
Specifying I/O using Abstract Nested Hoare Triples in
Separation Logic

Willem Penninckx

imec-DistriNet, Department of

Computer Science

KU Leuven

Leuven, Belgium

willem@willemp.be

Amin Timany

imec-DistriNet, Department of

Computer Science

KU Leuven

Leuven, Belgium

amin.timany@cs.kuleuven.be

Bart Jacobs

imec-DistriNet, Department of

Computer Science

KU Leuven

Leuven, Belgium

bart.jacobs@cs.kuleuven.be

Abstract
We propose a separation logic-based approach for modu-

lar specification and verification of the I/O behavior of a

program. The approach uses higher-order separation logic

predicates to express abstract nested Hoare triples that ab-
stractly associate a precondition and a postcondition with

an I/O action. The approach supports verifying higher-level

I/O actions built on top of lower-level ones (e.g. the I/O ab-

stractions offered by the programming language’s standard

library, implemented on top of system calls), as well as vir-

tual I/O actions that in fact only manipulate memory, against

specifications that are indistinguishable from those of the

“primitive I/O actions”.

CCS Concepts • Theory of computation → Program
specifications; Pre- and post-conditions; Program verifica-
tion;

Keywords input/output, modular program verification, mo-

dule specifications, separation logic

ACM Reference Format:
Willem Penninckx, Amin Timany, and Bart Jacobs. 2019. Specifying

I/O using Abstract Nested Hoare Triples in Separation Logic. In

Formal Techniques for Java-like Programs (FTfJP’19), July 15, 2019,
London, United Kingdom. ACM, New York, NY, USA, 7 pages. https:
//doi.org/10.1145/3340672.3341118

1 The Problem of Specifying I/O Behavior
We introduce the problem addressed by this paper, as well

as our proposed approach to address it, in the context of

our VeriFast [3, 10] approach and tool for modular formal

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page. Copyrights for components

of this work owned by others than ACMmust be honored. Abstracting with

credit is permitted. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee. Request

permissions from permissions@acm.org.

FTfJP’19, July 15, 2019, London, United Kingdom
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6864-3/19/07. . . $15.00

https://doi.org/10.1145/3340672.3341118

verification of C programs.
1
VeriFast takes as input a C compi-

lation unit, annotated with function specifications, as well as

other specification constructs such as abstract predicates that
describe the layout of data structures and proof hints such as

loop invariants, written in a variant of separation logic [6]

inside specially marked comments. It performs symbolic exe-

cution of each function, starting from a symbolic state that

represents an arbitrary state that satisfies the precondition,

and checking at every return point that the symbolic state

satisfies the postcondition. Symbolic execution of function

calls uses the callee’s specification, not its implementation. If

the tool reports “0 errors found” for all compilation units of

a program, then, barring bugs in the tool, and assuming that

the specifications provided for the system APIs used by the

program are sound, all possible executions of the program

are free of undefined behavior and comply with the stated

specifications.

In this paper, we consider the problem of modular verifi-

cation of the interactive (I/O) behavior of programs such as

the following:

#include <stdio.h>

int main() {

putchar('h');

putchar('i');

return 0;

}

This program uses the putchar function from the C standard

library, declared in header file stdio.h, to output the message

“hi” to the standard output stream. However, the default

version of stdio.h currently shipping with VeriFast does not

allow us to specify this: its specification for putchar is simply

void putchar(char c);

//@ requires true;

//@ ensures true;

allowing us to verify the specification

int main();

//@ requires true;

//@ ensures true;

1
VeriFast supports Java as well.

https://doi.org/10.1145/3340672.3341118
https://doi.org/10.1145/3340672.3341118
https://doi.org/10.1145/3340672.3341118

FTfJP’19, July 15, 2019, London, United Kingdom Willem Penninckx, Amin Timany, and Bart Jacobs

for our program, the same specification satisfied also by the

program that outputs “bye”, or nothing at all.

