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1 INTRODUCTION

Systems for information-flow control put restrictions on how a program’s outputs are related to its
inputs. Such systems establish various notions of noninterference [Goguen and Meseguer 1982],
conveying that observable aspects of the program’s behavior is independent of its sensitive inputs.
Information-flow control enforcement is often specified as a static type system (e.g., Abadi et al.
[1999]; Arden and Myers [2016]; Heintze and Riecke [1998]; Lourenço and Caires [2015]; Myers
[1999]; Simonet [2003b]) or via an encoding into an existing type system (e.g., Algehed and Russo
[2017]; Gregersen et al. [2019]; Li and Zdancewic [2006]; Pottier and Simonet [2003]; Russo [2015];
Russo et al. [2008]; Vassena et al. [2018]). Modern programming languages have rich type systems
featuring, e.g., higher types, reference types, and abstract types, which are all essential for modern
software engineering practice and for implementing reusable software components. Naturally,
modern practical information-flow secure languages have to meet the same demands, but as the
complexity of the type system increases, so does the burden of proving the type system sound.
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In this paper, we prove soundness of an expressive information-flow control type system for a
higher-order language with higher-order state. The type system is an extension of the fine-grained
type system of Rajani and Garg [2020] and the type system of Flow Caml [Simonet 2003a], with
recursive types, existential types, and impredicative type polymorphism (in addition to existing
reference types and function types). The main high-level goal of our work is to prove that the type
system satisfies termination-insensitive noninterference using a semantic model. Since such type
soundness results for expressive type systems involve myriads of details (as exhibited by a 100
pp. chapter in a technical appendix [Rajani and Garg 2020]), we formalize our model in a proof
assistant and use it to give a full mechanization of all our technical results.
Even with a very expressive type system, any static type system is necessarily overly conser-

vative. This entails that there is a large body of programs that cannot be type-checked while still
being information-flow secure for reasons too subtle for the type system to verify. This includes,
e.g., low-level implementations of data structures that are optimized for efficiency and systems
governed by security policies that rely on value-dependency or dynamic run-time information. Our
semantic approach to establishing noninterference enables compositional integration of syntac-
tically well-typed components with syntactically ill-typed but semantically sound components:
only the syntactically ill-typed parts need to be carefully verified to show that the entire program
enjoys the security property.
To meet our goals, we define a novel logical-relations model of our proposed type system. We

define our logical-relations model in the Iris separation logic framework [Jung et al. 2016, 2018b,
2015; Krebbers et al. 2017a]. We do this to (1) define and reason about our logical-relations model
at a high level of abstraction, (2) side-step the well-known problem of type-world circularity1

[Ahmed 2004; Ahmed et al. 2002; Birkedal et al. 2011] when defining logical-relations models of
programming languages with higher-order state in the presence of impredicative polymorphism,
and (3) to leverage the Coq formalization and the MoSeL framework [Krebbers et al. 2018] to fully
mechanize all examples and technical results.

Challenges. Extending the earlier type system ismostly straightforward: similarly to how ordinary
functions in languages with effects may have latent effects, polymorphic functions may also have
latent effects and thus they must be annotated with a label expressing a lower bound on these
effects.
So what is new and challenging about our semantic model? In summary, we address three

major challenges: (1) combining unary and binary logical-relations models in the presence of
impredicative polymorphism, and (2) constructing łlogicalž [Dreyer et al. 2009] logical-relations
models for termination-insensitive reasoning while (3) soundly allowing syntactically ill-typed but
semantically secure programs to be composed with syntactically well-typed programs. We now
explain each of these points.

To construct a logical-relations model of a termination-insensitive information-flow control type
system in the presence of state, it is necessary to combine both a unary and a binary model; when
branching on high-labeled information, it is crucial that that the two branches, independently, do
not modify low-labeled references, to avoid implicit leaks through the store. This is commonly
know as the confinement lemma in proofs of noninterference.

1To ensure that heap updates are type-preserving, the model of mutable references types ref (𝜏) needs to keep track of

the semantics of 𝜏 ; this is usally done using a store typing (a World) Θ mapping locations to types. The model of ref (𝜏)

then needs to refer to Θ to checker whether a location maps to the appropriate type. This in turn means the model of all

types has to take Θ as an argument, introducing what is known as the type-world circularityÐthis kind of recursive domain

equation has no solution in the category of sets.
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When developing logical-relations models for languages with state in the presence of impredica-
tive polymorphism, one needs to work with so-called step-indexed recursive Kripke worlds which
are used to describe the semantics of the contents of the heap [Ahmed 2004; Birkedal et al. 2011].
These step-indexed Kripke worlds imply that both the binary and the unary logical relations have to
be step-indexed. Binary logical relations usually tie the logical steps of the recursive Kripke worlds
to the physical steps taken by only one of the two programs in the relation. However, this causes a
mismatch in the number of steps when we want to combine the individual unary logical relatedness
of two programs to conclude that they are in the binary relation. To solve this problem, one novelty
of our binary logical-relations model is that we count the steps taken by the programs on both

sides of the relation. Rajani and Garg [2020] circumvent this problem by using syntactic worlds
which does not scale to impredicative polymorphism. This also means that their logical relations
are defined over syntactically well-typed programs and hence cannot be used for reasoning about
syntactically ill-typed but semantically well-typed programs as we do in this paper.

The idea of using a more expressive logic to simplify the definition of logical-relations models is
not novel and goes back to Plotkin and Abadi [1993] who used second order logic for modeling
System F and Dreyer et al. [2009] who used a logic with step-indexing to model recursive types. It
has since been used for defining logical relations models for a variety of programming languages
and features, e.g., an ML-style language with concurrency [Krebbers et al. 2017b], a Haskell style
ST monad [Timany et al. 2018], a concurrent ML-style language featuring continuations [Timany
and Birkedal 2019], and the Rust programming language [Jung et al. 2018a]. All these models are
either unary logical-relations models used for proving type safety or binary logical-relations models
for proving traditional contextual program refinement. Intuitively 𝑒 contextually refinenes 𝑒 ′ if
whenever 𝑒 terminates with some value 𝑣 , then 𝑒 ′ must also terminate with some value 𝑣 ′ and then
𝑣 and 𝑣 ′ should be suitably related. In symbols:

𝑒 ⇓ 𝑣 ⇒ 𝑒 ′ ⇓ 𝑣 ′ ∧ 𝑣 ≈ 𝑣 ′.

This is crucially different from the idea of termination-insensitive noninterference where two
programs are equivalent if, assuming that both 𝑒 and 𝑒 ′ terminate, then their resulting values should
be suitably related:

𝑒 ⇓ 𝑣 ∧ 𝑒 ′ ⇓ 𝑣 ′⇒ 𝑣 ≈ 𝑣 ′.

The termination-insensitive nature of the equivalence is the reason why the approaches taken
heretofore on expressing logical-relations models in program logics cannot be extended to support
reasoning about termination-insensitive noninterference. Moreover, these works do not consider
logical-relations models that incorporate both a unary and a binary relation.
The core challenge here is to properly hide the details of step-indexing and recursive Kripke

worlds. To this end, the base logic of Iris provides modalities to reason about step-indices and
ghost resources (logical counterparts of recursive Kripke worlds). Yet, using these logical facilities
directly, while hiding a lot of details, still requires us to think and work in terms of step-indices
and explicit resource updates (manipulating ghost resources). Previous work [Krebbers et al. 2017b;
Timany and Birkedal 2019; Turon et al. 2013], addressed this problem by defining the logical relation
models using Iris’ weakest precondition predicates, which themselves are defined using logical
step-indexing and ghost resource modalities but which, importantly, come with high-level reasoning
principles that hide those details. Iris’ weakest precondition predicates were a good match for
contextual refinement: we can express łif 𝑒 terminates then so does 𝑒 ′ž as a weakest precondition
for 𝑒 where the post condition states that 𝑒 ′ terminates, i.e., wp 𝑒 {𝑣 . 𝑒 ′ ⇓ 𝑣 ∧ 𝑣 = 𝑣 ′}. As discussed
above, this is crucially different from termination-insensitive noninterference: łif both programs
terminate then . . . ž. This prevents us from using weakest preconditions to model our logical relations.
One might be tempted to consider nested weakest preconditions: wp 𝑒

{
𝑣 . wp 𝑒 ′ {𝑣 ′. 𝑣 = 𝑣 ′}

}
. This
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formulation does indeed imply that if both programs terminate then their results are equal, however,
this formulation is too strong and in particular makes it impossible to employ the kind of modular
reasoning that is essential to proving the fundamental theorem of logical relations. Intuitively, this
is because such a formulation requires us to reason about the execution of 𝑒 ′ after the completion
of execution of 𝑒 . Technically, this formulation does not admit the so-called binary bind rule,
cf. Lemma 3.6.
In place of weakest preconditions we introduce and use a novel program logic construct that

we call Modal Weakest Preconditions (MWP). Our Modal Weakest Precondition theory is language
agnostic, parameterized by a modal operator, and general enough to allows us to define both a
unary and a binary predicate for reasoning about computations using the same theory. Indeed, the
generality is one of the key strengths of our theory. Different instantiations automatically inherit a
set of basic structural proof rules that hold irrespective of the particular modality and programming
language. For particular instantiations, one can then prove more specific proof rules, e.g., for heap-
manipulating operations and for how the instantiation interacts with other instantiations with
different modal operators. We use three different instantiations for our logical-relations model and
two more for concrete examples. The generality of our MWP theory allows us to define our binary
logical relations model to be weak enough so as to allow us to reason modularly as discussed above.
Yet, the interaction between different instantiations of MWP’s (which is proven generally and not
particularly for our programming language) allows us to strengthen this definition, in order to
combine unary and binary logical relations (see Lemma 3.7) and to prove certain examples that
require stronger reasoning principles (see ğ5).
Another challenge worth noting is the modeling of reference types. Intuitively, two values are

related at the reference type ref (𝜏) if they are both locations that invariantly store values that are
related at type 𝜏 . Previous work used Iris invariants to formalize this idea. In our case, we can only
use Iris invariants for our binary logical relation; for the unary logical relation we need to use a
more refined approach, see the discussion in Section 3.

Contributions. In summary, we make the following contributions:

• We present the first logical-relations model of an information-flow type systemwith recursive
types, existential types, and impredicative polymorphism for a language with higher-order
state. To the best of our knowledge, this is also the first soundness proof of such an expressive
information-flow type system irrespective of method.
• We present the first łlogicalž logical-relations model that incorporates both a unary and a
binary relation and termination-insensitive reasoning.
• We introduce a new theory ofModal Weakest Preconditions (MWP) that allows us to construct
novel logical-relations models for proving relational properties of programs that were out of
reach of existing techniques.
• We propose a methodology that allows us to establish termination-insensitive noninterference

of syntactically ill-typed but semantically secure programs while allowing these programs to
be composed with syntactically well-typed programs and showcase multiple examples.
• We also show that our logical-relations model allows us to prove łfree theoremsž for our
information-flow control type system.
• We formalize all of the theory and examples on top of the Iris program logic framework in the
Coq proof assistant using the MoSeL framework [Krebbers et al. 2018]. The Coq formalization
can be found online at

https://github.com/logsem/iris-tini.
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2 THE 𝜆𝑠𝑒𝑐 LANGUAGE

We present the syntax and operational semantics of the subject of our study: a higher-order
functional call-by-value language with higher-order state which we equip with an information-flow
control type system with recursive types, existential types, label polymorphism, and impredicative
type polymorphism.

2.1 Syntax and Semantics

The syntax of 𝜆𝑠𝑒𝑐 is as follows:

⊚ ::= + | − | ∗ | = | <

𝑒 ∈ Expr ::= 𝑥 | () | true | false | 𝑛 ∈ N | 𝑛 ⊚ 𝑛 | 𝜆𝑥 . 𝑒 | 𝑒 𝑒 | Λ 𝑒 | Λ 𝑒 | 𝑒 _ |

| if 𝑒 then 𝑒 else 𝑒 | (𝑒, 𝑒) | 𝜋𝑖 𝑒 | inj𝑖 𝑒 | match 𝑒 with inj𝑖 ⇒ 𝑒𝑖 end

| ref (𝑒) | ! 𝑒 | 𝑒 ← 𝑒 | fold 𝑒 | unfold 𝑒 | pack 𝑒 | unpack 𝑒 as𝑥 in 𝑒

𝑣 ∈ Val ::= () | true | false | 𝑛 ∈ N | 𝜄 ∈ Loc | 𝜆𝑥. 𝑒 | Λ 𝑒 | Λ 𝑒 | fold 𝑣 | pack 𝑣 | (𝑣, 𝑣) | inj𝑖 𝑣

ℓ ::= 𝜅 | 𝑙 ∈ L | ℓ ⊔ ℓ

𝜏 ∈ LType ::= 𝑡 ℓ

𝑡 ∈ Type ::= 𝛼 | 1 | B | N | 𝜏 × 𝜏 | 𝜏 + 𝜏 | 𝜏
ℓ

→ 𝜏 | ∀ℓ 𝛼. 𝜏 | ∀ ℓ 𝜅. 𝜏 | ∃𝛼. 𝜏 | 𝜇 𝛼. 𝜏 | ref (𝜏)

The term language is mostly standard but note that there are no types in terms; we write Λ 𝑒

for (unlabeled) type abstraction and 𝑒 _ for type application. Similarly, we write Λ 𝑒 for label
abstraction and 𝑒 _ for label application. fold 𝑒 and unfold 𝑒 are the special term constructs for
iso-recursive types. ref (𝑒) allocates a new reference, ! 𝑒 dereferences the location 𝑒 evaluates to,
and 𝑒1 ← 𝑒2 assigns the result of evaluating 𝑒2 to the location that 𝑒1 evaluates to. We introduce
syntactic sugar for let-bindings let𝑥 = 𝑒1 in 𝑒2 defined as (𝜆𝑥 . 𝑒2) (𝑒1), and sequencing 𝑒1; 𝑒2 defined
as let _ = 𝑒1 in 𝑒2.
The set of types of 𝜆𝑠𝑒𝑐 is parameterized over an arbitrary bounded join-semilattice L with

ordering ⊑. The lattice ordering ⊑ defines the security policy: if ℓ1 ⊑ ℓ2 and ℓ2 @ ℓ1 then information
with label ℓ1 may influence information with label ℓ2 but not the other way around. We write ⊥ for
the least element. Syntactically, a label ℓ is either a label variable 𝜅 , a label 𝑙 drawn from the lattice
L, or the formal least upper bound (join) of two labels.
Types are syntactically either labeled or unlabeled; we use 𝜏 to range over labeled types and 𝑡 to

range over unlabeled types. As standard, a term of a labeled type 𝑡 ℓ , is a term of the (unlabeled)
type 𝑡 labeled with the security label ℓ . Note that type abstraction, existential types, and recursive
types abstract over unlabeled types.

