
Contributions in Programming Languages Theory
Logical Relations and Type Theory

Amin Timany

May 29th, 2018

Leuven, Belgium

Amin Timany Contributions in Programming Languages Theory

1

Introduction

Computer systems are ubiquitous
Crucial to formally verify correctness of safety- and security-critical
systems
Types systems play an important role

Foundation of (a class of) proof assistants
Formalization of mathematics, including the theory and practice of program
verification

Compilers use types to ensure certain aspects of correctness of programs,
e.g., type safety (well-typed terms do not crash)

In this thesis we contribute to the theory of programming languages and
type theory

Amin Timany Contributions in Programming Languages Theory

2

In this talk

A short historical account of set theory and type theory

Part I: Type theory and formalization of mathematics

Part II: Studying programs & programming languages through types

Amin Timany Contributions in Programming Languages Theory

3

Cantorian Set theory

Set theory was introduced by Georg Cantor in 1870s to
study infinities

In the first paper on the subject
“On a Property of the Collection of All Real Alge-
braic Numbers”:
|N| = |Alg|
|N| < |R|

Amin Timany Contributions in Programming Languages Theory

4

Rusell’s paradox

In Cantorian set theory any collection is set!

In 1901 Bertrand Russell asked “How about the set
S of all sets that do not include themselves!?”

S = {X |X 6∈ X}

This leads to contradictions

S ∈ S if and only if S 6∈ S

Amin Timany Contributions in Programming Languages Theory

5

Saving set theory from paradoxes

Theory of types by Russell and Whitehead
A hierarchy of types T0,T1, . . .
Each set has a type
Elements of a set have strictly smaller type

Axiomatic set theory by (amongst others)
Zermelo, Fraenkel

Axioms stating properties and construction of
sets
Zermelo-Fraenkel set theory with axiom of
Choice (ZFC) is best known and most used set
theory among mathematicians

Amin Timany Contributions in Programming Languages Theory

6

Lambda calculus for logic and computation

In 1932 Church introduced λ-calculus in “A Set of Pos-
tulates for the Foundation of Logic” as the compu-
tational part of a logical system

Kleene and Rosser showed this system to by logically
inconsistent

Amin Timany Contributions in Programming Languages Theory

7

Church introduced
Simply typed λ-calculus as a logically consistent system

Later extended with dependent types, universes, etc., e.g., the Coq proof
assistant

Untyped λ-calculus as a model computation (along Turing machines
and recursion theory)

Later extended with other primitives and type systems
Forms the basis of (functional) programming languages, e.g., Haskell and
ML family

Amin Timany Contributions in Programming Languages Theory

8

An overview of the contributions in this thesis

Part I: Type theory and formalization of mathematics
Formalization of category theory in Coq (Chapter 3)
Extend the predicative calculus of inductive constructions (pCIC), the
underlying type system of Coq (Chapter 4)

Part II: Studying programs & programming languages through types
Logical relations models (a versatile proof technique based on types)
Prove type safety and equivalence of programs

Formalized (in Coq) logical relations model for an advanced programming
language (Chapter 5)
Establish proper encapsulation of state by a Haskell-style ST monad (Chapter 6)
Study continuations in the presence of concurrency (Chapter 7)

Amin Timany Contributions in Programming Languages Theory

9

Part I

Amin Timany Contributions in Programming Languages Theory

10

Dependent type theory, universes and cumulativity

Typing judgement: Γ ` t : T (e.g., Γ ` 1 : N)
Dependent type theory: every type is also a term
Γ ` T : T is paradoxical (similar to Russell’s paradox)
Solution: a hierarchy of universes (types of types), e.g., in Coq:

Type0 : Type1 : . . .

Cumulative type theory (e.g., Coq): Typei � Typej for i ≤ j

For cumulativity (subtyping) relation T � T ′

t : T then t : T ′

Amin Timany Contributions in Programming Languages Theory

11

Dependent type theory, universes and cumulativity

Universe polymorphism:
Inductive List@{i} (A : Type@{i}) : Type@{i}
| nil : List@{i} A
| cons : A → List@{i} A → List@{i} A.

Example:
nil : List N,
cons 1 nil : List N,
cons 2 (cons 1 nil) : List N

...
Typek

N

List@{k} N
...

