$$
\begin{array}{lll}
P \vdash Q & \forall x . \triangleright P \vdash \triangleright \forall x . P & \triangleright(P * Q) \dashv \vdash \triangleright P * \triangleright Q \\
\triangleright P \vdash \triangleright Q & (\triangleright P \Rightarrow P) \vdash P & \triangleright \exists x \cdot P \vdash \triangleright \text { False } \vee \exists x . \triangleright P
\end{array}
$$

Laws for timeless assertions

$$
\triangleright P \vdash \triangleright \text { False } \vee(\triangleright \text { False } \Rightarrow P) \quad \triangleright \text { Own }(a) \vdash \exists b . \text { Own }(b) \wedge \triangleright(a=b)
$$

Part \#1: brief introduction to concurrent separation logic (CSL)

Hoare triples

Hoare triples for partial program correctness:

If the initial state satisfies P, then:

- e does not get stuck/crash
- if e terminates with value v, the final state satisfies $Q[v / w]$

Separation logic [O'Hearn, Reynolds, Yang]

The points-to connective $x \mapsto v$

- provides the knowledge that location x has value v, and
- provides exclusive ownership of x

Separating conjunction $P * Q$: the state consists of disjoint parts satisfying P and Q

Separation logic [O'Hearn, Reynolds, Yang]

The points-to connective $x \mapsto v$

- provides the knowledge that location x has value v, and
- provides exclusive ownership of x

Separating conjunction $P * Q$: the state consists of disjoint parts satisfying P and Q

Example:

$$
\left\{x \mapsto v_{1} * y \mapsto v_{2}\right\} \operatorname{swap}(x, y)\left\{w . w=() \wedge x \mapsto v_{2} * y \mapsto v_{1}\right\}
$$

the $*$ ensures that x and y are different

Concurrent separation logic [O'Hearn]

The par rule:

$$
\frac{\left\{P_{1}\right\} e_{1}\left\{Q_{1}\right\} \quad\left\{P_{2}\right\} e_{2}\left\{Q_{2}\right\}}{\left\{P_{1} * P_{2}\right\} e_{1} \| e_{2}\left\{Q_{1} * Q_{2}\right\}}
$$

Concurrent separation logic [O'Hearn]

The par rule:

$$
\frac{\left\{P_{1}\right\} e_{1}\left\{Q_{1}\right\} \quad\left\{P_{2}\right\} e_{2}\left\{Q_{2}\right\}}{\left\{P_{1} * P_{2}\right\} e_{1} \| e_{2}\left\{Q_{1} * Q_{2}\right\}}
$$

For example:

$$
\begin{gathered}
\{x \mapsto 4 * y \mapsto 6\} \\
x:=\{x+2 \| y:=!y+2 \\
\{x \mapsto 6 * y \mapsto 8\}
\end{gathered}
$$

Concurrent separation logic [O'Hearn]

The par rule:

$$
\frac{\left\{P_{1}\right\} e_{1}\left\{Q_{1}\right\} \quad\left\{P_{2}\right\} e_{2}\left\{Q_{2}\right\}}{\left\{P_{1} * P_{2}\right\} e_{1} \| e_{2}\left\{Q_{1} * Q_{2}\right\}}
$$

For example:

$$
\begin{aligned}
& \{x \mapsto 4 * y \mapsto 6\} \\
& \begin{array}{l||l}
\{x \mapsto 4\} & \{y \mapsto 6\} \\
x:=!x+2 & y:=!y+2
\end{array} \\
& \{x \mapsto 6 * y \mapsto 8\}
\end{aligned}
$$

Concurrent separation logic [O'Hearn]

The par rule:

$$
\frac{\left\{P_{1}\right\} e_{1}\left\{Q_{1}\right\} \quad\left\{P_{2}\right\} e_{2}\left\{Q_{2}\right\}}{\left\{P_{1} * P_{2}\right\} e_{1} \| e_{2}\left\{Q_{1} * Q_{2}\right\}}
$$

For example:

$$
\begin{aligned}
& \{x \mapsto 4 * y \mapsto 6\} \\
& \begin{array}{l||l}
\{x \mapsto 4\} & \{y \mapsto 6\} \\
x:=!x+2 & y:=!y+2 \\
\{x \mapsto 6\} & \{y \mapsto 8\}
\end{array} \\
& \{x \mapsto 6 * y \mapsto 8\}
\end{aligned}
$$

Concurrent separation logic [O'Hearn]

The par rule:

$$
\frac{\left\{P_{1}\right\} e_{1}\left\{Q_{1}\right\} \quad\left\{P_{2}\right\} e_{2}\left\{Q_{2}\right\}}{\left\{P_{1} * P_{2}\right\} e_{1} \| e_{2}\left\{Q_{1} * Q_{2}\right\}}
$$

For example:

$$
\begin{aligned}
& \{x \mapsto 4 * y \mapsto 6\} \\
& \{x \mapsto 4\} \quad|\mid y \mapsto 6\} \\
& \begin{array}{l|l}
x:=!x+2 & y:=!y+2 \\
\{x \mapsto 6\} & \{y \mapsto 8\}
\end{array} \\
& \{x \mapsto 6 * y \mapsto 8\}
\end{aligned}
$$

Works great for concurrent programs without shared memory: concurrent quick sort, concurrent merge sort, ...

What about shared state/racy programs?

A classic problem:

$$
\text { let } x=\operatorname{ref}(0) \text { in }
$$

Where fetchandadd (x, y) is the atomic version of $x:=!x+y$.

What about shared state/racy programs?

A classic problem:

$$
\begin{aligned}
& \{\text { True }\} \\
& \text { let } x=\operatorname{ref}(0) \text { in }
\end{aligned}
$$

$$
\begin{aligned}
& \text { fetchandadd }(x, 2) \| \text { fetchandadd }(x, 2) \\
& !x \\
& \{w \cdot w=4\}
\end{aligned}
$$

Where fetchandadd (x, y) is the atomic version of $x:=!x+y$.

What about shared state/racy programs?

A classic problem:

$$
\begin{aligned}
& \{\text { True }\} \\
& \text { let } x=\operatorname{ref}(0) \text { in } \\
& \{x \mapsto 0\} \\
& \text { fetchandadd }(x, 2) \quad \text { fetchandadd }(x, 2) \\
& !x \\
& \{w \cdot w=4\}
\end{aligned}
$$

Where fetchandadd (x, y) is the atomic version of $x:=!x+y$.

What about shared state/racy programs?

A classic problem:

$$
\begin{aligned}
& \{\text { True }\} \\
& \text { let } x=\operatorname{ref}(0) \text { in } \\
& \{x \mapsto 0\} \\
& \{? ?\} \\
& \text { fetchandadd }(x, 2) \\
& \{? ?\} \\
& \begin{array}{l}
\text { ! } x
\end{array} \\
& \{w \cdot w=4\}
\end{aligned}
$$

Where fetchandadd (x, y) is the atomic version of $x:=!x+y$.
Problem: can only give ownership of x to one thread

Invariants

The invariant assertion R expresses that R is maintained as an invariant on the state

Invariants

The invariant assertion R expresses that R is maintained as an invariant on the state

Invariant opening:

$$
\frac{\{R * P\} e\{R * Q\} \quad e \text { atomic }}{R \quad \vdash\{P\} e\{Q\}}
$$

Invariants

The invariant assertion R expresses that R is maintained as an invariant on the state

Invariant opening:

$$
\frac{\{R * P\} e\{R * Q\} \quad e \text { atomic }}{R \quad \vdash\{P\} e\{Q\}}
$$

Invariant allocation:

$$
\frac{R \quad \vdash\{P\} e\{Q\}}{\{R * P\} e\{Q\}}
$$

Invariants

The invariant assertion $R{ }^{\mathcal{N}}$ expresses that R is maintained as an invariant on the state

Invariant opening:

$$
\frac{\{R * P\} e\{R * Q\}_{\mathcal{E}} \quad e \text { atomic }}{R^{\mathcal{N}} \vdash\{P\} e\{Q\}_{\mathcal{E} \uplus \mathcal{N}}}
$$

Invariant allocation:

$$
\frac{R^{\mathcal{N}} \vdash\{P\} e\{Q\}_{\mathcal{E}}}{\{R * P\} e\{Q\}_{\mathcal{E}}}
$$

Technical detail: names are needed to avoid reentrancy, i.e., opening the same invariant twice

Invariants

The invariant assertion $R^{\mathcal{N}}$ expresses that R is maintained as an invariant on the state

Invariant opening:

$$
\frac{\{\triangleright R * P\} e\{\triangleright R * Q\}_{\mathcal{E}} \quad e \text { atomic }}{R^{\mathcal{N}} \vdash\{P\} e\{Q\}_{\mathcal{E} \uplus \mathcal{N}}}
$$

Invariant allocation:

$$
\frac{R^{\mathcal{N}} \vdash\{P\} e\{Q\}_{\mathcal{E}}}{\{\triangleright R * P\} e\{Q\}}
$$

Technical detail: names are needed to avoid reentrancy, i.e., opening the same invariant twice Other technical detail: the later \triangleright is needed to support impredicative invariants, i.e., $\ldots R^{\mathcal{N}_{2}} \ldots{ }^{\mathcal{N}_{1}}$

Invariants in action

Let us consider a simpler problem first:

```
{True}
let}x=\operatorname{ref}(0) i
```

fetchandadd $(x, 2)$
fetchandadd $(x, 2)$
! x
$\{n . \operatorname{even}(n)\}$

Invariants in action

Let us consider a simpler problem first:

```
{True}
letx=ref(0) in
{x\mapsto0}
fetchandadd( \(x, 2\) )
fetchandadd \((x, 2)\)
! \(x\)
\(\{n . \operatorname{even}(n)\}\)
```


Invariants in action

Let us consider a simpler problem first:

```
{True}
let}x=ref(0) in
{x\mapsto0}
allocate \existsn. x\mapston\wedgeeven(n)
    fetchandadd(x,2)
                                    fetchandadd(x, 2)
!x
{n. even(n)}
```


Invariants in action

Let us consider a simpler problem first:

```
{True}
let}x=ref(0) in
{x\mapsto0}
allocate \existsn. x\mapston^even(n)
{True}
    fetchandadd(x, 2)
{True}
    !x
{n. even(n)}
```

```
! \(x\)
\(\{n . \operatorname{even}(n)\}\)
```


Invariants in action

Let us consider a simpler problem first:

```
{True}
let}x=\operatorname{ref}(0)\mathrm{ in
{x\mapsto0}
allocate \existsn. x\mapston^ even(n)
{True}
        {x\mapston^even(n)}
        fetchandadd(x, 2)
    {x\mapston+2^ even(n+2)}
{True}
    !x
{n.even(n)}
```

\{True\}
fetchandadd $(x, 2)$
\{True $\}$

```
! \(x\)
\(\{n . \operatorname{even}(n)\}\)
```


Invariants in action

Let us consider a simpler problem first:

```
{True}
let}x=ref(0) in
{x\mapsto0}
allocate \existsn. x\mapston^even(n)
{True}
        {x\mapston^even(n)}
        fetchandadd(x,2)
        {x\mapston+2^\operatorname{even}(n+2)}
{True}
!x
{n. even(n)}
```


Invariants in action

Let us consider a simpler problem first:

```
{True}
letx= ref(0) in
{x\mapsto0}
allocate \existsn. x\mapston^even(n)
{True}
    {x\mapston^even(n)}
    fetchandadd(x,2)
    {x\mapston+2^even(n+2)}
{True}
    {x\mapston^ even(n)}
    !x
    {n.x\mapston^even(n)}
{n. even(n)}
```


Invariants in action

Let us consider a simpler problem first:

```
\{True \(\}\)
let \(x=\operatorname{ref}(0)\) in
\(\{x \mapsto 0\}\)
allocate \(\exists n . x \mapsto n \wedge\) even \((n)\)
\{True \(\}\)
    \(\{x \mapsto n \wedge \operatorname{even}(n)\}\)
    fetchandadd \((x, 2)\)
    \(\{x \mapsto n+2 \wedge \operatorname{even}(n+2)\}\)
\{True\}
    \(\{x \mapsto n \wedge \operatorname{even}(n)\}\)
    ! \(x\)
    \(\{n . x \mapsto n \wedge \operatorname{even}(n)\}\)
\(\{n\). even \((n)\}\)
```

Problem: still cannot prove it returns 4

Ghost variables

Consider the invariant:

$$
\exists n . x \mapsto n * \ldots
$$

How to relate the quantified value to the state of the threads?

Ghost variables

Consider the invariant:

$$
\exists n . x \mapsto n * \ldots
$$

How to relate the quantified value to the state of the threads?

Solution: ghost variables

Ghost variables

Consider the invariant:

$$
\exists n . x \mapsto n * \ldots
$$

How to relate the quantified value to the state of the threads?

Solution: ghost variables

Ghost variables are allocated in pairs:

$$
\text { True } \Rightarrow * \quad \exists \gamma \cdot \underbrace{\gamma \hookrightarrow n}_{\text {in the invariant }}
$$

Ghost variables

Consider the invariant:

$$
\exists n_{1}, n_{2} \cdot x \mapsto\left(n_{1}+n_{2}\right) * \gamma_{1} \hookrightarrow_{\bullet} n_{1} * \gamma_{2} \hookrightarrow_{\bullet} n_{2}
$$

How to relate the quantified value to the state of the threads?

Solution: ghost variables

Ghost variables are allocated in pairs:

$$
\text { True } \quad \Rightarrow \quad \exists \gamma \cdot \underbrace{\gamma \hookrightarrow_{\bullet} n}_{\text {in the invariant }}
$$

Ghost variables

Consider the invariant:

$$
\exists n_{1}, n_{2} \cdot x \mapsto\left(n_{1}+n_{2}\right) * \gamma_{1} \hookrightarrow_{\bullet} n_{1} * \gamma_{2} \hookrightarrow_{\bullet} n_{2}
$$

How to relate the quantified value to the state of the threads?