The unlabeled types of 𝜆𝑠𝑒𝑐 include basic types such as the unit type, Booleans, natural numbers,

products, and sums. The function type 𝜏
ℓ

→ 𝜏 is annotated with a label ℓ . This label, which we refer
to as a latent effect label, denotes a lower bound on the write effects of the function body. The type
system will ensure that any reference that the function may write to has a label that is ℓ or higher
according to the lattice ordering. This is necessary to prevent implicit information leaks through
the store where programs have write effects that conditionally depend on sensitive information. Let
𝜄 be a reference with contents of type N⊥ and ℎ a variable of type B⊤ with ⊤ @ ⊥. When control
flow depends on ℎ invoking a function like 𝑓 ≜ 𝜆_. 𝜄 ← 1 implicitly leaks ℎ through the store, e.g.,

if ℎ then 𝑓 () else ()

by subsequently observing whether the write effects happened or not. The label ⊥ is a lower bound
of the side-effects of 𝑓 and it may not be invoked when control flow depends on ℎ with label ⊤ as

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 10. Publication date: January 2021.



10:6 Simon Oddershede Gregersen, Johan Bay, Amin Timany, and Lars Birkedal

⊤ @ ⊥. For the same reason, type-polymorphic types ∀ℓ 𝛼. 𝜏 and label-polymorphic types ∀ ℓ 𝜅. 𝜏
also include a label annotation ℓ . We also refer to those as latent effect labels. Finally, types also
include existential types ∃𝛼. 𝜏 , recursive types 𝜇 𝛼. 𝜏 , and the type ref (𝜏) of memory locations
storing values of type 𝜏 .

The states 𝜎 of 𝜆𝑠𝑒𝑐 are modeled as finite partial functions from locations to values. We define a
small-step operational semantics (𝜎, 𝑒) → (𝜎 ′, 𝑒 ′) of 𝜆𝑠𝑒𝑐 using left-to-right call-by-value evaluation
contexts. These definitions are entirely standard and can be found in the appendix.

2.2 Information-Flow Control Type System

The type system of 𝜆𝑠𝑒𝑐 is very similar to the fine-grained type system of Rajani and Garg [2020]
and the type system of Flow Caml [Simonet 2003a] but extended with recursive types, existential
types, and impredicative polymorphic types. We write Ξ | Ψ | Γ ⊢pc 𝑒 : 𝜏 for the syntactic typing
judgment which expresses that expression 𝑒 has type 𝜏 under typing contexts Γ, Ξ, and Ψ. A typing
context Γ maps free variables that may appear in 𝑒 to their types. The type-level contexts Ξ and Ψ

are sets of free type and label variables, respectively, that may appear in 𝜏 and Γ. The annotation
pc is a label, often called the program counter label, denoting a lower bound on the write effects of
𝑒 , cf., how function types and the polymorphic types are annotated with a latent effect labels.

The typing relation is shown in Figure 1 and we discuss some of the important rules below. The
syntactic label ordering relation Ψ ⊢ ℓ1 ⊑ ℓ2 is straightforward and relegated to the appendix. The
protected-at relation 𝜏 ↘ ℓ is defined as 𝑡 ℓ

′
↘ ℓ ≜ ℓ ⊑ ℓ ′, meaning that the label of the type is at

least as high as ℓ .

When applying a function expression 𝑒1 of type
(
𝜏1

ℓ𝑒

→ 𝜏2
) ℓ
to an argument 𝑒2 of type 𝜏1 the rule

for function application (T-app) requires that the program counter label pc is lower than the latent
effect label ℓ𝑒 to avoid implicit leaks through the store. In addition, the label ℓ of the function value
must be below ℓ𝑒 and the return type 𝜏2 must be protected at ℓ in order to prevent implicit leaks
arising from the identity of the function that 𝑒1 evaluates to: If not, then, for example, given 𝜄 is a
reference of type ref (N⊥) and ℎ a variable of type B⊤ both programs (1) and (2) would be typeable
at N⊥ while both leaking ℎ.

let 𝑓 = if ℎ then 𝜆_. 1 else 𝜆_. 0 in 𝑓 () (1)

let 𝑓 = if ℎ then 𝜆_. 𝜄 ← 1 else 𝜆_. 𝜄 ← 0 in (𝑓 (); ! 𝜄) (2)

Our type system correctly handles these situations in two different ways: in (1) the leak is captured
in the output type of 𝑓 , and in (2) it is captured in the label of 𝑓 itself. Indeed, according to our
typing rules, since the identity of the function 𝑓 in (1) depends on ℎ, the type of the output of 𝑓
will have a label that is at least ⊤. On the other hand, in (2), the latent effect label for 𝑓 is ⊥ but the
label of the function value itself must be ⊤ as it depends on ℎ and the function may not be invoked.
Similar considerations apply to the rules T-tapp and T-lapp for type and label application.

The rules for case analysis (T-match and T-if) demand that both branches are typed with program
counter label pc ⊔ ℓ to account for the fact that control flow depends on the information with label
ℓ of the expression 𝑒 being cased on. This ensures that the branches do not have write effects below
ℓ , which would otherwise be dependent on more sensitive information. Similarly, the result type 𝜏
has to be protected at ℓ .
The rule for assignment (T-store) captures that the pc label acts as an effect lower bound. It

requires that when assigning an expression of type 𝜏 to a reference of type ref (𝜏)ℓ , then the label
of 𝜏 is protected at both pc and ℓ . The former enforces pc as a lower bound on effects and the latter
prevents implicit leaks arising from the identity of the reference. If not, then, for example, given 𝜄1
and 𝜄2 are references of type ref (N⊥) and ℎ a variable of type B⊤ the program (3) would be typeable
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at N⊥ while leaking ℎ.

𝜄1 ← 0; 𝜄2 ← 0; let 𝑟 = if ℎ then 𝜄1 else 𝜄2 in 𝑟 ← 1; ! 𝜄1 (3)

Note that all expressions typed with an introduction rule gets a type with label ⊥. Intuitively,
introducing, e.g., a pair with components 𝜏1 and 𝜏2 has no observable effect nor does it leak any
information, and the label of 𝜏𝑖 already captures the information that may have influenced the
component. The label can, however, freely be raised using T-sub and the subtyping relation in
Figure 2. The rule S-labeled allows a term with label ℓ1 to be treated as a term with label ℓ2 if
ℓ1 ⊑ ℓ2; the rest of the subtyping rules are standard. Notice that T-sub also allows the pc label to be
freely weakened.

3 SEMANTIC MODEL

In this section we define our semantic model of 𝜆𝑠𝑒𝑐 ’s type system. The model formalizes a notion of
observer-sensitive equivalence which only relates computations from the perspective of some observer.
Concretely, the observer is modelled by a fixed but arbitrary label 𝜁 drawn from the lattice L.
The intuition is that terms typed with a label higher than 𝜁 are indistinguishable to the observer
whereas terms typed with a label lower than 𝜁 are not.

Our semantic model captures all invariants necessary to prove that the type system guarantees
that well-typed programs satisfy noninterference (Theorem 4.4). In ğ5 we demonstrate that our
model can also be used to prove that syntactically ill-typed programs are semantically secureÐ
this allows us to safely compose syntactically ill-typed but semantically secure programs with
syntactically well-typed programs. In ğ5.5, we show that the model can also be used to prove łfreež
theorems.
A central idea in the model is to interpret each type both as a binary relation (Figure 4) and as

unary relation (Figure 6). The binary relation relates expressions that are observationally equivalent
to a 𝜁 observer, and the unary relation relates expressions that do not have any 𝜁 -observable
side-effects. The unary relation is used within the binary relation to relate terms independently
when the label of the type is higher than the observerÐsuch terms are indistinguishable to the
observer as long as they do not have any visible side-effects.
In this section, we will show step-by-step how to define our model in Iris. The syntax of Iris is

shown in Figure 3. Iris is a higher-order separation logic with propositions of type iProp and some
custom connectives that we will explain as we go along.

We start by defining the binary and unary value relations (ğ3.1) followed by a brief intermezzo,
where we present the Modal Weakest Precondition theory (ğ3.2). We then turn to the expression
relation (ğ3.3), the fundamental theorem of logical relations, and the soundness theorem (ğ4).

3.1 Value Relations

The binary value relation is an Iris relation of type Rel ≜ Val × Val→ iProp
□
where iProp

□
denotes

the class of persistent propositions (described below) in Iris:

iProp
□
≜ {𝑃 : iProp | persistent(𝑃)}

persistent(𝑃) ≜ 𝑃 ⊢ □ 𝑃

Similarly, the unary value relation is an Iris predicate of type Pred ≜ Val→ iProp
□
.

By default, since Iris is a separation logic, propositions denote sets of resources and 𝑃 ∗𝑄 holds for
resources that can be split into two disjoint parts satisfying 𝑃 and 𝑄 , respectively. The proposition
𝑃 −∗ 𝑄 describes those resources which, if we combine them with a disjoint resource satisfying
𝑃 , satisfies 𝑄 . As such, Iris propositions assert ownership of ephemeral (non-persistent) resources.
For example, the points-to connectives 𝜄 ↦→L 𝑣 and 𝜄 ↦→R 𝑣 asserts exclusive ownership of location
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10:8 Simon Oddershede Gregersen, Johan Bay, Amin Timany, and Lars Birkedal

T-Var
𝑥 : 𝜏 ∈ Γ

Ξ | Ψ | Γ ⊢pc 𝑥 : 𝜏

T-unit

Ξ | Ψ | Γ ⊢pc () : 1
⊥

T-bool
𝑏 ∈ {true, false}

Ξ | Ψ | Γ ⊢pc 𝑏 : B
⊥

T-nat
𝑛 ∈ N

Ξ | Ψ | Γ ⊢pc 𝑛 : N
⊥

T-binop

Ξ | Ψ | Γ ⊢pc 𝑒1 : N
ℓ1 Ξ | Ψ | Γ ⊢pc 𝑒2 : N

ℓ2 ⊚ : N × N⇒ 𝑡

Ξ | Ψ | Γ ⊢pc 𝑒1 ⊚ 𝑒2 : 𝑡 ℓ1⊔ℓ2

T-lam
Ξ | Ψ | Γ, 𝑥 : 𝜏1 ⊢ℓ𝑒 𝑒 : 𝜏2

Ξ | Ψ | Γ ⊢pc 𝜆𝑥 . 𝑒 :
(
𝜏1

ℓ𝑒
→ 𝜏2

)⊥
T-app

Ξ | Ψ | Γ ⊢pc 𝑒1 :
(
𝜏1

ℓ𝑒
→ 𝜏2

)ℓ
Ξ | Ψ | Γ ⊢pc 𝑒2 : 𝜏1 Ψ ⊢ 𝜏2 ↘ ℓ Ψ ⊢ pc ⊔ ℓ ⊑ ℓ𝑒

Ξ | Ψ | Γ ⊢pc 𝑒1 𝑒2 : 𝜏2
T-tlam

Ξ, 𝛼 | Ψ | Γ ⊢ℓ𝑒 𝑒 : 𝜏

Ξ | Ψ | Γ ⊢pc Λ 𝑒 :
(
∀ℓ𝑒 𝛼. 𝜏

)⊥
T-llam
Ξ | Ψ, 𝜅 | Γ ⊢ℓ𝑒 𝑒 : 𝜏 FV(ℓ𝑒 ) ⊆ Ψ ∪ {𝜅}

Ξ | Ψ | Γ ⊢pc Λ 𝑒 :
(
∀ ℓ𝑒 𝜅. 𝜏

)⊥
T-tapp

Ξ | Ψ | Γ ⊢pc 𝑒 :
(
∀ℓ𝑒 𝛼. 𝜏

)ℓ
Ψ ⊢ pc ⊔ ℓ ⊑ ℓ𝑒 FV(𝑡) ⊆ Ξ

Ξ | Ψ | Γ ⊢pc 𝑒 _ : 𝜏 [𝑡/𝛼]

T-lapp

Ξ | Ψ | Γ ⊢pc 𝑒 :
(
∀ℓ𝑒 𝜅. 𝜏

)ℓ
Ψ ⊢ pc ⊔ ℓ ⊑ ℓ𝑒 [ℓ

′/𝜅] Ψ ⊢ 𝜏 [ℓ ′/𝜅] ↘ ℓ FV(ℓ ′) ⊆ Ψ

Ξ | Ψ | Γ ⊢pc 𝑒 _ : 𝜏 [ℓ ′/𝜅]

