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A Helper Constructs

rec listenwait skt =
match receivefrom skt with
SOME m => m

| NONE => listenwait skt
end

rec listen skt handler =
match receivefrom skt with
SOME m => handle (π1 m) (π2 m)

| NONE => listen skt handler
end

rec listfold handler acc l =
match l with
SOME a =>
let acc = handler acc (π1 a) in
listfold handler acc (π2 a)

| NONE => acc
end

B Bag Service

In order to handle multiple client requests simultaneously servers may employ
concurrency by forking multiple threads. However, such servers may still have
data structures or resources that are not safe to use in a concurrent setting. It
is therefore often necessary to deploy advanced synchronization mechanisms to
ensure correctness. Fig. 1 shows the architecture of a concurrent bag service that
exploits multiple threads in order to handle several client requests at the same
time while working on a shared bag data structure.

Fig. 2 shows a thread-safe implementation of a bag module that uses a linked
list as its internal representation of the bag and a lock in order to guarantee that
only one thread at a time operates on the linked list. A weak, but still useful
specification is the following: Given a predicate Ω, the bag contains elements x
for which Ω(x) holds. When inserting an element we give away the resources,
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Fig. 1. The architecture of a concurrent bag service with threads working on a shared
data structure governed by a lock and demonstrates Aneris’ ability to support both
shared-memory concurrency and distributed networking.

and when removing an element we give back an element plus the knowledge that
it satisfies the predicate. This looks as follows:

∃ isBag .
∧ ∀n, v,Ω. isBag(n, v,Ω) a` isBag(n, v,Ω) ∗ isBag(n, v,Ω)

∧ ∀n,Ω. {IsNode(n)} newbag () {v. isBag(n, v,Ω)}
∧ ∀v, e. {isBag(n, v,Ω) ∗ Ω(e)} insert v e {True}
∧ ∀n, v,Ω. {isBag(n, v,Ω)} remove b {v.v = None ∨ ∃x. v = Some x ∧Ω(x)}

Note how the isBag predicate is duplicable and therefore sharable among multiple
threads. The isBag predicate is defined as follows:

Pbag , ∃u. ` 7→n u ∗ bagList(Ω, u)
isBag(n, v,Ω) , ∃`, l. v = (`, l) ∗ isLock(n, l, Pbag)

where bagList is defined by recursion as the unique predicate satisfying

bagList(Ω, u) , u = None ∨ ∃x, r. u = Some (x, r) ∗Ω(x) ∗ bagList(Ω, r).

Note that the isLock predicate is parameterized by a user-defined resource Pbag

that follows the key resource: when the lock is acquired, the resources described
by Pbag are given and the resources have to be given back when the lock is
released.

Fig. 3 shows an AnerisLang implementation of a concurrent bag service. The
main function creates a socket and a bag and forks two threads each executing
the the serve function. This function listens for incoming messages. If the input
message is an empty string it tries to remove an element from the bag and, if
any, it sends the element back to the client, otherwise an empty string. If the
input message is nonempty it inserts the message into the bag and acknowledges
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rec newbag () =
let l = ref NONE in
let lock = newLock () in (l, lock)

rec insert b e =
let l = (π1 b) in
let lock = (π2 b) in
acquire lock;
l←SOME (e, !l)
release lock;
res

rec remove b =
let l = (π1 b) in
let lock = (π2 b) in
acquire lock;
let res =
(match !l with

SOME p => l←(π2 p); SOME (π1 p)
| NONE => NONE
end) in

release lock;
res

Fig. 2. A thread-safe bag implemented using a linked list and a lock.

rec bag__service a =
let skt = socket () in
let bag = newbag ()
socketbind skt a;
fork { serve skt bag };
fork { serve skt bag }

rec bag__client arg a server =
let skt = socket () in
socketbind skt a;
sendto skt arg server;
π1 (listenwait skt)

rec serve skt bag =
(rec loop () =
match receivefrom skt with
SOME m =>
if (π1 m) = "" then
let v = remove bag in
match v with
SOME e => sendto skt v (π2 m)
NONE => sendto skt "" (π2 m)

end
else
insert bag (π1 m);
sendto skt "" (π2 m)

| NONE => ()
end;
loop #()) ()

Fig. 3. An implementation of a concurrent bag service in AnerisLang. The bag service
forks multiple threads for concurrently processing requests.
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with an empty string. A bag client simply sends an argument to a server and
returns the response.