List@{1} N
List@{0} N

...

Type1

N
List@{1} N
List@{0} N

Type0

N List@{0} N

Amin Timany Contributions in Programming Languages Theory

12

Category Theory in Coq (Chapter 3)

Formalized a category theory library in Coq
The most complete formalization of category theory in a proof assistant
when considering basic category theory (not enriched or higher category
theory)
Defines categories in a universe polymorphic way

Record Category@{i j} :=
{
Obj : Type@{i};
Hom : Obj → Obj → Type@{j};
. . .

}.

Amin Timany Contributions in Programming Languages Theory

13

Category Theory in Coq (Chapter 3)

Universes to represent smallness/largeness
Category of categories:

Definition Cat@{i j j l} : Category@{i j} :=
{
Obj : Category@{k l};
. . .

}.

Coq infers constraints, e.g., for Cat: k < i , l < i , k ≤ j , l ≤ j

Amin Timany Contributions in Programming Languages Theory

14

Cumulative inductive types in Coq (Chapter 4)

In category theory, every small category is also
large
No cumulativity in pCIC:

...
Type

Category@{i j}
�

Category@{k l}

i = k and j = l

...
Type

Category@{i j}

...

Amin Timany Contributions in Programming Languages Theory

15

Cumulative inductive types in Coq (Chapter 4)

We introduce the predicative calculus of
cumulative inductive constructions (pCuIC)
Extend the cumulativity to inductive types, e.g.,
lists, categories, etc.

This means:

Amin Timany Contributions in Programming Languages Theory

15

Cumulative inductive types in Coq (Chapter 4)

We introduce the predicative calculus of
cumulative inductive constructions (pCuIC)
Extend the cumulativity to inductive types, e.g.,
lists, categories, etc.
This means:

Small categories are large as expected!

...
Type

Category@{i j}
�

Category@{k l}

i ≤ k and j ≤ l

...
Type

Category@{i j}

...

Amin Timany Contributions in Programming Languages Theory

15

Cumulative inductive types in Coq (Chapter 4)

We introduce the predicative calculus of
cumulative inductive constructions (pCuIC)
Extend the cumulativity to inductive types, e.g.,
lists, categories, etc.
This means:

Lists with elements of type A are just lists
independent of the universe!

...
Typej A

List@{j} A
�

List@{i} A

Regardless of i and j!

...
Typei A

List@{i}

...

Amin Timany Contributions in Programming Languages Theory

15

Cumulative inductive types in Coq (Chapter 4)

We introduce the predicative calculus of
cumulative inductive constructions (pCuIC)
Extend the cumulativity to inductive types, e.g.,
lists, categories, etc.
This means:

Lists with elements of type A are just lists
independent of the universe!

We extend Coq’s judgemental equality:
List@{i} A ' List@{j} A

...
Typej A

List@{j} A
'

List@{i} A

Regardless of i and j!

...
Typei A

List@{i}

...

Amin Timany Contributions in Programming Languages Theory

16

Cumulative inductive types in Coq (Chapter 4)

A set theoretic model in ZFC based on the model of Werner and Lee
Axiom: a hierarchy of uncountable strongly inaccessible cardinals to
model universes

κ0, κ1, . . .

This extension is available in Coq as Coq 8.7

Amin Timany Contributions in Programming Languages Theory

17

Part II

Amin Timany Contributions in Programming Languages Theory

18

Logical relations
A semantic approach to type safety and contextual equivalence

A versatile tool to study programs and programming languages through
their types
Versatility: (strong) normalization, type safety, contextual
equivalence, non-interference, etc.

Amin Timany Contributions in Programming Languages Theory

19

Type safety

Type safety:
· ` e : T then Safe(e)

Safe(e) , e will not crash

Example of unsafe program:
10 - “abc”

Idea: define logical relations Γ |= e : T
We show congruence w.r.t. typing

Γ ` f : T1 → T2 Γ ` e : T1

Γ ` f e : T2
⇒ Γ |= f : T1 → T2 Γ |= e : T1

Γ |= f e : T2

Example: Γ ` fact : N→ N and Γ ` 5 : N. Hence Γ ` fact 5 : N

Fundamental theorem: Γ ` e : T then Γ |= e : T
Adequacy: · |= e : T then Safe(e)
Soundness: · ` e : T then Safe(e)