Solution: ghost variables

Ghost variables are allocated in pairs:

$$
\text { True } \Rightarrow * \quad \exists \gamma \cdot \underbrace{\gamma \hookrightarrow \bullet n}_{\text {in the invariant }} * \underbrace{\gamma \hookrightarrow 0 n}_{\text {in the Hoare triple }}
$$

When you own both parts you obtain that the values are equal and can update both parts:

$$
\begin{gathered}
\gamma \hookrightarrow_{\bullet} n * \gamma \hookrightarrow_{0} m \quad \Rightarrow \quad n=m \\
\gamma \hookrightarrow_{\bullet} n * \gamma \hookrightarrow_{0} m \quad \Rightarrow \quad \gamma \hookrightarrow_{\bullet} n^{\prime} * \gamma \hookrightarrow_{0} n^{\prime}
\end{gathered}
$$

Ghost variables in action

\{True\}
let $x=\operatorname{ref}(0)$ in
fetchandadd($x, 2$)
fetchandadd $(x, 2)$
! x
$\{n . n=4\}$

Ghost variables in action

\{True\}
let $x=\operatorname{ref}(0)$ in
$\{x \mapsto 0\}$
fetchandadd($x, 2$)
fetchandadd $(x, 2)$

$$
\begin{gathered}
!x \\
\{n \cdot n=4\}
\end{gathered}
$$

Ghost variables in action

\{True\}
let $x=\operatorname{ref}(0)$ in
$\{x \mapsto 0\}$
$\left\{x \mapsto 0 * \gamma_{1} \hookrightarrow_{\bullet} 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{\bullet} 0 * \gamma_{2} \hookrightarrow_{0} 0\right\}$
fetchandadd($x, 2$)
fetchandadd $(x, 2)$

$$
\begin{gathered}
!x \\
\{n \cdot n=4\}
\end{gathered}
$$

Ghost variables in action

\{True\}
let $x=\operatorname{ref}(0)$ in
$\{x \mapsto 0\}$
$\left\{x \mapsto 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0\right\}$
allocate $\exists n_{1}, n_{2} . x \mapsto n_{1}+n_{2} * \gamma_{1} \hookrightarrow_{\bullet} n_{1} * \gamma_{2} \hookrightarrow_{\bullet} n_{2}$
fetchandadd($x, 2$)
fetchandadd $(x, 2)$

$$
\begin{gathered}
!x \\
\{n \cdot n=4\}
\end{gathered}
$$

Ghost variables in action

\{True\}
let $x=\operatorname{ref}(0)$ in
$\{x \mapsto 0\}$
$\left\{x \mapsto 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0\right\}$
allocate $\exists n_{1}, n_{2} \cdot x \mapsto n_{1}+n_{2} * \gamma_{1} \hookrightarrow_{\bullet} n_{1} * \gamma_{2} \hookrightarrow_{\bullet} n_{2}$
$\left\{\gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0\right\}$
fetchandadd($x, 2$)
fetchandadd $(x, 2)$

$$
\begin{gathered}
!x \\
\{n \cdot n=4\}
\end{gathered}
$$

Ghost variables in action

$$
\begin{aligned}
& \text { \{True\} } \\
& \text { let } x=\operatorname{ref}(0) \text { in } \\
& \{x \mapsto 0\} \\
& \left\{x \mapsto 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{\circ} 0\right\} \\
& \text { allocate } \exists n_{1}, n_{2} \cdot x \mapsto n_{1}+n_{2} * \gamma_{1} \hookrightarrow_{\bullet} n_{1} * \gamma_{2} \hookrightarrow_{\bullet} n_{2} \\
& \left\{\gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0\right\} \\
& \left\{\gamma_{1} \hookrightarrow_{0} 0\right\} \\
& \text { fetchandadd }(x, 2) \\
& \left\{\gamma_{2} \hookrightarrow_{0} 0\right\} \\
& \text { fetchandadd }(x, 2)
\end{aligned}
$$

Ghost variables in action

\{True\}
let $x=\operatorname{ref}(0)$ in
$\{x \mapsto 0\}$
$\left\{x \mapsto 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{\circ} 0\right\}$
allocate $\exists n_{1}, n_{2} \cdot x \mapsto n_{1}+n_{2} * \gamma_{1} \hookrightarrow_{\bullet} n_{1} * \gamma_{2} \hookrightarrow_{\bullet} n_{2}$
$\left\{\gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0\right\}$
$\left\{\gamma_{1} \hookrightarrow_{0} 0\right\}$
$\left\{\gamma_{2} \hookrightarrow_{0} 0\right\}$
fetchandadd $(x, 2)$
$\left\{\gamma_{2} \hookrightarrow_{0} 2\right\}$
$\left\{\gamma_{1} \hookrightarrow_{0} 2\right\}$

Ghost variables in action

```
\{True\}
let \(x=\operatorname{ref}(0)\) in
\(\{x \mapsto 0\}\)
\(\left\{x \mapsto 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0\right\}\)
allocate \(\exists n_{1}, n_{2} \cdot x \mapsto n_{1}+n_{2} * \gamma_{1} \hookrightarrow_{\bullet} n_{1} * \gamma_{2} \hookrightarrow_{\bullet} n_{2}\)
\(\left\{\gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0\right\}\)
\(\left\{\gamma_{1} \hookrightarrow_{0} 0\right\} \quad \|\left\{\gamma_{2} \hookrightarrow_{0} 0\right\}\)
    \(\left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto\left(n_{1}+n_{2}\right) * \gamma_{1} \hookrightarrow_{0} n_{1} * \gamma_{2} \hookrightarrow_{0} n_{2}\right\}\)
    fetchandadd \((x, 2)\)
    fetchandadd \((x, 2)\)
\(\left\{\gamma_{1} \hookrightarrow_{0} 2\right\}\)
\(\left\{\gamma_{2} \hookrightarrow_{0} 2\right\}\)
\(\left\{\gamma_{1} \hookrightarrow_{0} 2 * \gamma_{2} \hookrightarrow_{0} 2\right\}\)
    ! \(x\)
\(\{n . n=4\}\)
```


Ghost variables in action

```
\{True\}
let \(x=\operatorname{ref}(0)\) in
\(\{x \mapsto 0\}\)
\(\left\{x \mapsto 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0\right\}\)
allocate \(\exists n_{1}, n_{2} \cdot x \mapsto n_{1}+n_{2} * \gamma_{1} \hookrightarrow_{\bullet} n_{1} * \gamma_{2} \hookrightarrow_{\bullet} n_{2}\)
\(\left\{\gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0\right\}\)
\(\left\{\gamma_{1} \hookrightarrow_{0} 0\right\} \quad \|\left\{\gamma_{2} \hookrightarrow_{0} 0\right\}\)
    \(\left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto\left(n_{1}+n_{2}\right) * \gamma_{1} \hookrightarrow_{0} n_{1} * \gamma_{2} \hookrightarrow_{0} n_{2}\right\}\)
    fetchandadd \((x, 2)\)
    fetchandadd \((x, 2)\)
\(\left\{\gamma_{1} \hookrightarrow_{0} 2\right\}\)
\(\left\{\gamma_{2} \hookrightarrow_{0} 2\right\}\)
\(\left\{\gamma_{1} \hookrightarrow_{0} 2 * \gamma_{2} \hookrightarrow_{0} 2\right\}\)
    ! \(x\)
\(\{n . n=4\}\)
```


Ghost variables in action

```
\{True\}
let \(x=\operatorname{ref}(0)\) in
\(\{x \mapsto 0\}\)
\(\left\{x \mapsto 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0\right\}\)
allocate \(\exists n_{1}, n_{2} \cdot x \mapsto n_{1}+n_{2} * \gamma_{1} \hookrightarrow_{\bullet} n_{1} * \gamma_{2} \hookrightarrow_{\bullet} n_{2}\)
\(\left\{\gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0\right\}\)
\(\left\{\gamma_{1} \hookrightarrow_{0} 0\right\} \quad \|\left\{\gamma_{2} \hookrightarrow_{0} 0\right\}\)
    \(\left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto\left(n_{1}+n_{2}\right) * \gamma_{1} \hookrightarrow_{0} n_{1} * \gamma_{2} \hookrightarrow_{0} n_{2}\right\}\)
    \(\left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto n_{2} * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} n_{2}\right\}\)
    fetchandadd \((x, 2)\)
    fetchandadd \((x, 2)\)
\(\left\{\gamma_{1} \hookrightarrow_{0} 2\right\}\)
\(\left\{\gamma_{2} \hookrightarrow_{0} 2\right\}\)
\(\left\{\gamma_{1} \hookrightarrow_{0} 2 * \gamma_{2} \hookrightarrow_{0} 2\right\}\)
    ! \(x\)
\(\{n . n=4\}\)
```


Ghost variables in action

```
\{True\}
let \(x=\operatorname{ref}(0)\) in
\(\{x \mapsto 0\}\)
\(\left\{x \mapsto 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0\right\}\)
allocate \(\exists n_{1}, n_{2} \cdot x \mapsto n_{1}+n_{2} * \gamma_{1} \hookrightarrow_{\bullet} n_{1} * \gamma_{2} \hookrightarrow_{\bullet} n_{2}\)
\(\left\{\gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0\right\}\)
\(\left\{\gamma_{1} \hookrightarrow_{0} 0\right\} \quad \|\left\{\gamma_{2} \hookrightarrow_{0} 0\right\}\)
    \(\left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto\left(n_{1}+n_{2}\right) * \gamma_{1} \hookrightarrow_{0} n_{1} * \gamma_{2} \hookrightarrow_{0} n_{2}\right\}\)
    \(\left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto n_{2} * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} n_{2}\right\}\)
    fetchandadd \((x, 2)\)
    fetchandadd \((x, 2)\)
\(\left\{\gamma_{1} \hookrightarrow_{0} 2\right\}\)
\(\left\{\gamma_{2} \hookrightarrow_{0} 2\right\}\)
\(\left\{\gamma_{1} \hookrightarrow_{0} 2 * \gamma_{2} \hookrightarrow_{0} 2\right\}\)
    ! \(x\)
\(\{n . n=4\}\)
```


Ghost variables in action

\{True\}
let $x=\operatorname{ref}(0)$ in
$\{x \mapsto 0\}$
$\left\{x \mapsto 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{\circ} 0\right\}$
allocate $\exists n_{1}, n_{2} \cdot x \mapsto n_{1}+n_{2} * \gamma_{1} \hookrightarrow_{\bullet} n_{1} * \gamma_{2} \hookrightarrow_{0} n_{2}$
$\left\{\gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0\right\}$
$\left\{\begin{array}{l}\left\{\gamma_{1} \hookrightarrow_{0} 0\right\} \\ \left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto\left(n_{1}+n_{2}\right) * \gamma_{1} \hookrightarrow_{0} n_{1} * \gamma_{2} \hookrightarrow_{\bullet} n_{2}\right\}\end{array}\right.$
$\left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto n_{2} * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} n_{2}\right\}$
fetchandadd $(x, 2)$
$\left\{\gamma_{2} \hookrightarrow_{0} 0\right\}$
\quad fetchandadd $(x, 2)$
$\left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto\left(2+n_{2}\right) * \gamma_{1} \hookrightarrow_{\bullet} 0 * \gamma_{2} \hookrightarrow_{\bullet} n_{2}\right\}$
$\left\{\gamma_{1} \hookrightarrow_{0} 2\right\}$
$\left\{\gamma_{2} \hookrightarrow_{0} 2\right\}$
$\left\{\gamma_{1} \hookrightarrow_{0} 2 * \gamma_{2} \hookrightarrow_{0} 2\right\}$
! x
$\{n . n=4\}$

Ghost variables in action

\{True\}
let $x=\operatorname{ref}(0)$ in
$\{x \mapsto 0\}$
$\left\{x \mapsto 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{\circ} 0\right\}$
allocate $\exists n_{1}, n_{2} \cdot x \mapsto n_{1}+n_{2} * \gamma_{1} \hookrightarrow_{\bullet} n_{1} * \gamma_{2} \hookrightarrow_{0} n_{2}$
$\left\{\gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0\right\}$
$\left\{\begin{array}{l}\left\{\gamma_{1} \hookrightarrow_{0} 0\right\} \\ \left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto\left(n_{1}+n_{2}\right) * \gamma_{1} \hookrightarrow_{0} n_{1} * \gamma_{2} \hookrightarrow_{\bullet} n_{2}\right\}\end{array}\right.$
$\left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto n_{2} * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} n_{2}\right\}$
fetchandadd ($x, 2$)
$\left\{\gamma_{2} \hookrightarrow_{0} 0\right\}$
\quad fetchandadd $(x, 2)$
$\left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto\left(2+n_{2}\right) * \gamma_{1} \hookrightarrow_{\bullet} 0 * \gamma_{2} \hookrightarrow_{\bullet} n_{2}\right\}$
$\left\{\gamma_{1} \hookrightarrow_{0} 2\right\}$
$\left\{\gamma_{2} \hookrightarrow_{0} 2\right\}$
$\left\{\gamma_{1} \hookrightarrow_{0} 2 * \gamma_{2} \hookrightarrow_{0} 2\right\}$
! x
$\{n . n=4\}$

Ghost variables in action

\{True\}

let $x=\operatorname{ref}(0)$ in
$\{x \mapsto 0\}$
$\left\{x \mapsto 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{\circ} 0\right\}$
allocate $\exists n_{1}, n_{2} \cdot x \mapsto n_{1}+n_{2} * \gamma_{1} \hookrightarrow_{\bullet} n_{1} * \gamma_{2} \hookrightarrow_{0} n_{2}$
$\left\{\gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0\right\}$
$\left\{\begin{array}{l}\left\{\gamma_{1} \hookrightarrow_{0} 0\right\} \\ \left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto\left(n_{1}+n_{2}\right) * \gamma_{1} \hookrightarrow_{0} n_{1} * \gamma_{2} \hookrightarrow_{\bullet} n_{2}\right\}\end{array}\right.$
$\left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto n_{2} * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} n_{2}\right\}$
fetchandadd ($x, 2$)
$\left\{\gamma_{2} \hookrightarrow_{0} 0\right\}$
$\left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto\left(2+n_{2}\right) * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} n_{2}\right\}$
$\left\{\gamma_{1} \hookrightarrow_{0} 2 * x \mapsto\left(2+n_{2}\right) * \gamma_{1} \hookrightarrow_{\bullet} 2 * \gamma_{2} \hookrightarrow_{\bullet} n_{2}\right\}$
$\left\{\gamma_{1} \hookrightarrow_{0} 2\right\}$
fetchandadd($x, 2$)
$\left\{\gamma_{1} \hookrightarrow_{0} 2 * \gamma_{2} \hookrightarrow_{0} 2\right\}$
! x
$\{n . n=4\}$

Ghost variables in action

\{True\}
let $x=\operatorname{ref}(0)$ in
$\{x \mapsto 0\}$
$\left\{x \mapsto 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{\circ} 0\right\}$
allocate $\exists n_{1}, n_{2} \cdot x \mapsto n_{1}+n_{2} * \gamma_{1} \hookrightarrow_{\bullet} n_{1} * \gamma_{2} \hookrightarrow_{0} n_{2}$
$\left\{\gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0\right\}$
$\left\{\begin{array}{l}\left\{\gamma_{1} \hookrightarrow_{0} 0\right\} \\ \left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto\left(n_{1}+n_{2}\right) * \gamma_{1} \hookrightarrow_{0} n_{1} * \gamma_{2} \hookrightarrow_{0} n_{2}\right\}\end{array}\right.$
$\left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto n_{2} * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} n_{2}\right\}$
fetchandadd $(x, 2)$
$\left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto\left(2+n_{2}\right) * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} n_{2}\right\}$
$\left\{\gamma_{2} \hookrightarrow_{0} 0\right\}$
$\{\{\ldots\}$
fetchandadd($x, 2$) $\{\ldots\}$
$\left\{\gamma_{1} \hookrightarrow_{0} 2 * x \mapsto\left(2+n_{2}\right) * \gamma_{1} \hookrightarrow_{\bullet} 2 * \gamma_{2} \hookrightarrow_{\bullet} n_{2}\right\}$
$\left\{\gamma_{1} \hookrightarrow_{0} 2\right\}$
$\left\{\gamma_{2} \hookrightarrow_{0} 2\right\}$
$\left\{\gamma_{1} \hookrightarrow_{0} 2 * \gamma_{2} \hookrightarrow_{0} 2\right\}$
! x
$\{n . n=4\}$