In order to provide a specification for the bag service we define the socket
protocol Φbag that will govern the socket on which the service listens for requests.
Similar to the thread-safe bag implementation, the socket protocol will also be
parameterized by a predicate Ω.

insert(Ω,Ψ,m) , body(m) 6= "" ∗ Ω(body(m)) ∗
∀m′. body(m′) = "" −∗ Ψ(m′)

remove(Ω,Ψ,m) , body(m) = "" ∗
∀m′. (body(m′) = "" ∨Ω(body(m′)) −∗ Ψ(m′))

Φbag(Ω)(m) , ∃Ψ. from(m) Z⇒ Ψ ∗ (insert(Ω,Ψ,m) ∨ remove(Ω,Ψ,m))

The protocol Φbag demands that the client should be bound to some proto-
col Ψ and that the server can receive two types of messages fulfilling either
insert(Ω,Ψ,m) or remove(Ω,Ψ,m)), corresponding to either inserting an ele-
ment into the bag or removing one. To insert an element, the resources described
by Ω(body(m)) has to be provided and it should suffice for the client to receive
an empty string as a response. When asking to retrieve an element, either the
answer is the empty string or the message will satisfy Ω(body(m)).

Using the socket protocol we can specify and verify the bag service as follows.

{Static(a,A, Φbag(Ω)) ∗ IsNode(n)}
〈n; bag_service a〉

{False}

The client code can either add or remove an element from the bag service, and the
specification is straightforward given a server address srv governed by Φbag(Ω).

{srv Z⇒ Φbag(Ω) ∗ Dynamic(a,A) ∗ IsNode(n) ∗
arg = "" ∨ (arg 6= "" ∧Ω(arg)) }
〈n; bag_client arg a srv〉

{v.v = "" ∨Ω(v)}

C Two-Phase Commit

Implementation. The two-phase commit protocol consists of the following two
phases, each involving two steps:

1. (a) The coordinator sends out a vote request to each participant.
(b) A participant that receives a vote request replies with a vote for either

commit or abort.
2. (a) The coordinator collects all votes and determines a result. If all par-

ticipants voted commit, the coordinator sends a global commit to all.
Otherwise, the coordinator sends a global abort to all.
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(b) All participants that voted for a commit wait for the final verdict from
the coordinator. If the participant receives a global commit it locally
commits the transaction, otherwise the transaction is locally aborted. All
participants must acknowledge.

These steps are shown as transition systems in Fig. 4 and an implementation
of a TPC module that satisfies the conceptual description is shown in Fig. 5.
Our abstract model differs slightly from the traditional diagram as we reuse the
same code and sockets for communication between coordinators and participants.
Every state is therefore tagged with a unique round number and dashed arrows
are local transitions allowing reuse of the state transition systems by incrementing
round numbers. To allow each participant to locally transition to the INIT state
upon round completion and still communicating commit or abort, the INIT state
is tagged with the previous result pr (initially, COMMIT suffices).

INIT r

WAIT r

commit
vote-request

ABORT r COMMIT r

vote-abort
global-abort

vote-commit
global-commit

(a) The coordinator state transition system.

INIT r, pr

READY r

COMMIT r

global-commmit
ACK

ABORT r

global-abort
ACK

vote-request
vote-commit

vote-request
vote-abort

(b) The participant state transition system.

Fig. 4. Transition systems for the two-phase commit protocol.

The tpc__coordinatemodule expects an initial request message to be provided,
along with a bound socket, a list of participants, and a function to make a decision
when all votes have been received. Internally, it uses two local references; one to
collect all the votes and one to count the number of acknowledgments.

