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Goal of this talk

Many POPL papers about complicated program logics come with mechanized
soundness proofs, but how to reason in these logics?

Goal: reasoning in an object logic in the same style as reasoning in Coq

How?

I Extend Coq with (spatial and non-spatial)
named proof contexts for an object logic

I Tactics for introduction and elimination of all
connectives of the object logic

I Entirely implemented using reflection, type
classes and Ltac (no OCaml plugin needed)

Iris: language independent higher-order separation logic for modular reasoning about
fine-grained concurrency in Coq
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Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A → iProp) :
P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .

Proof .

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

(1/1)
P ∗ (∃ a : A , Ψ a) ∗ R−∗ ∃ a : A , Ψ a ∗ P

Logical notations overridden in scope for Iris

Notation for deeply embedded context



3

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A → iProp) :
P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .

Proof .
iIntros "[HP [HΨ HR]]".

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

(1/1)
P ∗ (∃ a : A , Ψ a) ∗ R−∗ ∃ a : A , Ψ a ∗ P

Logical notations overridden in scope for Iris

Notation for deeply embedded context



3

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A → iProp) :
P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .

Proof .
iIntros "[HP [HΨ HR]]".

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

(1/1)
"HP" : P

"HΨ" : ∃ a : A , Ψ a

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , Ψ a ∗ P

Logical notations overridden in scope for Iris

Notation for deeply embedded context



3

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A → iProp) :
P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .

Proof .
iIntros "[HP [HΨ HR]]".

iDestruct "HΨ" as (x) "HΨ".

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

(1/1)
"HP" : P

"HΨ" : ∃ a : A , Ψ a

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , Ψ a ∗ P

Logical notations overridden in scope for Iris

Notation for deeply embedded context



3

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A → iProp) :
P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .

Proof .
iIntros "[HP [HΨ HR]]".

iDestruct "HΨ" as (x) "HΨ".

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

x : A

(1/1)
"HP" : P

"HΨ" : Ψ x

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , Ψ a ∗ P

Logical notations overridden in scope for Iris

Notation for deeply embedded context



3

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A → iProp) :
P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .

Proof .
iIntros "[HP [HΨ HR]]".

iDestruct "HΨ" as (x) "HΨ".

iExists x.

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

x : A

(1/1)
"HP" : P

"HΨ" : Ψ x

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , Ψ a ∗ P

Logical notations overridden in scope for Iris

Notation for deeply embedded context



3

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A → iProp) :
P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .

Proof .
iIntros "[HP [HΨ HR]]".

iDestruct "HΨ" as (x) "HΨ".

iExists x.

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

x : A

(1/1)
"HP" : P

"HΨ" : Ψ x

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
Ψ x ∗ P

Logical notations overridden in scope for Iris

Notation for deeply embedded context



3

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A → iProp) :
P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .

Proof .
iIntros "[HP [HΨ HR]]".

iDestruct "HΨ" as (x) "HΨ".

iExists x.

iSplitL "HΨ".

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

x : A

(1/1)
"HP" : P

"HΨ" : Ψ x

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
Ψ x ∗ P

Logical notations overridden in scope for Iris

Notation for deeply embedded context



3

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A → iProp) :
P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .

Proof .
iIntros "[HP [HΨ HR]]".

iDestruct "HΨ" as (x) "HΨ".

iExists x.

iSplitL "HΨ".

2 subgoals

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

x : A

(1/2)
"HΨ" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
Ψ x

(2/2)
"HP" : P

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
P

Logical notations overridden in scope for Iris

Notation for deeply embedded context



3

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A → iProp) :
P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .

Proof .
iIntros "[HP [HΨ HR]]".

iDestruct "HΨ" as (x) "HΨ".

iExists x.

iSplitL "HΨ".

-

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

x : A

(1/1)
"HΨ" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
Ψ x

Logical notations overridden in scope for Iris

Notation for deeply embedded context



3

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A → iProp) :
P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .

