
Logical Relations in Iris

Amin Timany
imec-Distrinet, KU Leuven, Belgium

amin.timany@cs.kuleuven.be

Robbert Krebbers
Aarhus University, Denmark
mail@robbertkrebbers.nl

Lars Birkedal
Aarhus University, Denmark

birkedal@cs.au.dk

Abstract
We present a formalization of logical relations for the language
Fµ,ref ,conc : a call-by-value higher-order language with impredica-
tive polymorphism, recursive types, general references, and con-
currency. The logical relation interpretation is defined in Iris, a
state-of-the-art higher-order concurrent separation logic, which in
turn is formalized in Coq. The proof effort is made simpler by the
use of the novel interactive proof mode for Iris, called IPM [?].

1. Introduction
It is well-known that it is challenging to define logical relations
for higher-order programming languages with genereral references
and concurrency [?, ?]. One of the main challenges is the so-called
type-world circularity [?]. Here we side-step that challenge because
we define the logical relation in Iris, a state-of-the-art higher-order
concurrent separation logic. Iris is a logic of resources, with built-in
support for defining guarded recursive predicates and invariants. We
present both a unary and a binary logical relation interpretation of
the types of Fµ,ref ,conc .

The Coq source code for our development can be found at
https://bitbucket.org/logsem/iris-logrel. The material
presented in this abstract is briefly described in [?] as a case study.

2. The language Fµ,ref ,conc
Iris is not tied to a fixed programming language, but can be instanti-
ated with different programming languages. Here we instantiate it to
Fµ,ref ,conc , which we formalize in Coq using the Autosubst library
for De Bruijn terms [?]. De Bruijn terms make it easier to deal with
substitution on open terms, which is needed for our proofs.

The terms and types of Fµ,ref ,conc can be found in Figure ??.
Terms are untyped, so type-level abstraction is written as Λ e and
type application as e . The operational semantics is split into two
parts: thread-local head reduction →h and thread-pool reduction
→tp, see Figure ??. Both are defined using standard call-by-value
evaluation contexts K, whose definition is omitted. Thread-pool
reduction is defined on configurations =; (~e, σ) consisting of a state
σ (a finite partial map from locations to values) and a thread-pool ~e
(a list of expressions corresponding to the threads). The thread-pool
reduction is defined by interleaving, i.e., by picking a thread and
executing it, thread-locally, for one step. The only special case is
fork {e}, which spawns a new thread e, and reduces itself to the
unit value ().

Typing judgments take the form Ξ | Γ ` e : τ , where Ξ is
a context of type variables, and Γ is a context assigning types to
program variables. The inference rules for the typing judgment are
mostly standard and hence omitted.

3. Unary logical relation
The unary logical relation for Fµ,ref ,conc is presented in Figure ??.
The logical relation is defined by two relations, indexed over types τ ,

e ::= x | ` | rec f(x) = e | Λ e | fold e | unfold e | e e
| e | fork {e} | ref(e) | ! e | e← e | CAS(e, e, e)

v ::= n | ` | rec f(x) = e | Λ e | fold v
τ ::= X | N | τ → τ | ∀X. τ | µX. τ | ref(τ)

Figure 1. The syntax of Fµ,ref ,conc (sums and products omitted).

Thread-local CBV head-reduction (omitted): (e, σ) →h (e′, σ′)

Thread-pool reduction: (~e, σ) →tp (~e′, σ′)

(e, σ) →h (e′, σ′)

(~e1 K[e] ~e2, σ) →tp (~e1 K[e′] ~e2, σ
′)

(~e1 K[fork {e}] ~e2, σ) →tp (~e1 K[()] ~e2 e, σ)

Figure 2. Operational semantics of Fµ,ref ,conc .

JXK∆(v) , ∆(X)(v)

Jτ1 → τ2K∆(v) , �(∀w. Jτ1K∆(w)→ Jτ2KE∆(v w))

J∀X. τK∆(v) , ∀f. �JτKE∆[X 7→f](v)

JµX. τK∆(v) , µ f. ∃w. v = foldw ∧ .JτK∆[X 7→f](w)

Jref(τ)K∆(v) , ∃`. v = ` ∧ ∃w. ` 7→ w ∗ JτK∆(w)
N .`

JτKE∆(e) , wp e {v. JτK∆(v)}

Figure 3. The unary logical relation for Fµ,ref ,conc .

namely a value interpretation JτK∆ : Val→ iProp and an expression
interpretation JτKE∆ : Expr → iProp. Note that these relations are
Iris relations; iProp is the type of Iris propositions. Formally, these
logical relations are defined on types τ in context Ξ, but we omit
the Ξ here for notational simplicity. We furthermore omit product,
sum and base types, but these are present in the Coq formalization.
The ∆ is a mapping from type variables to value interpretations, i.e.,
∆ : Tvar→ Val→ iProp.

Experts on logical relations will recognize that this definition is
extremely compact; this is because we express the relations in Iris.
The case for function types expresses the usual requirement that a
value is in the interpretation if it maps a value in the argument
type to an expression in the result type. The � modality (here
and elsewhere) is used to ensure that the relation is persistent,
which means that it does not depend on any resources. We use
this modality, because Iris is a logic of resources, which means
that its propositions (iProp) generally express ownership of (ghost)
resources. The logical relation must be persistent since typing is

1 2017/9/25

https://bitbucket.org/logsem/iris-logrel

intuitionistic (consider for example that the context Γ is copied in
the usual typing rule for products). The definition for recursive types
is given using a recursively defined predicate (the second µ is a
fixpoint combinator); this is well-defined in Iris since the recursion
variable occurs under the . guard1.