The tpc__participant module expects a socket and two handlers—one to
decide on a vote and one to finalize the decision made by the coordinator. When
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invoked, the module listens for incoming requests, decides on a vote and waits for a
global decision from the coordinator. Since each node can employ concurrency, the
blocking wait for the decision does not prevent the client from doing concurrent
work, in particular engaging in other rounds of TPC with other coordinators.
Notice as well that there are no round numbers in the implementation; the round
numbers are only in the abstract model to strengthen the specification.

rec tpc__coordinate m skt ps dec =
let count = list__length ps in
let msgs = ref (list__make ()) in
let ack = ref 0 in
list__iter (λn. sendto skt m n) ps;
listen skt (rec handler m from =
let msgs’ = !msgs in
msgs←list__cons m msgs’;
if (list__length !msgs) = count
then () else listen skt handler);

let res = dec !msgs in
list__iter (λn. sendto skt res n) ps;
listen skt (rec h m from =
ack←!ack + 1;
if !ack = count
then res
else listen skt h)

rec tpc__participant skt vote fin =
let msg = listenwait skt in
let act = vote (fst msg) in
sendto skt act (snd msg);
let res = listenwait skt in
fin (fst res);
sendto skt "ACK" (snd res);
tpc__participant skt req fin

Fig. 5. An implementation of the two-phase commit protocol in AnerisLang. The
functions list_make, list_cons and list_length are library utility functions for
operations on lists implemented as splines.

Specification and Protocols. In order to specify and prove the TPC protocol
correct, we will use the following resources, having a coordinator c and participants
p ∈ ps:

– Parts(ps): Accounts for the set ps of participants for a concrete TPC round.
The resource is duplicable and unmodifiable.

– Coord(p, r, sc): Accounts for participant p’s view of the coordinators current
state sC (cf. Fig. 4) in round r. The coordinator c owns an assertion regarding
its own state Coord(c, r, sC). We require that all parties agree which round
and state the coordinator is in. Technically, this is stated in an invariant,
ITPC .

– Part(π, p, r, sP ): Accounts with fraction π for participant p’s current state sP
(cf. Fig. 4) in round r.

To provide general, reusable implementations and specifications of the coordi-
nator and participants implementing TPC, we do not define how requests, votes,
nor decisions look like. We leave it to a user of the module to provide decidable
predicates isReq , isVote, isAbort and isGlobal of type (String×N)→ Prop. The
user is free to pick P : (Address×String)→ iProp and Q : (Address×N)→ iProp,
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the local pre- and postcondition for each participant. The socket protocol for the
coordinator is shown below.

Φvote(m) ,∃p, r, ps. from(m) = p ∗ Parts({p} ∪ ps) ∗
isVote(body(m), r) ∗ Coord(p, r,WAIT) ∗
(isAbort(body(m), r) ∗ Part( 34 , p, r, ABORT) ∨
¬isAbort(body(m), r) ∗ Part( 34 , p, r, READY))

Φack(m) ,∃p, r, ps,m′, cs, pr. from(m) = p ∗ Parts({p} ∪ ps) ∗
Part( 34 , p, r, INIT pr) ∗
(Coord(p, r, COMMIT) ∗ pr = COMMIT ∗ Q(p, r) ∨
Coord(p, r, ABORT) ∗ pr = READY ∗ P (p,m′))

Φcoord(m) ,Φvote(m) ∨ Φack(m)

For a participant p to send a vote to the coordinator c, it has to show that it is
indeed a participant Parts({p} ∪ ps), that the message is a vote for that round,
that it knows the coordinator is in the WAIT state, Coord(p, r,WAIT), and that
the logical state of p matches p’s actual vote. For the participant to send an
acknowledgment, it has to prove it transitioned to the INIT pr where pr should
match the global decision made by the coordinator. If the decision was to commit,
the participant provides the updated resources for Q, otherwise it returns the
resources described by P .