Proof .
iIntros "[HP [HΨ HR]]".

iDestruct "HΨ" as (x) "HΨ".

iExists x.

iSplitL "HΨ".

- iAssumption.

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

x : A

(1/1)
"HΨ" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
Ψ x

Logical notations overridden in scope for Iris

Notation for deeply embedded context



3

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A → iProp) :
P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .

Proof .
iIntros "[HP [HΨ HR]]".

iDestruct "HΨ" as (x) "HΨ".

iExists x.

iSplitL "HΨ".

- iAssumption.

This subproof is complete , but there are some unfocused goals :

(1/1)
"HP" : P

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
P

Logical notations overridden in scope for Iris

Notation for deeply embedded context



3

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A → iProp) :
P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .

Proof .
iIntros "[HP [HΨ HR]]".

iDestruct "HΨ" as (x) "HΨ".

iExists x.

iSplitL "HΨ".

- iAssumption.

-

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

x : A

(1/1)
"HP" : P

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
P

Logical notations overridden in scope for Iris

Notation for deeply embedded context



3

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A → iProp) :
P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .

Proof .
iIntros "[HP [HΨ HR]]".

iDestruct "HΨ" as (x) "HΨ".

iExists x.

iSplitL "HΨ".

- iAssumption.

- iAssumption.

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

x : A

(1/1)
"HP" : P

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
P

Logical notations overridden in scope for Iris

Notation for deeply embedded context



3

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A → iProp) :
P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .

Proof .
iIntros "[HP [HΨ HR]]".

iDestruct "HΨ" as (x) "HΨ".

iExists x.

iSplitL "HΨ".

- iAssumption.

- iAssumption.

No more subgoals .

Logical notations overridden in scope for Iris

Notation for deeply embedded context



3

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A → iProp) :
P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .

Proof .
iIntros "[HP [HΨ HR]]".

iDestruct "HΨ" as (x) "HΨ".

iExists x.

iSplitL "HΨ".

- iAssumption.

- iAssumption.

Qed.

No more subgoals .

Logical notations overridden in scope for Iris

Notation for deeply embedded context



3

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A → iProp) :
P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .

Proof .
iIntros "[HP [HΨ HR]]".

iDestruct "HΨ" as (x) "HΨ".

iExists x.

iSplitL "HΨ".

- iAssumption.

- iAssumption.

Qed.

Logical notations overridden in scope for Iris

Notation for deeply embedded context



3

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A → iProp) :
P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .

Proof .
iIntros "[HP [HΨ HR]]".

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

(1/1)
"HP" : P

"HΨ" : ∃ a : A , Ψ a

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , Ψ a ∗ P

Logical notations overridden in scope for Iris

Notation for deeply embedded context



3

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A → iProp) :
P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .

Proof .
iIntros "[HP [HΨ HR]]".

Unset Printing Notations.

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

(1/1)
"HP" : P

"HΨ" : ∃ a : A , Ψ a

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , Ψ a ∗ P

Logical notations overridden in scope for Iris

Notation for deeply embedded context



3

Iris Proof Mode (IPM) demo

Lemma and exist sep {A} P R (Ψ: A → iProp) :
P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .

Proof .
iIntros "[HP [HΨ HR]]".

Unset Printing Notations.

1 subgoal

M : ucmraT

A : Type@{Top.105}
P , R : uPred M

Ψ : forall : A , uPred M

(1/1)
@uPred entails M

(@of envs M

(@Envs M (@Enil (uPred M))
(@Esnoc (uPred M)

(@Esnoc (uPred M)
(@Esnoc (uPred M) (@Enil (uPred M))

(String
(Ascii false false false true false false true

false)
(String

(Ascii false false false false true false true

false) EmptyString)) P)
(String

(Ascii false false false true false false true false)
(String

(Ascii false true true true false false true true)
(String

(Ascii false false false true false true false

true) EmptyString)))
(@uPred exist M A (fun a : A =>Ψ a)))

(String
(Ascii false false false true false false true false)
(String

(Ascii false true false false true false true false)
EmptyString)) R)))

(@uPred exist M A (fun a : A => @uPred sep M (Ψ a) P))

Logical notations overridden in scope for Iris

Notation for deeply embedded context



4

Motivation

Why should we care about interactive proofs? Why not automate everything?