2 Abstract Nested Hoare Triples
2.1 Basic Idea
Our proposed approach for specifying and verifying the I/O

behavior of programs in separation logic is to associate a

higher-order separation logic predicate with each I/O action,

which we call its transition predicate. We use an I/O action’s

transition predicate to abstractly associate precondition-

postcondition pairs with the I/O action. In this paper, we

adopt the convention of naming a transition predicate after

its associated I/O action, with an underscore appended at

the end. For example, the assertion putchar_(P, c, Q) uses

the transition predicate putchar_ to associate precondition P

and postcondition Q with the action of outputting the cha-

racter c. Here, P and Q are values of type predicate(), i.e. they

are themselves separation logic predicates. Notice that such

assertions are in fact abstract versions of nested Hoare triples
[9]; therefore, we call them abstract nested Hoare triples. We

can use them to specify function putchar very abstractly as

follows:

/*@

predicate putchar_(predicate() P, char c, predicate() Q);

@*/

void putchar(char c);

//@ requires putchar_(?P, c, ?Q) &*& P();

//@ ensures Q();

Here, ?P is VeriFast syntax for introducing a logical variable P,

and &*& is the separating conjunction. The scope of a logical

variable introduced in a function specification’s precondition

is the entire specification, i.e. the precondition and the post-

condition. Logical variables introduced in the precondition

are universally quantified at the level of the specification.

That is, the meaning of the above specification is that for any

predicates P and Q, if putchar_(P, c, Q) and (separately) P hold

in a given state, then putchar(c)may be called, and after such

call, putchar_(P, c, Q) and (some resources described by) P()

will have been consumed and (some resources described by)

Q() will have been produced.

We can now specify our example program as follows:

int main();

/*@ requires putchar_(?P1, 'h', ?P2) &*&

putchar_(P2, 'i', ?P3) &*& P1(); @*/

//@ ensures P3();

According to this specification, function main starts out with

(some resources described by) P1(). Per transition predicate

putchar_(P1, 'h', P2), this allows it to output 'h'. (It does not

allow it to output 'i' at this point, since to do so it would

need P2(), which it does not yet have.) By outputting 'h', it

loses P1() but gains P2(). Then, by outputting 'i', it loses P2()

and gains P3(), which allow it to satisfy its postcondition and

terminate.

Notice that this specification expresses the desired pro-

perty: it states that main shall only ever output a prefix of “hi”,

and furthermore, that if it returns, it shall have outputted

exactly “hi”.

Note: we will sometimes refer to the predicates used as

the precondition or postcondition argument of transition

predicates, such as the predicates P1, P2, and P3 in the specifi-

cation of main above, as places, and to assertions that assert

such a place, such as P1() and P3() in the specification of

main, as tokens; indeed, the precondition of main can be read

as specifying a Petri net with a transition from place P1 to

P2 labelled by action putchar('h') and a transition from P2 to

P3 labelled by action putchar('i'), and with a single token at

place P1. Firing the two transitions causes the token to move

from place P1 to place P3. However, the reader can ignore

this analogy if they do not find it useful.

2.2 Building Higher-Level Actions
This approach straightforwardly supports defining higher-

level I/O actions on top of lower-level ones. For example,

consider the function putc_beep, defined in terms of putchar

and some imagined I/O action beep:

//@ #define pr predicate()

/*@ predicate putc_beep_(pr P, char c, pr Q) =

putchar_(P, c, ?R) &*& beep_(R, Q); @*/

void putc_beep(char c)

//@ requires putc_beep_(?P, c, ?Q) &*& P();

//@ ensures Q();

{ putchar(c); beep(); }

Notice that, even though function putc_beep is not a primi-

tive I/O action, clients cannot tell this from its specifica-

tion; its form is exactly analogous to that of putchar. (Note:

the syntax ?R in a predicate definition introduces an exis-

tentially quantified logical variable. The definition means:

putc_beep_(P, c, Q) holds if and only if there exists a pre-

dicate R such that putchar_(P, c, R) holds and, separately,

beep_(R, Q) holds.)