Ghost variables in action

$$
\begin{aligned}
& \text { \{True\} } \\
& \text { let } x=\operatorname{ref}(0) \text { in } \\
& \{x \mapsto 0\} \\
& \left\{x \mapsto 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0\right\} \\
& \text { allocate } \exists n_{1}, n_{2} \cdot x \mapsto n_{1}+n_{2} * \gamma_{1} \hookrightarrow_{\bullet} n_{1} * \gamma_{2} \hookrightarrow_{\bullet} n_{2} \\
& \left\{\gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0\right\} \\
& \left\{\begin{array}{l}
\left\{\gamma_{1} \hookrightarrow_{0} 0\right\} \\
\left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto\left(n_{1}+n_{2}\right) * \gamma_{1} \hookrightarrow_{0} n_{1} * \gamma_{2} \hookrightarrow_{0} n_{2}\right\}
\end{array}\right. \\
& \left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto n_{2} * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} n_{2}\right\} \\
& \text { fetchandadd (} x, 2 \text {) } \\
& \left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto\left(2+n_{2}\right) * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} n_{2}\right\} \\
& \left\{\gamma_{1} \hookrightarrow_{0} 2 * x \mapsto\left(2+n_{2}\right) * \gamma_{1} \hookrightarrow_{0} 2 * \gamma_{2} \hookrightarrow_{0} n_{2}\right\} \\
& \left\{\gamma_{1} \bigoplus_{0} 2\right\} \\
& \begin{array}{l}
\left\{\gamma_{2} \hookrightarrow_{0} 0\right\} \\
\mid\{\ldots\}
\end{array} \\
& \text { fetchandadd (} x, 2 \text {) } \\
& \text { \{...\} } \\
& \left\{\gamma_{2} \hookrightarrow_{0} 2\right\} \\
& \left\{\gamma_{1} \hookrightarrow_{0} 2 * \gamma_{2} \hookrightarrow_{0} 2\right\} \\
& \left\{\gamma_{1} \hookrightarrow_{0} 2 * \gamma_{2} \hookrightarrow_{0} 2 * x \mapsto\left(n_{1}+n_{2}\right) * \gamma_{1} \hookrightarrow_{0} n_{1} * \gamma_{2} \hookrightarrow_{0} n_{2}\right\} \\
& \text { ! } x \\
& \{n . n=4\}
\end{aligned}
$$

Ghost variables in action

$$
\begin{aligned}
& \text { \{True\} } \\
& \text { let } x=\operatorname{ref}(0) \text { in } \\
& \{x \mapsto 0\} \\
& \left\{x \mapsto 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0\right\} \\
& \text { allocate } \exists n_{1}, n_{2} \cdot x \mapsto n_{1}+n_{2} * \gamma_{1} \hookrightarrow_{\bullet} n_{1} * \gamma_{2} \hookrightarrow_{\bullet} n_{2} \\
& \left\{\gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0\right\} \\
& \left\{\begin{array}{l}
\left\{\gamma_{1} \hookrightarrow_{0} 0\right\} \\
\left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto\left(n_{1}+n_{2}\right) * \gamma_{1} \hookrightarrow_{0} n_{1} * \gamma_{2} \hookrightarrow_{0} n_{2}\right\}
\end{array}\right. \\
& \left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto n_{2} * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} n_{2}\right\} \\
& \text { fetchandadd (} x, 2 \text {) } \\
& \left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto\left(2+n_{2}\right) * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} n_{2}\right\} \\
& \left\{\gamma_{1} \hookrightarrow_{0} 2 * x \mapsto\left(2+n_{2}\right) * \gamma_{1} \hookrightarrow_{0} 2 * \gamma_{2} \hookrightarrow_{0} n_{2}\right\} \\
& \left\{\gamma_{1} \bigoplus_{0} 2\right\} \\
& \begin{array}{l}
\left\{\gamma_{2} \hookrightarrow_{0} 0\right\} \\
\mid\{\ldots\}
\end{array} \\
& \text { fetchandadd (} x, 2 \text {) } \\
& \text { \{...\} } \\
& \left\{\gamma_{2} \hookrightarrow_{0} 2\right\} \\
& \left\{\gamma_{1} \hookrightarrow_{0} 2 * \gamma_{2} \hookrightarrow_{0} 2\right\} \\
& \left\{\gamma_{1} \hookrightarrow_{0} 2 * \gamma_{2} \hookrightarrow_{0} 2 * x \mapsto\left(n_{1}+n_{2}\right) * \gamma_{1} \hookrightarrow_{0} n_{1} * \gamma_{2} \hookrightarrow_{0} n_{2}\right\} \\
& \text { ! } x \\
& \{n . n=4\}
\end{aligned}
$$

Ghost variables in action

$$
\begin{aligned}
& \text { \{True\} } \\
& \text { let } x=\operatorname{ref}(0) \text { in } \\
& \{x \mapsto 0\} \\
& \left\{x \mapsto 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0\right\} \\
& \text { allocate } \exists n_{1}, n_{2}, x \mapsto n_{1}+n_{2} * \gamma_{1} \hookrightarrow n_{1} * \gamma_{2} \hookrightarrow n_{2} \\
& \left\{\gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0\right\} \\
& \left\{\begin{array}{l}
\left\{\gamma_{1} \hookrightarrow_{0} 0\right\} \\
\left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto\left(n_{1}+n_{2}\right) * \gamma_{1} \hookrightarrow_{0} n_{1} * \gamma_{2} \hookrightarrow_{0} n_{2}\right\}
\end{array}\right. \\
& \left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto n_{2} * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} n_{2}\right\} \\
& \text { fetchandadd (} x, 2 \text {) } \\
& \left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto\left(2+n_{2}\right) * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} n_{2}\right\} \\
& \left\{\gamma_{1} \hookrightarrow_{0} 2 * x \mapsto\left(2+n_{2}\right) * \gamma_{1} \hookrightarrow_{0} 2 * \gamma_{2} \hookrightarrow_{0} n_{2}\right\} \\
& \left\{\gamma_{1} \bigoplus_{0} 2\right\} \\
& \left\{\gamma_{2} \hookrightarrow_{0} 0\right\} \\
& \text { \{...\} } \\
& \text { fetchandadd (} x, 2 \text {) } \\
& \text { \{...\} } \\
& \left\{\gamma_{2} \hookrightarrow_{0} 2\right\} \\
& \left\{\gamma_{1} \hookrightarrow_{0} 2 * \gamma_{2} \hookrightarrow_{0} 2\right\} \\
& \left\{\gamma_{1} \hookrightarrow_{0} 2 * \gamma_{2} \hookrightarrow_{0} 2 * x \mapsto\left(n_{1}+n_{2}\right) * \gamma_{1} \hookrightarrow_{0} n_{1} * \gamma_{2} \hookrightarrow_{0} n_{2}\right\} \\
& \left\{\gamma_{1} \hookrightarrow_{0} 2 * \gamma_{2} \hookrightarrow_{0} 2 * x \mapsto 4 * \gamma_{1} \hookrightarrow_{0} 2 * \gamma_{2} \hookrightarrow_{0} 2\right\} \\
& \text { ! } x \\
& \{n . n=4\}
\end{aligned}
$$

Ghost variables in action

$$
\begin{aligned}
& \text { \{True\} } \\
& \text { let } x=\operatorname{ref}(0) \text { in } \\
& \{x \mapsto 0\} \\
& \left\{x \mapsto 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0\right\} \\
& \text { allocate } \exists n_{1}, n_{2}, x \mapsto n_{1}+n_{2} * \gamma_{1} \hookrightarrow n_{1} * \gamma_{2} \hookrightarrow n_{2} \\
& \left\{\gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0\right\} \\
& \left\{\begin{array}{l}
\left\{\gamma_{1} \hookrightarrow_{0} 0\right\} \\
\left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto\left(n_{1}+n_{2}\right) * \gamma_{1} \hookrightarrow_{0} n_{1} * \gamma_{2} \hookrightarrow_{0} n_{2}\right\}
\end{array}\right. \\
& \left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto n_{2} * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} n_{2}\right\} \\
& \text { fetchandadd (} x, 2 \text {) } \\
& \left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto\left(2+n_{2}\right) * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} n_{2}\right\} \\
& \left\{\gamma_{1} \hookrightarrow_{0} 2 * x \mapsto\left(2+n_{2}\right) * \gamma_{1} \hookrightarrow_{0} 2 * \gamma_{2} \hookrightarrow_{0} n_{2}\right\} \\
& \left\{\gamma_{1} \bigoplus_{0} 2\right\} \\
& \left\{\gamma_{2} \hookrightarrow_{0} 0\right\} \\
& \text { \{...\} } \\
& \text { fetchandadd (} x, 2 \text {) } \\
& \text { \{...\} } \\
& \left\{\gamma_{2} \hookrightarrow_{0} 2\right\} \\
& \left\{\gamma_{1} \hookrightarrow_{0} 2 * \gamma_{2} \hookrightarrow_{0} 2\right\} \\
& \left\{\gamma_{1} \hookrightarrow_{0} 2 * \gamma_{2} \hookrightarrow_{0} 2 * x \mapsto\left(n_{1}+n_{2}\right) * \gamma_{1} \hookrightarrow_{0} n_{1} * \gamma_{2} \hookrightarrow_{0} n_{2}\right\} \\
& \left\{\gamma_{1} \hookrightarrow_{0} 2 * \gamma_{2} \hookrightarrow_{0} 2 * x \mapsto 4 * \gamma_{1} \hookrightarrow_{0} 2 * \gamma_{2} \hookrightarrow_{0} 2\right\} \\
& \text { ! } x \\
& \{n . n=4\}
\end{aligned}
$$

Ghost variables in action

$$
\begin{aligned}
& \text { \{True\} } \\
& \text { let } x=\operatorname{ref}(0) \text { in } \\
& \{x \mapsto 0\} \\
& \left\{x \mapsto 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0\right\} \\
& \text { allocate } \exists n_{1}, n_{2}, x \mapsto n_{1}+n_{2} * \gamma_{1} \hookrightarrow n_{1} * \gamma_{2} \hookrightarrow n_{2} \\
& \left\{\gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0\right\} \\
& \left\{\begin{array}{l}
\left\{\gamma_{1} \hookrightarrow_{0} 0\right\} \\
\left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto\left(n_{1}+n_{2}\right) * \gamma_{1} \hookrightarrow_{0} n_{1} * \gamma_{2} \hookrightarrow_{0} n_{2}\right\}
\end{array}\right. \\
& \left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto n_{2} * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} n_{2}\right\} \\
& \text { fetchandadd (} x, 2 \text {) } \\
& \left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto\left(2+n_{2}\right) * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} n_{2}\right\} \\
& \left\{\gamma_{1} \hookrightarrow_{0} 2 * x \mapsto\left(2+n_{2}\right) * \gamma_{1} \hookrightarrow_{0} 2 * \gamma_{2} \hookrightarrow_{0} n_{2}\right\} \\
& \left\{\gamma_{1} \bigoplus_{0} 2\right\} \\
& \left\{\gamma_{2} \hookrightarrow_{0} 0\right\} \\
& \{\ldots\} \\
& \text { fetchandadd }(x, 2) \\
& \text { \{...\} } \\
& \left\{\gamma_{2} \hookrightarrow_{0} 2\right\} \\
& \left\{\gamma_{1} \hookrightarrow_{0} 2 * \gamma_{2} \hookrightarrow_{0} 2\right\} \\
& \left\{\gamma_{1} \hookrightarrow_{0} 2 * \gamma_{2} \hookrightarrow_{0} 2 * x \mapsto\left(n_{1}+n_{2}\right) * \gamma_{1} \hookrightarrow_{\bullet} n_{1} * \gamma_{2} \hookrightarrow_{\bullet} n_{2}\right\} \\
& \left\{\gamma_{1} \hookrightarrow_{\circ} 2 * \gamma_{2} \hookrightarrow_{\circ} 2 * x \mapsto 4 * \gamma_{1} \hookrightarrow_{\bullet} 2 * \gamma_{2} \hookrightarrow_{\bullet} 2\right\} \\
& \text { ! } x \\
& \left\{n . n=4 \wedge \gamma_{1} \hookrightarrow_{0} 2 * \gamma_{2} \hookrightarrow_{0} 2 * x \mapsto 4 * \gamma_{1} \hookrightarrow 02 * \gamma_{2} \hookrightarrow_{0} 2\right\} \\
& \{n \cdot n=4\}
\end{aligned}
$$

Ghost variables in action

$$
\begin{aligned}
& \text { \{True\} } \\
& \text { let } x=\operatorname{ref}(0) \text { in } \\
& \{x \mapsto 0\} \\
& \left\{x \mapsto 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0\right\} \\
& \text { allocate } \exists n_{1}, n_{2}, x \mapsto n_{1}+n_{2} * \gamma_{1} \hookrightarrow n_{1} * \gamma_{2} \hookrightarrow n_{2} \\
& \left\{\gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} 0\right\} \\
& \left\{\begin{array}{l}
\left\{\gamma_{1} \hookrightarrow_{0} 0\right\} \\
\left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto\left(n_{1}+n_{2}\right) * \gamma_{1} \hookrightarrow_{0} n_{1} * \gamma_{2} \hookrightarrow_{0} n_{2}\right\}
\end{array}\right. \\
& \left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto n_{2} * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} n_{2}\right\} \\
& \text { fetchandadd (} x, 2 \text {) } \\
& \left\{\gamma_{1} \hookrightarrow_{0} 0 * x \mapsto\left(2+n_{2}\right) * \gamma_{1} \hookrightarrow_{0} 0 * \gamma_{2} \hookrightarrow_{0} n_{2}\right\} \\
& \left\{\gamma_{1} \hookrightarrow_{0} 2 * x \mapsto\left(2+n_{2}\right) * \gamma_{1} \hookrightarrow_{0} 2 * \gamma_{2} \hookrightarrow_{0} n_{2}\right\} \\
& \left\{\gamma_{1} \bigoplus_{0} 2\right\} \\
& \left\{\gamma_{2} \hookrightarrow_{0} 0\right\} \\
& \{\ldots\} \\
& \text { fetchandadd }(x, 2) \\
& \text { \{...\} } \\
& \left\{\gamma_{2} \hookrightarrow_{0} 2\right\} \\
& \left\{\gamma_{1} \hookrightarrow_{0} 2 * \gamma_{2} \hookrightarrow_{0} 2\right\} \\
& \left\{\gamma_{1} \hookrightarrow_{0} 2 * \gamma_{2} \hookrightarrow_{0} 2 * x \mapsto\left(n_{1}+n_{2}\right) * \gamma_{1} \hookrightarrow_{\bullet} n_{1} * \gamma_{2} \hookrightarrow_{\bullet} n_{2}\right\} \\
& \left\{\gamma_{1} \hookrightarrow_{\circ} 2 * \gamma_{2} \hookrightarrow_{\circ} 2 * x \mapsto 4 * \gamma_{1} \hookrightarrow_{\bullet} 2 * \gamma_{2} \hookrightarrow_{\bullet} 2\right\} \\
& \text { ! } x \\
& \left\{n . n=4 \wedge \gamma_{1} \hookrightarrow_{0} 2 * \gamma_{2} \hookrightarrow_{0} 2 * x \mapsto 4 * \gamma_{1} \hookrightarrow 02 * \gamma_{2} \hookrightarrow_{0} 2\right\} \\
& \{n \cdot n=4\}
\end{aligned}
$$

Ghost variables with fractional permissions [Boyland]

What if we have n threads? Using n different ghost variables, results in different proofs for each thread. That is not modular.