Infeasible to automate everything, for example:

I Concurrent algorithms in Iris (Jung, Krebbers, Swasey, Timany)

I The Rust type system in Iris (Jung, Jourdan, Dreyer, Krebbers)

I Logical relations in Iris (Krogh-Jespersen, Svendsen, Timany, Birkedal, Tassarotti, Jung, Krebbers)

I Weak memory concurrency in Iris (Kaiser, Dang, Dreyer, Lahav, Vafeiadis)

I Object calculi in Iris (Swasey, Dreyer, Garg)

I Logical atomicity in Iris (Krogh-Jespersen, Zhang, Jung)

I Defining Iris in Iris (Krebbers, Jung, Jourdan, Bizjak, Dreyer, Birkedal)

Most of these projects are formalized in IPM
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How to do such proofs in a proof assistant?

Current proof assistant support is limited to basic separation logic:

I Macros for manipulating Hoare triples: Appel, Wright, Charge!, . . .

I Heavy automation: Bedrock, Rtac, . . .

Iris has many complicated connectives that are beyond basic separation logic
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How to embed a logic into a proof assistant

Deep embedding Shallow embedding

Inductive form : Type :=
| iAnd : form → form → form

| iForall : string → form → form → form

Definition iProp : Type :=
(* predicates over states *) .

Definition iAnd : iProp → iProp → iProp :=
(* semantic interpretation *) .

Definition iForall : ∀ A , (A → iProp) → iProp :=
(* semantic interpretation *) .

Traverse formulas using Coq functions (fast) Traverse formulas on the meta level (slow)

Reflective tactics (fast) Tactics on the meta level (slow)

Need to explicitly encode binders Reuse binders of Coq

Need to embed features like lists Piggy-back on features like lists from Coq

Grammar of formulas fixed once and forall Easily extensible with new connectives

Context manipulation is the prime task of tactics:
Deeply embed contexts, shallowly embed the logic
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Deeply embedded contexts in IPM

Visible goal in IPM:

~x : ~φ Variables and pure Coq hypotheses

~Hpersistent : ~P Persistent hypotheses in object logic
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−2
~Hspatial : ~Q Spatial hypotheses in object logic
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
R Goal in object logic

Propositions that enjoy P ⇔ P ∗ P

Actual Coq goal (without pretty printing):

~xi : ~φi

of envs (Envs . . . . . .) ` R

where:

Record envs :=
Envs { env persistent : env iProp ; env spatial : env iProp }.

Coercion of envs (∆ : envs) : iProp :=
( p envs wf ∆q ∗ 2 [∗ ] env persistent ∆ ∗ [∗ ] env spatial ∆)%I .

Association list of shallowly embedded propositions

Folded separating conjunction
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Deeply embedded contexts in IPM
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The iSplit tactic

Lemma and exist sep {A} P R (Ψ: A → iProp) :
P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .

Proof .
iIntros "[HP [HΨ HR]]" .
iDestruct "HΨ" as (x) "HΨ" .
iExists x .

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

x : A

(1/1)
"HP" : P

"HΨ" : Ψ x

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
Ψ x ∗ P
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The iSplit tactic

Lemma and exist sep {A} P R (Ψ: A → iProp) :
P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .

Proof .
iIntros "[HP [HΨ HR]]" .
iDestruct "HΨ" as (x) "HΨ" .
iExists x .
iSplitL "HΨ".

2 subgoals

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

x : A

(1/2)
"HΨ" : Ψ x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
Ψ x

(2/2)
"HP" : P

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
P
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Implementation of the iSplit tactic

Tactics implemented by reflection as mere lemmas:

Lemma tac sep split ∆ ∆1 ∆2 lr js Q1 Q2 :
envs split lr js ∆ = Some (∆1,∆2) →
(∆1 ` Q1) → (∆2 ` Q2) → ∆ ` Q1 ∗ Q2 .