2.3 Underspecification
Besides elegantly supporting transparently building higher-

level I/O operations on top of lower-level ones, this approach

has the additional feature of elegantly supporting underspe-

cification, in two forms: in the form of alternative paths of

transition predicates between two places (predicates) P and

Q, and in the form of enabling multiple concurrent paths of
transition predicates by splitting and joining places. In the

following example, we use both forms to express that the

program may print either “hi!” or “hey!”, and that further-

more, the program must beep at some point after printing

the “h” and before printing the “!”:

Abstract I/O Specification FTfJP’19, July 15, 2019, London, United Kingdom

int main();

/*@ requires putchar_(?P1, 'h', sep(P2, P3)) &*&

&*& putchar_(P2, 'i', ?P4)

&*& putchar_(P2, 'e', ?P5) &*&

putchar_(P5, 'y', P4) &*& beep_(P3, ?P6) &*&

putchar_(sep(P4, P6), '!', ?P7) &*&

P1(); @*/

//@ ensures P7();

where sep(P, Q) denotes the separating conjunction of predi-

cates P and Q, as a value of type predicate(). (VeriFast does not

support directly writing P() &*& Q() in a value position.) (To

continue the Petri net analogy, a transition predicate whose

precondition/postcondition is of the form sep(P1, P2) can be

thought of as a transition with multiple incoming/outgoing

arrows, consuming/producing a token at each incoming/out-

going place.)

2.4 Input
Another feature of the approach is elegant support for speci-

fying input actions, and specifying how a program’s behavior

should depend on the values retrieved from the environment.

Furthermore, it supports expressing assumptions about such

values, as illustrated by the following example:

void toUpper()

/*@ requires getchar_(?P1, ?c, ?P2) &*&

'a' <= c &*& c <= 'z' &*&

putchar_(P2, c - 'a' + 'A', ?P3) &*& P1(); @*/

//@ ensures P3();

{ char c = getchar(); putchar(c - 'a' + 'A'); }

where getchar’s specification is as follows:
2

char getchar();

//@ requires getchar_(?P, ?c, ?Q) &*& P();

//@ ensures Q() &*& result == c;

Notice that in this approach, a function’s precondition may

refer to the values yielded by input actions that the program

has yet to perform; this can be thought of as a form of prop-
hecy variables. For example, in the precondition of getchar,

logical variable c refers to the character that the program

will receive from the environment when it calls getchar.

The approach we propose here has evolved from earlier

work [7]. That earlier work supports the features shown

so far, but it does not support the features we show in the

remainder of this paper.

2.5 I/O and Memory
Our approach supports transparently implementing higher-

level I/O operations in terms of a combination of lower-level

I/O operations and memory manipulation. For example, con-

sider the following implementation of the flush and putchar

2
The real getchar function returns an int and may report failure; for

simplicity, we ignore these complications here.

C standard library functions
3
in terms of the write system

call:

char buffer[1000];

int count;

/*@

predicate buffer_token(list<char> cs, pr Q) =

count |-> ?n &*&

buffer[..n] |-> cs &*& buffer[n..1000] |-> _ &*&

write_(?P, cs, Q) &*& P();

@*/

void flush()

//@ requires buffer_token(_, ?Q);

//@ ensures buffer_token({}, Q);

{ write(buffer, count); count = 0; }

void putchar(char c)

//@ requires buffer_token(_, ?P) &*& write_(P, {c}, ?Q);

//@ ensures buffer_token(_, Q);

{

if (count == 1000) flush();

buffer[count++] = c;

}

({} and {c} are VeriFast syntax for the empty list and the

singleton list containing character c, respectively.) We can

verify these functions against the stated specifications, if we

assume the following (simplified) declaration of write:

