The Category-theoretic Solution of Recursive Ultra-metric Space Equations

Amin Timany Bart Jacobs

iMinds-Distrinet KU Leuven

CoqPL – January 23rd, 2016 St. Petersburg, Florida

• In order to define Kripke-style semantics of a higher-order imperative programming language we need to solve equations

$$\mathcal{W} = \mathbb{N} \rightharpoonup_{\text{fin}} \mathcal{T}$$

and

$$\mathcal{T} = \mathcal{W} \to_{\mathrm{mon}} 2^{\mathcal{V}}$$

• In order to define Kripke-style semantics of a higher-order imperative programming language we need to solve equations

$$\mathcal{W} = \mathbb{N} \rightharpoonup_{\operatorname{fin}} \mathcal{T}$$

and

$$\mathcal{T} = \mathcal{W} \to_{\mathrm{mon}} 2^V$$

• W is the set of Kripke worlds (each assigns types to locations)

• In order to define Kripke-style semantics of a higher-order imperative programming language we need to solve equations

$$\mathcal{W} = \mathbb{N} \rightharpoonup_{\operatorname{fin}} \mathcal{T}$$

and

$$\mathcal{T} = \mathcal{W} \to_{\mathrm{mon}} 2^V$$

- W is the set of Kripke worlds (each assigns types to locations)
- \mathcal{T} is the set of interpretations of types (depends on worlds to determine interpretation of refrences)

• In order to define Kripke-style semantics of a higher-order imperative programming language we need to solve equations

$$\mathcal{W} = \mathbb{N} \rightharpoonup_{\operatorname{fin}} \mathcal{T}$$

and

$$\mathcal{T} = \mathcal{W} \to_{\mathrm{mon}} 2^V$$

- W is the set of Kripke worlds (each assigns types to locations)
- \mathcal{T} is the set of interpretations of types (depends on worlds to determine interpretation of refrences)
- Impossible due to cardinality issues

■ We use step-indexing

$$\widehat{\mathcal{T}} \simeq \blacktriangleright ((\mathbb{N} \rightharpoonup_{\mathrm{fin}} \widehat{\mathcal{T}}) \rightarrow_{\mathrm{mon}} \mathbb{P}(V))$$

$$\mathbb{P}(V) \stackrel{\Delta}{=} \{ p \in n \to 2^V \mid \forall n, v. \ v \in p(n) \to \forall m \le n. \ v \in p(m) \}$$

■ We use step-indexing

$$\widehat{\mathcal{T}} \simeq \blacktriangleright ((\mathbb{N} \rightharpoonup_{\mathrm{fin}} \widehat{\mathcal{T}}) \rightarrow_{\mathrm{mon}} \mathbb{P}(V))$$
$$\mathbb{P}(V) \stackrel{\Delta}{=} \{ p \in n \to 2^V \mid \forall n, v. \ v \in p(n) \to \forall m \le n. \ v \in p(m) \}$$

And define

$$\mathcal{W} \stackrel{\Delta}{=} \mathbb{N} \rightharpoonup_{\operatorname{fin}} \widehat{\mathcal{T}}$$

and

$$\mathcal{T} \stackrel{\Delta}{=} \mathcal{W} \to_{\mathrm{mon}} \mathbb{P}(V)$$

Outline

1 Introduction

2 Theory

- Ultra-metric spaces
- M-categories and the fixed point theorem
- Example

3 Implementation

- Ultra-metric spaces
- M-categories

4 Very high level proof sketch (existence)

Introduction Theory Implementation Very high level proof sketch (existence)	Ultra-metric spaces M-categories and the fixed point theorem Example
---	---

A space A with a distance function $\delta:A\times A\to [0,b]$ such that:

Bounded Ultra-metric Space:

A space A with a distance function $\delta: A \times A \rightarrow [0, b]$ such that:

 $\forall x, y. \ \delta(x, y) = 0 \Leftrightarrow x = y$

A space A with a distance function $\delta:A\times A\to [0,b]$ such that:

$$1 \quad \forall x, y. \ \delta(x, y) = 0 \Leftrightarrow x = y$$

$$2 \quad \forall x, y. \ \delta(x, y) = \delta(y, x)$$

Introduction	Ultra-metric spaces
Theory	M-categories and the fixed point theorem
Implementation	Example

A space A with a distance function $\delta : A \times A \rightarrow [0, b]$ such that:

- $\ \ \, \blacksquare \ \ \forall x,y. \ \ \delta(x,y)=0 \Leftrightarrow x=y$
- $2 \ \forall x, y. \ \delta(x, y) = \delta(y, x)$
- $\exists \quad \forall x, y, z. \ \delta(x, y) \leq \max(\delta(x, z), \delta(y, z))$