T-if

Ξ | Ψ | Γ ⊢pc 𝑒 : B
ℓ ∀𝑖 ∈ {1, 2} .Ξ | Ψ | Γ ⊢pc⊔ℓ 𝑒𝑖 : 𝜏 Ψ ⊢ 𝜏 ↘ ℓ

Ξ | Ψ | Γ ⊢pc if 𝑒 then 𝑒1 else 𝑒2 : 𝜏

T-inj

Ξ | Ψ | Γ ⊢pc 𝑒 : 𝜏𝑖 𝑖 ∈ {1, 2}

Ξ | Ψ | Γ ⊢pc inj𝑖 𝑒 : (𝜏1 + 𝜏2)
⊥

T-pair
Ξ | Ψ | Γ ⊢pc 𝑒1 : 𝜏1 Ξ | Ψ | Γ ⊢pc 𝑒2 : 𝜏2

Ξ | Ψ | Γ ⊢pc (𝑒1, 𝑒2) : (𝜏1 × 𝜏2)
⊥

T-proj

Ξ | Ψ | Γ ⊢pc 𝑒 : (𝜏1 × 𝜏2)
ℓ

Ψ ⊢ 𝜏𝑖 ↘ ℓ 𝑖 ∈ {1, 2}

Ξ | Ψ | Γ ⊢pc 𝜋𝑖 𝑒 : 𝜏𝑖
T-match

Ξ | Ψ | Γ ⊢pc 𝑒 : (𝜏1 + 𝜏2)
ℓ ∀𝑖 ∈ {1, 2} .Ξ | Ψ | Γ, 𝑥 : 𝜏𝑖 ⊢pc⊔ℓ 𝑒𝑖 : 𝜏 Ψ ⊢ 𝜏 ↘ ℓ

Ξ | Ψ | Γ ⊢pc match 𝑒 with inj𝑖 ⇒ 𝑒𝑖 end : 𝜏

T-fold
Ξ | Ψ | Γ ⊢pc 𝑒 : 𝜏 [𝜇 𝛼. 𝜏/𝛼]

Ξ | Ψ | Γ ⊢pc fold 𝑒 : (𝜇 𝛼. 𝜏)⊥

T-unfold

Ψ ⊢ 𝜏 [𝜇 𝛼. 𝜏/𝛼] ↘ ℓ Ξ | Ψ | Γ ⊢pc 𝑒 : (𝜇 𝛼. 𝜏)
ℓ

Ξ | Ψ | Γ ⊢pc unfold 𝑒 : 𝜏 [𝜇 𝛼. 𝜏/𝛼]

T-pack
Ξ | Ψ | Γ ⊢pc 𝑒 : 𝜏 [𝑡/𝛼]

Ξ | Ψ | Γ ⊢pc pack 𝑒 : (∃𝛼. 𝜏)⊥

T-unpack

Ψ ⊢ 𝜏 ↘ ℓ Ξ | Ψ | Γ ⊢pc pack 𝑒1 : (∃𝛼. 𝜏 ′)
ℓ

Ξ, 𝛼 | Ψ | Γ, 𝑥 : 𝜏 ′ ⊢pc⊔ℓ 𝑒2 : 𝜏

Ξ | Ψ | Γ ⊢pc unpack 𝑒1 as𝑥 in 𝑒2 : 𝜏

T-alloc
Ξ | Ψ | Γ ⊢pc 𝑒 : 𝜏 Ψ ⊢ 𝜏 ↘ pc

Ξ | Ψ | Γ ⊢pc ref (𝑒) : ref (𝜏)⊥

T-store

Ξ | Ψ | Γ ⊢pc 𝑒1 : ref (𝜏)ℓ Ξ | Ψ | Γ ⊢pc 𝑒2 : 𝜏 Ψ ⊢ 𝜏 ↘ pc ⊔ ℓ

Ξ | Ψ | Γ ⊢pc 𝑒1 ← 𝑒2 : 1
⊥

T-load

Ξ | Ψ | Γ ⊢pc ref (𝑒1) : ref (𝜏)ℓ Ξ | Ψ ⊢ 𝜏 <: 𝜏 ′ Ψ ⊢ 𝜏 ′ ↘ ℓ

Ξ | Ψ | Γ ⊢pc ! 𝑒 : 𝜏 ′

T-sub
Ξ | Ψ | Γ ⊢pc′ 𝑒 : 𝜏

′
Ψ ⊢ pc ⊑ pc ′ Ξ | Ψ ⊢ 𝜏 ′ <: 𝜏

Ξ | Ψ | Γ ⊢pc 𝑒 : 𝜏

Fig. 1. Typing relation.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 10. Publication date: January 2021.



Mechanized Logical Relations for Termination-Insensitive Noninterference 10:9

S-refl
FV(𝑡) ⊆ Ξ

Ξ | Ψ ⊢ 𝑡 <: 𝑡

S-trans
Ξ | Ψ ⊢ 𝑡1 <: 𝑡2 Ξ | Ψ ⊢ 𝑡2 <: 𝑡3

Ξ | Ψ ⊢ 𝑡1 <: 𝑡3
S-arrow
Ξ | Ψ ⊢ 𝜏 ′1 <: 𝜏1 Ξ | Ψ ⊢ 𝜏2 <: 𝜏 ′2 Ψ ⊢ ℓ2 ⊑ ℓ1

Ξ | Ψ ⊢ 𝜏1
ℓ1
→ 𝜏2 <: 𝜏 ′1

ℓ2
→ 𝜏 ′2

S-tforall
Ψ ⊢ ℓ2 ⊑ ℓ1 Ξ, 𝛼 | Ψ ⊢ 𝜏1 <: 𝜏2

Ξ | Ψ ⊢ ∀ℓ1 𝛼. 𝜏1 <: ∀ℓ2 𝛼. 𝜏2
S-lforall
Ψ, 𝜅 ⊢ ℓ2 ⊑ ℓ1 Ξ | Ψ, 𝜅 ⊢ 𝜏1 <: 𝜏2

Ξ | Ψ ⊢ ∀ ℓ1 𝜅. 𝜏1 <: ∀ ℓ2 𝜅. 𝜏2

S-prod
Ξ | Ψ ⊢ 𝜏1 <: 𝜏 ′1 Ξ | Ψ ⊢ 𝜏2 <: 𝜏 ′2

Ξ | Ψ ⊢ 𝜏1 × 𝜏2 <: 𝜏 ′1 × 𝜏
′
2

S-sum
Ξ | Ψ ⊢ 𝜏1 <: 𝜏 ′1 Ξ | Ψ ⊢ 𝜏2 <: 𝜏 ′2

Ξ | Ψ ⊢ 𝜏1 + 𝜏2 <: 𝜏 ′1 + 𝜏
′
2

S-labeled
Ψ ⊢ ℓ1 ⊑ ℓ2 Ξ | Ψ ⊢ 𝑡1 <: 𝑡2

Ξ | Ψ ⊢ 𝑡1
ℓ1 <: 𝑡2

ℓ2

Fig. 2. Subtyping relation.

𝜎 ::= 0 | 1 | B | N | Val | Expr | iProp | 𝜎 × 𝜎 | 𝜎 + 𝜎 | 𝜎 → 𝜎 | . . . (Types)

𝑃,𝑄 ::= 𝑥 | 𝜆𝑥 : 𝜎. 𝑡 | 𝑡 (𝑢) | True | False | 𝑃 ∧𝑄 | 𝑃 ∨𝑄 | 𝑃 ⇒ 𝑄 (Propositional logic)

| ∀𝑥 : 𝜎. 𝑃 | ∃𝑥 : 𝜎. 𝑃 | 𝑡 = 𝑢 (Higher-order logic)

| 𝑃 ∗𝑄 | 𝑃 −∗ 𝑄 | 𝜄 ↦→L 𝑣 | 𝜄 ↦→R 𝑣 | mwpM
E
𝑒 {𝛷} (Separation logic)

| □ 𝑃 | ⊲ 𝑃 | 𝜇 𝑥 : 𝜎. 𝑡 | |⇛E1 E2 𝑃 | 𝑃
N
| . . . (Iris-specific connectives)

Fig. 3. Syntax of Iris. 𝑡 and 𝑢 represent arbitrary terms.

𝜄 storing value 𝑣 in the state of the programs on the left- and right-hand side, respectively. Such
proposition may cease to hold, e.g., when 𝜄 is updated to point to some other value than 𝑣 . Intuitively,
persistent propositions are propositions that do not assert exclusive ownership of resources and
once they hold, they hold forever. In Iris, this is expressed using the persistence modality □. The
proposition □ 𝑃 (read łpersistently 𝑃") says 𝑃 holds without asserting any ephemeral propositions
and thus 𝑃 can be freely duplicated, i.e., □ 𝑃 ⊢ □ 𝑃 ∗□ 𝑃 , and eliminated, i.e., □ 𝑃 ⊢ 𝑃 . It is important
that our value relations are defined using persistent predicates as our type system is intuitionistic,
in the sense that it admits the usual structural rules, which, e.g., means that the assumption that a
value has a type 𝜏 may be used repeatedly.

Binary value relation. The binary value relations J𝜏K
𝜌

Θ
and J𝑡K

𝜌

Θ
for a labeled type 𝜏 and an

unlabeled type 𝑡 are defined by mutual induction on 𝜏 and 𝑡 . Here 𝜌 : LabelVar→ L is a semantic
label environment mapping label variables to labels, and Θ is a semantic type environment for type
variables, as is usual for interpretations of languages with parametric polymorphism. However, for
every type variable we keep both a binary relation and two unary relations, one for each of the
two sides:

Θ : TypeVar→ Rel × Pred × Pred.

We use ΘL,ΘR : TypeVar → Pred as shorthand for 𝜋2 ◦ Θ and 𝜋3 ◦ Θ, respectively, where 𝜋𝑖 (𝑥)
denotes the 𝑖th projection of 𝑥 . It will be a property of the binary relation that the following
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10:10 Simon Oddershede Gregersen, Johan Bay, Amin Timany, and Lars Birkedal

binary-unary subsumption property (Lemma 4.2) holds:

∀𝑣, 𝑣 ′. J𝜏K
𝜌

Θ
(𝑣, 𝑣 ′) −∗ J𝜏K

𝜌

ΘL
(𝑣) ∗ J𝜏K

𝜌

ΘR
(𝑣 ′),

where J𝜏K
𝜌

ΘL
(𝑣) and J𝜏K

𝜌

ΘR
(𝑣 ′) denote the unary interpretation of 𝜏 at 𝑣 and 𝑣 ′. This property is

crucial: Intuitively, even though two values are observationally equivalent to a 𝜁 observer, they
are alsoÐindependentlyÐnot supposed to have any latent 𝜁 -observable side-effects. We elaborate
further on this in ğ4 with more technical details. However, for the property to hold, the binary
value relation has to be set up carefully, and the binary relation on open terms (explained in ğ3.3)
requires that Θ is coherent in the following sense:

Coh (Θ) ≜ ∗
(𝛷,𝛷L,𝛷R) ∈Im(Θ)

□ (∀𝑣, 𝑣 ′.𝛷 (𝑣, 𝑣 ′) −∗ 𝛷L (𝑣) ∗𝛷R (𝑣
′)) .

The big iterated separating conjunction quantifies over all triples (𝛷,𝛷L,𝛷R) in the image of Θ
and demands that the binary-unary subsumption property holds for the relations. The definition of
the value relations, which we now explain, is shown in Figure 4.

The value interpretation of labeled types makes use of an interpretation JℓK𝜌 of syntactic labels
ℓ defined as follows:

J𝜅K𝜌 ≜ 𝜌 (𝜅)

J𝑙K𝜌 ≜ 𝑙

Jℓ1 ⊔ ℓ2K𝜌 ≜ Jℓ1K𝜌 ⊔ Jℓ2K𝜌 .

As above, 𝜌 is an environment mapping label variables to labels. Notice that in the last equation,
the ⊔ on the left is the formal syntactic least upper bound whereas the ⊔ on the right is the least
upper bound in the lattice L.
The interpretation of labeled types now follows the intuition given in the beginning of this

section: low-labeled types (where JℓK𝜌 ⊑ 𝜁 ) are distinguishable to the observer, and thus values
should be related by the binary relation; high-labeled types (where JℓK𝜌 @ 𝜁 ) are indistinguishable
to the observer and thus values should individually satisfy the unary interpretation to ensure that
any latent effects will not be 𝜁 -observable.