/*@

predicate write_char_(pr P, char c, pr Q);

predicate write_(pr P, list<char> cs, pr Q) =

switch (cs) {

case nil: return Q == P;

case cons(c, cs0): return

write_char_(P, c, ?R) &*& write_(R, cs0, Q);

};

@*/

void write(char *buffer, int count);

/*@ requires buffer[..count] |-> ?cs &*&

write_(?P, cs, ?Q) &*& P(); @*/

//@ ensures Q();

The predicate buffer_token(cs, Q) asserts ownership of the

global variables count and buffer, as well as a token P() that

allows the program to obtain a token at Q (i.e. to obtain Q())

by writing the contents cs of the buffer. The specification for

putchar states that, given a token that allows the program to

reach Q after flushing the pre-state buffer and then writing c,

it produces a token that allows the program to reach Q after

flushing the post-state buffer.

This specification is fine, except that it is different from

the specification for putchar we saw earlier. The specification

we really want is the following:

void putchar(char c);

//@ requires putchar_(?P, c, ?Q) &*& P();

//@ ensures Q();

3
This is a simplification; the real function is called fflush and takes the

stream to be flushed as an argument.

FTfJP’19, July 15, 2019, London, United Kingdom Willem Penninckx, Amin Timany, and Bart Jacobs

Fortunately, however, we can match the two specifications

by defining putchar_ appropriately:

predicate_ctor buffer_token1(pr Q)() =

buffer_token(_, Q);

predicate putchar_(pr P, char c, pr Q) =

write_(?P0, {c}, ?Q0) &*&

P == buffer_token1(P0) &*&

Q == buffer_token1(Q0);

(The predicate constructor buffer_token1 allows the assertion

buffer_token(_, Q), for some particular Q, to be used as a va-

lue of type predicate().) In fact, we can make any function

specification

void foo(int arg);

//@ requires P(arg, ?x);

//@ ensures Q(x);

match an “I/O-style” specification

void foo(int arg)

//@ requires foo_(?P1, arg, ?Q1) &*& P1();

//@ ensures Q1();

by defining the transition predicate foo_ as

predicate_ctor P0(int arg, X x)() = P(arg, x);

predicate_ctor Q0(X x)() = Q(x);

predicate foo_(pr P1, int arg, pr Q1) =

exists(?x) &*& P1 == P0(arg, x) &*& Q1 == Q0(x);

Similarly, we can prove an I/O-style specification for flush:

predicate_ctor buffer_token0(pr Q)() =

buffer_token({}, Q);

predicate flush_(pr P, pr Q) =

exists<pr>(?Q0) &*&

P == buffer_token1(Q0) &*&

Q == buffer_token0(Q0);

void flush();

//@ requires flush_(?P, ?Q) &*& P();

//@ ensures Q();

We can now verify a client program of putchar and flush in a

way that is completely agnostic to the way these functions

are implemented:

int main()

/*@ requires putchar_(?P1, 'h', ?P2)

&*& flush_(P2, ?P3) &*& P1(); @*/

//@ ensures P3();

{ putchar('h'); flush(); return 0; }

and then use this proof to verify a lower-level specification

of the program in terms of system calls:

int start()

/*@ requires write_(?Q1, {'h'}, ?Q2)

&*& Q1() &*& module(stdio, true); @*/

//@ ensures Q2() &*& module(stdio, false);

{ return main(); }

(In some C implementations on Linux, a program’s start

function is its actual low-level entry point. It is usually

auto-generated by the C compiler. It first initializes the stan-

dard library and then calls the main function.) (The assertion

module(M, init) asserts ownership of the global variables of

module M, either initialized to zero if init is true, or in an

arbitrary state otherwise.)