Better way: ghost variables with a fractional permission $(0,1]_{\mathbb{Q}}$:

$$
\gamma \xrightarrow{\pi_{1}+\pi_{2}}\left(n_{1}+n_{2}\right) \quad \Leftrightarrow \quad \gamma \stackrel{\pi_{1}}{\longleftrightarrow} n_{1} * \gamma \stackrel{\pi_{2}}{\longleftrightarrow} n_{2}
$$

Ghost variables with fractional permissions [Boyland]

What if we have n threads? Using n different ghost variables, results in different proofs for each thread. That is not modular.

Better way: ghost variables with a fractional permission $(0,1]_{\mathbb{Q}}$:

$$
\gamma \xrightarrow{\pi_{1}+\pi_{2}}\left(n_{1}+n_{2}\right) \quad \Leftrightarrow \quad \gamma \stackrel{\pi_{1}}{\longleftrightarrow} n_{1} * \gamma \stackrel{\pi_{2}}{\longleftrightarrow} n_{2}
$$

You only get the equality when you have full ownership $(\pi=1)$:

$$
\gamma \hookrightarrow_{0} n * \gamma \stackrel{1}{\hookrightarrow_{0}} m \quad \Rightarrow \quad n=m
$$

Ghost variables with fractional permissions [Boyland]

What if we have n threads? Using n different ghost variables, results in different proofs for each thread. That is not modular.

Better way: ghost variables with a fractional permission $(0,1]_{\mathbb{Q}}$:

$$
\gamma \xrightarrow{\pi_{1}+\pi_{2}}\left(n_{1}+n_{2}\right) \quad \Leftrightarrow \quad \gamma \stackrel{\pi_{1}}{\longleftrightarrow} n_{1} * \gamma \stackrel{\pi_{2}}{\longleftrightarrow} n_{2}
$$

You only get the equality when you have full ownership $(\pi=1)$:

$$
\gamma \hookrightarrow_{0} n * \gamma \stackrel{1}{\hookrightarrow_{0}} m \quad \Rightarrow \quad n=m
$$

Updating is possible with partial ownership $(0<\pi \leq 1)$:

$$
\gamma \hookrightarrow_{0} n * \gamma \stackrel{\pi}{\hookrightarrow_{0}} m \quad \Rightarrow \quad \gamma \quad \hookrightarrow_{0}(n+i) * \gamma \stackrel{\pi}{\leftrightarrows_{0}}(m+i)
$$

Ghost variables with fractional permissions [Boyland]

What if we have n threads? Using n different ghost variables, results in different proofs for each thread. That is not modular.

Better way: ghost variables with a fractional permission $(0,1]_{\mathbb{Q}}$:

$$
\gamma \xrightarrow{\pi_{1}+\pi_{2}}\left(n_{1}+n_{2}\right) \quad \Leftrightarrow \quad \gamma \stackrel{\pi_{1}}{\hookrightarrow} n_{1} * \gamma \stackrel{\pi_{2}}{\hookrightarrow} n_{2}
$$

You only get the equality when you have full ownership $(\pi=1)$:

$$
\gamma \hookrightarrow_{0} n * \gamma \stackrel{1}{\hookrightarrow_{0}} m \Rightarrow n=m
$$

Updating is possible with partial ownership $(0<\pi \leq 1)$:

$$
\gamma \hookrightarrow_{0} n * \gamma \stackrel{\pi}{\hookrightarrow_{0}} m \quad \Rightarrow \quad \gamma \quad \hookrightarrow_{0}(n+i) * \gamma \stackrel{\pi}{\leftrightarrows_{0}}(m+i)
$$

Keeps the invariant that all $\gamma \stackrel{\pi_{i}}{\hookrightarrow_{0}} n_{i}$ sum up to $\gamma \hookrightarrow_{\bullet} \sum n_{i}$

Fractional ghost variables in action

```
{True}
let }x=\operatorname{ref}(0)\mathrm{ in
```

 fetchandadd(\(x, 2\))
 fetchandadd(\(x, 2\))
 ! \(x\)
 $\{n . n=2 k\}$

Fractional ghost variables in action

\{True\}
let $x=\operatorname{ref}(0)$ in
$\{x \mapsto 0\}$
fetchandadd $(x, 2)$
fetchandadd($x, 2$)
! x
$\{n . n=2 k\}$

Fractional ghost variables in action

```
\{True\}
let \(x=\operatorname{ref}(0)\) in
\(\{x \mapsto 0\}\)
\(\left\{x \mapsto 0 * \gamma \hookrightarrow_{0} 0 * \gamma \stackrel{1}{\leftrightarrows_{0}} 0\right\}\)
```

 fetchandadd(\(x, 2\))
 fetchandadd(\(x, 2\))
 ! \(x\)
 $\{n . n=2 k\}$

Fractional ghost variables in action

```
\{True\}
let \(x=\operatorname{ref}(0)\) in
\(\{x \mapsto 0\}\)
\(\left\{x \mapsto 0 * \gamma \hookrightarrow_{0} 0 * \gamma \stackrel{1}{\hookrightarrow_{0}} 0\right\}\)
allocate \(\exists n . x \mapsto n * \gamma \hookrightarrow_{0} n\)
```

 fetchandadd \((x, 2)\)
 fetchandadd(\(x, 2\))
 ! \(x\)
 $\{n . n=2 k\}$

Fractional ghost variables in action

Fractional ghost variables in action

$\|\left\{\begin{aligned} \stackrel{\mu}{\mu} \overbrace{0} \\ 0\end{aligned} 0\right\}$
fetchandadd $(x, 2)$
$\{\gamma \stackrel{2 / 2}{\hookrightarrow} 。 2\}$

Fractional ghost variables in action

Fractional ghost variables in action

$$
\begin{aligned}
& \text { \{True\} } \\
& \text { let } x=\operatorname{ref}(0) \text { in } \\
& \{x \mapsto 0\} \\
& \left\{x \mapsto 0 * \gamma \hookrightarrow_{0} 0 * \gamma \stackrel{1}{\hookrightarrow_{0}} 0\right\} \\
& \text { allocate } \exists n . x \mapsto n * \gamma \hookrightarrow_{0} n \\
& \{\gamma \stackrel{1 / k}{\longrightarrow} 00\} \\
& \left\{\gamma \stackrel{1 / k}{\hookrightarrow_{0}} 0 * x \mapsto n * \gamma \hookrightarrow_{\bullet} n\right\} \\
& \text { fetchandadd }(x, 2) \\
& \left\{\gamma \stackrel{1 / k}{\omega_{0}} 2 * x \mapsto(2+n) * \gamma_{1} \hookrightarrow_{\bullet}(2+n)\right\} \\
& \{\gamma \stackrel{1 / k}{\longrightarrow} 2\} \\
& \| \begin{array}{l}
\left\{\gamma \stackrel{1 / 2}{\omega_{0}} 0\right\} \\
\{\ldots\}
\end{array} \\
& \text { fetchandadd }(x, 2) \\
& \{\ldots\} \\
& \{\gamma \stackrel{1 /<}{\longrightarrow} 2\} \\
& \text { ! } x \\
& \{n . n=2 k\}
\end{aligned}
$$

Fractional ghost variables in action

Fractional ghost variables in action

$$
\begin{aligned}
& \text { \{True\} } \\
& \text { let } x=\operatorname{ref}(0) \text { in } \\
& \{x \mapsto 0\} \\
& \left\{x \mapsto 0 * \gamma \hookrightarrow_{0} 0 * \gamma \stackrel{1}{\hookrightarrow} 0\right\} \\
& \text { allocate } \exists n . x \mapsto n * \gamma \hookrightarrow \text { 。 } n \\
& \left\{\gamma \leadsto{ }^{2 / 2} 00\right\} \\
& \{\gamma \xrightarrow{\text { 炎。 } 0 * x \mapsto n * \gamma \hookrightarrow 。 n\}} \\
& \text { fetchandadd }(x, 2)
\end{aligned}
$$

$$
\begin{aligned}
& \{\gamma \xrightarrow{\mu / 2}, 2\} \\
& \left\{\gamma \stackrel{1}{\hookrightarrow_{0}} 2 k * x \mapsto n * \gamma \hookrightarrow_{0} n\right\} \\
& \text { ! } x \\
& \{n . n=2 k \wedge \gamma \stackrel{1}{\hookrightarrow} 02 k * x \mapsto 2 k * \gamma \hookrightarrow .2 k\} \\
& \{n . n=2 k\}
\end{aligned}
$$

Part \#2: generalizing ownership

[Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal and Derek Dreyer. Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent Reasoning. In POPL'15]
[Ralf Jung, Robbert Krebbers, Lars Birkedal and Derek Dreyer. Higher-Order Ghost State. In ICFP'16]

Mechanisms for concurrent reasoning

We have seen so far:

- Invariants $R^{\mathcal{N}}$
- Ghost variables $\gamma \hookrightarrow_{\bullet} n$ and $\gamma \hookrightarrow_{0} n$
- Fractional ghost variables $\gamma \hookrightarrow_{\bullet} n$ and $\gamma \stackrel{\pi}{\leftrightarrows_{0}} n$

Where do these mechanisms come from?

There are many CSLs with more powerful mechanisms...

Picture by llya Sergey

. . . and very complicated primitive rules

$$
\begin{gathered}
\Gamma, \Delta|\Phi \vdash \operatorname{stable}(\mathrm{P}) \quad \Gamma, \Delta| \Phi \vdash \forall y \text {. stable }(\mathrm{Q}(y)) \\
\Gamma, \Delta|\Phi \vdash n \in C \quad \Gamma, \Delta| \Phi \vdash \forall x \in X .(x, f(x)) \in \overline{T(A)} \vee f(x)=x \\
\frac{\Gamma \mid \Phi \vdash \forall x \in X .(\Delta) \cdot\left\langle\mathrm{P} * *{ }_{\alpha \in A}[\alpha]_{g(\alpha)}^{n} * \triangleright I(x)\right\rangle c\langle\mathrm{Q}(x) * \triangleright I(f(x))\rangle^{C \backslash\{n\}}}{\Gamma \mid \Phi \vdash(\Delta) \cdot\left\langle\mathrm{P} * \circledast_{\alpha \in A}[\alpha]_{g(\alpha)}^{n} * \operatorname{region}(X, T, I, n)\right\rangle} \\
c
\end{gathered}
$$

$$
\langle\exists x . \mathrm{Q}(x) * \operatorname{region}(\{f(x)\}, T, I, n)\rangle^{C}
$$

$$
\begin{gathered}
\text { Use atomic rule } \\
a \notin \mathcal{A} \quad \forall x \in X .(x, f(x)) \in \mathcal{T}_{\mathbf{t}}(\mathrm{G})^{*} \\
\frac{\lambda ; \mathcal{A} \vdash \mathbb{V} x \in X \cdot\left\langle p_{p} \mid I\left(\mathbf{t}_{a}^{\lambda}(x)\right) * p(x) *[\mathrm{G}]_{a}\right\rangle \mathbb{C} \quad \exists l y \in Y \cdot\left\langle q_{p}(x, y) \mid I\left(\mathbf{t}_{a}^{\lambda}(f(x))\right) * q(x, y)\right\rangle}{\lambda+1 ; \mathcal{A} \vdash \mathbb{\forall} x \in X .\left\langle p_{p} \mid \mathbf{t}_{a}^{\lambda}(x) * p(x) *[\mathrm{G}]_{a}\right\rangle \mathbb{C} \quad \exists l y \in Y \cdot\left\langle q_{p}(x, y) \mid \mathbf{t}_{a}^{\lambda}(f(x)) * q(x, y)\right\rangle}
\end{gathered}
$$

$\Gamma|\Phi \vdash x \in X \quad \Gamma| \Phi \vdash \forall \alpha \in$ Action. $\forall x \in$ SId \times SId. $u p(T(\alpha)(x))$
$\Gamma \mid \Phi \vdash A$ and B are finite $\quad \Gamma \mid \Phi \vdash C$ is infinite
$\Gamma \mid \Phi \vdash \forall n \in C . \mathrm{P} * \circledast_{\alpha \in A}[\alpha]_{1}^{n} \Rightarrow \triangleright I(n)(x)$
$\Gamma|\Phi \vdash \forall n \in C . \forall s . \operatorname{stable}(I(n)(s)) \quad \Gamma| \Phi \vdash A \cap B=\emptyset$
$\Gamma \mid \Phi \vdash \mathrm{P} \sqsubseteq^{C} \exists n \in C . \operatorname{region}(X, T, I(n), n) * \circledast_{\alpha \in B}[\alpha]_{1}^{n}$

$$
\begin{aligned}
& \text { Update region rule }
\end{aligned}
$$

The Iris story

The Iris story: all of these mechanisms can be encoded using a simple mechanism of resource ownership

Generalizing ownership

All forms of ownership have common properties:

- Ownership of different threads can be composed For example:

$$
\gamma \xrightarrow{\pi_{1}+\pi_{2}} \circ\left(n_{1}+n_{2}\right) \quad \Leftrightarrow \quad \gamma \stackrel{\pi_{1}}{\longrightarrow} n_{1} * \gamma \stackrel{\pi_{2}}{\longleftrightarrow} n_{2}
$$

Generalizing ownership

All forms of ownership have common properties:

- Ownership of different threads can be composed For example:

$$
\gamma \xrightarrow{\pi_{1}+\pi_{2}}\left(n_{1}+n_{2}\right) \quad \Leftrightarrow \quad \gamma \stackrel{\pi_{1}}{\longrightarrow} n_{1} * \gamma \stackrel{\pi_{2}}{\longrightarrow} n_{2}
$$

- Composition of ownership is associative and commutative Mirroring that parallel composition and separating conjunction is associative and commutative

Generalizing ownership

All forms of ownership have common properties:

- Ownership of different threads can be composed For example:

$$
\gamma \xrightarrow{\pi_{1}+\pi_{2}}\left(n_{1}+n_{2}\right) \quad \Leftrightarrow \quad \gamma \stackrel{\pi_{1}}{\longleftrightarrow} n_{1} * \gamma \stackrel{\pi_{2}}{\longleftrightarrow} n_{2}
$$