Amin Timany Contributions in Programming Languages Theory

20

Contextual refinement and equivalence

Contextual refinement (the gold standard of comparison of programs):

Γ ` e �ctx e
′ : T , No program can distinguish replacing e ′ with e

That is, for any context C (a program with a hole)

�e

C

e ′

C

Γ ` e ' e ′ : T , Γ ` e � e ′ : T ∧ Γ ` e ′ �ctx e : T

Amin Timany Contributions in Programming Languages Theory

21

Contextual refinement and equivalence

Idea: define logical relations Γ |= e � e ′ : T

We show congruence w.r.t. typing

Γ ` f : T1 → T2 Γ ` e : T1

Γ ` f e : T2
⇒ Γ |= f � f ′ : T1 → T2 Γ |= e � e′ : T1

Γ |= f e � f ′ e′ : T2

Fundamental theorem: Γ ` e : T then Γ |= e � e : T

Soundness: Γ |= e � e′ : T then Γ ` e �ctx e
′ : T

Amin Timany Contributions in Programming Languages Theory

22

Logical relations for advanced type systems

Constructing LR models for advanced features, e.g., higher-order
references, is complicated
Requires advanced techniques: step-indexing and recursive Kripke
worlds
These complicate the model
We use Iris featuring high-level reasoning principles for these techniques

Amin Timany Contributions in Programming Languages Theory

23

TS and CR via LR in Iris (chapter 5)

Unary and binary LR models for Fµ,ref ,conc (ML-like) featuring:
polymorphic types

recursive types

higher-order references

concurrency

JΞ ` X K∆(v , v ′) , ∆(X)(v , v ′)

JΞ ` NK∆(v , v ′) , v = v ′ ∈ N

JΞ ` τ1 × τ2K∆(v , v ′) , ∃v1, v2, v
′
1, v

′
2. v = (v1, v2) ∧ v ′ = (v ′

1, v
′
2)∧

JΞ ` τ1K∆(v1, v
′) ∧ JΞ ` τ2K∆(v2, v

′
2)

JΞ ` τ1 → τ2K∆(v , v ′) , ∀w ,w ′. �(JΞ ` τ1K∆(w ,w ′) −∗ JΞ ` τ2KE∆(v w , v ′ w ′))

JΞ ` ∀X . τK∆(v , v ′) , ∀f . �(JX ,Ξ ` τK∆[X 7→f](v _, v ′ _))

JΞ ` µX . τK∆(v , v ′) , µ f .∃w ,w ′. v = foldw ∧ v ′ = foldw ′∧
.JX ,Ξ ` τK∆[X 7→f](w ,w

′)

JΞ ` ref(τ)K∆(v , v ′) , ∃`. v = ` ∧ v ′ = `′∧
∃w ,w ′. ` 7→ w ∗ `′ 7→ w ′ ∗ JΞ ` τK∆(w ,w ′)

N .`

JΞ ` τKE∆(e, e′) ,∀ρ, j ,K ,
{spec_inv(ρ) ∗ j Z⇒ e′}
e

{v . ∃v ′. j Z⇒ v ′ ∗ JΞ ` τK∆(v , v ′)}

20 D. Dreyer et al.

HeapAtomn
def
= {(W,h1,h2) | W ∈ Worldn}

HeapReln
def
= {ψ ⊆ HeapAtomn | ∀(W,h1,h2) ∈ ψ. ∀W W. (W ,h1,h2) ∈ ψ}

Islandn
def
= {ι = (s,δ ,ϕ, ,H) | s ∈ State∧δ ⊆ State2 ∧ϕ ⊆ δ ∧δ ,ϕ reflexive∧

δ ,ϕ transitive∧ ⊆ State∧H ∈ State → HeapReln}
Worldn

def
= {W = (k,Σ1,Σ2,ω) | k < n∧∃m. ω ∈ Islandm

k }
ContAtomn[τ1,τ2]

def
= {(W,K1,K2) | W ∈ Worldn ∧W.Σ1; ·; K1 ÷τ1 ∧W.Σ2; ·; K2 ÷τ2}

TermAtomn[τ1,τ2]
def
= {(W,e1,e2) | W ∈ Worldn ∧W.Σ1; ·; e1 : τ1 ∧W.Σ2; ·; e2 : τ2}