2.6 Mixing Abstraction Levels
Consider now a variant of the above program, where main

uses both the high-level putchar operation and the low-level

beep operation:

int main()

/*@ requires beep_(?P1, ?P2) &*& putchar_(P2, 'h', ?P3)

&*& flush_(P3, ?P4) &*& P1(); @*/

//@ ensures P4();

{ beep(); putchar('h'); flush(); return 0; }

int start()

/*@ requires beep_(?Q1, ?Q2) &*& write_(Q2, {'h'}, ?Q3)

&*& Q1() &*& module(stdio, true); @*/

//@ ensures Q3() &*& module(stdio, false);

{ return main(); }

Notice that we cannot verify the call of main in start: to

prove beep_(P1, P2)we only have beep_(Q1, Q2) available; the-

refore, wemust instantiate P1with Q1 and P2with Q2. However,

the unknown predicate Q2 is not (necessarily) of the form

buffer_token1(_), as required by putchar_. In fact, we know Q1

(and therefore Q2) does not include ownership of the global

variables count and buffer, since we have Q1() and separately

module(stdio, true). However, putchar needs access to these

variables.

Notice, however, that we can solve this problem if we can

assume a frame axiom for transition predicate beep_:

beep_(Q1, Q2) ⇒ beep_(sep(Q1, ebuf), sep(Q2, ebuf))

similar to the Frame Rule of separation logic, as applied to

function call beep():

Frame

{Q1} beep() {Q2}

{Q1 ∗ ebuf()} beep() {Q2 ∗ ebuf()}

where ebuf() asserts ownership of the empty buffer:

predicate ebuf() = count |-> 0 &*& buffer[..1000] |-> _;

To enable this type of scenario, we therefore introduce a con-

vention that each transition predicate shall be accompanied

by such a frame axiom. In VeriFast, this takes the form of a

lemma function, a type of ghost function:

/*@

lemma void beep__frame(pr R);

requires beep_(?P, ?Q);

ensures beep_(sep(P, R), sep(P, Q));

@*/

Abstract I/O Specification FTfJP’19, July 15, 2019, London, United Kingdom

This lemma almost allows us to verify function start above.

The only problem is that while sep(Q2, ebuf) implies buffer_-
token1(Q2), it is not equivalent and hence not equal to it.

4
To

complete the proof, we also need a weakening property:

P0 ⇒ P1 Q0 ⇒ Q1

beep_(P1, Q0) ⇒ beep_(P0, Q1)

analogous to Hoare logic’s Rule of Consequence applied to

a beep() call:

Conseq

P0 ⇒ P1 {P1} beep() {Q0} Q0 ⇒ Q1

{P0} beep() {Q1}

So, by also introducing the convention that each transition

predicate shall be accompanied by a weakening axiom, we

enable support for verifying programs where some function

specifications mix I/O actions of different abstraction levels.

Note: we can easily make our definitions of putchar_ and

flush_ above satisfy the frame and weakening properties as

well by adapting them as follows:

predicate putchar_(pr P, char c, pr Q) =

write_(?P0, {c}, ?Q0) &*&

exists<pr>(?R) &*&

implies(P, sep(buffer_token1(P0), R)) &*&

implies(sep(buffer_token1(Q0), R), Q);

predicate flush_(pr P, pr Q) =

exists<pr>(?R) &*& exists<pr>(?Q0) &*&

implies(P, sep(buffer_token1(Q0), R)) &*&

implies(sep(buffer_token0(Q0), R), Q);

This allows these I/O actions to be mixed in function specifi-

cations with even higher-level ones.

2.7 Virtual Input
Clearly, our approach also supports I/O-style specifications

for purely “virtual I/O actions”, such as those of Java’s ByteArr-

ayOutputStream, which simply appends any “outputted” bytes

to an in-memory buffer. A more interesting instance of this is

in the context of the verification of multithreaded programs,

where threads communicate through shared queues. One

might want to verify each thread in such a way that their

proof can be reused unchanged if one later decides to run

the threads in separate processes or on separate machines,

communicating via sockets. Our approach enables this, by

enabling I/O-style specifications for the shared queue ope-

rations; these can then later be replaced transparently by

actual I/O operations, such as socket operations.