Introduction Theory Implementation Very high level proof sketch (existence)	Ultra-metric spaces M-categories and the fixed point theorem Example
---	---

A space A with a distance function $\delta : A \times A \rightarrow [0, b]$ such that: $\forall x, y. \ \delta(x, y) = 0 \Leftrightarrow x = y$ $\forall x, y. \ \delta(x, y) = \delta(y, x)$ $\forall x, y, z. \ \delta(x, y) < max(\delta(x, z), \delta(y, z))$

• δ can be though of as *degree of similarity*

Bounded Ultra-metric Space:

A space A with a distance function $\delta : A \times A \rightarrow [0, b]$ such that: $\forall x, y. \ \delta(x, y) = 0 \Leftrightarrow x = y$ $\forall x, y. \ \delta(x, y) = \delta(y, x)$ $\forall x, y, z. \ \delta(x, y) \leq max(\delta(x, z), \delta(y, z))$

 \blacksquare δ can be though of as degree of similarity

An Ultra-metric space is *complete* if every Cauchy sequence $\{a_n\}_{n\in\mathbb{N}}$ converges:

 $\forall \varepsilon > 0. \ \exists N. \ \forall m, k \ge N. \ \delta(a_m, a_k) < \varepsilon$

Bounded Ultra-metric Space:

 $\begin{array}{l} \text{A space } A \text{ with a distance function } \delta: A \times A \rightarrow [0,b] \text{ such that:} \\ \blacksquare \quad \forall x,y. \ \delta(x,y) = 0 \Leftrightarrow x = y \\ \geqq \quad \forall x,y. \ \delta(x,y) = \delta(y,x) \\ \blacksquare \quad \forall x,y,z. \ \delta(x,y) \leq max(\delta(x,z),\delta(y,z)) \end{array}$

• δ can be though of as *degree of similarity*

An Ultra-metric space is *complete* if every Cauchy sequence $\{a_n\}_{n\in\mathbb{N}}$ converges:

 $\forall \varepsilon > 0. \ \exists N. \ \forall m, k \ge N. \ \delta(a_m, a_k) < \varepsilon$

• Example (bisected distance):

$$\delta: S^{\mathbb{N}} \times S^{\mathbb{N}} \to [0, 1]$$

with

$$\delta(f,g) = \begin{cases} 0 & \text{if } f = g\\ 2^{-max\{n | \forall m \le n. \ f(n) = g(n)\}} & \text{otherwise} \end{cases}$$

forms a complete bounded ultra-metric space

• for (A, δ) and (B, δ') , $f : A \to B$ is non-expansive if:

$\forall x, y : A. \ \delta'(f(x), f(y)) \leq \ \delta(x, y)$

• for (A, δ) and (B, δ') , $f : A \to B$ is non-expansive if:

 $\forall x, y : A. \ \delta'(f(x), f(y)) \le \ \delta(x, y)$

• Example:

$$f: S^{\mathbb{N}} \to S^{\mathbb{N}}$$
 where $f(x)(n) = h(x(n))$ for some $h: S \to S$

• for (A, δ) and (B, δ') , $f : A \to B$ is non-expansive if:

 $\forall x, y : A. \ \delta'(f(x), f(y)) \le \ \delta(x, y)$

• Example:

 $f: S^{\mathbb{N}} \to S^{\mathbb{N}}$ where f(x)(n) = h(x(n)) for some $h: S \to S$

• for (A, δ) and (B, δ') , $f : A \to B$ is contractive if:

 $\forall x, y : A. \ \delta'(f(x), f(y)) \le c \cdot \delta(x, y) \text{ for some } 0 \le c < 1$

• for (A, δ) and (B, δ') , $f : A \to B$ is non-expansive if:

 $\forall x, y : A. \ \delta'(f(x), f(y)) \le \ \delta(x, y)$

• Example:

 $f: S^{\mathbb{N}} \to S^{\mathbb{N}}$ where f(x)(n) = h(x(n)) for some $h: S \to S$

• for (A, δ) and (B, δ') , $f : A \to B$ is contractive if:

 $\forall x, y : A. \ \delta'(f(x), f(y)) \le c \cdot \delta(x, y) \ \text{ for some } \ 0 \le c < 1$

• Example:

$$f: S^{\mathbb{N}} \to S^{\mathbb{N}}$$
 where $f(x)(n) = \begin{cases} a & \text{if } n = 0\\ x(n-1) & \text{otherwise} \end{cases}$ for some fixed $a \in S$

• An *M*-category C is a category such that:

- An *M*-category C is a category such that:
 - For $A, B \in C$, $\delta_{A,B}$: $hom(A, B) \times hom(A, B) \to [0, b]$ makes $hom_{A,B}$ a complete bounded ultra-metric space

- An *M*-category C is a category such that:
 - For $A, B \in C$, $\delta_{A,B}$: $hom(A, B) \times hom(A, B) \rightarrow [0, b]$ makes $hom_{A,B}$ a complete bounded ultra-metric space
 - \blacksquare The composition functions are $\mathit{non-expansive}$

Introduction Theory	Ultra-metric spaces M-categories and the fixed point theorem Example
Very high level proof sketch (existence)	

- An *M*-category C is a category such that:
 - For $A, B \in C$, $\delta_{A,B}$: $hom(A, B) \times hom(A, B) \rightarrow [0, b]$ makes $hom_{A,B}$ a complete bounded ultra-metric space
 - The composition functions are *non-expansive*
- A functor \mathcal{F} on M-categories is *locally non-expansive* (resp. *locally contractive*) if its morphism map is non-expansive (resp. contractive)

- An *M*-category C is a category such that:
 - For $A, B \in C$, $\delta_{A,B}$: $hom(A, B) \times hom(A, B) \rightarrow [0, b]$ makes $hom_{A,B}$ a complete bounded ultra-metric space
 - The composition functions are *non-expansive*
- A functor \mathcal{F} on M-categories is *locally non-expansive* (resp. *locally contractive*) if its morphism map is non-expansive (resp. contractive)
- An increasing Cauchy tower in \mathcal{C} is a diagram

$$A_0 \xrightarrow{f_0} A_1 \xrightarrow{f_1} A_2 \xrightarrow{f_2} \cdots$$

such that:

- An *M*-category C is a category such that:
 - For $A, B \in C$, $\delta_{A,B}$: $hom(A, B) \times hom(A, B) \rightarrow [0, b]$ makes $hom_{A,B}$ a complete bounded ultra-metric space
 - The composition functions are *non-expansive*
- A functor \mathcal{F} on M-categories is *locally non-expansive* (resp. *locally contractive*) if its morphism map is non-expansive (resp. contractive)
- An increasing Cauchy tower in \mathcal{C} is a diagram

$$A_0 \xrightarrow{f_0} A_1 \xleftarrow{f_1} A_2 \xleftarrow{f_2} \cdots$$

such that:

$$g_i \circ f_i = id_{A_i}$$

- An *M*-category C is a category such that:
 - For $A, B \in C$, $\delta_{A,B}$: $hom(A, B) \times hom(A, B) \rightarrow [0, b]$ makes $hom_{A,B}$ a complete bounded ultra-metric space
 - The composition functions are *non-expansive*
- A functor \mathcal{F} on M-categories is *locally non-expansive* (resp. *locally contractive*) if its morphism map is non-expansive (resp. contractive)
- An increasing Cauchy tower in \mathcal{C} is a diagram

$$A_0 \xrightarrow{f_0} A_1 \xleftarrow{f_1} A_2 \xleftarrow{f_2} \cdots$$

such that:

$$\begin{array}{l} \bullet \quad g_i \circ f_i = id_{A_i} \\ \bullet \quad \lim_{i \to \infty} \delta(f_i \circ g_i, id_{A_{i+1}}) = 0 \end{array}$$

- An *M*-category C is a category such that:
 - For $A, B \in C$, $\delta_{A,B}$: $hom(A, B) \times hom(A, B) \to [0, b]$ makes $hom_{A,B}$ a complete bounded ultra-metric space
 - The composition functions are *non-expansive*
- A functor \mathcal{F} on M-categories is *locally non-expansive* (resp. *locally contractive*) if its morphism map is non-expansive (resp. contractive)
- An increasing Cauchy tower in C is a diagram

$$A_0 \xrightarrow{f_0} A_1 \xrightarrow{f_1} A_2 \xrightarrow{f_2} \cdots$$

such that:

$$\begin{array}{c} g_i \circ f_i = id_{A_i} \\ \lim_{i \to \infty} \delta(f_i \circ g_i, id_{A_{i+1}}) = 0 \end{array}$$

• The inverse limit of an increasing Cauchy tower is the (category theoretical limit) of:

Introduction Theory Implementation Very high level proof sketch (existence) Very high level proof sketch (existence)