J𝑡 ℓK
𝜌

Θ
(𝑣, 𝑣 ′) ≜

{
J𝑡K

𝜌

Θ
(𝑣, 𝑣 ′) if JℓK𝜌 ⊑ 𝜁

J𝑡K
𝜌

ΘL
(𝑣) ∗ J𝑡K

𝜌

ΘR
(𝑣 ′) if JℓK𝜌 @ 𝜁

This is the key point of interaction between the unary and binary relation.
The value interpretation of unlabeled types follows a structure that readers familiar with previous

logical-relations models in Iris will find familiar. However, we also need to guarantee that the
relation satisfies the binary-unary subsumption property.
If 𝑡 is an (unlabeled) ground type (1, B, or N), two values are related at 𝑡 if they are equal and

compatible with the type. For products 𝜏1 × 𝜏2, two values are related if they are both pairs with
components related at their respective types. Similarly for sums 𝜏1 + 𝜏2, two values are related if
they are both inj𝑖 for the same 𝑖 and their contents are related at 𝜏𝑖 .
The first clause of the interpretation of the function type is a slight variation of the classical

function type interpretation in logical-relations models: two values 𝑣 and 𝑣 ’ are related at type

𝜏1
ℓ𝑒

→ 𝜏2 if they map inputs related at 𝜏1 to related results in the expressions interpretation of
𝜏2. Note that we wrap this clause in a persistence modality in order to ensure that the relation
is persistent and that we ignore the latent effect label. The latter will only be important for the
unary interpretation. The two following clauses require that 𝑣 and 𝑣 ′ individually satisfy the unary
interpretation; this is to ensure that the binary-unary subsumption property holds.
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Value relation

J𝛼K
𝜌
Θ
≜ 𝜋1 (Θ(𝛼))

J1K
𝜌
Θ
(𝑣, 𝑣 ′) ≜ 𝑣 = 𝑣 ′ = ()

JBK
𝜌
Θ
(𝑣, 𝑣 ′) ≜ 𝑣 = 𝑣 ′ ∈ {true, false}

JNK
𝜌
Θ
(𝑣, 𝑣 ′) ≜ 𝑣 = 𝑣 ′ ∈ N

J𝜏1 × 𝜏2K
𝜌
Θ
(𝑣, 𝑣 ′) ≜ ∃𝑣1, 𝑣2, 𝑣

′
1, 𝑣
′
2 . 𝑣 = (𝑣1, 𝑣2) ∗ 𝑣

′
= (𝑣 ′1, 𝑣

′
2) ∗ J𝜏1K

𝜌
Θ
(𝑣1, 𝑣

′
1) ∗ J𝜏2K

𝜌
Θ
(𝑣2, 𝑣

′
2)

J𝜏1 + 𝜏2K
𝜌
Θ
(𝑣, 𝑣 ′) ≜

∨
𝑖∈{1,2}

∃𝑤,𝑤 ′. 𝑣 = inj𝑖 𝑤 ∗ 𝑣
′
= inj𝑖 𝑤

′ ∗ J𝜏𝑖K
𝜌
Θ
(𝑤,𝑤 ′)

J𝜏1
ℓ𝑒
→ 𝜏2K

𝜌
Θ
(𝑣, 𝑣 ′) ≜ □

(
∀𝑤,𝑤 ′. J𝜏1K

𝜌
Θ
(𝑤,𝑤 ′) −∗ EJ𝜏2K

𝜌
Θ
(𝑣 𝑤, 𝑣 ′ 𝑤 ′)

)
∗

J𝜏1
ℓ𝑒
→ 𝜏2K

𝜌
ΘL
(𝑣) ∗ J𝜏1

ℓ𝑒
→ 𝜏2K

𝜌
ΘR
(𝑣 ′)

J∀ℓ𝑒 𝛼. 𝜏K
𝜌
Θ
(𝑣, 𝑣 ′) ≜ □

(
∀𝛷 : Rel.∀𝛷L,𝛷R : Pred.

□
(
∀𝑣, 𝑣 ′.𝛷 (𝑣, 𝑣 ′) −∗ 𝛷L (𝑣) ∗𝛷R (𝑣

′)
)
−∗ EJ𝜏K

𝜌

Θ,𝛼 ↦→(𝛷,𝛷L,𝛷R)
(𝑣 _, 𝑣 ′ _)

)
∗

J∀ℓ𝑒 𝛼. 𝜏K
𝜌
ΘL
(𝑣) ∗ J∀ℓ𝑒 𝛼. 𝜏K

𝜌
ΘR
(𝑣 ′)

J∀ ℓ𝑒 𝜅. 𝜏K
𝜌
Θ
(𝑣, 𝑣 ′) ≜ □

(
∀𝑙 ∈ L . EJ𝜏K

𝜌,𝜅 ↦→𝑙
Θ

(𝑣 _, 𝑣 ′ _)
)
∗ J∀ ℓ𝑒 𝜅. 𝜏K

𝜌
ΘL
(𝑣) ∗ J∀ ℓ𝑒 𝜅. 𝜏K

𝜌
ΘR
(𝑣 ′)

J∃𝛼. 𝜏K
𝜌
Θ
(𝑣, 𝑣 ′) ≜ □

(
∃𝛷 : Rel. ∃𝛷L,𝛷R : Pred.

□
(
∀𝑣, 𝑣 ′.𝛷 (𝑣, 𝑣 ′) −∗ 𝛷L (𝑣) ∗𝛷R (𝑣

′)
)
∗

∃𝑤,𝑤 ′. 𝑣 = pack𝑤 ∗ 𝑣 ′ = pack𝑤 ′ ∗ J𝜏K
𝜌

Θ,𝛼 ↦→(𝛷,𝛷L,𝛷R)
(𝑤,𝑤 ′)

)
J𝜇 𝛼. 𝜏K

𝜌
Θ
≜ 𝜇𝛷 : Rel. 𝜆(𝑣, 𝑣 ′).∃𝑤,𝑤 ′. 𝑣 = fold𝑤 ∗ 𝑣 ′ = fold𝑤 ′∗

⊲J𝜏K
𝜌

Θ,𝛼 ↦→(𝛷,J𝜇 𝛼. 𝜏K
𝜌

ΘL
,J𝜇 𝛼. 𝜏K

𝜌

ΘR
)
(𝑤,𝑤 ′)

Jref (𝜏)K
𝜌
Θ
(𝑣, 𝑣 ′) ≜ ∃𝜄, 𝜄 ′. 𝑣 = 𝜄 ∗ 𝑣 ′ = 𝜄 ′ ∗ ∃𝑤,𝑤 ′. 𝜄 ↦→L 𝑤 ∗ 𝜄

′ ↦→R 𝑤 ′ ∗ J𝜏K
𝜌
Θ
(𝑤,𝑤 ′)

Nroot .(𝜄,𝜄
′)

J𝑡 ℓK
𝜌
Θ
(𝑣, 𝑣 ′) ≜

{
J𝑡K

𝜌
Θ
(𝑣, 𝑣 ′) if JℓK𝜌 ⊑ 𝜁

J𝑡K
𝜌
ΘL
(𝑣) ∗ J𝑡K

𝜌
ΘR
(𝑣 ′) if JℓK𝜌 @ 𝜁

Expression relation

EJ𝜏K
𝜌
Θ
(𝑒, 𝑒 ′) ≜ mwp 𝑒 ∼ 𝑒 ′

{
J𝜏K

𝜌
Θ

}
Environment relation

GJ·K
𝜌
Θ
(𝜖, 𝜖) ≜ True

GJΓ, 𝑥 : 𝜏K
𝜌
Θ
(
⃗⃗
𝑣 𝑤,
⃗⃗ ⃗⃗⃗
𝑣 ′𝑤 ′) ≜ GJΓK

𝜌
Θ
(
⃗⃗
𝑣,
⃗⃗ ⃗⃗⃗
𝑣 ′) ∗ J𝜏K

𝜌
Θ
(𝑤,𝑤 ′)

Semantic typing judgment

Coh (Θ) ≜ ∗
(𝛷,𝛷L,𝛷R) ∈Θ

□
(
∀𝑣, 𝑣 ′.𝛷 (𝑣, 𝑣 ′) −∗ 𝛷L (𝑣) ∗𝛷R (𝑣

′)
)

Ξ | Ψ | Γ ⊨ 𝑒 ≈𝜁 𝑒
′
: 𝜏 ≜ □

(
∀Θ, 𝜌,

⃗⃗
𝑣,
⃗⃗ ⃗⃗⃗
𝑣 ′ . dom(Ξ) ⊆ dom(Θ) ∗ dom(Ψ) ⊆ dom(𝜌) −∗

Coh (Θ) ∗ GJΓK
𝜌
Θ
(
⃗⃗
𝑣,
⃗⃗ ⃗⃗⃗
𝑣 ′) −∗ EJ𝜏K

𝜌
Θ
(𝑒 [
⃗⃗
𝑣/
⃗⃗⃗
𝑥], 𝑒 ′[

⃗⃗⃗⃗⃗
𝑣 ′/
⃗⃗⃗
𝑥])

)

Fig. 4. Binary interpretations.
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For type-polymorphic types we use the semantic type environment which maps type variables to
triples consisting of an Iris relation on values and two unary relations. We define the interpretation
J𝛼K

𝜌

Θ
of type variable 𝛼 by looking up the variable in Θ and taking the first projection.

Universal types are interpreted using logical propositions that are also universally quantified
but over semantic predicates, heavily relying on Iris’s support for higher-order impredicative
quantification. However, we quantify not only over a binary relation but also two unary relations
for which we require the subsumption property to hold. This ensures that the semantic type
environment is coherent. Two value 𝑣 and 𝑣 ′ are then related at type ∀ℓ𝑒 𝛼. 𝜏 when type applications
𝑣 _ and 𝑣 ′ _ are related at 𝜏 in a semantic environment mapping 𝛼 to the binary relation and the
two unary relations. As in the case for the function type, we also require that 𝑣 and 𝑣 ′ satisfy the
unary interpretation.
Label abstraction is interpreted following a similar pattern: We quantify over semantic labelsÐ

which are just labels from the lattice LÐand express that 𝑣 and 𝑣 ′ are related at type ∀ ℓ𝑒 𝜅. 𝜏 when
the applications 𝑣 _ and 𝑣 ′ _ are related at type 𝜏 in an extended semantic label environment
mapping 𝜅 to the label 𝑙 .
The interpretation of existential types ∃𝛼. 𝜏 quantifies existentially over a binary relation and

two unary relations satisfying the subsumption property and relates values of the form pack𝑤 and
pack𝑤 ′ if𝑤 and𝑤 ′ are related at type 𝜏 in an extended semantic type environment.
To interpret recursive types we make use of Iris’s guarded recursive predicates. The guarded

fixed-point operator 𝜇 𝑥 : 𝜎. 𝑡 of Iris can be used to define recursive predicates (without restrictions
on variance for occurrences of 𝑥) by requiring that all recursive occurrences of 𝑥 are guarded

by a later modality ⊲. Intuitively, the later modality asserts that something holds łone step of
computation laterž. It is monotone (𝑃 ⊢ 𝑄 implies ⊲ 𝑃 ⊢ ⊲𝑄) and can be introduced (𝑃 ⊢ ⊲ 𝑃 ). In
Iris, with the restriction of guardedness, the fixed-point operator satisfies the expected equation:
𝜇 𝑥 : 𝜎. 𝑡 = 𝑡 [𝜇 𝑥 : 𝜎. 𝑡/𝑥]. The key proof principle associated with the later modality is the Löb
rule: (⊲ 𝑃 ⇒ 𝑃) ⇒ 𝑃 , which is used to prove the binary-unary subsumption property (Lemma 4.2)
in the case of recursive types.
Using this fixed-point property, two values are related at type 𝜇 𝛼. 𝜏 if they are of the form

fold𝑤 and fold𝑤 ′, and if 𝑤 and 𝑤 ′ are related at 𝜏 (under a later modality) in an extended type
environment mapping 𝛼 to the triple (J𝜇 𝛼. 𝜏K

𝜌

Θ
, J𝜇 𝛼. 𝜏K

𝜌

ΘL
, J𝜇 𝛼. 𝜏K

𝜌

ΘR
). The unary relations again

ensure that the extended semantic type environment is coherent.
Recall that the binary relation is intended to relate terms that are observationally equivalent

to a 𝜁 -observer. Hence related values of reference type ref (𝜏) should be locations 𝜄 and 𝜄 ′ such
that their contents may change but the contents should always stay related at type 𝜏 . To express

this requirement, we make use of Iris’s invariant assertion 𝑃
N
, which expresses the (persistent)

knowledge that a proposition 𝑃 holds at all times. In order to avoid reentrancy issues, where
invariants are opened in a nested (and unsound) fashion, Iris features invariant namespaces N ∈

InvName and invariant masks E ⊆ InvName. Iris annotates each invariant 𝑃
N
with a namespace

N to identify the invariant and, as we shall explain later, we annotate modal weakest preconditions

mwpM
E
𝑒 {𝛷} with a mask E to keep track of which invariants are enabled and may be opened.

If the mask is omitted we consider the modal weakest precondition with mask ⊤, the set of all
invariant names.

In order to work with invariants formally in Iris we make use of the update modality |⇛E1 E2 . We
write |⇛E if E1 = E2 = E. Akin to how a weakest precondition is used to reason about physical
state, the update modality is used to reason about ghost state. The update modality is annotated
with masks E1 and E2 that denote which invariants are enabled and may be opened before and after

the modality is introduced. Intuitively, the proposition |⇛E1 E2 𝑃 holds for resources that (given
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the invariants in E1 are enabled) can be updated to resources that satisfy 𝑃 (with the invariants in
E2 enabled) without violating the environment’s knowledge or ownership of resources. We write

𝑃 ≡∗E1 E2 𝑄 as a shorthand for 𝑃 −∗ |⇛E1 E2𝑄 .

Some formal rules for invariants in Iris can be found in Figure 5. An invariant 𝑃
N
can be

inv-alloc

⊲ 𝑃 ⊢ |⇛E 𝑃
N

inv-persist

𝑃
N
⊢ □ 𝑃

N

inv-open-upd

N ⊆ E

𝑃
N
∗ (⊲ 𝑃 −∗ |⇛E\N (⊲ 𝑃 ∗𝑄)) ⊢ |⇛E𝑄

Fig. 5. Rules for invariants.

allocated (inv-alloc) by giving up ownership of 𝑃 , a possibly ephemeral proposition. Invariants
are persistent (inv-persist) and hence duplicable. The contents of invariants may be accessed in a
carefully restricted way (inv-open-upd): to prove |⇛E𝑄 , we may open an invariant and assume ⊲ 𝑃
as long as we re-establish the invariant ⊲ 𝑃 . For more details on invariants in Iris, including the role
of the later modality in the rules, see Birkedal and Bizjak [2017]; Jung et al. [2018b].