Notice, however, that in our proposed specification style

for input operations, as illustrated by the specification of

getchar above, the input operation’s transition predicate ta-

kes the operation’s result as an argument. In general, to con-

struct a definition for such a transition predicate for a virtual

input operation, prophecy variables are needed. Consider for
4
In fact, in VeriFast predicate extensionality does not hold, so the predicate

values would not be equal even if they were equivalent.

example a (contrived) implementation of getchar in terms of

a random number generator:
5

char getchar() {

for (;;) {

int x = rand();

if ('a' <= x && x <= 'z')

return x;

}

}

where the specification of rand() is:

int rand();

//@ requires true;

//@ ensures true;

This implementation of getchar returns some arbitrary lower-

case letter. We now want to verify the following program:

char buffer;

void putchar(char c) { buffer = c; }

int main()

//@ requires true;

//@ ensures 'A' <= result && result <= 'Z';

{ toUpper(); return c; }

Here, we use function toUpper specified and verified above.

In order to be able to reuse the existing proof of toUpper in

the proof of this program, we need to verify our implemen-

tation of getchar against the specification shown above. We

can do so by using an encoding of prophecy variables into
VeriFast as follows:

typedef long long pvar;

/*@

#define set fixpoint(int, bool)

predicate pvar(pvar id, set S, int v);

predicate pvar_params(set S, int w) = S(w) == true;

@*/

pvar create_pvar();

//@ requires pvar_params(?S, _);

//@ ensures pvar(result, S, ?v) &*& S(v) == true;

void pvar_assign(pvar x, int v);

//@ requires pvar(x, ?S, ?v0) &*& S(v) == true;

//@ ensures v == v0;

This encoding defines a function for creating a prophecy

variable and a function for assigning a value to a prophecy

variable created earlier. When creating a prophecy variable,

a set of integers S and a witness w showing that the set is

nonempty have to be supplied. The operation produces a

predicate pvar(x, S, v) asserting that x is the identifier of a

prophecy variable constrained by set S and with prophecized
value v, which is in set S. Assigning the prophecy variable

consumes the pvar predicate and requires that the supplied

value v is in the set S, and produces the fact that the supplied

value equals the prophecized value.

5
A more realistic example, of a multithreaded chat server where prophecy

variables are needed to deal with nondeterminism caused by the interleaving

of threads, is offered in the accompanying technical report of this paper [8].

FTfJP’19, July 15, 2019, London, United Kingdom Willem Penninckx, Amin Timany, and Bart Jacobs

Note that the functions create_pvar and pvar_assign are

declared in this VeriFast encoding as real functions, not as

ghost functions, even though they are in fact no-ops at run

time. This is necessary for soundness: if pvar_assign was a

ghost operation, we could v + 1 to the prophecy variable,

where v is the prophecized value, leading to the contradiction

v + 1 == v. To eliminate this hack, we plan to equip VeriFast

with support for multiple levels of ghost code, to ensure that

the prophecized value is “more ghost” than the prophecy

variable assignment operation.

We can now prove the example program as follows, using

the frame properties for getchar_ and putchar_ to frame off

ownership of global variables p and buffer, respectively:

pvar p;

char buffer;

/*@

fixpoint bool lc(int x) { return 'a' <= x && x <= 'z'; }

predicate_ctor getchar_pre(char c)() =

p |-> ?x &*& pvar(x, lc, c);

predicate getchar_post() = p |-> _;

predicate getchar_(pr P, char c, pr Q) =

exists<pr>(?R) &*&

implies(P, sep(getchar_pre(c), R) &*&

implies(sep(getchar_post, R), Q);

predicate putchar_pre() = buffer |-> _;

predicate_ctor putchar_post(char c)() =

buffer |-> c &*& 'A' <= c && c <= c <= 'Z';

predicate putchar_(pr P, char c, pr Q) =

exists<pr>(?R) &*&

implies(P, sep(putchar_pre, R)) &*&

implies(sep(putchar_post(c), R), Q);