Context splitting implemented as a computable Coq function

Ltac wrappers around the reflective tactic:

Tactic Notation "iSplitL" constr(Hs) :=
let Hs := words Hs in

eapply tac sep split with false Hs ;
[env cbv ; reflexivity | |
fail "iSplitL: hypotheses" Hs "not found in the context"

| (* goal 1 *)

| (* goal 2 *) ] .
Report sensible error to the user
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The iFrame tactic

Lemma and exist sep {A} P R (Ψ: A → iProp) :
P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .

Proof .
iIntros "[HP [HΨ HR]]" .
iDestruct "HΨ" as (x) "HΨ" .

1 subgoal

M : ucmraT

A : Type

P , R : iProp

Ψ : A → iProp

x : A

(1/1)
"HP" : P

"HΨ" : Ψ x

"HR" : R

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−∗
∃ a : A , Ψ a ∗ P
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The iFrame tactic

Lemma and exist sep {A} P R (Ψ: A → iProp) :
P ∗ (∃ a , Ψ a) ∗ R−∗ ∃ a , Ψ a ∗ P .

Proof .
iIntros "[HP [HΨ HR]]" .
iDestruct "HΨ" as (x) "HΨ" .
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1 subgoal
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∃ a : A , Ψ a



11

Implementation of the iFrame tactic

Problem: the goal is not deeply embedded, how to manipulate it?

Solution: logic programming using type classes

The lemma corresponding to the tactic in Coq:

Class Frame (R P Q : iProp) := frame : R ∗ Q ` P.

Lemma tac frame ∆ ∆’ i p R P Q :

envs lookup delete i ∆ = Some (p, R, ∆’) →
Frame R P Q →
((if p then ∆ else ∆’) ` Q) → ∆ ` P.

What we want to frame

Initial conclusion

Conclusion of the new goal in which R is framed

Note: we support framing under binders (∃, ∀, . . . ) and user defined connectives
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Implementation of the iFrame tactic (2)
Consider the type class:

Class Frame (R P Q : iProp) := frame : R ∗ Q ` P.

What we want to frame

Initial conclusion

Conclusion of the new goal in which R is framed

Instances (rules of the logic program):
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Class Frame (R P Q : iProp) := frame : R ∗ Q ` P.

What we want to frame

Initial conclusion

Conclusion of the new goal in which R is framed

Instances (rules of the logic program):

Instance frame here R : Frame R R True .
Instance frame sep l R P1 P2 Q :
Frame R P1 Q → Frame R (P1 ∗ P2 ) (Q ∗ P2 ) .

Instance frame sep r R P1 P2 Q :
Frame R P2 Q → Frame R (P1 ∗ P2 ) (P1 ∗ Q) .
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Implementation of the iFrame tactic (2)
Consider the type class:

Class Frame (R P Q : iProp) := frame : R ∗ Q ` P.

What we want to frame

Initial conclusion

Conclusion of the new goal in which R is framed

Instances (rules of the logic program):

Class MakeSep P Q PQ := make sep : P ∗ Q a` PQ .
Instance frame here R : Frame R R True .
Instance frame sep l R P1 P2 Q Q ’ :
Frame R P1 Q → MakeSep Q P2 Q ’ → Frame R (P1 ∗ P2 ) Q ’ .

Instance frame sep r R P1 P2 Q Q ’ :
Frame R P2 Q → MakeSep P1 Q Q ’ → Frame R (P1 ∗ P2 ) Q ’ .

Instance make sep true l P : MakeSep True P P | 1.
Instance make sep true r P : MakeSep P True P | 1.
Instance make sep default P Q : MakeSep P Q (P ∗ Q) | 2.
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Proving Hoare triples

Consider:
{x 7→ v1 ∗ y 7→ v2}swap(x, y){x 7→ v2 ∗ y 7→ v1}

How to use IPM to manipulate the precondition?