- Composition of ownership is associative and commutative Mirroring that parallel composition and separating conjunction is associative and commutative
- Combinations of ownership that do not make sense are ruled out
For example:

$$
\gamma \hookrightarrow_{0} 5 * \gamma \stackrel{1 / 2}{\leftrightarrows_{0}} 3 * \gamma \stackrel{1 / 2}{\hookrightarrow_{0}} 4 \Rightarrow \text { False }
$$

(because $5 \neq 3+4$)

Resource algebras

Resource algebra with carrier M :

- Composition (•) : $M \rightarrow M \rightarrow M$
- Validity predicate $\mathcal{V} \subseteq M$

Satisfying:

$$
a \cdot b=b \cdot a \quad a \cdot(b \cdot c)=(a \cdot b) \cdot c \quad(a \cdot b) \in \mathcal{V} \Rightarrow a \in \mathcal{V}
$$

Resource algebras

Resource algebra with carrier M :

- Composition (•): $M \rightarrow M \rightarrow M$
- Validity predicate $\mathcal{V} \subseteq M$

Satisfying:

$$
a \cdot b=b \cdot a \quad a \cdot(b \cdot c)=(a \cdot b) \cdot c \quad(a \cdot b) \in \mathcal{V} \Rightarrow a \in \mathcal{V}
$$

Iris has ghost variables $\operatorname{lam}^{-1 / M^{\gamma}}$ for each resource algebra M

$$
\begin{aligned}
& \frac{\forall a_{\mathrm{f}} \cdot a \cdot a_{\mathrm{f}} \in \mathcal{V} \Rightarrow b \cdot a_{\mathrm{f}} \in \mathcal{V}}{\left.a^{-a}\right]^{\gamma} \Rightarrow \boldsymbol{B}^{\cdot \gamma}}
\end{aligned}
$$

Ghost variables revisited

Resource algebra for ghost variables:

$$
\text { other combinations } \triangleq \perp
$$

And define:

$$
\begin{aligned}
& \gamma \hookrightarrow_{\bullet} n \triangleq \stackrel{-n}{\bullet}^{-\cdots} \\
& \gamma \hookrightarrow_{0} n \triangleq \stackrel{\Delta n}{\square}
\end{aligned}
$$

$$
\begin{aligned}
& M \triangleq \bullet n|\circ n| \perp \mid \bullet n \\
& \mathcal{V} \triangleq\{a \neq \perp \mid a \in M\} \\
& \bullet n \cdot \circ n^{\prime}=\circ n^{\prime} \cdot \bullet n \triangleq \begin{cases}\infty n & \text { if } n=n^{\prime} \\
\perp & \text { otherwise }\end{cases}
\end{aligned}
$$

Ghost variables revisited

Resource algebra for ghost variables:

$$
\left.\left.\begin{array}{rl}
M & \triangleq \bullet n|\circ n| \perp \mid \odot n \\
\mathcal{V} & \triangleq\{a \neq \perp \mid a \in M\}
\end{array}\right] \begin{array}{ll}
\infty n & \text { if } n=n^{\prime} \\
\perp & \text { otherwise }
\end{array}\right\}
$$

And define:

The ghost variable rules follow directly from the general rules:

$$
\text { True } \equiv * \exists \gamma \cdot \gamma \hookrightarrow_{\bullet} n * \gamma \hookrightarrow_{0} n
$$

Ghost variables revisited

Resource algebra for ghost variables:

$$
\left.\left.\begin{array}{rl}
M & \triangleq \bullet n|\circ n| \perp \mid \odot n \\
\mathcal{V} & \triangleq\{a \neq \perp \mid a \in M\}
\end{array}\right] \begin{array}{ll}
\infty n & \text { if } n=n^{\prime} \\
\perp & \text { otherwise }
\end{array}\right\}
$$

And define:

The ghost variable rules follow directly from the general rules:

Ghost variables revisited

Resource algebra for ghost variables:

$$
\text { other combinations } \triangleq \perp
$$

And define:

The ghost variable rules follow directly from the general rules:

$$
\begin{aligned}
& \text { True } \Rightarrow \exists \gamma \cdot{ }_{\infty} n \|_{0} \Rightarrow \exists \gamma \cdot \gamma \hookrightarrow_{\bullet} n * \gamma \hookrightarrow_{0} n \\
& \quad \gamma \hookrightarrow_{\bullet} n * \gamma \hookrightarrow_{0} m \Rightarrow n=m
\end{aligned}
$$

$$
\begin{aligned}
& M \triangleq \bullet n|\circ n| \perp \mid \bullet n \\
& \mathcal{V} \triangleq\{a \neq \perp \mid a \in M\} \\
& \bullet n \cdot \circ n^{\prime}=\circ n^{\prime} \cdot \bullet n \triangleq \begin{cases}\infty n & \text { if } n=n^{\prime} \\
\perp & \text { otherwise }\end{cases}
\end{aligned}
$$

Ghost variables revisited

Resource algebra for ghost variables:

$$
\text { other combinations } \triangleq \perp
$$

And define:

The ghost variable rules follow directly from the general rules:

$$
\begin{aligned}
& \text { True } \Rightarrow * \exists \gamma \cdot \bullet n{ }^{\circ} \Rightarrow * \exists \cdot \gamma \hookrightarrow_{\bullet} n * \gamma \hookrightarrow_{0} n \\
& \quad \gamma \hookrightarrow_{\bullet} n * \gamma \hookrightarrow_{0} m \Rightarrow(\bullet n \cdot \circ m) \in \mathcal{V} \Rightarrow n=m
\end{aligned}
$$

$$
\begin{aligned}
& M \triangleq \bullet n|\circ n| \perp \mid \bullet n \\
& \mathcal{V} \triangleq\{a \neq \perp \mid a \in M\} \\
& \bullet n \cdot \circ n^{\prime}=\circ n^{\prime} \cdot \bullet n \triangleq \begin{cases}\infty n & \text { if } n=n^{\prime} \\
\perp & \text { otherwise }\end{cases}
\end{aligned}
$$

Updating resources

Resources can be updated using frame-preserving updates:

$$
\frac{\forall a_{\mathrm{f}} \cdot a \cdot a_{\mathrm{f}} \in \mathcal{V} \Rightarrow b \cdot a_{\mathrm{f}} \in \mathcal{V}}{a_{-1}^{\alpha \gamma} \Rightarrow * b^{\prime \gamma}}
$$

Key idea: a resource can be updated if the update does not invalidate the resources of concurrently-running threads

Thread 1		Thread 2	\ldots	Thread n		
a_{1}	\cdot	a_{2}	\cdot	\ldots	\cdot	a_{n}

Updating resources

Resources can be updated using frame-preserving updates:

$$
\frac{\forall a_{\mathrm{f}} \cdot a \cdot a_{\mathrm{f}} \in \mathcal{V} \Rightarrow b \cdot a_{\mathrm{f}} \in \mathcal{V}}{a_{1}^{\prime \gamma} \Rightarrow * b^{\prime \gamma}}
$$

Key idea: a resource can be updated if the update does not invalidate the resources of concurrently-running threads

Thread 1		Thread 2	\ldots	Thread n		
a_{1}	\cdot	a_{2}	\cdot	\ldots	\cdot	a_{n}

The rule $\gamma \hookrightarrow_{\bullet} n * \gamma \hookrightarrow_{0} m \equiv * \gamma \hookrightarrow_{\bullet} n^{\prime} * \gamma \hookrightarrow_{0} n^{\prime}$ follows directly

In the papers

- The full definition of a resource algebra (RA)
- Combinators (fractions, products, finite maps, agreement, etc.) to modularly build many RAs
- Encoding of state transition systems as RAs
- Encoding of $\stackrel{\left.-a^{-\gamma}\right]^{\prime}}{ }$ in terms of something even simpler
- Higher order ghost state: RAs that circularly depend on iProp, the type of propositions

[Robbert Krebbers, Ralf Jung, Aleš Bizjak, Jacques-Henri Jourdan, Derek Dreyer, and Lars Birkedal. The Essence of Higher-Order Concurrent Separation Logic. In ESOP'17]

The Essence of
Higher-Order Concurrent Separation Logic

Robbert Krebbers ${ }^{1}$, Ralf Jung ${ }^{2}$, Aleš Bizjak ${ }^{3}$,
Jacques-Henri Jourdan ${ }^{2}$, Derek Dreyer ${ }^{2}$, and Lars Birkedal ${ }^{3}$
${ }^{1}$ Defft University of Technology, The Netherlands
${ }^{2}$ Max Planck Institute for Software Systems (MPI-SWS), Germany
${ }^{3}$ Aarhus University, Denmark

Abstract. Concurrent separation logics (CSLs) have come of age, and with age they have accumulated a great deal of complexity. Previous work on the Iris logic attempted to reduce the complex logical mechanisms of modern CSLs to two orthogonal concepts: partial commutative

You can find:

- Encoding Hoare triples using higher-order ghost state
- Encoding of invariants $P^{\mathcal{N}}$ using higher-order ghost state
- All about the modalities \square, \triangleright and \Leftrightarrow
- Adequacy of weakest preconditions
- Paradox showing that \triangleright is 'needed' for impredicative invariants

Part \#3: Iris Proof Mode (IPM) in Coq

[Robbert Krebbers, Amin Timany, and Lars Birkedal. Interactive proofs in higher-order concurrent separation logic. In POPL'17]

Goal of this part

Many POPL papers about complicated program logics come with mechanized soundness proofs, but how to reason in these logics?

Goal: reasoning in an object logic in the same style as reasoning in Coq

Goal of this part

Many POPL papers about complicated program logics come with mechanized soundness proofs, but how to reason in these logics?

Goal: reasoning in an object logic in the same style as reasoning in Coq

Goal of this part

Many POPL papers about complicated program logics come with mechanized soundness proofs, but how to reason in these logics?

Goal: reasoning in an object logic in the same style as reasoning in Coq

How?

- Extend Coq with (spatial and non-spatial) named proof contexts for an object logic
- Tactics for introduction and elimination of all connectives of the object logic
- Entirely implemented using reflection, type classes and Ltac (no OCaml plugin needed)

Goal of this part

Many POPL papers about complicated program logics come with mechanized soundness proofs, but how to reason in these logics?

Goal: reasoning in Iris in the same style as reasoning in Coq

How?

- Extend Coq with (spatial and non-spatial) named proof contexts for Iris
- Tactics for introduction and elimination of all connectives of Iris
- Entirely implemented using reflection, type classes and Ltac
 (no OCaml plugin needed)
Iris: language independent higher-order separation logic for modular reasoning about fine-grained concurrency in Coq

Iris Proof Mode (IPM) demo

```
Lemma and_exist_sep {A} P R (\Psi: A }->\quad1\mathrm{ subgoal
    iProp) : M : ucmraT
    P * (\exists\textrm{a},\Psi\textrm{a})*\textrm{R}-*\exists\textrm{a},\Psi\textrm{a}*\textrm{P}.\quadA : Type
Proof.
P, R : iProp
\Psi: A }->\mathrm{ iProp
P
```


Iris Proof Mode (IPM) demo

```
Lemma and_exist_sep {A} P R (\Psi: A }->\quad1\mathrm{ subgoal
    iProp) : M : ucmraT
    P}*(\exists\textrm{a},\Psi\textrm{a})*\textrm{R}-*\exists\textrm{a},\Psi\textrm{a}*\textrm{P}.\quad\textrm{A}: Typ
Proof.
    iIntros "[HP [H\Psi HR]]".
```

```
P, R : iProp
```

P, R : iProp
$\Psi: A \rightarrow$ iProp
$\Psi: A \rightarrow$ iProp
$\overline{\mathrm{P}} *(\exists \mathrm{a}: \mathrm{A}, \Psi \mathrm{a}) * \mathrm{R}-* \exists \mathrm{a}: \mathrm{A}, \Psi \mathrm{a} * \mathrm{P}$

```
\(\overline{\mathrm{P}} *(\exists \mathrm{a}: \mathrm{A}, \Psi \mathrm{a}) * \mathrm{R}-* \exists \mathrm{a}: \mathrm{A}, \Psi \mathrm{a} * \mathrm{P}\)
```


Iris Proof Mode (IPM) demo

```
Lemma and_exist_sep {A} P R (\Psi: A }->\quad1\mathrm{ subgoal
        iProp) : M : ucmraT
    P}*(\exists\textrm{a},\Psi\textrm{a})*\textrm{R}-*\exists\textrm{a},\Psi\textrm{a}*\textrm{P}.\quadA : Typ
Proof.
    iIntros "[HP [H\Psi HR]]".
P, R : iProp
\Psi : A }->\mathrm{ iProp
M\mp@code{HP" : P}
```


Iris Proof Mode (IPM) demo

```
Lemma and_exist_sep {A} P R (\Psi: A }->\quad1\mathrm{ subgoal
        iProp) : M : ucmraT
    P}*(\exists\textrm{a},\Psi\textrm{a})*\textrm{R}-*\exists\textrm{a},\Psi\textrm{F}*P.\quadA: Typ
Proof.
    iIntros "[HP [H\Psi HR]]".
    iDestruct "H\Psi" as (x) "H\Psi".
1 subgoal 
```


Iris Proof Mode (IPM) demo

```
Lemma and_exist_sep {A} P R (\Psi: A }
        iProp)
    P}*(\exists\textrm{a},\Psi\textrm{a})*\textrm{R}-*\exists\textrm{a},\Psi\textrm{T}*P
Proof.
    iIntros "[HP [H\Psi HR]]".
    iDestruct "H\Psi" as (x) "H\Psi".
```

```
1 subgoal
M : ucmraT
A : Type
P, R : iProp
\Psi: A }->\mathrm{ iProp
x : A
    (1/1)
"HP" : P
"H\Psi" : \Psi x
"HR" : R
\existsa:A,\Psia*P
```


Iris Proof Mode (IPM) demo

```
Lemma and_exist_sep {A} P R (\Psi: A }
        iProp)
    P}*(\exists\textrm{a},\Psi\textrm{a})*\textrm{R}-*\exists\textrm{a},\Psi\textrm{a}*\textrm{P}
Proof.
    iIntros "[HP [H\Psi HR]]".
    iDestruct "H\Psi" as (x) "H\Psi".
    iExists x.
```

```
1 subgoal
M : ucmraT
A : Type
P, R : iProp
\Psi: A }->\mathrm{ iProp
x : A
"HP" : P
"H\Psi" : \Psi x
"HR" : R
\existsa:A,\Psia*P
```


Iris Proof Mode (IPM) demo

```
Lemma and_exist_sep {A} P R (\Psi: A }->\quad1\mathrm{ subgoal
        iProp) : M : ucmraT
    P}*(\exists\textrm{a},\Psi\textrm{a})*\textrm{R}-*\exists\textrm{a},\Psi\textrm{F}*P.\quadA: Typ
Proof.
    iIntros "[HP [H\Psi HR]]".
    iDestruct "H\Psi" as (x) "H\Psi".
    iExists x.
```

```
P, R : iProp
```