@*/

char getchar()

//@ requires getchar_(?P, ?c, ?Q) &*& P();

//@ ensures Q() &*& result == c;

{

for (;;) {

int x = rand();

if ('a' <= x && x <= 'z') {

pvar_assign(p, x);

return x;

}

}

}

void putchar(char c)

//@ requires putchar_(?P, c, ?Q) &*& P();

//@ ensures Q();

{ buffer = c; }

int main()

//@ requires module(main, true);

//@ ensures module(main, false);

{

//@ close pvar_params(lc, 'a');

p = create_pvar();

toUpper();

return c;

}

3 Related Work
Our earlier work [7] proposed a specification style for I/O

based on notions of Petri nets and tokens built into the logic.

In that logic, I/O-style specifications cannot be interpreted

as predicates about memory, preventing the use of I/O-style

specifications for semi-virtual (e.g. buffered) or fully virtual

I/O operations.

Férée et al. [1] performed a separation-logic basedmachine-

checked verification of a number of classical UNIX command-

line tools largely implemented as shallowly embedded functi-

ons in HOL4. Their specifications for the I/O operations are

in terms of a separation logic predicate STDIO(fs) where fs

reflects the state of the file system.

Ho et al. [2] propose an approach for proof-producing

synthesis of imperative programs with I/O from monadic

functions of higher-order logic. For reasoning about I/O, they

use the same approach as Férée et al..
Koh et al. [4] used the Verified Software Toolchain to pro-

duce a machine-checked separation logic-based proof of the

functional correctness of a simple networked server writ-

ten in C. In their approach, specifications of I/O operations

are in terms of a separation logic predicate ITree(t) where

t is an interaction tree, a coinductive (i.e. lazy) tree of I/O

operations and (angelic) choice points. Branching occurs on

choice points and on the result values (i.e. inputs) yielded by

I/O operations. Their trees do not seem to be able express

assumptions about the environment.

4 Conclusion
In this short paper, we outlined an approach for modular

reasoning about the I/O behavior of programs in a VeriFast-

like setting. It supports building higher-level I/O operations

on top of lower-level ones, mixing I/O operations of varying

abstraction levels in function specifications, and treating

semi-virtual or fully virtual I/O operations as if they were

primitive ones.

The technical report accompanying this paper [8] offers a

formal definition of the syntax and semantics of a program-

ming language with I/O, a formal definition and soundness

proof of the proposed logic, and formalized versions of a

buffered I/O example and a virtual I/O example involving

a multithreaded chat server where threads communicate

through a shared queue. The examples shown in the techni-

cal report have been formalized both in VeriFast and in Coq;

for the latter, we used the Iris [5] library for separation logic

reasoning about concurrent higher-order programs.

Note: the technical report proposes a formalization of

prophecy variables. We explicitly do not claim that part as a

contribution of this paper; we are preparing a paper on that

topic for submission elsewhere.

Abstract I/O Specification FTfJP’19, July 15, 2019, London, United Kingdom

Acknowledgments
This material is based upon work supported by the European

Union’s Horizon 2020 research and innovation programme

under grant agreement No 731453.

References
[1] Hugo Férée, Johannes Åman Pohjola, Ramana Kumar, Scott Owens,

Magnus O. Myreen, and Son Ho. 2018. Program Verification in the

Presence of I/O - Semantics, Verified Library Routines, and Verified

Applications. In Verified Software. Theories, Tools, and Experiments -
10th International Conference, VSTTE 2018, Oxford, UK, July 18-19, 2018,
Revised Selected Papers (Lecture Notes in Computer Science), Ruzica
Piskac and Philipp Rümmer (Eds.), Vol. 11294. Springer, 88–111. https:
//doi.org/10.1007/978-3-030-03592-1_6

[2] Son Ho, Oskar Abrahamsson, Ramana Kumar, Magnus O. Myreen,

Yong Kiam Tan, and Michael Norrish. 2018. Proof-Producing Synthesis

of CakeML with I/O and Local State from Monadic HOL Functions. In

Automated Reasoning - 9th International Joint Conference, IJCAR 2018,
Held as Part of the Federated Logic Conference, FloC 2018, Oxford, UK,
July 14-17, 2018, Proceedings (Lecture Notes in Computer Science), Didier
Galmiche, Stephan Schulz, and Roberto Sebastiani (Eds.), Vol. 10900.