We use the Iris invariant ∃w. ` 7→ w ∗ JτK∆(w)
N .`

to express
that a value is in the interpretation of a reference type ref(τ). The
box is (on paper) Iris notation for invariants and the superscript
(N .`) is the name of the invariant. Iris uses names to make sure
invariants are not used more than once (which would be unsound).
This semantics of the type ref(τ) states that a value of this type
is a location ` and, invariantly, the location ` contains a value w in
memory that is in the interpretation of τ . This use of Iris invariants
dispels the need for explicit possible worlds and explicit treatment
of the type-world circularity, which is otherwise typical for logical
relation for reference types [?, ?].

Finally, the expression relation JτKE∆ uses Iris weakest pre-
conditions to say that e is in the semantic interpretation of τ , if it is
a computation whose possibly resulting value v is in the semantic
interpretation of τ . Using the expression relation, we can define the
semantic interpretation of types as:

Ξ | Γ � e : τ , ∀∆~v.
(∧

i
JσiK∆(vi)

)
` JτKE∆(e[~v/~x])

where Γ = x1 : σ1, . . . , xn : σn and the environments ∆ : Tvar→
Val→ iProp map into persistent interpretations.

For this logical relation, we can now prove:

1. The fundamental theorem of logical relation2:

Theorem fundamental Γ e τ :Γ t̀ e : τ → Γ � e : τ.

2. Type soundness, i.e., that reduction of any well-typed expression
can never get stuck:

Corollary type soundness e τ e’ thp σ σ’ :
[] t̀ e : τ → rtc step ([e], σ) (e’ :: thp, σ’) →
is Some (to val e’) ∨ reducible e’ σ’.

The first result is proven in Iris using IPM. The latter result
is formalized in plain Coq and relies on the fundamental theorem
and the adequacy result for Iris, which formalizes that the weakest
precondition predicate of Iris really is connected to the operational
semantics of Fµ,ref ,conc in the way you would expect.

Note that the corollary type soundness shows the true power of
using a proof assistant instead of a standalone tool: we can compose
a proof in Iris with the adequacy result of Iris into a corollary that
only mentions the typing judgment and the operational semantics.
So, one no longer has to trust Iris or IPM!

4. Binary logical relation
We have also defined a binary logical relation for Fµ,ref ,conc and
proven that logical relatedness implies contextual approximation. It
is not too hard to generalize the unary logical value interpretation to
a binary relation, but to generalize the expression interpretation from
the unary logical relation to the binary logical relation, one needs to
find some way of expressing a relation between two expressions e

1 Formally, one has to show that the value interpretation of types is suitably
non-expansive, which relies on all the Iris connectives being non-expansive.
In the Iris formalization, non-expansiveness is encoded using Coq’s setoid
machinery [?], which makes it possible to hide most details about non-
expansiveness from the end-user. Using this machinery, non-expansiveness
of the logical relation is proved automatically.
2 Contexts Ξ do not appear in the Coq code since we use De Bruijn indices.

and e′ using weakest precondition predicates, which are unary. This
can be done as follows:

JτKE∆(e, e′) , ∀jK. j Z⇒ K[e′]→
wp e {v.∃w. j Z⇒K[w] ∗ JτK∆(v, w)}

Here j Z⇒ K[e′] is a predicate on ghost state, which expresses
that the specification side e′ is in some evaluation context K for
some thread j before we run e. In the post-condition, we have
j Z⇒ K[w]. Together with an appropriate invariant on ghost state,
these predicates ensure that we really are relating the execution of e,
which results in a value v to an execution of e′, which results in a
value w, and that those values are related at the type τ .

Logical relatedness of e and e′ is then defined as:

Ξ | Γ ` e ≤log e
′ : τ , ∀~v ~v′ ∆ .;

heap
N∗ Ψ();

N ′

∗
(∧

i
JσiK∆(vi, v

′
i)
)
` JτKE∆(e[~v/~x], e[~v′/~x])

where Γ = x1 : σ1, . . . , xn : σn and the environments ∆ : Tvar→
Val→ iProp map into persistent interpretations. Here Ψ();

N ′

is
the invariant on ghost states mentioned above.

The fact that logical relatedness implies contextual approxima-
tion is shown by a series of congruence lemmas, corresponding to
each of the typing rules (each on average about 10 lines of code).
These lemmas are proved in Iris using IPM.

5. Proving logical refinements
We have used the binary logical relation to prove that two fine-
grained concurrent implementations of modules contextually refines
their coarse-grained counterparts. The first example is a counter
module and the second is a stack module. The fine-grained imple-
mentations use optimistic concurrency and no locks, whereas the
coarse-grained implementations use a spin lock (implemented using
a CAS loop) to lock the data structure of the module before and after
an operation is performed on the data structure.

For the counter, we use an Iris invariant relating the reference
cells in the two implementations and the lock used in the coarse-
grained implementation. The stack example comes from [?], where
it was proved on paper using an invariant formulated using state
transition system. State transition systems can be encoded in Iris [?],
but in our experience, it is often easier to use direct monoid
constructions when working in Coq.

2 2017/9/25