P, R : iProp
\Psi : A }->\mathrm{ iProp
\Psi : A }->\mathrm{ iProp
x : A
x : A
"HP" : P
"HP" : P
"H\Psi" : \Psi x
"H\Psi" : \Psi x
"HR" : R
"HR" : R
\Psi x * P

```
\Psi x * P
```


Iris Proof Mode (IPM) demo

```
Lemma and_exist_sep {A} P R (\Psi: A }->\quad1\mathrm{ subgoal
        iProp) : M : ucmraT
    P}*(\exists\textrm{a},\Psi\textrm{a})*\textrm{R}-*\exists\textrm{a},\Psi\textrm{a}*\textrm{P}.\quadA: Typ
Proof.
    iIntros "[HP [H\Psi HR]]".
    iDestruct "H\Psi" as (x) "H\Psi".
    iExists x.
    iSplitL "H\Psi".
```

```
P, R : iProp
```

P, R : iProp
\Psi : A }->\mathrm{ iProp
\Psi : A }->\mathrm{ iProp
x : A
x : A
(1/1)
(1/1)
"HP" : P
"HP" : P
"H\Psi" : \Psi x
"H\Psi" : \Psi x
"HR" : R
"HR" : R
\Psi x * P

```
\Psi x * P
```


Iris Proof Mode (IPM) demo

```
Lemma and_exist_sep {A} P R (\Psi: A }
        iProp) :
    P}*(\exists\textrm{a},\Psi\textrm{a})*\textrm{R}-*\exists\textrm{a},\Psi\textrm{a}*\textrm{P}
Proof.
    iIntros "[HP [H\Psi HR]]".
    iDestruct "H\Psi" as (x) "H\Psi".
    iExists x.
    iSplitL "H\Psi".
```

```
2 subgoals
M : ucmraT
A : Type
P, R : iProp
\(\Psi: A \rightarrow\) iProp
x : A
" \(\mathrm{H} \Psi\) " \({ }^{\prime}: \Psi_{x}\)
\(\Psi_{\mathrm{x}} *\)
    \((2 / 2)\)
    "HP" : P
    "HR" : R
P
```


Iris Proof Mode (IPM) demo

```
Lemma and_exist_sep {A} P R (\Psi: A }->\quad1\mathrm{ subgoal
        iProp) : M : ucmraT
    P}*(\exists\textrm{a},\Psi\textrm{a})*\textrm{R}-*\exists\textrm{a},\Psi\textrm{a}*\textrm{P}.\quadA: Typ
Proof.
    iIntros "[HP [H\Psi HR]]".
    iDestruct "H\Psi" as (x) "H\Psi".
    iExists x.
    iSplitL "H\Psi".
```

```
P, R : iProp
```

P, R : iProp
\Psi : A }->\mathrm{ iProp
\Psi : A }->\mathrm{ iProp
x : A
x : A
(1/1)
(1/1)
"H\Psi" : \Psi x
"H\Psi" : \Psi x
\Psi x

```
\Psi x
```


Iris Proof Mode (IPM) demo

```
Lemma and_exist_sep {A} P R (\Psi: A }->\quad1\mathrm{ subgoal
        iProp) : M : ucmraT
    P}*(\exists\textrm{a},\Psi\textrm{a})*\textrm{R}-*\exists\textrm{a},\Psi\textrm{F}*P.\quadA: Typ
Proof.
    iIntros "[HP [H\Psi HR]]".
    iDestruct "H\Psi" as (x) "H\Psi".
    iExists x.
    iSplitL "H\Psi".
    - iAssumption.
```

```
P, R : iProp
```

P, R : iProp
\Psi: A }->\mathrm{ iProp
\Psi: A }->\mathrm{ iProp
x : A
x : A
(1/1)
(1/1)
"H\Psi" : \Psi x
"H\Psi" : \Psi x
\Psi x

```
\Psi x
```


Iris Proof Mode (IPM) demo

```
This subproof is complete, but there are some
        unfocused goals:
This subproof is complete, but there are some unfocused goals:
```

P

```
```

```
"HP" : P
```

```
"HP" : P
"HR" : R
"HR" : R
"HR" : R
```

```
P
_(1/1)
```

```
Lemma and_exist_sep {A} P R (\Psi: A }
        iProp) :
    P*(\exists\textrm{a},\Psi\textrm{a})*\textrm{R}-*\exists\textrm{a},\Psi\textrm{T}}\boldsymbol{\Psi}*\textrm{P}
Proof.
    iIntros "[HP [H\Psi HR]]".
    iDestruct "H\Psi" as (x) "H\Psi".
    iExists x.
    iSplitL "H\Psi".
    - iAssumption.
Lemma and_exist_sep \(\{A\}\) P R \((\Psi: A \rightarrow\) iProp) : \(\mathrm{P} *(\exists \mathrm{a}, \Psi \mathrm{a}) * \mathrm{R}-* \exists \mathrm{a}, \Psi \mathrm{a} * \mathrm{P}\). Proof.
iIntros "[HP [HU HR]]".
iDestruct "HU" as (x) "HU". iExists x.
iSplitL "HU".
- iAssumption.
```


Iris Proof Mode (IPM) demo

```
Lemma and_exist_sep {A} P R (\Psi: A }
        iProp) :
    P}*(\exists\textrm{a},\Psi\textrm{a})*\textrm{R}-*\exists\textrm{a},\Psi\textrm{a}*\textrm{P}
Proof.
    iIntros "[HP [H\Psi HR]]".
    iDestruct "H\Psi" as (x) "H\Psi".
    iExists x.
    iSplitL "H\Psi".
    - iAssumption.
```

1 subgoal
M : ucmraT
A : Type
P, R : iProp
$\Psi: A \rightarrow$ iProp
x : A
"HP" : P
"HR" : R
P

Iris Proof Mode (IPM) demo

```
Lemma and_exist_sep {A} P R (\Psi: A }
        iProp) :
    P}*(\exists\textrm{a},\Psi\textrm{a})*\textrm{R}-*\exists\textrm{a},\Psi\textrm{a}*\textrm{P}
Proof.
    iIntros "[HP [H\Psi HR]]".
    iDestruct "H\Psi" as (x) "H\Psi".
    iExists x.
    iSplitL "H\Psi".
    - iAssumption.
    - iAssumption.
```


Iris Proof Mode (IPM) demo

```
Lemma and_exist_sep {A} P R (\Psi: A }->\quad\mathrm{ No more subgoals.
        iProp)
    P * (\exists\textrm{a},\Psi\textrm{a})*\textrm{R}-*\exists\textrm{a},\Psi\textrm{a}*\textrm{P}.
Proof.
    iIntros "[HP [H\Psi HR]]".
    iDestruct "H\Psi" as (x) "H\Psi".
    iExists x.
    iSplitL "H\Psi".
    - iAssumption.
    - iAssumption.
```


Iris Proof Mode (IPM) demo

```
Lemma and_exist_sep {A} P R (\Psi: A }->\quad\mathrm{ No more subgoals.
        iProp)
    P * (\exists\textrm{a},\Psi\textrm{a})*\textrm{R}-*\exists\textrm{a},\Psi\textrm{a}*\textrm{P}.
Proof.
    iIntros "[HP [H\Psi HR]]".
    iDestruct "H\Psi" as (x) "H\Psi".
    iExists x.
    iSplitL "H\Psi".
    - iAssumption.
    - iAssumption.
```

Qed.

Iris Proof Mode (IPM) demo

```
Lemma and_exist_sep {A} P R (\Psi: A }
        iProp)
    P}*(\exists\textrm{a},\Psi\textrm{T})*\textrm{R}-*\exists\textrm{a},\Psi\textrm{F
Proof.
    iIntros "[HP [H\Psi HR]]":
    Logical notations overridden in scope for Iris
- iAssumption.
- iAssumption.
Qed.
```


Iris Proof Mode (IPM) demo

Notation for deeply embedded context ${ }^{p}$

Iris Proof Mode (IPM) demo

Iris Proof Mode (IPM) demo

```
Lemma and_exist_sep {A} P R (\Psi: A }
        iProp) :
P}*(\exists\textrm{a},\Psi\textrm{a})*\textrm{R}-*\exists\textrm{a},\Psi\textrm{a}*\textrm{P}
Proof.
    iIntros "[HP [HU HR]]".
    Unset Printing Notations.
```

1 subgoal
M : ucmraT
A : Type@\{Top.105\}
P, R : uPred M
ψ : forall _ : A, uPred M
$(1 / 1)$
@uPred_entails M
(@of_envs M
(@Envs M (@Enil (uPred M))
(@Esnoc (uPred M)
(@Esnoc (uPred M)
(@Esnoc (uPred M) (@Enil (uPred M))
(String
(Ascii false false false true false false
true
false)
(String
(Ascii false false false false true
false true
false) EmptyString)) P)
(String
(Ascii false false false true false false
true false)
(String
(Ascii false true true true false false
true true)
(String
(Ascii false false false true false true
false

Motivation

Why should we care about interactive proofs? Why not automate everything?

Infeasible to automate everything, for example:

- Concurrent algorithms in Iris (Jung, Krebbers, Swasey, Timany)
- The Rust type system in Iris (Jung, Jourdan, Dreyer, Krebbers)
- Logical relations in Iris (Krogh-Jespersen, Svendsen, Timany, Birkedal, Tassarotti, Jung, Krebbers)
- Weak memory concurrency in Iris (Kaiser, Dang, Dreyer, Lahav, Vafeiadis)
- Object calculi in Iris (Swasey, Dreyer, Garg)
- Logical atomicity in Iris (Krogh-Jespersen, Zhang, Jung)
- Defining Iris in Iris (Krebbers, Jung, Jourdan, Bizjak, Dreyer, Birkedal)

Most of these projects are formalized in IPM

How to do such proofs in a proof assistant?

Current proof assistant support is limited to basic separation logic:

- Macros for manipulating Hoare triples: Appel, Wright, Charge!, ...
- Heavy automation: Bedrock, Rtac, ...

Iris has many complicated connectives that are beyond basic separation logic

How to embed a logic into a proof assistant

```
Deep embedding
Inductive form : Type :=
    iAnd: form }->\mathrm{ form }->\mathrm{ form
    | iForall: string }->\mathrm{ form }->\mathrm{ form }->\mathrm{ form
```

Shallow embedding
Definition iProp : Type :=
(* predicates over states *).
Definition iAnd : iProp \rightarrow iProp \rightarrow iProp
:=
(* semantic interpretation *).
Definition iForall : $\forall \mathrm{A},(\mathrm{A} \rightarrow$ iProp $) \rightarrow$
iProp :=
(* semantic interpretation *).

How to embed a logic into a proof assistant

```
Deep embedding
Inductive form : Type :=
    |And: form }->\mathrm{ form }->\mathrm{ form
    | iForall: string }->\mathrm{ form }->\mathrm{ form }->\mathrm{ form
```

Traverse formulas using Coq func-
tions (fast)

Reflective tactics (fast)

Shallow embedding

```
Definition iProp : Type :=
    (* predicates over states *).
Definition iAnd : iProp }->\mathrm{ iProp }->\mathrm{ iProp
            :=
    (* semantic interpretation *).
    Definition iForall : }\forall\textrm{A},(\textrm{A}->\mathrm{ iProp) }
            iProp :=
    (* semantic interpretation *).
```

Traverse formulas on the meta level (slow)

Tactics on the meta level (slow)

How to embed a logic into a proof assistant

Deep embedding

```
Inductive form : Type :=
    iAnd: form \(\rightarrow\) form \(\rightarrow\) form
    iForall: string \(\rightarrow\) form \(\rightarrow\) form \(\rightarrow\) form
```

Traverse formulas using Coq functions (fast)

Reflective tactics (fast)
Need to explicitly encode binders
Need to embed features like lists

Shallow embedding

```
Definition iProp : Type :=
    (* predicates over states *).
Definition iAnd : iProp }->\mathrm{ iProp }->\mathrm{ iProp
            :=
    (* semantic interpretation *).
Definition iForall : }\forall\textrm{A},(\textrm{A}->\mathrm{ iProp) }
            iProp :=
    (* semantic interpretation *).
```

Traverse formulas on the meta level (slow)

Tactics on the meta level (slow)
Reuse binders of Coq
Piggy-back on features like lists from Coq

How to embed a logic into a proof assistant

Deep embedding

Inductive form : Type :=
iAnd: form \rightarrow form \rightarrow form
| iForall: string \rightarrow form \rightarrow form \rightarrow form

Traverse formulas using Coq functions (fast)

Reflective tactics (fast)
Need to explicitly encode binders
Need to embed features like lists

Grammar of formulas fixed once and forall

Shallow embedding

```
Definition iProp : Type :=
    (* predicates over states *).
Definition iAnd : iProp }->\mathrm{ iProp }->\mathrm{ iProp
            :=
    (* semantic interpretation *).
Definition iForall : }\forall\textrm{A},(\textrm{A}->\mathrm{ iProp) }
        iProp :=
    (* semantic interpretation *).
```

Traverse formulas on the meta level (slow)

Tactics on the meta level (slow)
Reuse binders of Coq
Piggy-back on features like lists from Coq

Easily extensible with new connectives

How to embed a logic into a proof assistant

Deep embedding
Inductive form : Type $:=$
$\quad \mid$ ind: form \rightarrow form \rightarrow form
\quad iForall: string \rightarrow form \rightarrow form \rightarrow form

Traverse formulas using Coq functions (fast)

Reflective tactics (fast)
Need to explicitly encode binders
Need to embed features like lists

Grammar of formulas fixed once and forall

Shallow embedding

```
Definition iProp : Type :=
    (* predicates over states *).
Definition iAnd : iProp }->\mathrm{ iProp }->\mathrm{ iProp
            :=
    (* semantic interpretation *).
Definition iForall : }\forall\textrm{A},(\textrm{A}->\mathrm{ iProp) }
        iProp :=
    (* semantic interpretation *).
```

Traverse formulas on the meta level (slow)

Tactics on the meta level (slow)
Reuse binders of Coq
Piggy-back on features like lists from Coq

Easily extensible with new connectives

Context manipulation is the prime task of tactics: Deeply embed contexts, shallowly embed the logic

Deeply embedded contexts in IPM

Visible goal in IPM:
$\overrightarrow{\mathrm{x}}: \vec{\phi} \quad$ Variables and pure Coq hypotheses

$\overrightarrow{\overrightarrow{H p} p e r s i s t e n t ~: ~} \vec{P} \quad$ Persistent hypotheses in object logic
$\overrightarrow{\text { Hspatial }: ~} \vec{Q} \quad$ Spatial hypotheses in object logic
$R \quad$ Goal in object logic

Deeply embedded contexts in IPM

Visible goal in IPM: Propositions that enjoy $P \Leftrightarrow P * P$

Hspatial : $\vec{Q} \quad$ Spatial hypotheses in object logic
$R \quad$ Goal in object logic