Springer, 646–662. https://doi.org/10.1007/978-3-319-94205-6_42
[3] Bart Jacobs (Ed.). 2018. VeriFast 18.02. Zenodo. https://doi.org/10.

5281/zenodo.1182724
[4] Nicolas Koh, Yao Li, Yishuai Li, Li-yao Xia, Lennart Beringer, Wolf

Honoré, William Mansky, Benjamin C. Pierce, and Steve Zdancewic.

2019. From C to interaction trees: specifying, verifying, and testing a

networked server. In Proceedings of the 8th ACM SIGPLAN International
Conference on Certified Programs and Proofs, CPP 2019, Cascais, Portugal,
January 14-15, 2019, Assia Mahboubi and Magnus O. Myreen (Eds.).

ACM, 234–248. https://doi.org/10.1145/3293880.3294106
[5] Robbert Krebbers, Ralf Jung, Ales Bizjak, Jacques-Henri Jourdan, De-

rek Dreyer, and Lars Birkedal. 2017. The Essence of Higher-Order

Concurrent Separation Logic. In ESOP.
[6] Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. 2001. Local

Reasoning about Programs that Alter Data Structures. In Computer
Science Logic, 15th International Workshop, CSL 2001. 10th Annual Con-
ference of the EACSL, Paris, France, September 10-13, 2001, Proceedings
(Lecture Notes in Computer Science), Laurent Fribourg (Ed.), Vol. 2142.
Springer, 1–19. https://doi.org/10.1007/3-540-44802-0_1

[7] Willem Penninckx, Bart Jacobs, and Frank Piessens. 2015. Sound,

Modular and Compositional Verification of the Input/Output Behavior

of Programs. In ESOP.
[8] Willem Penninckx, Amin Timany, and Bart Jacobs. 2019. Abstract

I/O Specification. CoRR abs/1901.10541 (2019). arXiv:1901.10541 http:
//arxiv.org/abs/1901.10541

[9] Jan Schwinghammer, Lars Birkedal, Bernhard Reus, and Hongseok

Yang. 2011. Nested Hoare triples and frame rules for higher-order

store. Logical Methods in Computer Science 7, 3 (2011).
[10] Frédéric Vogels, Bart Jacobs, and Frank Piessens. 2015. Featherweight

VeriFast. Logical Methods in Computer Science 11, 3 (2015). https:
//doi.org/10.2168/LMCS-11(3:19)2015

https://doi.org/10.1007/978-3-030-03592-1_6
https://doi.org/10.1007/978-3-030-03592-1_6
https://doi.org/10.1007/978-3-319-94205-6_42
https://doi.org/10.5281/zenodo.1182724
https://doi.org/10.5281/zenodo.1182724
https://doi.org/10.1145/3293880.3294106
https://doi.org/10.1007/3-540-44802-0_1
http://arxiv.org/abs/1901.10541
http://arxiv.org/abs/1901.10541
http://arxiv.org/abs/1901.10541
https://doi.org/10.2168/LMCS-11(3:19)2015
https://doi.org/10.2168/LMCS-11(3:19)2015

	Abstract
	1 The Problem of Specifying I/O Behavior
	2 Abstract Nested Hoare Triples
	2.1 Basic Idea
	2.2 Building Higher-Level Actions
	2.3 Underspecification
	2.4 Input
	2.5 I/O and Memory
	2.6 Mixing Abstraction Levels
	2.7 Virtual Input

	3 Related Work
	4 Conclusion
	Acknowledgments
	References