With the invariant connective at hand, the binary relation for reference types ref (𝜏) is straight-
forward and relates locations that invariantly have contents related at type 𝜏 . Here Nroot .(𝜄, 𝜄

′) is
the namespace designated to the invariant on the locations 𝜄 and 𝜄 ′.

Unary value relation. The unary value relations J𝜏K
𝜌

Δ
and J𝑡K

𝜌

Δ
for a labeled type 𝜏 and an unlabeled

type 𝑡 are defined by mutual induction on 𝜏 and 𝑡 ; however, the label on labeled types is ignored
since, as mentioned earlier, the point of the unary relation is to ensure that computations embedded
in values have no 𝜁 -observable side-effects.

J𝑡 ℓK
𝜌

Δ
(𝑣) ≜ J𝑡K

𝜌

Δ
(𝑣).

Here Δ is a semantic type environment mapping type variables to unary relations of type Pred and
𝜌 is a semantic label environment mapping label variables to labels. The full relation, which we
now explain, is shown in Figure 6.
The only values of ground type are values compatible with the type. Similarly, values of type

𝜏1 × 𝜏2 are pairs with components inhabiting the interpretation of 𝜏1 and 𝜏2, respectively. Values of
type 𝜏1 + 𝜏2 are inj𝑖 with contents related at 𝜏𝑖 .

The unary interpretation of function type 𝜏1
ℓ𝑒

→ 𝜏2 follows the canonical pattern and takes related
input at 𝜏1 to related results at 𝜏2. However, notice that the unary expression relation is indexed
with the latent effect label of the function. The unary relation is only concerned with expressions
in high-labeled contexts; low-labeled contexts are 𝜁 -observable and the unary relation poses no
requirements on these. We will return to these matters in ğ3.3 when discussing the expression
relations.
Both type- and label-polymorphic types are interpreted by quantifying over their semantic

counterparts and a value 𝑣 inhabits the polymorphic type if application 𝑣 _ inhabits 𝜏 in the
extended semantic environment. As for function types, the expression relation is indexed with the
latent effect label of the polymorphic binder. The interpretation of existential types and recursive
types follows the same pattern as in the binary interpretation.
The interpretation of reference types is the central part of the unary interpretation and states

that terms have no 𝜁 -observable side-effects. Intuitively, a reference containing data with a label
lower than 𝜁 is not allowed to change when execution conditionally depends on higher-labeled
information as this would implicitly leak the high-labeled information through the state. The
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Value relation

J𝛼K
𝜌
Δ
≜ Δ(𝛼)

J1K
𝜌
Δ
(𝑣) ≜ 𝑣 = ()

JBK
𝜌
Δ
(𝑣) ≜ 𝑣 ∈ {true, false}

JNK
𝜌
Δ
(𝑣) ≜ 𝑣 ∈ N

J𝜏1 × 𝜏2K
𝜌
Δ
(𝑣) ≜ ∃𝑣1, 𝑣2 . 𝑣 = (𝑣1, 𝑣2) ∗ J𝜏1K

𝜌
Δ
(𝑣1) ∗ J𝜏2K

𝜌
Δ
(𝑣2)

J𝜏1 + 𝜏2K
𝜌
Δ
(𝑣) ≜

∨
𝑖∈{1,2}

∃𝑤. 𝑣 = inj𝑖 𝑤 ∗ J𝜏𝑖K
𝜌
Δ
(𝑤)

J𝜏1
ℓ𝑒
→ 𝜏2K

𝜌
Δ
(𝑣) ≜ □

(
∀𝑤. J𝜏1K

𝜌
Δ
(𝑤) −∗ Eℓ𝑒 J𝜏2K

𝜌
Δ
(𝑣 𝑤)

)
J∀ℓ𝑒 𝛼. 𝜏K

𝜌
Δ
(𝑣) ≜ □

(
∀𝑓 : Pred. Eℓ𝑒 J𝜏K

𝜌

Δ,𝛼 ↦→𝑓
(𝑣 _)

)
J∀ ℓ𝑒 𝜅. 𝜏K

𝜌
Δ
(𝑣) ≜ □

(
∀𝑙 ∈ L . Eℓ𝑒 J𝜏K

𝜌,𝜅 ↦→𝑙
Δ

(𝑣 _)
)

J∃𝛼. 𝜏K
𝜌
Δ
(𝑣) ≜ □

(
∃𝛷 : Pred. ∃𝑤. 𝑣 = pack𝑤 ∗ J𝜏K

𝜌
Δ,𝛼 ↦→𝛷

(𝑤)
)

J𝜇 𝛼. 𝜏K
𝜌
Δ
≜ 𝜇𝛷 : Pred. 𝜆𝑣 .∃𝑤. 𝑣 = fold𝑤 ∗ ⊲J𝜏K

𝜌

Δ,𝛼 ↦→𝑓
(𝑤)

Jref (𝑡 ℓ )K
𝜌
Δ
(𝑣) ≜ ∃𝜄,N . 𝑣 = 𝜄 ∗ R(Δ, 𝜌, 𝜄, ℓ,N)

R(Δ, 𝜌, 𝜄, ℓ,N) ≜




□∀E .N ⊆ E ⇒(
|⇛E E\N

⊲

(
∃𝑤. 𝜄 ↦→𝑖 𝑤 ∗ J𝜏K

𝜌
Δ
(𝑤) ∗((

⊲ 𝜄 ↦→𝑖 𝑤 ∗ J𝜏K
𝜌
Δ
(𝑤)

)
≡∗E\N E True

))) if JℓK𝜌 ⊑ 𝜁

□∀E .N ⊆ E ⇒(
|⇛E E\N

⊲

(
∃𝑤. 𝜄 ↦→𝑖 𝑤 ∗ J𝜏K

𝜌
Δ
(𝑤) ∗((

⊲∃𝑤 ′. 𝜄 ↦→𝑖 𝑤
′ ∗ J𝜏K

𝜌
Δ
(𝑤 ′)

)
≡∗E\N E True

))) if JℓK𝜌 @ 𝜁

J𝑡 ℓK
𝜌
Δ
(𝑣) ≜ J𝑡K

𝜌
Δ
(𝑣)

Expression relation

EpcJ𝜏K
𝜌
Δ
(𝑒) ≜ JpcK𝜌 @ 𝜁 ⇒ mwpM |⇛⊲ 𝑒

{
J𝜏K

𝜌
Δ

}
Environment relation

GJ·K
𝜌
Δ
(𝜖) ≜ True

GJΓ, 𝑥 : 𝜏K
𝜌
Δ
(
⃗⃗
𝑣 𝑤) ≜ GJΓK

𝜌
Δ
(
⃗⃗
𝑣) ∗ J𝜏K

𝜌
Δ
(𝑤)

Semantic typing judgment

Ξ | Ψ | Γ ⊨pc 𝑒 : 𝜏 ≜ □

(
∀Δ, 𝜌,

⃗⃗
𝑣 . dom(Ξ) ⊆ dom(Δ) ∗ dom(Ψ) ⊆ dom(𝜌) −∗

GJΓK
𝜌
Δ
(
⃗⃗
𝑣) −∗ EpcJ𝜏K

𝜌
Δ
(𝑒 [
⃗⃗
𝑣/
⃗⃗⃗
𝑥])

)

Fig. 6. Unary interpretations.

contents of references with a label higher than 𝜁 , however, can always be modified as long as the
new contents are compatible with the types.
In order to state this intuition formally in Iris, while at the same time ensuring that the binary-

unary subsumption property holds, we make use of the update modality to encode a relaxed form
of semantic invariants. Instead of using an Iris invariant to capture the meaning of a reference
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type, we essentially use the key properties of Iris invariants (that they can be opened and closed
again) and, depending on the label of the contents of the reference, we can express whether the
value stored in the reference is allowed to change or not. As such, values 𝑣 of type ref (𝑡 ℓ ) are
locations for which there exists a namespace N such that R(Δ, 𝜌, 𝜄, ℓ,N) holds. The namespace N
is some namespace associated with 𝜄. The R(Δ, 𝜌, 𝜄, ℓ,N) proposition states that if the content of
the reference is of a low-labeled type (JℓK𝜌 ⊑ 𝜁 ) then the content of 𝜄 is not allowed to change in an
observable way:

□∀E .N ⊆ E ⇒
©­«
|⇛E E\N

⊲
©­«
∃𝑤. 𝜄 ↦→𝑖 𝑤 ∗ J𝜏K

𝜌

Δ
(𝑤) ∗( (

⊲ 𝜄 ↦→𝑖 𝑤 ∗ J𝜏K
𝜌

Δ
(𝑤)

)
≡∗E\N E True

)ª®¬
ª®¬
.

If we ignore the later modalities, intuitively, this says that if the namespace N is currently enabled
we can, by disabling N , get ownership of the points-to connective 𝜄 ↦→𝑖 𝑤 with 𝑖 ∈ {L,R} such
that 𝑤 inhabits J𝜏K

𝜌

Δ
. Moreover, the namespace N can only be enabled again by giving back the

ownership of the points-to connective with unmodified contents𝑤 .
In a similar fashion, if the content of the reference is of a high-labeled type (JℓK𝜌 @ 𝜁 ) then the

content is allowed to change:

□∀E .N ⊆ E ⇒
©­«
|⇛E E\N

⊲
©­«
∃𝑤. 𝜄 ↦→𝑖 𝑤 ∗ J𝜏K

𝜌

Δ
(𝑤) ∗( (

⊲∃𝑤 ′. 𝜄 ↦→𝑖 𝑤
′ ∗ J𝜏K

𝜌

Δ
(𝑤 ′)

)
≡∗E\N E True

)ª®¬
ª®¬
.

Intuitively, as before, if the namespaceN is currently enabled we can, by disablingN , get ownership
of the points-to connective 𝜄 ↦→𝑖 𝑤 such that 𝑤 inhabits 𝜏 . However, we can enable N again by
giving back the ownership of the points-to connective with any content𝑤 ′ as long as it still inhabits
type 𝜏 .

3.2 Modal Weakest Precondition

We now turn to the theory of the Modal Weakest Precondition (MWP) connective. Recall from the
Introduction that due its termination-insensitive nature, existing approaches using Iris’ weakest
preconditions do not suffices for defining our expression relations. Moreover, we will need both a
binary and a unary connective that interact in a reasonable way. As will be clear by the end of this
section, the MWP theory accommodates all of this while providing high-level reasoning principles.

Similarly to how the standard weakest precondition in Iris is defined [Krebbers et al. 2017a], our
new definition of a modal weakest precondition is language agnostic; it is not tied to a particular
programming language and it is defined generically over any suitable notion of expression, state,
and reduction relation. As a consequence of this generality, we do not make any assumptions on how
the state of the programming language is defined; instead, as for standard Iris weakest preconditions,
we parameterize modal weakest preconditions by a state interpretation 𝑆 : State → iProp. The
𝑆 predicate interprets the state of the programming language using Iris propositions, e.g., as a
resource for modeling the heap of the program.
The modal weakest precondition connective is also parameterized by a modal operator and,

indeed, one of the key strengths of the the connective is its generality and the fact that instantiations
of it automatically inherit a set of basic structural proof rules (cf. Figure 7) that hold irrespective of
the particular modality and programming language. For a particular instantiation of the connective,
one can then prove soundness of more specific proof rules, e.g., for heap-manipulating operations
(cf. Lemma 3.3) and for the interaction with other instantiations with different modal operators
(cf. Lemma 3.7).
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In this paper, we will use the generality of modal weakest preconditions to reason about the 𝜆𝑠𝑒𝑐
programming language: we will use three different instantiations with three different modalities
for our logical-relations model; in fact, one of these modalities will be defined in terms of an earlier
instantiation. We start by giving a simplified presentation in ğ3.2.1 before giving the definition
in its full generality in ğ3.2.2. Finally, we use the theory of modal weakest preconditions in the
subsequent ğ3.3 to define and reason about the expression relations of our logical-relations model.

3.2.1 ModalWeakest Precondition (Simplified). Wedefine a predicatemwpM

E
𝑒 {𝛷}which intuitively

says that if program 𝑒 reduces to a value 𝑣 in 𝑛 steps then𝛷 (𝑣, 𝑛) holds under modality M. The
predicate is parameterized over a mask E ∈ Masks = ℘(InvName) and the modality M : Masks→

N→ iProp→ iProp. The modality M is indexed by a mask E and a natural number 𝑛. The invariant
names in E are those invariants the modality may allow to be opened, if the modality allows the use
of invariants at all. The number 𝑛 is the number of logical steps that the modality allows which we

tie to the physical steps of the program execution in the definition of mwpM
E
𝑒 {𝛷}; the preliminary

definition is as follows:

mwpM

E 𝑒 {𝛷} ≜ ∀𝜎1, 𝜎2, 𝑣, 𝑛. (𝑒, 𝜎1) →
𝑛 (𝑣, 𝜎2) −∗ 𝑆 (𝜎1) −∗ ME;𝑛 (𝛷 (𝑣, 𝑛) ∗ 𝑆 (𝜎2)) .

The predicate expresses that if (𝑒, 𝜎1) reduces to (𝑣, 𝜎2) in 𝑛 steps and 𝑆 (𝜎1) holds then under
modality M both 𝛷 (𝑣, 𝑛) and 𝑆 (𝜎2) will hold. Note that the predicate does not require that the
program is safe to execute, nor that it terminates. In particular, if the program gets stuck or diverges
then mwpM

E
𝑒 {𝛷} holds trivially.