Deeply embedded contexts in IPM

Visible goal in IPM: Propositions that enjoy $P \Leftrightarrow P * P$

Hspatial : $\vec{Q} \quad$ Spatial hypotheses in object logic
$R \quad$ Goal in object logic
Actual Coq goal (without pretty printing):

$$
\overrightarrow{\mathrm{x}}_{i}: \vec{\phi}_{i}
$$

$$
\text { of_envs (Envs } \quad . . \quad . . .) \vdash R
$$

where:

```
Record envs :=
    Envs { env_persistent : env iProp; env_spatial : env iProp }.
Coercion of_envs (\Delta : envs) : iProp :=
    (\ulcorner envs_wf \Delta\urcorner * \square [*] env_persistent \Delta* [*] env_spatial \Delta )%I.
```


Deeply embedded contexts in IPM

Visible goal in IPM: Propositions that enjoy $P \Leftrightarrow P * P$

Hspatial : $\vec{Q} \quad$ Spatial hypotheses in object logic
$R \quad$ Goal in object logic
Actual Coq goal (without pretty printing):

$$
\overrightarrow{\mathrm{x}}_{i}: \vec{\phi}_{i}
$$

$$
\left.\begin{array}{lll}
\hline \text { of_envs (Envs } & \ldots & \ldots
\end{array}\right) \vdash R
$$

where:
Association list of shallowly embedded propositions

```
Record envs :=
    Envs { env_persistent : env iProp; env_spatial : env iProp }.
Coercion of_envs (\Delta : envs) : iProp :=
    (\ulcornerenvs_wf \Delta\urcorner * \square [*] env_persistent \Delta* [*] env_spatial \Delta)%I.
```


Deeply embedded contexts in IPM

Visible goal in IPM: Propositions that enjoy $P \Leftrightarrow P * P$

Hspatial : $\vec{Q} \quad$ Spatial hypotheses in object logic
$R \quad$ Goal in object logic
Actual Coq goal (without pretty printing):

$$
\overrightarrow{\mathrm{x}}_{i}: \vec{\phi}_{i}
$$

$$
\left.\begin{array}{lll}
\hline \text { of_envs (Envs } & \ldots & \ldots
\end{array}\right) \vdash R
$$

where:
Association list of shallowly embedded propositions

```
Record envs :=
    Envs { env_persistent : env iProp; env_spatial: env iProp }.
Coercion of_envs (\Delta : envs) : iProp :=
    (\ulcorner envs_wf \Delta\urcorner * \square [*] env_persistent \Delta* [*] env_spatial \Delta)%I.
```


The iSplit tactic

```
Lemma and_exist_sep {A} P R (\Psi: A }->\quad1\mathrm{ subgoal
    iProp) :
    P}*(\exists\textrm{a},\Psi\textrm{a})*\textrm{R}-*\exists\textrm{a},\Psi\textrm{a}*\textrm{P}
Proof.
    iIntros "[HP [HU HR]]".
    iDestruct "H\Psi" as (x) "H\Psi".
    iExists x.
\begin{tabular}{l}
1 subgoal \\
M : ucmraT \\
A : Type \\
P, R : iProp \\
\(\Psi: \mathrm{A} \rightarrow\) iProp \\
\(\mathrm{x}: \mathrm{A}\) \\
"HP" : P \\
"H \(\mathrm{H}^{\prime}: \Psi \mathrm{x}\) \\
"HR" : R \\
\hline\(\Psi \mathrm{x} * \mathrm{P}\)
\end{tabular}
```


The iSplit tactic

```
Lemma and_exist_sep {A} P R (\Psi: A }->\quad1\mathrm{ subgoal
    iProp) :
    P}*(\exists\textrm{a},\Psi\textrm{a})*\textrm{R}-*\exists\textrm{a},\Psi\textrm{a}*\textrm{P}
Proof.
    iIntros "[HP [H\Psi HR]]".
    iDestruct "H\Psi" as (x) "H\Psi".
    iExists x.
    iSplitL "H\Psi".
\begin{tabular}{l}
1 subgoal \\
M : ucmraT \\
A : Type \\
P, R : iProp \\
\(\Psi: \mathrm{A} \rightarrow\) iProp \\
\(\mathrm{x}: \mathrm{A}\) \\
"HP" : P \\
"H \(\Psi\) " \(: \Psi \mathrm{x}\) \\
"HR" : R \\
\hline\(\Psi \mathrm{x} * \mathrm{P}\)
\end{tabular}
```


The iSplit tactic

```
Lemma and_exist_sep {A} P R ( }\Psi:A|\quad|\quad2\mathrm{ subgoals
    iProp) :
    P * (\exists\textrm{a},\Psi\textrm{a})*\textrm{R}-*\exists\textrm{a},\Psi\textrm{F}*\textrm{P}.
Proof.
    iIntros "[HP [H\Psi HR]]".
    iDestruct "H\Psi" as (x) "H\Psi".
    iExists x.
    iSplitL "H\Psi".
```

```
M : ucmraT
```

M : ucmraT
A : Type
A : Type
P, R : iProp
P, R : iProp
\Psi : A }->\mathrm{ iProp
\Psi : A }->\mathrm{ iProp
x : A
x : A
"H\Psi" : \Psi x
"H\Psi" : \Psi x
\Psi
\Psi
\Psi x
\Psi x
"HP" : P
"HP" : P
"HR" : R
"HR" : R
P

```
P
```


Implementation of the iSplit tactic

Tactics implemented by reflection as mere lemmas:
Lemma tac_sep_split $\Delta \Delta_{1} \Delta_{2}$ lr js Q1 Q2 :
envs_split lr js $\Delta=\operatorname{Some}\left(\Delta_{1}, \Delta_{2}\right) \rightarrow$
$\left(\Delta_{1} \vdash \mathrm{Q} 1\right) \rightarrow\left(\Delta_{2} \vdash \mathrm{Q} 2\right) \rightarrow \Delta \vdash \mathrm{Q} 1 * \mathrm{Q} 2$.

Implementation of the iSplit tactic

Tactics implemented by reflection as mere lemmas:
Lemma tac_sep_split $\Delta \Delta_{1} \Delta_{2}$ lr js Q1 Q2 :
envs_split lr js $\Delta=\operatorname{Some}\left(\Delta_{1}, \Delta_{2}\right) \rightarrow$
$\left(\Delta_{1} \hat{ף} \mathrm{Q} 1\right) \rightarrow\left(\Delta_{2} \vdash \mathrm{Q} 2\right) \rightarrow \Delta \vdash \mathrm{Q} 1 * \mathrm{Q} 2$.
Context splitting implemented as a computable Coq function

Implementation of the iSplit tactic

Tactics implemented by reflection as mere lemmas:
Lemma tac_sep_split $\Delta \Delta_{1} \Delta_{2}$ lr js Q1 Q2 :
envs_split lr js $\Delta=\operatorname{Some}\left(\Delta_{1}, \Delta_{2}\right) \rightarrow$
$\left(\Delta_{1} \hat{\nmid Q 1}\right) \rightarrow\left(\Delta_{2} \vdash \mathrm{Q} 2\right) \rightarrow \Delta \vdash \mathrm{Q} 1 * \mathrm{Q} 2$.
Context splitting implemented as a computable Coq function

Ltac wrappers around the reflective tactic:

```
Tactic Notation "iSplitL" constr(Hs) :=
    let Hs := words Hs in
    eapply tac_sep_split with _ _ false Hs _ _;
        [env_cbv; reflexivity ||
            fail "iSplitL: hypotheses" Hs "not found in the context"
            (* goal 1 *)
            (* goal 2 *) ].
```


Implementation of the iSplit tactic

Tactics implemented by reflection as mere lemmas:
Lemma tac_sep_split $\Delta \Delta_{1} \Delta_{2}$ lr js Q1 Q2 :

```
envs_split lr js }\Delta=\operatorname{Some}(\mp@subsup{\Delta}{1}{},\mp@subsup{\Delta}{2}{})
```

$\left(\Delta_{1} \hat{ף} \mathrm{Q} 1\right) \rightarrow\left(\Delta_{2} \vdash \mathrm{Q} 2\right) \rightarrow \Delta \vdash \mathrm{Q} 1 * \mathrm{Q} 2$.

Context splitting implemented as a computable Coq function

Ltac wrappers around the reflective tactic:

```
Tactic Notation "iSplitL" constr(Hs) :=
    let Hs := words Hs in
    eapply tac_sep_split with _ _ false Hs _ _;
        [env_cbv; reflexivity ||
            fail "iSplitL: hypotheses" Hs "not found in the context"
            (* gotal 1 *)
            (* goal 2 *) ].

\section*{The iFrame tactic}
```

Lemma and_exist_sep {A} P R (}\Psi:A:A->\quad1 subgoal
iProp) : M : ucmraT
P}*(\exists\textrm{a},\Psi\textrm{a})*\textrm{R}-*\exists\textrm{a},\Psi\textrm{a}*\textrm{P}.\quad\textrm{A}: Typ
Proof.
iIntros "[HP [H\Psi HR]]".
iDestruct "H\Psi" as (x) "H\Psi".

```
```

P, R : iProp

```
P, R : iProp
\Psi : A }->\mathrm{ iProp
\Psi : A }->\mathrm{ iProp
x : A
x : A
"HP" : P
"HP" : P
"H\Psi" : \Psi x
"H\Psi" : \Psi x
"HR" : R
"HR" : R
\exists a : A, \Psi a * P
```

\exists a : A, \Psi a * P

```

\section*{The iFrame tactic}
```

Lemma and_exist_sep {A} P R (\Psi: A }

```
1 subgoal
M : ucmraT
A : Type
P, R : iProp
\(\Psi: A \rightarrow\) iProp
x : A
"HP" : P
" \(\mathrm{H} \Psi\) " : \(\Psi \mathrm{x}\)
"HR" : R
\(\exists \mathrm{a}: \mathrm{A}, \Psi \mathrm{a} * \mathrm{P}\)
(1/1)
"HP" : P
" \(\mathrm{H} \Psi\) " : \(\Psi \mathrm{x}\)
"HR" : R
\(\exists \mathrm{a}: \mathrm{A}, \Psi \mathrm{a} * \mathrm{P}\)

\section*{The iFrame tactic}
```

```
Lemma and_exist_sep \(\{A\} P R(\Psi: A \rightarrow\)
```

```
Lemma and_exist_sep \(\{A\} P R(\Psi: A \rightarrow\)
    iProp) :
    iProp) :
    \(\mathrm{P} *(\exists \mathrm{a}, \Psi \mathrm{a}) * \mathrm{R}-* \exists \mathrm{a}, \Psi \mathrm{a} * \mathrm{P}\).
    \(\mathrm{P} *(\exists \mathrm{a}, \Psi \mathrm{a}) * \mathrm{R}-* \exists \mathrm{a}, \Psi \mathrm{a} * \mathrm{P}\).
Proof.
Proof.
    iIntros "[HP [HU HR]]".
    iIntros "[HP [HU HR]]".
    iDestruct "H \(\Psi\) " as (x) "H
    iDestruct "H \(\Psi\) " as (x) "H
    iFrame "HP".
```

```
    iFrame "HP".
```

```
1 subgoal
M : ucmraT
A : Type
P, R : iProp
\(\Psi: A \rightarrow\) iProp
x : A
"H \(\Psi\) " : \(\Psi x\)
"HR" : R
\(\exists \mathrm{a}: \mathrm{A}, \Psi \mathrm{a}\)
(1/1)
" \(\mathrm{H} \Psi^{\prime \prime}\) : \(\Psi \mathrm{x}\)
"HR" : R
\(\exists \mathrm{a}: \mathrm{A}, \Psi \mathrm{a}\)

\section*{Implementation of the iFrame tactic}

Problem: the goal is not deeply embedded, how to manipulate it?

\section*{Implementation of the iFrame tactic}

Problem: the goal is not deeply embedded, how to manipulate it?
Solution: logic programming using type classes

The lemma corresponding to the tactic in Coq:

What we want to frame Conclusion of the new goal in which \(R\) is framed

\section*{Initial conclusion}

Lemma tac_frame \(\Delta \Delta^{\prime}\) i p R P Q :
envs_lookup_delete i \(\Delta=\operatorname{Some}\left(p, R, \Delta^{\prime}\right) \rightarrow\)
Frame R P Q \(\rightarrow\)
\[
\left(\left(\text { if } \mathrm{p} \text { then } \Delta \text { else } \Delta^{\prime}\right) \vdash \mathrm{Q}\right) \rightarrow \Delta \vdash \mathrm{P}
\]

\section*{Implementation of the iFrame tactic}

Problem: the goal is not deeply embedded, how to manipulate it?
Solution: logic programming using type classes

The lemma corresponding to the tactic in Coq:
Class Frame ( \(\mathrm{R}^{\mathrm{P}} \mathrm{Q}\) : iProp) : frame : R * Q \(\vdash \mathrm{P}\).
What we want to frame Conclusion of the new goal in which R is framed

\section*{Initial conclusion}

Lemma tac frame \(\Delta \Delta^{\prime}\) i p R P Q:
envs_lookup_delete i \(\Delta=\) Some \(\left(p, R, \Delta^{\prime}\right) \rightarrow\)
Frame R P Q \(\rightarrow\)
\[
\left(\left(\text { if } p \text { then } \Delta \text { else } \Delta^{\prime}\right) \vdash Q\right) \rightarrow \Delta \vdash P
\]

Note: we support framing under binders \((\exists, \forall, \ldots)\) and user defined connectives

\section*{Implementation of the iFrame tactic (2)}

Consider the type class:


\section*{Implementation of the iFrame tactic (2)}

Consider the type class:


Instances (rules of the logic program):
```