HeapAtom[τ1,τ2]
def
= n HeapAtomn[τ1,τ2]

World
def
= n Worldn

ContAtom[τ1,τ2]
def
= n ContAtomn[τ1,τ2]

TermAtom[τ1,τ2]
def
= n TermAtomn[τ1,τ2]

ValRel[τ1,τ2]
def
= {r ⊆ TermAtomval[τ1,τ2] | ∀(W,v1,v2) ∈ r. ∀W W. (W ,v1,v2) ∈ r}

SomeValRel
def
= {R = (τ1,τ2,r) | r ∈ ValRel[τ1,τ2]}

(ι1, . . . , ιm) k
def
= (ι1 k, . . . , ιm k) H k

def
= λ s. H(s) k

(s,δ ,ϕ, ,H) k
def
= (s,δ ,ϕ, , H k) ψ k

def
= {(W,h1,h2) ∈ r | W.k < k}

(k+1,Σ1,Σ2,ω)
def
= (k,Σ1,Σ2, ω k)

r
def
= {(W,e1,e2) | W.k > 0 ⇒ (W,e1,e2) ∈ r}

(k ,Σ1,Σ2,ω) (k,Σ1,Σ2,ω)
def
= k ≤ k∧Σ1 ⊇ Σ1 ∧Σ2 ⊇ Σ2 ∧ω ω k

(ι1, . . . , ιm) (ι1, . . . , ιm)
def
= m ≥ m∧∀ j ∈ {1, . . . ,m}. ι j ι j

(s ,δ ,ϕ , ,H) (s,δ ,ϕ, ,H)
def
= (δ ,ϕ , ,H) = (δ ,ϕ, ,H)∧ (s,s) ∈ δ

(k ,Σ1,Σ2,ω) pub (k,Σ1,Σ2,ω)
def
= k ≤ k∧Σ1 ⊇ Σ1 ∧Σ2 ⊇ Σ2 ∧ω pub ω k

(ι1, . . . , ιm) pub (ι1, . . . , ιm)
def
= m ≥ m∧∀ j ∈ {1, . . . ,m}. ι j

pub ι j ∧
∀ j ∈ {m+1, . . . ,m }. safe(ι j)

(s ,δ ,ϕ , ,H) pub (s,δ ,ϕ, ,H)
def
= (δ ,ϕ , ,H) = (δ ,ϕ, ,H)∧ (s,s) ∈ ϕ

safe(W)
def
= ∀ι ∈W.ω. safe(ι) safe(ι) def

= ∀s . (ι .s,s) ∈ ι .ϕ ⇒ s /∈ ι .

consistent(W)
def
= ι ∈W.ω. ι .s ∈ ι .

ψ ⊗ψ def
= {(W,h1 h1,h2 h2) | (W,h1,h2) ∈ ψ ∧ (W,h1,h2) ∈ ψ }

(h1,h2) : W
def
= h1 : W.Σ1 h2 : W.Σ2 ∧ (W.k > 0 ⇒ (W,h1,h2) ∈ {ι .H(ι .s) | ι ∈W.ω})

Fig. 5. Worlds and auxiliary definitions.

it is defined on a particular set of “states of interest”—whether there is other junk

in the State space is irrelevant.

Based on the two transition relations (full and public), we define two notions

of future worlds (aka world extension). First, we say that W ′ extends W , written

W ′ � W , iff it contains the same islands as W (and possibly more), and for each

island in W , the new state s′ of that island in W ′—which is the only aspect of the

22 D. Dreyer et al.

V α ρ def
= ρ(α).r

V b ρ def
= {(W,v,v) ∈ TermAtom[b,b]}

V τ ×τ ρ def
= {(W, v1,v1 , v2,v2) ∈ TermAtom[ρ1(τ ×τ),ρ2(τ ×τ)] |

(W,v1,v2) ∈ V τ ρ ∧ (W,v1,v2) ∈ V τ ρ}
V τ → τ ρ def

= {(W,λx:τ1.e1,λx:τ2.e2) ∈ TermAtom[ρ1(τ → τ),ρ2(τ → τ)] |
∀W ,v1,v2. W W ∧ (W ,v1,v2) ∈ V τ ρ ⇒
(W ,e1[v1/x],e2[v2/x]) ∈ E τ ρ}