The connective can be used for a range of different modalities; we only require that the modality
M satisfies two conditions:

E ⊆ E ′⇒ 𝑃 −∗ 𝑄 ⊢ ME;𝑛 (𝑃) −∗ ME′;𝑛 (𝑄) (monotone)

ME;0 (𝑃) ⊢ ME;𝑛 (𝑃) (introducable)

We say that the modality M is valid if it satisfies the two conditions.
Given a valid modality, the mwpM

E
𝑒 {𝛷} predicate satisfies several general structural rules. We

present a selection of such rules in Figure 7. Most of these are self-explanatory, but we point out
the importance of the MWP-bind rule which is crucial for local reasoning.

MWP-pure-step

∀𝜎. (𝜎, 𝑒) → (𝜎 ′, 𝑒 ′) mwpM

E 𝑒
′ {𝛷}

mwpM

E 𝑒 {𝛷}

MWP-value

ME;0 (𝛷 (𝑣, 0))

mwpM

E 𝑣 {𝛷}
MWP-mono

∀𝑣, 𝑛.𝛷 (𝑣, 𝑛) −∗ Ψ(𝑣, 𝑛) mwpM

E 𝑒 {Ψ}

mwpM

E 𝑒 {𝛷}

MWP-mask-mono

E ⊆ E ′ mwpM

E 𝑒 {𝛷}

mwpM

E′ 𝑒 {𝛷}
MWP-bind

mwpM

E 𝑒
{
𝑣, 𝑛. mwpM

E 𝐾 [𝑣] {𝑤,𝑚. 𝛷 (𝑤,𝑛 +𝑚)}
}

mwpM

E 𝐾 [𝑒] {𝛷}

Fig. 7. Excerpt of rules for the modal weakest precondition connective given a valid modality. More rules, e.g.,

for reasoning about single steps with state manipulation, can be found in the appendix.

Example 3.1 (MWP instance: Update modality). Let M
|⇛

E,𝑛
(𝑃) ≜ |⇛E 𝑃 . This is a valid modality. The

modality does not allow any logical steps (and ignores its index 𝑛). When proving mwpM
|⇛

E
𝑒 {𝛷},
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however, all invariants in E may be opened before establishing the post condition𝛷 but must be
immediately closed.

The simplified presentation given so far suffices for defining the modal weakest precondition
instance that we will use for the unary expression interpretation. This is the point of the following
example.

Example 3.2 (MWP instance: Step-taking update modality). Let

M
|⇛⊲

E,𝑛
(𝑃) ≜

(
|⇛E ∅

⊲ |⇛∅ E
)𝑛
|⇛E 𝑃 .

where
(
|⇛E ∅

⊲ |⇛∅ E
)𝑛

is 𝑛 times repetition of |⇛E ∅
⊲ |⇛∅ E . The modality M

|⇛⊲

E,𝑛
is valid and can be

thought of as a step-taking update modality. Intuitively, M
|⇛⊲

E,𝑛
(𝑃) expresses that 𝑛 steps into the

future, we can update our resources to satisfy 𝑃 , and, moreover, for every step, all invariants in
E may be opened to reason about progress as long as they are immediately closed afterwards. In
practice, the later modality allows stripping later modalities from assumptions that we get when
opening invariants.
Using the structural rules for MWP in Figure 7, in particular the MWP-bind rule, one can see

that the modality distributes over compound expressions such that when proving mwpM
|⇛⊲

E
𝑒 {𝛷},

one is allowed to open invariants atomically, i.e., for the duration of a single atomic step.

When instantiating the modal weakest precondition theory with 𝜆𝑠𝑒𝑐 and the M
|⇛⊲

E,𝑛
modality we

can derive the following properties for reasoning about heap-manipulating operations. Note that
the proofs of these properties make use of the rules omitted from Figure 7.

Lemma 3.3 (Properties of step-taking update MWP with 𝜆𝑠𝑒𝑐 ).

(1) ⊲∀𝜄. 𝜄 ↦→𝑖 𝑣 −∗ 𝑄 𝜄 ⊢ mwp
M |⇛⊲

E
ref (𝑣) {𝑣 . 𝑄}

(2) ⊲ 𝜄 ↦→𝑖 𝑣 ∗ ⊲(𝜄 ↦→𝑖 𝑣 −∗ 𝑄 𝑣) ⊢ mwp
M |⇛⊲

E
! 𝜄 {𝑣 . 𝑄}

(3) ⊲ 𝜄 ↦→𝑖 𝑣 ∗ ⊲(𝜄 ↦→𝑖 𝑤 −∗ 𝑄 ()) ⊢ mwp
M |⇛⊲

E
𝜄 ← 𝑤 {𝑣 . 𝑄}

Lemma 3.3 state properties that allow us to allocate, read, and modify the heap. They all express
that the postcondition 𝑄 will hold if the resources needed are given and 𝑄 holds for the updated
resources.

3.2.2 Modal Weakest Precondition (Full Definition). The definition of modal weakest precondition
connective presented so far suffices for unary reasoning about programs. A specific instance of it
has already been used in previous work by Timany et al. [2018] who considered an instantiation
with a so-called future modality. However, in order to facilitate termination-insensitive reasoning
about two programs at the same time, we generalize the definition further such that we can use an
MWP connective as the modality of anotherMWP connective. In ğ3.3, we will see how this general
connective is particularly useful for defining and working with our binary logical-relations model.

The key idea behind the generalization is to let the modalityÐapart from the number of steps of
the execution and the maskÐhave its own łstatež embodied in an index and to let the proposition
that the modality acts on be parameterized over some information provided by the modality. For
unary reasoning, both of these indices will just be the unit type, meaning the modality has no
state and provides no information to the postcondition (in which case we recover the simplified
presentation from the above). However, when used for binary reasoning, as in our binary logical-
relations model, the index of the modality will be the second program, and the postcondition
parameter will be the return value of the second program.
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Formally, we parameterize the modality by two types, A and B , and a predicate BindCond that
determines when and how the modality will change łwhen the binding lemma appliesž (explained
below). We bundle these parameters together with the modality M : A→ Masks→ N→ (B →

iProp) → iProp as a tupleM.

Definition 3.4 (Modal Weakest Precondition). LetM = (A,B ,M,BindCond) and 𝑎 ∈ A. Then

mwp
M;𝑎
E

𝑒 {𝛷} ≜ ∀𝜎1, 𝜎2, 𝑣, 𝑛. (𝑒, 𝜎1) →
𝑛 (𝑣, 𝜎2) −∗ 𝑆 (𝜎1) −∗ M𝑎

E;𝑛 (𝜆𝑏.𝛷 (𝑣, 𝑛, 𝑏) ∗ 𝑆 (𝜎2)) .

For the modality defined by M to be valid it has to satisfy the two conditions from above
(monotonicity and introducability) and, moreover, whenever BindCond(𝑎, 𝑎′, 𝑓 , 𝑔) holds, then we
should also have

M𝑎′

E;𝑛 (𝜆𝑏.M
𝑓 (𝑏)

E;𝑚
(𝜆𝑏 ′.𝛷 (𝑔(𝑏,𝑏 ′)))) ⊢ M𝑎

E;𝑛+𝑚 (𝛷). (binding)

Intuitively, BindCond(𝑎, 𝑎′, 𝑓 , 𝑔) defines when and how the modality can be chained together
through binding; a modality with index 𝑎 and 𝑛 +𝑚 logical steps can be split into the sequence of
the modality with index 𝑎′ and 𝑛 steps followed by the modality with index 𝑓 (𝑏) and𝑚 steps given
the postcondition is updated according to 𝑔. This will allow us to suitably generalize MWP-bind to
take into account the new indices and how the modality may evolve.

MWP-bind-gen

BindCond(𝑎, 𝑎′, 𝑓 , 𝑔) mwp
M;𝑎′

E
𝑒
{
𝑣, 𝑛, 𝑏. mwp

M;𝑓 (𝑏)

E
𝐾 [𝑣] {𝑤,𝑚,𝑏 ′. 𝛷 (𝑤,𝑛 +𝑚,𝑔(𝑏,𝑏 ′))}

}
mwp

M;𝑎
E

𝐾 [𝑒] {𝛷}

The generalized modal connective allows us to use a modal weakest precondition connective as
the modality of another modal weakest precondition. This not only allows us to define a relational
predicate on two computations (as we will see below), but also to have a collection of proof rules
(cf. Figure 7) for reasoning about the individual computations.

Example 3.5 (MWP instance: Binary step-taking update modality). The relational predicate used
in our binary logical-relations model has the following shape when unfolding the definition:

mwpE 𝑒1 ∼ 𝑒2 {𝑣,𝑤 . 𝛷} = ∀𝜎1, 𝜎
′
1, 𝑣, 𝑛. (𝑒1, 𝜎1) →

𝑛 (𝑣, 𝜎 ′1) −∗ 𝑆1 (𝜎1) −∗

∀𝜎2, 𝜎
′
2,𝑤,𝑚. (𝑒2, 𝜎2) →

𝑚 (𝑤, 𝜎 ′2) −∗ 𝑆2 (𝜎2) −∗(
|⇛E ∅

⊲ |⇛∅ E
)𝑛+𝑚
|⇛E

(
𝛷 (𝑣,𝑤) ∗ 𝑆1 (𝜎

′
1) ∗ 𝑆2 (𝜎

′
2)

)
(4)

and is, as it seems, a binary version of the instance from Example 3.2. Intuitively, if 𝑒1 terminates in
𝑛 steps with value 𝑣 and 𝑒2 terminates in𝑚 steps with value𝑤 then 𝑛 +𝑚 steps into the future, we
can update our resources to satisfy𝛷 (𝑣,𝑤) while being able to open all invariants in E atomically
during every step. Note that this is a termination-insensitive relation; we assume both relations
terminate and then the postcondition should hold. This is in contrast to the earlier relational
models in Iris which have been termination-sensitive and definable using the standard weakest
preconditions of Iris. Moreover, notice that we count the steps taken on both sides of the relation
by including later modalities for both executionsÐRajani and Garg [2020] and earlier relational
models in Iris only count steps for one of the programs.
Formally, we define this predicate using two modal weakest precondition instances where the

second is defined in terms of the first. We use this approach rather than defining the binary predicate
directly as it will allow us to re-use the proof rules for modal weakest preconditions to reason
about the individual programs when arguing binary relatedness. The definitions are somewhat
technical and can easily be skipped on a first reading.

Proc. ACM Program. Lang., Vol. 5, No. POPL, Article 10. Publication date: January 2021.



Mechanized Logical Relations for Termination-Insensitive Noninterference 10:19

LetMI be defined by

M𝑚
E;𝑛 (𝛷) ≜

(
|⇛E ∅

⊲ |⇛∅ E
)𝑛+𝑚
|⇛E𝛷 ()

BindCond(𝑛,𝑚, 𝑓 , 𝑔) ≜ 𝑚 ≤ 𝑛 ∧ ∀𝑥, 𝑓 (𝑥) =𝑚 − 𝑛 ∧ 𝜆_, 𝑔 = 𝑖𝑑 .

The modality’s index is a natural number𝑚 that adds𝑚 extra logical steps to the step-taking update
modality and the postcondition parameter is unit. The bind condition ensures that the logical steps
ładd upž and that the post condition is otherwise unmodified. The modality defined byMI is valid.

Now, letM×|⇛⊲ be defined by

M𝑒
E;𝑛 (𝛷) ≜ mwp

MI ;𝑛
E

𝑒 {𝑤,𝑚. 𝛷 (𝑤,𝑚)}

BindCond(𝑒1, 𝑒2, 𝑓 , 𝑔) ≜ ∃𝐾. 𝑒1 = 𝐾 [𝑒2] ∧ 𝑔 = 𝜆(𝑣1, 𝑛1), (𝑣2, 𝑛2).(𝑣2, 𝑛1 + 𝑛2) ∧

∀𝑣, 𝑘. 𝑓 (𝑣, 𝑘) = 𝐾 [𝑣] .

The modality is theMWP connective instantiated withMI . The bind condition reflects the precon-
ditions for the binding lemma for the inner connective and that the steps taken are propagated to
the postcondition. The modality defined byM×|⇛⊲ is valid. We now define mwp

E
𝑒 ∼ 𝑒 ′ {𝑣,𝑤 . 𝛷}

to be mwp
M×|⇛⊲

,𝑒′

E
𝑒 {𝑣, _, (𝑤, _). 𝛷}; by unfolding the definitions one can see that it indeed satisfies

the desired relational predicate in Equation (4).

A crucial property of the binary relation defined in the above example is the following binary
version of the bind rule, which intuitively means that we can do relational reasoning in a local way.

Lemma 3.6 (Binary step-taking update MWP - bind).

mwp 𝑒 ∼ 𝑒 ′
{
𝑣, 𝑣 ′. mwp 𝐾 [𝑣] ∼ 𝐾 ′[𝑣 ′] {𝛷}

}
mwp 𝐾 [𝑒] ∼ 𝐾 ′[𝑒 ′] {𝛷}

At the same time, essential for our logical-relations model, we have all the proof rules for
reasoning about the two computations individually. This is embodied in Lemma 3.7 that allows
us to reason about each computation using the unary modal weakest precondition instance from
Example 3.2.

Lemma 3.7 (Unary-binary step-taking update MWP).

mwp
M |⇛⊲

E
𝑒1

{
𝑣 . mwp

M |⇛⊲

E
𝑒2 {𝑤. 𝛷 (𝑣,𝑤)}

}
−∗ mwp 𝑒1 ∼ 𝑒2 {𝛷}

mwp
M |⇛⊲

E
𝑒2

{
𝑤. mwp

M |⇛⊲

E
𝑒1 {𝑣 . 𝛷 (𝑣,𝑤)}

}
−∗ mwp 𝑒1 ∼ 𝑒2 {𝛷}

Recall that the modal weakest precondition connective is defined as a proposition in Iris of
type iProp. To demonstrate that the theory actually makes the expected statements about program
execution in the meta logic, once and for all, for any language and for any modality, we prove a
general adequacy theorem for the modal weakest precondition theory. The details of this general
theorem is relegated to the Coq formalization. For concrete languages and modalities, specific
adequacy theorems such as the following hold as simple corollaries.