The socket protocol for the participants is as follows:

Φreq(p)(m) ,∃r, ps, sP .Parts({p} ∪ ps) ∗ P (body(m), p) ∗
isReq(body(m), r + 1) ∗ from(m) Z⇒ Φcoord ∗
Part( 34 , p, r, INIT sP ) ∗ Coord(p, r + 1,WAIT)

Φglob(p)(m) ,∃r, ps, ga,ms, sC , sP .Parts({from(m′) | m′ ∈ ms}) ∗
isGlobal(body(m), r) ∗ from(m) Z⇒ Φcoord ∗
Part( 34 , p, r, sP ) ∗ Coord(p, r, sC) ∗
ga = {m′ | m ∈ ms ∧ isAbort(m′, r)} ∗(∗

m′∈ms

isVote(body(ms), r) ∗ R(m′)

)
∗

(ga = ∅ ∧ ¬isAbort(body(m), r) ∧ sC = COMMIT) ∨
(ga 6= ∅ ∧ isAbort(body(m), r) ∧ sC = ABORT)

Φpart(p)(m) ,Φreq(p)(m) ∨ Φglob(p)(m)

In order to send a request for a round r + 1 of TPC to a participant p, a
coordinator has to show p is indeed a participant of this instance and provide the
resource described by P . The request should also be valid (through the isReq
predicate) and the coordinator should be bound to the coordinator protocol
Φcoord . Furthermore, the coordinator has to show it is in the WAIT state and give
up Part( 34 , p, r, INIT sP ) in order to allow the participant to make a transition.
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The coordinator can broadcast a global decision when having received a
message from all the participants (where ms is the set of messages received) and
the decision is a valid global decision. All the messages has to have been received
and be valid votes (∗m′∈ms isVote(body(ms), r) ∗ R(m′)). The coordinator also
has to be honest: if any participant replied with an abort message (ga 6= ∅), the
global message and the final state of the coordinator has to be ABORT.

Notice that for each message to a participant, the coordinator will provide
the assertion from(m) Z⇒ Φcoord . This means the coordinator do not have to be
primordial since the participant does not need to have prior knowledge of the
coordinator. The coordinator could change from round to round.

With the TPC protocols in place, we can finally give a specification to the
two TPC modules. The tpc__participant specification is straightforward:

{ITPC ∗ isReqSpec(req) ∗ isFinSpec(fin) ∗ Parts(ps) ∗
z ↪→n Some p ∗ p Z⇒ Φpart(p) ∗ Part( 14 , p, r, INIT sP ) }
〈n; tpc_participant z req fin〉

{True}

where req and fin are appropriate handlers for requests and finalization. The
specification requires ownership of a bound socket bound by the participant
protocol Φpart(p) and fractional ownership of its own state, initialized to be INIT.
Furthermore, the handlers req and fin should satisfy simple specifications that
we elide to the Coq development.

The specification for tpc__coordinate is more involved:

{ITPC ∗ isDecSpec(dec) ∗ isReq(m, r + 1) ∗ Parts(ps) ∗ IsNode(n)
z ↪→n Some c ∗ a Z⇒ Φcoord ∗ Coord(c, r, INIT sC)(∗

p∈ps
p Z⇒ Φpart(p) ∗ Part( 34 , p, r, INIT sP ) ∗ Coord(p, r, INIT sC) ∗ P (p,m)

)}
〈n; tpc_coordinate m z ps dec〉

{〈n; v〉.∃sC , sP . isGlobal(v, r + 1) ∗ Coord(c, r + 1, sC) ∗ z ↪→n Some c(∗
p∈ps

Coord(p, r + 1, sC) ∗ Part( 34 , p, r, INIT sP )

)
∗(

isAbort(v, r + 1) ∗ sC = ABORT ∗ sP = ABORT ∗ ∗
p∈ps
∃m.P (p,m)

)
∨(

¬isAbort(v, r + 1) ∗ sC = COMMIT ∗ sP = COMMIT ∗ ∗
p∈ps

Q(p, r + 1)

)}
To invoke tpc__coordinate, one has to provide a valid requestm, a socket z already
bound to some address guarded by the Φcoord protocol, a list of participants p,
and a decision handler dec. For each participant p, the address should be governed
Φpart(p) and the resources describing the participant’s view of its own and the
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coordinator’s state should be passed along. Finally, the resources described by
P (p,m) must also be provided.