V ∀α.τ ρ def
= {(W,Λα.e1,Λα.e2) ∈ TermAtom[ρ1(∀α.τ),ρ2(∀α.τ)] |

∀W W. ∀(τ1,τ2,r) ∈ SomeValRel.
(W ,e1[τ1/α],e2[τ2/α]) ∈ E τ ρ,α (τ1,τ2,r)}

V ∃α.τ ρ def
= {(W,pack τ1,v1 as τ1,pack τ2,v2 as τ2) ∈ TermAtom[ρ1(∃α.τ),ρ2(∃α.τ)] |

∃r. (τ1,τ2,r) ∈ SomeValRel∧ (W,v1,v2) ∈ V τ ρ,α (τ1,τ2,r)}
V µα.τ ρ def

= {(W, rollτ1 v1, rollτ2 v2) ∈ TermAtom[ρ1(µα.τ),ρ2(µα.τ)] |
(W,v1,v2) ∈ V τ [µα.τ/α] ρ}

V ref τ ρ def
= {(W, l1, l2) ∈ TermAtom[ρ1(ref τ),ρ2(ref τ)] | ∃i. ∀W W.

(l1, l2) ∈ bij(W (i).s)∧∃ψ. W (i).H(W (i).s) =
ψ ⊗{(W ,{l1 v1},{l2 v2}) ∈ HeapAtom | (W ,v1,v2) ∈ V τ ρ}}

O
def
= {(W,e1,e2) | ∀h1,h2. (h1,h2) : W h1;e1

<W.k⇒ consistent(W) h2;e2

K τ ρ def
= {(W,K1,K2) ∈ ContAtom[ρ1(τ),ρ2(τ)] |

∀W ,v1,v2. W pub W ∧ (W ,v1,v2) ∈ V τ ρ ⇒ (W ,K1[v1],K2[v2]) ∈ O}

E τ ρ def
= {(W,e1,e2) ∈ TermAtom[ρ1(τ),ρ2(τ)] |

∀K1,K2. (W,K1,K2) ∈ K τ ρ ⇒ (W,K1[e1],K2[e2]) ∈ O}

G · ρ def
= {(W, /0) | W ∈ World}

G Γ,x:τ ρ def
= {(W,(γ ,x (v1,v2))) | (W,γ) ∈ G Γ ρ ∧ (W,v1,v2) ∈ V τ ρ}

D · def
= { /0}

D ∆,α def
= {ρ,α R | ρ ∈ D ∆ ∧R ∈ SomeValRel}

S · def
= World

Σ;∆;Γ e1 log e2 : τ def
= Σ;∆;Γ e1 : τ ∧Σ;∆;Γ e2 : τ ∧

∀W,ρ,γ . W ∈ S Σ ∧ρ ∈ D ∆ ∧ (W,γ) ∈ G Γ ρ ⇒
(W,ρ1γ1e1,ρ2γ2e2) ∈ E τ ρ

S Σ, l:τ def
= S Σ ∩{W ∈ World | (W, l, l) ∈ V ref τ /0}}

Fig. 6. A step-indexed biorthogonal Kripke logical relation for HOS.

Our formulation of V�ref τ�ρ is slightly different from ADR’s and a bit more

flexible—e.g., ours can be used to prove Bohr’s “local state release” example (Bohr,

2007) (see the technical appendix, Dreyer et al., 2012), whereas ADR’s cannot—

but this added flexibility does not affect any of our “headlining” examples from

Sections 3–6.

As explained in Section 4, the value relation is lifted to a term relation via

biorthogonality. Concretely, we define the continuation relation K�τ�ρ based on

V�τ�ρ, and then the term relation E�τ�ρ based on K�τ�ρ:Prove refinement of pairs of fine-/coarse-grained concurrent modules:
counters and stacks
All results are formalized in Coq

Amin Timany Contributions in Programming Languages Theory

24

Equivalences in the presence of the ST monad (chapter 6)

Prove equivalences for STLang, A PL featuring a Haskell-style STmonad

Idea of STmonad (by Launchbury and Peyton Jones): encapsulate state

That is, memory is used but programs remain pure (as though they do
not use memory)!