Solution: define Hoare triple in terms of weakest preconditions

We let:

{P} e {Q} , 2(P −∗ wp e {Q})

where wp e {Q} gives the weakest precondition under which:

I all executions of e are safe

I the final state of e satisfies the postcondition Q
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Proving swap using symbolic execution

Definition swap : val := λ: "x" "y" ,
let : "tmp" := !"x" in

"x" ← !"y" ; ;
"y" ← "tmp" .

Lemma swap spec l1 l2 v1 v2 :
{{ l1 7→ v1 ∗ l2 7→ v2 }} swap #l1 #l2
{{ , l1 7→ v2 ∗ l2 7→ v1 }}.

Proof .

iIntros "!# [Hl1 Hl2]".

do 2 wp let.

wp load; wp let.

wp load.

wp store.

wp store.

iFrame.

Qed.

1 subgoal

Σ : gFunctors

H : heapG Σ
l1 , l2 : loc

v1 , v2 : val

(1/1)
{{ l1 7→ v1 ∗ l2 7→ v2 }} (swap #l1) #l2 {{ , l1 7→ v2 ∗ l2 7→ v1 }}
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#l2 ← "tmp" {{ , l1 7→ v2 ∗ l2 7→ v1 }}
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Proving swap using symbolic execution

Definition swap : val := λ: "x" "y" ,
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No more subgoals .
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Making IPM tactics modular using type classes
We want iDestruct "H" as "[H1 H2]" to:

I turn H : P * Q into H1 : P and H2 : Q

I turn H : .(P * Q) into H2 : . P and H2 : . Q

I turn H : l 7→ v into H1 : l
1/27−→ v and H2 : l

1/27−→ v

We use type classes to achieve that:

Class IntoAnd (p : bool) (P Q1 Q2 : uPred M) :=
into and : P ` if p then Q1 ∧ Q2 else Q1 ∗ Q2 .

Instance into and sep p P Q : IntoAnd p (P ∗ Q) P Q .
Instance into and and P Q : IntoAnd true (P ∧ Q) P Q .
Instance into and later p P Q1 Q2 : IntoAnd p P Q1 Q2 → IntoAnd p (. P) (. Q1) (. Q2) .
Instance into and mapsto l q v : IntoAnd false (l 7→{q} v) (l 7→{q/2} v) (l 7→{q/2} v) .

Lemma tac and destruct ∆ ∆’ i p j1 j2 P P1 P2 Q :
envs lookup i ∆ = Some (p , P) →
IntoAnd p P P1 P2 →
envs simple replace i p (Esnoc (Esnoc Enil j1 P1 ) j2 P2 ) ∆ = Some ∆’ →
(∆’ ` Q) → ∆ ` Q .
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IPM in summary

I Contexts are deeply embedded

I Context manipulation is done via
computational reflection

I IPM tactics are just Coq lemmas

I Type classes are used to make the
tactics more general

I Ltac is used to provide an end-user
syntax and error reporting

These ideas are hopefully applicable to other object logics
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In the paper and Coq formalization

I Detailed description of the implementation

I Verification of concurrent algorithms using IPM

I Formalization of unary and binary logical relations

I Proving logical refinements

Shows that IPM scales

proofmode.pdf
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Thank you!

Want a ‘proof mode’ for another logic, talk to us!

Download Iris at http://iris-project.org/

Talks about Iris this week:

I Wed 15:35 @ POPL: Krogh-Jespersen, Svendsen and Birkedal
A Relational Model of Types-and-Effects in Higher-Order Concurrent Separation Logic

I Sat 9:00 @ CoqPL: Krebbers
Demonstration of the Iris separation logic in Coq

I Sat 10:30 @ CoqPL: Timany, Krebbers and Birkedal
Logical Relations in Iris

http://iris-project.org/
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Coq wish list

I Data types in Ltac

I Side-effecting tactics that can return a value

I More expressive parsing mechanism of tactic
notations

I Exception handling in Ltac to enable better
error message generation

I Opt-out from backtracking Ltac semantics