Theorem 3.8 (Adeqacy of binary step-taking updateMWPwith 𝜆𝑠𝑒𝑐 ). Let 𝜑 be a first-order

(meta-logic) predicate over values. Suppose mwp
E
𝑒1 ∼ 𝑒2 {𝜑} is derivable. If (𝜎1, 𝑒1) →

∗ (𝜎 ′
1
, 𝑣1) and

(𝜎2, 𝑒2) →
∗ (𝜎 ′

2
, 𝑣2) then 𝜑 (𝑣1, 𝑣2) holds at the meta-level.
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3.3 Expression Relations

We now return to the expression relations of our logical-relations model, which are defined using
modal weakest preconditions; see Figure 6 and Figure 4.
The binary interpretation relates expressions at 𝜏 that only terminate with related values at 𝜏 .

This is defined directly using the binary connective derived in Example 3.5.

EJ𝜏K
𝜌

Θ
(𝑒, 𝑒 ′) ≜ mwp 𝑒1 ∼ 𝑒2

{
J𝜏K

𝜌

Θ

}
.

Recall that the unary interpretation is intended to be inhabited by terms that have no 𝜁 -observable
side-effects. We observe that only expressions in high-labeled contexts (where control flow depends
on high-labeled data) are critical; low-labeled contexts are 𝜁 -observable and should not be considered.
To incorporate this observation, the unary expression relation is annotated with a pc label. The
unary value interpretation of the function type and the polymorphic types pass on the latent effect
label as this parameter. If pc is a high label (JpcK𝜌 @ 𝜁 ), then 𝑒 is in the expression interpretation of
𝜏 if 𝑒 satisfies the unary modal weakest precondition from Example 3.2.

EpcJ𝜏K
𝜌

Δ
(𝑒) ≜ JpcK𝜌 @ 𝜁 ⇒ mwpM |⇛⊲ 𝑒

{
J𝜏K

𝜌

Δ

}
.

With the value and expression relations for closed values and expressions defined, logical relatedness
for open terms is now defined by closing them by related substitutions, as is usual for logical relations.
Substitutions are related using the environment relation interpretations denoted G in Figure 6 and
Figure 4.
The unary semantic typing judgment (logical relation) is defined as

Ξ | Ψ | Γ ⊨pc 𝑒 : 𝜏 ≜ □

(
∀Δ, 𝜌,

⃗⃗
𝑣 . dom(Ξ) ⊆ dom(Δ) ∗ dom(Ψ) ⊆ dom(𝜌) −∗

GJΓK
𝜌

Δ
(
⃗⃗
𝑣) −∗ EpcJ𝜏K

𝜌

Δ
(𝑒 [
⃗⃗
𝑣/
⃗⃗⃗
𝑥])

)

and the binary semantic typing judgment as

Ξ | Ψ | Γ ⊨ 𝑒 ≈𝜁 𝑒
′ : 𝜏 ≜ □

(
∀Θ, 𝜌,

⃗⃗
𝑣,
⃗⃗ ⃗⃗
𝑣 ′ . dom(Ξ) ⊆ dom(Θ) ∗ dom(Ψ) ⊆ dom(𝜌) −∗

Coh (Θ) ∗ GJΓK
𝜌

Θ
(
⃗⃗
𝑣,
⃗⃗ ⃗⃗
𝑣 ′) −∗ EJ𝜏K

𝜌

Θ
(𝑒 [
⃗⃗
𝑣/
⃗⃗⃗
𝑥], 𝑒 ′[

⃗⃗ ⃗⃗
𝑣 ′/
⃗⃗⃗
𝑥])

)
.

Notice that the binary judgment additionally requires the semantic type environment to be coherent.

4 THE FUNDAMENTAL THEOREMS AND SOUNDNESS

It is straightforward to show the unary fundamental theorem by structural induction on the typing
derivation. All proofs are carried out at an abstraction level similar to the structural rules shown in
this paper. This is enabled by our formulation of the modal weakest precondition theory and the
MoSeL framework [Krebbers et al. 2018] for manipulating the Iris connectives.

Theorem 4.1 (Unary fundamental theorem).

Ξ | Ψ | Γ ⊢pc 𝑒 : 𝜏 ⇒ Ξ | Ψ | Γ ⊨pc 𝑒 : 𝜏

Similarly, the binary fundamental theorem also follows by structural induction in the typing
derivation and the structural rules of the binary modal weakest precondition and its interaction
with the unary modal weakest precondition. However, it also relies heavily on the binary-unary
subsumption property which is the content of the following lemma.

Lemma 4.2 (Binary-unary subsumption).

Coh (Θ) ∗ J𝜏K
𝜌

Θ
(𝑣, 𝑣 ′) −∗ J𝜏K

𝜌

ΘL
(𝑣) ∗ J𝜏K

𝜌

ΘR
(𝑣 ′).
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To see why this property is crucial and to exemplify how the binary and unary relations interact,
consider the compatibility lemma for conditional expressions. This lemma concludes

Ξ | Ψ | Γ ⊨ if 𝑒 then 𝑒1 else 𝑒2 ≈𝜁 if 𝑒 ′ then 𝑒 ′1 else 𝑒 ′2 : 𝜏

given well-typed sub-terms and Ξ | Ψ | Γ ⊨ 𝑒 ≈𝜁 𝑒
′ : Bℓ , Ξ | Ψ | Γ ⊨ 𝑒𝑖 ≈𝜁 𝑒

′
𝑖 : 𝜏 , and 𝜏 ↘ ℓ , cf., T-if

for conditional expressions in Figure 1.
Unfolding the definition of the binary semantic typing judgment, this means that given related

substitutions
⃗⃗
𝑣 and

⃗⃗ ⃗⃗
𝑣 ′, i.e., GJΓK

𝜌

Θ
(
⃗⃗
𝑣,
⃗⃗ ⃗⃗
𝑣 ′), and Coh (Θ) it suffices to show

EJ𝜏K
𝜌

Θ
(if 𝑒 [

⃗⃗
𝑣/
⃗⃗⃗
𝑥] then 𝑒1 [

⃗⃗
𝑣/
⃗⃗⃗
𝑥] else 𝑒2 [

⃗⃗
𝑣/
⃗⃗⃗
𝑥], if 𝑒 ′[

⃗⃗ ⃗⃗
𝑣 ′/
⃗⃗⃗
𝑥] then 𝑒 ′1 [

⃗⃗ ⃗⃗
𝑣 ′/
⃗⃗⃗
𝑥] else 𝑒 ′2 [

⃗⃗ ⃗⃗
𝑣 ′/
⃗⃗⃗
𝑥]).

The proof continues by considering whether label ℓ of the branch condition is 𝜁 -observable or not,
i.e., whether ℓ ⊑ 𝜁 or ℓ @ 𝜁 . In the case where the label is not observable this means that given
𝜏 = 𝑡 ℓ

′
then ℓ ′ @ 𝜁 as well and hence the values that 𝑒 and 𝑒 ′ evaluate to are (potentially) different,

cf., the binary value interpretation of labeled Booleans. In turn, this means evaluation of the two
conditional expressions might continue through different branches, i.e., we end up having to show

EJ𝜏K
𝜌

Θ
(𝑒1 [
⃗⃗
𝑣/
⃗⃗⃗
𝑥], 𝑒 ′

2
[
⃗⃗ ⃗⃗
𝑣 ′/
⃗⃗⃗
𝑥]) and EJ𝜏K

𝜌

Θ
(𝑒2 [
⃗⃗
𝑣/
⃗⃗⃗
𝑥], 𝑒 ′

1
[
⃗⃗ ⃗⃗
𝑣 ′/
⃗⃗⃗
𝑥]).

Using Lemma 3.7 we can reason about the two expressions individually, and the statements

follow from the unary fundamental theorem (Theorem 4.1). However, the assumption GJΓK
𝜌

Θ
(
⃗⃗
𝑣,
⃗⃗ ⃗⃗
𝑣 ′)

on substitutions
⃗⃗
𝑣 and

⃗⃗ ⃗⃗
𝑣 ′ is binaryÐin order to use the unary fundamental theorem, the related

substitutions individually need to satisfy the unary environment interpretations, i.e., GJΓK
𝜌

ΘL
(
⃗⃗
𝑣)

and GJΓK
𝜌

ΘR
(
⃗⃗ ⃗⃗
𝑣 ′). This fact follows from Lemma 4.2.

Theorem 4.3 (Binary fundamental theorem).

Ξ | Ψ | Γ ⊢pc 𝑒 : 𝜏 ⇒ Ξ | Ψ | Γ ⊨ 𝑒 ≈𝜁 𝑒 : 𝜏 .

By composing the binary fundamental theorem and the adequacy theorem for the binary modal
weakest precondition instance (Theorem 3.8) we show our final soundness theorem, which shows
that our type system does indeed imply termination-insensitive noninterference.

Theorem 4.4 (Termination-Insensitive Noninterference). Let 𝜁 , ⊤ and ⊥ be labels drawn

from a join-semilattice such that ⊥ ⊑ 𝜁 and ⊤ @ 𝜁 . If

· | · | 𝑥 : B⊤ ⊢⊥ 𝑒 : B
⊥,

· | · | · ⊢⊥ 𝑣1 : B⊤, and · | · | · ⊢⊥ 𝑣2 : B⊤

then

(∅, 𝑒 [𝑣1/𝑥]) →
∗ (𝜎1, 𝑣

′
1) ∧ (∅, 𝑒 [𝑣2/𝑥]) →

∗ (𝜎2, 𝑣
′
2) ⇒ 𝑣 ′1 = 𝑣 ′2 .

5 EXAMPLES OF SEMANTIC TYPING

By the soundness theorem (Theorem 4.4) above we now know that any syntactically well-typed
program satisfies noninterference. Our model also allows us to semantically type programs that are
not syntactically well-typed but are nevertheless secure, for reasons too subtle for the syntactic
type system to discover. Semantically well-typed programs can then be safely composed with
syntactically well-typed programs while maintaining noninterference. To see how this works in
practice, we will first examine a few small programs that are safe to execute but untypable in our
static type system. Later, we will move on to more intricate examples and show how we can prove
that these are secure and therefore also safe to compose with other syntactically typed programs.
The examples in this section thus illustrate some of the strengths of our semantic approach to
noninterference. The proofs of the examples rely both on our semantic model of types (in particular
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abstract types) and also on our ability to use Iris ghost state and Iris invariants to reason about
intricate invariants on local state. For reasons of space, however, proofs have been omitted from
the paper; they can be found in the accompanying Coq formalization.

In the following examples we will often omit labels on composite types to simplify the presenta-
tion. An omitted label should always be read as being label ⊥.

To start off, consider the trivial program 𝜆 𝑣. 𝑣 ∗ 0 that multiples its input by zero. Syntactically,
it cannot be typed at N⊤ → N⊥ as its output seemingly depends on its input which is at a high
security label. But, by simple arithmetic, the output is always constant and the function can thus
be shown to be in the semantic interpretation JN⊤ → N⊥K of the type. Hence it can be safely
composed with any syntactically well-typed code that relies on a function of this type.
Next, consider programs (5) and (6)

let𝑥 = ! 𝑙 in 𝑙 ← !ℎ; . . . ; 𝑙 ← 𝑥 (5)

(if !ℎ = 42 then 𝑙 ← 0 else 𝑙 ← 1); 𝑙 ← 0 (6)

which both temporarily store information (both explicitly and implicitly) from a sensitive reference
ℎ into a public reference 𝑙 . Due to the flow-insensitive nature of the syntactic type system, both of
the programs cannot be type checked, as sensitive information is not allowed to flow into a public
reference. However, by restoring public information in the reference, both programs are in fact
secure. In both cases, location 𝑙 inhabits type ref (N⊥)

⊥ which, cf. Figure 4, means that its contents
must invariantly be binary related at N⊥. To prove that these examples are semantically well-typed,
it is necessary to keep the invariant open for the full execution of the program. Recall that the
modal weakest precondition (Example 3.5) used to define the binary expression relation only allows
invariants to be opened atomically during every step, so it seems that it might be difficult to show
semantic well-typedness. But, fortunately, we can prove semantic well-typedness of these examples
using a binary version of the modal weakest precondition instance from Example 3.1 that allows
invariants to stay open for the full execution of the program.

Lemma 5.1 (Binary updateMWP implies binary step-updateMWP). If either 𝑒1 or 𝑒2 are able

to make progress then(
|⇛E1 E2 ⊲mwp

M×|⇛ ;𝑒2

E2
𝑒1

{
𝑣, 𝑛, 𝑏. |⇛E2 E1𝛷 (𝑣, 𝑛, 𝑏)

})
−∗ mwpE1 𝑒1 ∼ 𝑒2 {𝛷}.

For space reasons, we relegate the details to the appendix and the Coq formalization, however, we
emphasize that this example illustrates the generality and flexibility offered by our modal weakest
precondition theory.