Type system ensures effects are restricted

ST monad marks computations with their memory region

Amin Timany Contributions in Programming Languages Theory

25

Equivalences in the presence of the ST monad (chapter 6)

ST monad marks computations with their memory region
ST ρ τ

Tderef
Ξ | Γ ` e : STRef ρ τ

Ξ | Γ ` ! e : ST ρ τ

runST runs a suspended computation that can be run in
any region, i.e., region-independent programs

These programs an run in any region and thus also in the
empty region!

Fictional Heap

region ρ1

region ρ2

region ρ3

free space

Amin Timany Contributions in Programming Languages Theory

26

State-independence theorem

We formally prove the explained intuitive reasoning why programs are
pure

State-independence theorem:

Consider the program

· | x : STRef ρ τ ′ ` e : τ

If e can run in one memory state then it can run in any memory state!

Amin Timany Contributions in Programming Languages Theory

27

Contextual equations we prove
Justifies proper encapsulation of state

e �ctx () : 1 (Neutrality)

let x = e2 in (e1, x) ≈ctx (e1, e2) : τ1 × τ2 (Commutativity)

let x = e in (x , x) ≈ctx (e, e) : τ × τ (Idempotency)

let y = e1 in rec f (x) = e2 �ctx rec f (x) = let y = e1 in e2 : τ1 → τ2 (Rec hoisting)

let y = e1 inΛ e2 �ctx Λ (let y = e1 in e2) : ∀X . τ (Λ hoisting)

e �ctx rec f (x) = (e x) : τ1 → τ2 (η expansion for rec)

e �ctx Λ (e _) : ∀X . τ (η expansion for Λ)

(rec f (x) = e1) e2 �ctx e1[e2, (rec f (x) = e1)/x , f] : τ (β reduction for rec)

(Λ e) _ ≈ctx e : τ [τ ′/X] (β reduction for Λ)

bind e in (λ x . return x) ≈ctx e : ST ρ τ (Left Identity)

e2 e1 �ctx bind (return e1) in e2 : ST ρ τ (Right Identity)

bind (bind e1 in e2) in e3 �ctx bind e1 in (λ x . bind (e2 x) in e3) : ST ρ τ ′ (Associativity)

Amin Timany Contributions in Programming Languages Theory

28

Rel. verification of programs with continuations (chapter 7)

We study Fµ,refconc,cc : Fµ,ref ,conc with continuations
Programs can be suspended into continuations
Continuations can be resumed
We use weakest preconditions to prove correctness of programs

wp e {Φ}

Example:
wp let x = 3 in x ∗ 2 {v . v = 6}

Continuations make the bind rule inadmissible
The bind rule is essential for modular (context-local) reasoning

inadmissible-bind
wp e {v . wp K [v] {Φ}}

wp K [e] {Φ}

Amin Timany Contributions in Programming Languages Theory

29

Rel. verification of programs with continuations (chapter 7)

Introduce context-local weakest preconditions

bind
clwp e

{
v . clwp K [v]

{
Φ
}}

clwp K [e]
{
Φ
}

Same proof rules as weakest preconditions (except for continuations
themselves)
We can mix and match weakest preconditions with context local ones

clwp-wp
clwp e

{
Ψ
}

∀v . Ψ(v) −∗ wp K [v] {Φ}
wp K [e] {Φ}

Amin Timany Contributions in Programming Languages Theory

30

Rel. verification of programs with continuations (chapter 7)

Use context-local weakest preconditions together with our LR model
Prove equivalence of continuation-based web servers and state-storing
web servers

Prove equivalence of context-local parts using context-local reasoning
principles

1 let fname =
2 read_client ()
3 in
4 let lname =
5 read_client ()
6 in
7 ...

1 if sessions[sessid].fname = "" then
2 sessions[sessid].fname := input;
3 exit ()
4 else
5 if sessions[sessid].lname = "" then
6 sessions[sessid].lname := input;
7 exit ()
8 else if ...

Amin Timany Contributions in Programming Languages Theory

31

Rel. verification of programs with continuations (chapter 7)

Formalize the proof that continuations can be simulated using one-shot
continuations in the presence of concurrency

In the presence of concurrency this holds subtly
Requires a more involved proof than the sequential version

Amin Timany Contributions in Programming Languages Theory

32

Thanks!

Amin Timany Contributions in Programming Languages Theory