The postcondition here is the most exciting part: it is exactly what one would
expect. Either all participants along with the coordinator agreed to commit in
which case we obtain Q(p, r) for each participant p or they all agreed to abort,
in which case we get back P (p,m) for each participant p.

D A Replicated Log

We have implemented and verified a replicated logging system implemented
on top of the TPC coordinator and participant modules to showcase vertical
composition of complex protocols in Aneris.

An implementation of a replicated logging system is shown in Fig. 6. logger
creates a socket skt, binds the address a to it, and initiates a TPC round for
all databases in dbs. The decision handler dec is called by the TPC coordinator
module when all votes have been received.

From the perspective of the database, db, an internal reference log keeps the
log.1 Upon an incoming request, the message is parsed and the proposed change
is stored in the wait reference. If the global decision by logger is to commit,
the string stored in wait will be appended to the log. To give a logical account

rec logger log a m dbs =
let skt = socket () in
let dec = λ msgs =
let r = listfold (λ a, m . a && m = "COMMIT") true msgs in
if r then "COMMIT" else "ABORT" in

socketbind skt a;
tpc__coordinate ("REQUEST__" ^ m) skt dbs dec

rec db addr =
let skt = socket() in
let wait = ref "" in
let log = ref "" in
let req = λ m . wait←valof m; "COMMIT" in
let fin = λ m .
if m = "COMMIT"
then log←!log ^ !wait else () in

socketbind skt addr;
tpc__participant skt req fin

Fig. 6. An implementation in AnerisLang of a replicated logging system that uses the
two-phase commit modules . ˆ denotes string concatenation in AnerisLang.

of the local state of each database we introduce the fractional ghost resources
LOG(π, p, l) and PEND(π, p, (l, s)) that keep track of the log l and the proposed
change s for each participant p. The predicates P and Q, which we instantiate

1 Ideally, this would be stable storage, however, for the sake of the example a reference
suffices.
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TPC with, are defined below:

Prep(p)(m) , ∃l, s. (m = "REQUEST_"@ s) ∗ LOG( 12 , p, l) ∗ PEND(
1
2 , p, (l, s))

Qrep(p)(n) , ∃l, s. LOG( 12 , p, l@s) ∗ PEND(
1
2 , p, (l, s))

With the resources in place, the specification of db is straightforward and follows
from the specification of the TPC participant module:

{ITPC ∗ Dynamic(a, Φpart(a)) ∗ IsNode(n) ∗
Part( 1

4 , a, r, INIT sP ) ∗ LOG( 1
2 , a,"")

}
〈n; db a〉

{True}

{ITPC ∗ Parts(dbs) ∗ FreePort(a) ∗ isReq(m) ∗ Part( 34 , p, r, INIT sP ) ∗∗
p∈dbs

∃sP , p Z⇒ Φpart(p) ∗ Coord(p, r, INIT sP ) ∗ Prep(p,m) }
〈n; logger log a m dbs〉

{〈n; v〉.∃m, r. ∗p∈dbs∃sP .Coord(p, r, INIT sP ) ∗ Part( 34 , p, r, INIT sP ) ∗v = "COMMIT" ∗ ∗
p∈dbs

Qrep(p, r)

 ∨
v = "ABORT" ∗ ∗

p∈dbs

Prep(p,m))

}
Verification of our replicated logging client using two-phased-commit follows
directly in a modular, node-local fashion by applying the specification of tpc__
coordinate. Due to the TPC specification, this implies that if the global decision
was to commit a change this change will have happened locally on all databases,
cf. LOG( 12 , p, l@s) in Qrep, and if the decision was to abort, then the log remains
unchanged on all databases, cf. LOG( 12 , p, l) in Prep.
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