5.1 Static Semantic Typing Instead of Dynamic Enforcement

Wenow consider an example adapted from Fennell and Thiemann [2013], namely a report processing
application containing security-typed operations that process reports by reference. The example
contains code fragments that the type system of Fennell and Thiemann [2013] cannot statically type
check. Instead, the authors of loc. cit. propose to use a gradual security type system where security
levels are checked at run-time. Those code fragments cannot be type checked by our syntactic type
system either, but we can prove that they are semantically well-typed. Not only does this prove
the example secure, it also avoids unnecessary run-time cost while still allowing the code to be
composed with the remainder of the syntactically well-typed report processing application.
The basic operations of the report processing application include

sendToManager : ref (Report⊤)
⊤

→ 1

sendToFacebook : ref (Report⊥)
⊥

→ 1
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where the idea is that sendToManager can process sensitive reports and send those to trusted
managers (by assigning to a reference, cf. the ⊤ latent effect label) whereas sendToFacebook can
only process public reports and thus has a ⊥ latent effect label.
Now, Fennell and Thiemann consider an extension of the application with a utility function

addPrivileged, which adds privileged information to a report before passing it to a worker (like one
of the basic operations in the above):

addPrivileged ≜ 𝜆 isPrivileged ,worker , report .

if isPrivileged then report ← ! report + !ℎ else ()

worker report

The flag isPrivileged indicates whether the worker argument has a sufficient security level to
handle a privileged report. If the flag is true, sensitive information is retrieved from a global
reference ℎ and appended to the report. Otherwise, the worker is invoked with an unmodified
report. Both addPrivileged itself and the application addPrivileged true sendToManager syntactically

type checks, the former at the type ref (Report⊤)
⊤

→ 1, as sendToManager can safely operate on
sensitive information. However, the code fragment addPrivileged false sendToFacebook does not
type check, even though it is safe and no sensitive information is leaked. The code does not type
check because the type system does not track the dependency between the isPrivileged flag and the
worker ’s security clearance. Using our model, however, we can prove that it can be semantically

typed at ref (Report⊥)
⊥

→ 1, meaning that the code can be composed with other syntactically
well-typed report operations, without introducing any runtime labels.

Proposition 5.2. Let addPFB ≜ addPrivileged false sendToFacebook then

· | · | · ⊨ addPFB ≈𝜁 addPFB : ref (Report⊥)
⊥

→ 1
⊥

The proof is straightforward and follows by symbolic execution of the program.

5.2 Value-Dependent Classification and Modularity

Traditionally, information-flow control systems partition the heap into compartments for each
security level. This is impractical for realistic settings where resources, such as the heap, can
be shared. To address this issue, some recent information-flow systems [Gregersen et al. 2019;
Lourenço and Caires 2015; Murray et al. 2016; Nanevski et al. 2011; Zheng and Myers 2007] support
value-dependent classification policies. These policies describe a relationship between two values,
such that the value of one decides the classification-level of the other. We now demonstrate that
our semantic model supports reasoning about value-dependent classification policies; we also use
this example to show an application of existential types to increase modularity by hiding the value
dependency.
Consider the example of a program with value-dependent classification below.

valDep ≜ 𝜆 f . let dep = ref (true, secret) in

f dep;

let tmp = ! dep in

if 𝜋1 tmp then 42 else 𝜋2 tmp

The program allocates a reference dep which points to a pair consisting of a Boolean and a number.
If the Boolean is true, the contents of the second component should be regarded as secret; otherwise
public. The reference is passed to the function f which therefore must uphold this invariant for
the program to be secure. Finally, the contents of dep is inspected and if the Boolean is true (i.e.,
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the content is secret), we ignore the second component and return 42 and otherwise it is safe to
return the second component. Ideally, we would like to show that given a function f , the pair
(valDep f , valDep f ) is in the binary interpretation JN⊥K. Obviously this does not hold for an
arbitrary function f ; to prove it we need to know that f maintains the following invariant on dep:

∃b, dL, dR .depL ↦→L (b, dL) ∗ depR ↦→R (b, dR) ∗ JNif b then⊤ else⊥K(dL, dR)

The invariant ensures that f cannot write a secret to dep without also setting the Boolean to true.
This example shows how we can encode value-dependent classifications in our system but with

the cost of burdening the client of the above program with showing that f upholds the invariant.
The issue is that the client’s code gets direct access to the reference with the classification, but the
static type system is oblivious to the semantic meaning of it.

To alleviate this problem, we can instead hide the reference in an existential package. This allows
us to only expose accessor- and mutator methods to the client, such that the client only needs to
statically type check against these methods. The code for this variant is seen below.

valDepPack ≜ let get = 𝜆 dep . let 𝑐 = ! dep in if 𝜋1 𝑐 then inj1 (𝜋2 𝑐) else inj2 (𝜋2 𝑐) in

let setL = 𝜆 dep, 𝑣 . dep ← (false, 𝑣) in

let setH = 𝜆 dep, 𝑣 . dep ← (true, 𝑣) in

pack (ref (true, secret), get, setL, setH )

Using our semantic model, we can prove that this program inhabits the interpretation of an
existential type.

Proposition 5.3.

· | · | · ⊨ valDepPack ≈𝜁 valDepPack :

∃𝛼.
(
𝛼⊥ ×

(
𝛼⊥

⊤

→ N⊤ + N⊥
)
×

(
𝛼⊥

⊤

→ N⊥
⊥

→ 1
)
×

(
𝛼⊥

⊤

→ N⊤
⊥

→ 1
))

This allows statically typed clients to store both secret and public information in the reference,
but they must do so through the mutators setL and setH . When clients want to read the reference,
they can do so with the get function which gives a value of type N⊤ + N⊥.

5.3 Computing with Memoization

The following example shows an implementation of a service for computing a function with
memoization. The service takes a function f as input and then allows clients to compute f on
client-provided inputs; when doing so, the service remembers the last input and corresponding
result and returns this directly if the client asks for the same input again. The idea, of course, would
be that the function f is very expensive to compute, so the client would therefore like to memoize
the already computed values in case they are needed again. This behavior is implemented with
a single reference that points to a tuple consisting of the last input value and the corresponding
result. The code for this service is shown below.

memoize ≜ 𝜆 f , init .

let cache = ref (init, f init) in

let recompute = 𝜆 𝑣. let result = f 𝑣 in cache ← (𝑣, result); result in

𝜆 𝑣. let (𝑤, result) = ! cache in

if 𝑣 = 𝑤 then result else recompute 𝑣
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First, let us see why we cannot give a static type to this program. Suppose we have a function f of

type N⊥
⊤

→ N⊥. The issue then is giving a reasonable type to the reference for the cache. If we type
it at ⊥, then the returned function will necessarily have a latent effect label at ⊥, and it is therefore
not interchangeable with the input function. If we instead type the reference at ⊤, then we must
label the output of the resulting function to ⊤ as well.

Clearly, we cannot hope to give a reasonable type to this program using our static type system,
so we will instead try to define a security condition for it. For a suitable function f from Nℓ to

N
ℓ , we would like to show that memoize f 0 has the semantic type JNℓ ⊤

→ NℓK, so any well-typed
client can use this to compute f with caching.
Note that the latent effect label of the returned function is ⊤ even though the function writes

to the cache. The secrecy of the cache itself is independent of the secrecy of the outputs of the
function f , but instead varies based on the secrecy of the context the last call that updated the
cache happened in.
For this to be secure, memoize relies on the input function f to łactž purely. Intuitively, the

function must behave as if it was a pure function on all terminating inputs. This rules out programs
such as the following that tries to exploit the memoization by counting the number of times f has
been called:

let counter = ref (0) in

let f ′ = memoize (𝜆 _. counter ← (! counter + 1); ! counter ) 0 in

if secret then f ′ 0 else ();

f ′ 0

This allows us to prove that memoize f 0 is semantically secure and we can therefore link this
with any piece of statically typed code that makes use of this function with memoization, while
maintaining security of the whole program. We refer to the Coq formalization for more details.

Proposition 5.4. For any purely acting function f from Nℓ to Nℓ , we have that

· | · | · ⊨ memoize f 0 ≈𝜁 memoize f 0 : Nℓ ⊤

→ Nℓ

5.4 Higher-order Functions and Dynamicly Allocated References

Consider the following variation by Frumin et al. [2019] of the ławkwardž example, originally
given by Pitts and Stark [1998] when studying the challenges of proving contextual equivalence
about higher-order functions and state:

awk ≜ 𝜆 𝑣. let𝑥 = ref (𝑣) in 𝜆 𝑓 . 𝑥 ← 1; 𝑓 (); !𝑥

When applied to a value 𝑣 , the program returns a closure that, when invoked with a function 𝑓 ,
always returns the constant value 1. From an information-flow control perspective this means that
even if 𝑎𝑤𝑘 is invoked with a sensitive argument, it will always be safe to consider the output of
the closure as public. This fact crucially relies on the reference 𝑥 being local to the closure. The
program is not well-typed using the syntactic type system as 𝑥 has to contain both sensitive and
public values. However, we can semantically type 𝑎𝑤𝑘 .

Proposition 5.5. · | · | · ⊨ 𝑎𝑤𝑘 ≈𝜁 𝑎𝑤𝑘 : N⊤
⊥

→ (1
⊥

→ 1)
⊥

→ N⊥

To prove that the contents of the reference is in fact public after invoking the function, we use an
invariant with a two-state protocol (defined using Iris ghost state) on the contents of the reference;
see the accompanying Coq code for more details.
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5.5 Parametricity and Free Theorems

We can use our model to prove free theorems; here are two simple examples. As far as we know,
such properties have not been shown for information-flow control type systems before.

Proposition 5.6. If Ξ | Ψ | Γ ⊢pc 𝑒 : ∀ℓ1 𝛼. 𝛼
ℓ2

ℓ3

→ 𝛼 ℓ2 and (𝜎, 𝑒 _ 𝑣) →∗ (𝜎 ′, 𝑣 ′) then 𝑣 = 𝑣 ′.

Proposition 5.7. There does not exist a non-diverging 𝑒 where Ξ | Ψ | Γ ⊢pc 𝑒 : ∀⊤ 𝛼. 𝛼
⊤ ⊤

→ 𝛼⊥.

6 RELATED WORK

In the following, we consider related work that has not been treated already throughout the paper.

Logical relations for information-flow security. Sabelfeld and Sands [1999, 2001] present a model
of information-flow security based on partial-equivalence relations; they establish various semantic
properties about the model and use it to prove a termination-sensitive notion of noninterference
for a calculus equipped with a simple security type system, first-order state, and probabilistic
choice. Zdancewic [2002] proves a security-typed simply-typed lambda calculus sound using a
logical-relations argument but uses a translation-based argument when considering mutable state.
Abadi et al. [1999] introduce the dependency core calculus (DCC), a pure calculus designed to capture
the central notion of dependency arising in a setting like information-flow security. They prove
noninterference using a denotational semantics based on partial equivalence relations. Heintze
and Riecke [1998] also prove noninterference of the pure fragment of the SLam calculus using
logical relations. Pottier and Conchon [2000] conjecture that the noninterference proofs of Abadi
et al. [1999]; Heintze and Riecke [1998] cannot easily deal with recursive or polymorphic types.
Compared to our work, all of the above consider simpler settings with respect to language features
and type systems. Using Iris, Frumin et al. [2019] present a separation logic for proving a notion
of timing-sensitive noninterference of concurrent programs. On top of this logic, they build a
logical-relations model of a simple type system that allows them to compositionally verify and
integrate syntactically well-typed and ill-typed parts. In contrast to loc. cit.we focus on termination-
insensitive noninterference and (in part for this reason) our type system is more expressive.

Our models are directly inspired by Rajani and Garg [2020] that describe a step-indexed Kripke-
style logical-relationsmodel for two information-flow control type systems for a sequential language
with higher-order state similar to ours. However, their type system does not support impredicative
polymorphism and their semantic model cannot easily be extended to support this due to their
use of syntactic worlds. Our semantic handling of label polymorphism is also different due to
our use of semantic worlds. Rajani and Garg use their relation to prove that the fine-grained and
coarse-grained static IFC systems are equivalent; Vassena et al. [2019] show a similar result for
dynamic information-flow control systems.

Noninterference and polymorphism. Abadi [2006] introduces a polymorphic DCC in the style
of System F for access control in distributed systems. Inspired by the polymorphic DCC, Arden
and Myers [2016] study a pure authorization calculus with polymorphic type-abstraction. Pottier
and Simonet [2003] study an ML-like language with let-polymorphism, recursion, references, and
exceptions. In contrast to our work, these works consider less expressive notions of polymorphism
than us or study pure calculi and prove noninterference using a syntactic approach which does
not scale to relational reasoning for impredicative polymorphism in the presence of higher-order
state. Morever, they do not benefit from the semantic approach with compositional integration of
syntactically well-typed and syntactically ill-typed components.

The proof technique for noninterference of DCC by Abadi et al. [1999] suggests that it is possible
to use the parametric polymorphism in System F to model the dependency of DCC. Based on
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previous work of Tse and Zdancewic [2004], Bowman and Ahmed [2015] provide a translation
from the recursion-free fragment of DCC to 𝐹𝜔 , translating noninterference into parametricity.
Algehed and Bernardy [2019] leverage parametricity of the Calculus of Constructions to prove
noninterference for a polyvariant variation of DCC and Algehed et al. [2020] show noninterference
of a dynamic information-flow control library using a parametricity theorem.

All these works model information-flow properties using parametricity whereas we add impred-
icative type polymorphism to a security-typed language.

7 CONCLUSION

We present the first semantic model of an information-flow control type system with impredicative
polymorphism (universal and existential types), recursive types, and general reference types, and
show how we can use our model to reason about syntactically ill-typed but semantically sound code.
We showcase our methodology on multiple interesting examples and how our approach allows for
compositional integration. Our semantic model guarantees termination-insensitive noninterference
and we formalize it using logical relations on top of the Iris program logic framework. To do so, we
introduce a novel re-usable program logic construct and theory of Modal Weakest Preconditions.
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