Instance frame_here R : Frame R R True.
Instance frame_sep_l R P
Frame R P P Q }->\mathrm{ Frame R (}\mp@subsup{P}{1}{}*\mp@subsup{P}{2}{})(Q*\mp@subsup{P}{2}{})
Instance frame_sep_r R P
Frame R P P Q }->\mathrm{ Frame R (}\mp@subsup{P}{1}{}*\mp@subsup{P}{2}{})(\mp@subsup{P}{1}{}*Q)

```

\section*{Implementation of the iFrame tactic (2)}

Consider the type class:
Class Frame ( \({ }^{R} \underset{\uparrow}{P} Q:\) iProp) \(:=\) frame \(: R * Q \vdash P\).
What we want to frame Conclusion of the new goal in which R is framed

\section*{Initial conclusion}

Instances (rules of the logic program):
Class MakeSep P Q PQ := make_sep : P * Q \(\vdash\) PQ.
Instance frame_here \(R\) : Frame \(R\) R True.
Instance frame_sep_l R \(P_{1} P_{2} Q Q^{\prime}\) :
Frame R \(P_{1} Q \rightarrow\) MakeSep \(Q P_{2} Q^{\prime} \rightarrow\) Frame R \(\left(P_{1} * P_{2}\right) Q^{\prime}\).
Instance frame_sep_r R \(P_{1} P_{2} Q Q^{\prime}:\)
Frame R \(\mathrm{P}_{2} \mathrm{Q} \rightarrow\) MakeSep \(\mathrm{P}_{1} \mathrm{Q} \mathrm{Q}^{\prime} \rightarrow\) Frame \(\mathrm{R}\left(\mathrm{P}_{1} * \mathrm{P}_{2}\right) \mathrm{Q}^{\prime}\).
Instance make_sep_true_l P: MakeSep True P P | 1.
Instance make_sep_true_r P: MakeSep P True P | 1.
Instance make_sep_default PQ: MakeSep P Q (P * Q ) | 2 .

\section*{Proving Hoare triples}

Consider:
\[
\left\{x \mapsto v_{1} * y \mapsto v_{2}\right\} \operatorname{swap}(x, y)\left\{x \mapsto v_{2} * y \mapsto v_{1}\right\}
\]

How to use IPM to manipulate the precondition?

\section*{Proving Hoare triples}

Consider:
\[
\left\{x \mapsto v_{1} * y \mapsto v_{2}\right\} \operatorname{swap}(x, y)\left\{x \mapsto v_{2} * y \mapsto v_{1}\right\}
\]

How to use IPM to manipulate the precondition?
Solution: define Hoare triple in terms of weakest preconditions
We let:
\[
\{P\} e\{Q\} \triangleq \square(P-* \text { wp } e\{Q\})
\]
where wp e \(\{Q\}\) gives the weakest precondition under which:
- all executions of \(e\) are safe
- the final state of \(e\) satisfies the postcondition \(Q\)

\section*{Proving swap using symbolic execution}
```

Definition swap : val := \lambda: "x" "y",
let: "tmp" := !"x" in
"x" \leftarrow !"y";;
"y" \leftarrow "tmp".
Lemma swap_spec l1 l2 v1 v2 :
{{ 11\mapstov1 * l2\mapstov2 }} swap \#l1 \#l2
{{ _, l1\mapstov2 * l2\mapstov1 }}.
Proof.

```
1 subgoal
\(\Sigma\) : gFunctors
H : heapG \(\Sigma\)
11, 12 : loc
v1, v2 : val

\(\{\{11 \mapsto \mathrm{v} 1 * 12 \mapsto \mathrm{v} 2\}\}(\mathrm{swap} \# 11) \# 12\{\{-, 11 \mapsto \mathrm{v} 2\)
    * \(12 \mapsto \mathrm{v} 1\}\}\)

\section*{Proving swap using symbolic execution}
```

Definition swap : val := λ : "x" "y",
let: "tmp" := !"x" in
"x" $\leftarrow!" y " ;$
$" \mathrm{y}$ " \leftarrow "tmp".
Lemma swap_spec 1112 v1 v2 :
$\{\{11 \mapsto \mathrm{v} 1 * 12 \mapsto \mathrm{v} 2\}\}$ swap \#l1 \#12
$\{\{-\quad 11 \mapsto \mathrm{v} 2 * 12 \mapsto \mathrm{v} 1\}\}$.
Proof.
iIntros "!\# [H11 Hl2]".

```

1 subgoal
\(\Sigma\) : gFunctors
H : heapG \(\Sigma\)
11, 12 : loc
v1, v2 : val
"H11" : \(11 \mapsto \mathrm{v} 1\)
"H12" : \(12 \mapsto \mathrm{v} 2\)

WP (swap \#l1) \#12 \{\{ _, 11 \(11 \mathrm{v} 2 * 12 \mapsto \mathrm{v} 1\}\}\)

\section*{Proving swap using symbolic execution}
```

Definition swap : val := λ : "x" "y",
let: "tmp" := !"x" in
"x" $\leftarrow!" y " ;$
$" \mathrm{y}$ " \leftarrow "tmp".
Lemma swap_spec 1112 v1 v2 :
$\{\{11 \mapsto \mathrm{v} 1 * 12 \mapsto \mathrm{v} 2\}\}$ swap \#11 \#12
$\{\{-, \quad 11 \mapsto \mathrm{v} 2 * 12 \mapsto \mathrm{v} 1\}\}$.
Proof.
iIntros "!\# [H11 Hl2]".
do 2 wp_let.

```
1 subgoal
\(\Sigma\) : gFunctors
H : heapG \(\Sigma\)
l1, 12 : loc
v1, v2 : val
"Hl1" : \(11 \mapsto \mathrm{v} 1\)
"H12" : \(12 \mapsto \mathrm{v} 2\)
WP
    let: "tmp" := ! \#l1 in
    \#11 \(\leftarrow!\# 12\); ;
    \(\# 12 \leftarrow\) "tmp" \(\left\{\left\{\_, 11 \mapsto \mathrm{v} 2 * 12 \mapsto \mathrm{v} 1\right\}\right\}\)

\section*{Proving swap using symbolic execution}
```

Definition swap : val := \lambda: "x" "y",
let: "tmp" := !"x" in
"x" \leftarrow !"y";;
"y" \leftarrow "tmp".
Lemma swap_spec l1 l2 v1 v2 :
{{ l1\mapstov1 * l2\mapstov2 }} swap \#l1 \#l2
{{_, l1\mapstov2* l2\mapstov1}}.
Proof.
iIntros "!\# [Hl1 Hl2]".
do 2 wp_let.
wp_load; wp_let.

```
```

1 subgoal
\Sigma : gFunctors
H : heapG \Sigma
l1, l2 : loc
v1, v2 : val
"Hl1" : l1 \mapstov1
"H12" : 12\mapstov2
WP \#l1 }\underset{}}}{\leftarrow}!\#12;;\#l2\leftarrowv1{{-, l1\mapstov2*l2\mapstov

```

\section*{Proving swap using symbolic execution}
```

Definition swap : val := \lambda: "x" "y",
let: "tmp" := !"x" in
"x" \leftarrow !"y";;
"y" \leftarrow "tmp".
Lemma swap_spec l1 l2 v1 v2 :
{{ l1\mapstov1 * l2\mapstov2 }} swap \#l1 \#l2
{{_, l1\mapstov2* l2\mapstov1}}.
Proof.
iIntros "!\# [Hl1 Hl2]".
do 2 wp_let.
wp_load; wp_let.
wp_load.

```
```

1 subgoal
\Sigma : gFunctors
H : heapG \Sigma
l1, l2 : loc
v1, v2 : val
"Hl1" : l1 \mapstov1
"H12" : 12\mapstov2
WP\#l1 \leftarrow v2 ;; \#l2 \leftarrow v1 {{-, l1\mapstov2 * l2\mapstov1}}

```

\section*{Proving swap using symbolic execution}
```

Definition swap : val := \lambda: "x" "y",
let: "tmp" := !"x" in
"x" \leftarrow !"y";;
"y" \leftarrow "tmp".
Lemma swap_spec l1 l2 v1 v2 :
{{ l1\mapstov1 * l2\mapstov2 }} swap \#l1 \#l2
{{_, l1\mapstov2* l2\mapstov1}}.
Proof.
iIntros "!\# [Hl1 Hl2]".
do 2 wp_let.
wp_load; wp_let.
wp_load.
wp_store.

```
```

1 subgoal
\Sigma : gFunctors
H : heapG \Sigma
l1, l2 : loc
v1, v2 : val
"Hl1" : 11\mapstov2
"H12" : 12\mapstov2
WP \#12 \leftarrow v1 {{_, l1\mapstov2* l2\mapstov1}}

```
"H11" : 11 \(\mapsto\) v2
"H12" : \(12 \mapsto \mathrm{v} 2\)

WP \#l2 \(\leftarrow \mathrm{v} 1\{\{-, \mathrm{l} 1 \mapsto \mathrm{v} 2 * \mathrm{l} 2 \mapsto \mathrm{v} 1\}\}\)

\section*{Proving swap using symbolic execution}
```

Definition swap : val := \lambda: "x" "y",
let: "tmp" := !"x" in
"x" \leftarrow !"y";;
"y" \leftarrow "tmp".
Lemma swap_spec l1 l2 v1 v2 :
{{ l1\mapstov1 * l2\mapstov2 }} swap \#l1 \#l2
{{_, l1\mapstov2* l2\mapstov1}}.
Proof.
iIntros "!\# [Hl1 Hl2]".
do 2 wp_let.
wp_load; wp_let.
wp_load.
wp_store.
wp_store.

```
```

1 subgoal
\Sigma : gFunctors
H : heapG \Sigma
l1, l2 : loc
v1, v2 : val
"Hl1" : l1 \mapstov2
"H12" : 12\mapstov1
l1\mapstov2* 12\mapstov1

```
(1/1)
"H11" : \(11 \mapsto \mathrm{v} 2\)
"H12" : \(12 \mapsto \mathrm{v} 1\)
\(11 \mapsto \mathrm{v} 2 * 12 \mapsto \mathrm{v} 1\)

\section*{Proving swap using symbolic execution}
```

Definition swap : val := \lambda: "x" "y", No more subgoals.
let: "tmp" := !"x" in
"x" \leftarrow !"y";;
"y" \leftarrow "tmp".
Lemma swap_spec l1 l2 v1 v2 :
{{ l1\mapstov1 * l2\mapstov2 }} swap \#l1 \#l2
{{-, l1\mapstov2* l2\mapstov1}}.
Proof.
iIntros "!\# [Hl1 Hl2]".
do 2 wp_let.
wp_load; wp_let.
wp_load.
wp_store.
wp_store.
iFrame.

```

\section*{Proving swap using symbolic execution}
```

Definition swap : val := \lambda: "x" "y",
let: "tmp" := !"x" in
"x" \leftarrow !"y";;
"y" \leftarrow "tmp".
Lemma swap_spec l1 l2 v1 v2 :
{{ l1\mapstov1 * l2\mapstov2 }} swap \#l1 \#l2
{{_, l1\mapstov2 * 12\mapstov1}}.
Proof.
iIntros "!\# [Hl1 Hl2]".
do 2 wp_let.
wp_load; wp_let.
wp_load.
wp_store.
wp_store.
iFrame.
Qed.

```

\section*{Making IPM tactics modular using type classes}

We want iDestruct "H" as "[H1 H2]" to:
- turn H : P * Q into H1 : P and H2 : Q
- turn \(\mathrm{H}: \triangleright(\mathrm{P} * \mathrm{Q})\) into \(\mathrm{H} 2: \triangleright \mathrm{P}\) and \(\mathrm{H} 2: \triangleright \mathrm{Q}\)
- turn \(\mathrm{H}: \mathrm{l} \mapsto \mathrm{v}\) into \(\mathrm{H} 1: \mathrm{l} \xrightarrow{1 / 2} \mathrm{v}\) and \(\mathrm{H} 2: \mathrm{l} \xrightarrow{1 / 2} \mathrm{v}\)

\section*{Making IPM tactics modular using type classes}

We want iDestruct "H" as "[H1 H2]" to:
- turn H : P * Q into H1 : P and H2 : Q
- turn \(\mathrm{H}: \triangleright(\mathrm{P} * \mathrm{Q})\) into \(\mathrm{H} 2: \triangleright \mathrm{P}\) and \(\mathrm{H} 2: \triangleright \mathrm{Q}\)
- turn \(\mathrm{H}: \mathrm{l} \mapsto \mathrm{v}\) into \(\mathrm{H} 1: \mathrm{l} \xrightarrow{1 / 2} \mathrm{v}\) and \(\mathrm{H} 2: \mathrm{l} \xrightarrow{1 / 2} \mathrm{v}\)

We use type classes to achieve that:
```

Class IntoAnd (p : bool) (P Q1 Q2 : uPred M) :=
into_and : P }\vdash\mathrm{ if p then Q1 ^ Q2 else Q1 * Q2.
Instance into_and_sep p P Q : IntoAnd p (P * Q) P Q.
Instance into_and_and P Q : IntoAnd true (P ^ Q) P Q.
Instance into_and_later p P Q1 Q2 : IntoAnd p P Q1 Q2 }->\mathrm{ IntoAnd p (D
P) (\triangleright Q1) (\triangleright Q2).
Instance into_and_mapsto l q v : IntoAnd false (l\mapsto{q} v) (l\mapsto{q/2} v)
(l\longmapsto{q/2} v).
Lemma tac_and_destruct }\Delta\mp@subsup{\Delta}{}{\prime}\mathrm{ i p j j1 j2 P P P P P P Q :
envs_lookup i }\Delta=\mathrm{ Some (p, P) }
IntoAnd p P P P P P }
envs_simple_replace i p (Esnoc (Esnoc Enil j1 Pr) j2 P P) \Delta= Some \Delta'
(\mp@subsup{\Delta}{}{\prime}}\vec{\vdash

```

\section*{IPM in summary}
- Contexts are deeply embedded
- Context manipulation is done via computational reflection
- IPM tactics are just Coq lemmas
- Type classes are used to make the tactics more
 general
- Ltac is used to provide an end-user syntax and error reporting

\section*{IPM in summary}
- Contexts are deeply embedded
- Context manipulation is done via computational reflection
- IPM tactics are just Coq lemmas
- Type classes are used to make the tactics more
 general
- Ltac is used to provide an end-user syntax and error reporting

These ideas are hopefully applicable to other object logics

\section*{In the paper and Coq formalization}
- Detailed description of the implementation
- Verification of concurrent algorithms using IPM
- Formalization of unary and binary logical relations
- Proving logical refinements


Interactive Proofs in Higher-Order Concurrent Separation Logic
```

Robbert Krebbers
Delf University of Technology.
The Netherlands

```

\section*{Amin Timany} imec-Distrinet, KU Leuven, Belgium amin.timany@cs.kuleuven.be

\section*{Abstract}

When using a proof assistant to reason in an embedded logic - like separation logic - one cannot benefit from the proof contexts and
basic tactics of the proof assislant. This results in proofs that are at a too low level of abstraction because they are clutlered will bookkeeping code related to manipulating the object logic.
In this paper, we introduce a so-called proof mode that extend the Cox proof assistant with (sparial and non-spatial) named prool we can implement high-level tactics for introduction and elimintuion of the connectives of the object logic, and thereby make reasoning in the embedded logic as seamless as reasoning in the meta logic of
stance, they include separating conjunction of separation logic for teasoning about mutable data srucuures. invariants for reasoning of recursion, and higher-orter quanniticiation for giving generic modular specifications to libranes.
Due to these built-in features, modern program logics are very
different from the logics of general parpose proof assistants. Theredifferent from the logies of general purpose proof assistants. Ther logic, one needs to reppresent the program logic in that proof assistant, and then, to berefit from the buill-in features of the program ogic, use the proof assistant to reason in the embedded logic.


\section*{Thank you!}

Want a 'proof mode' for another logic, talk to us!

Download Iris at http://iris-project.org/```


[^0]:    ${ }^{1}$ Iris is joint work with: Ralf Jung, Robbert Krebbers, Jacques-Hendri Jourdan, Aleš Bizjak, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Derek Dreyer, and Lars Birkedal
    ${ }^{2}$ Based on slides of Robebrt Krebbers' talks at TTT'17 and POPL'17