- An *M*-category C is a category such that:
 - For $A, B \in C$, $\delta_{A,B}$: $hom(A, B) \times hom(A, B) \rightarrow [0, b]$ makes $hom_{A,B}$ a complete bounded ultra-metric space
 - The composition functions are *non-expansive*
- A functor \mathcal{F} on M-categories is *locally non-expansive* (resp. *locally contractive*) if its morphism map is non-expansive (resp. contractive)
- An increasing Cauchy tower in \mathcal{C} is a diagram

$$A_0 \xrightarrow{f_0} A_1 \xleftarrow{f_1} A_2 \xleftarrow{f_2} \cdots$$

such that:

$$\begin{array}{l} \bullet \quad g_i \circ f_i = id_{A_i} \\ \bullet \quad \lim_{i \to \infty} \delta(f_i \circ g_i, id_{A_{i+1}}) = 0 \end{array}$$

• The inverse limit of an increasing Cauchy tower is the (category theoretical limit) of:

Introduction Theory Implementation Very high level proof sketch (existence) Very high level proof sketch (existence)

- An *M*-category C is a category such that:
 - For $A, B \in C$, $\delta_{A,B}$: $hom(A, B) \times hom(A, B) \rightarrow [0, b]$ makes $hom_{A,B}$ a complete bounded ultra-metric space
 - The composition functions are *non-expansive*
- A functor \mathcal{F} on M-categories is *locally non-expansive* (resp. *locally contractive*) if its morphism map is non-expansive (resp. contractive)
- An increasing Cauchy tower in \mathcal{C} is a diagram

$$A_0 \xrightarrow{f_0} A_1 \xleftarrow{f_1} A_2 \xleftarrow{f_2} \cdots$$

such that:

$$\begin{array}{l} \bullet \quad g_i \circ f_i = id_{A_i} \\ \bullet \quad \lim_{i \to \infty} \delta(f_i \circ g_i, id_{A_{i+1}}) = 0 \end{array}$$

• The inverse limit of an increasing Cauchy tower is the (category theoretical limit) of:

Theorem

 \blacksquare Let

 \blacksquare C be an M-category

Theorem

Let

- $\blacksquare \ \mathcal{C} \ be \ an \ M\text{-category}$
- with a terminal object 1

Theorem

\blacksquare Let

- $\blacksquare \ \mathcal{C}$ be an M-category
- with a terminal object 1
- \blacksquare such that ${\mathcal C}$ has inverse limit of all increasing Cauchy towers

Ultra-metric spaces M-categories and the fixed point theorem Example

Theorem

 \blacksquare Let

- \blacksquare C be an M-category
- with a terminal object 1
- \blacksquare such that ${\mathcal C}$ has inverse limit of all increasing Cauchy towers
- $\mathcal{F}: \mathcal{C}^{op} \times \mathcal{C} \to \mathcal{C}$ be a mixed-variance locally contractive functor

Ultra-metric spaces M-categories and the fixed point theorem Example

Theorem

\blacksquare Let

- $\blacksquare \ \mathcal{C} \ be \ an \ M\text{-category}$
- with a terminal object 1
- \blacksquare such that ${\mathcal C}$ has inverse limit of all increasing Cauchy towers
- $\mathcal{F}: \mathcal{C}^{op} \times \mathcal{C} \to \mathcal{C}$ be a mixed-variance locally contractive functor
- such that $m: 1 \to F(1,1)$

Theorem

 \blacksquare Let

- \blacksquare C be an M-category
- with a terminal object 1
- \blacksquare such that ${\mathcal C}$ has inverse limit of all increasing Cauchy towers
- $\mathcal{F}: \mathcal{C}^{op} \times \mathcal{C} \to \mathcal{C}$ be a mixed-variance locally contractive functor

• such that $m: 1 \to F(1, 1)$

• Then, \mathcal{F} has a unique fixed point, i.e.,

 $\exists ! A. \ A \simeq F(A, A)$

Ultra-metric spaces M-categories and the fixed point theorem Example

• We use the theory to solve

$$\widehat{\mathcal{T}} \simeq \blacktriangleright ((\mathbb{N} \rightharpoonup_{\mathrm{fin}} \widehat{\mathcal{T}}) \rightarrow_{\mathrm{mon}} \mathbb{P}(V))$$

Introduction Theory Implementation Very high level proof sketch (existence) Ultra-metric spaces M-categories and the fixed point theorem Example

• We use the theory to solve

$$\widehat{\mathcal{T}} \simeq \blacktriangleright((\mathbb{N} \rightharpoonup_{\mathrm{fin}} \widehat{\mathcal{T}}) \rightarrow_{\mathrm{mon}} \mathbb{P}(V))$$

 \blacksquare In the M-category \mathbf{CBULt} of

• We use the theory to solve

$$\widehat{\mathcal{T}} \simeq \blacktriangleright((\mathbb{N} \rightharpoonup_{\mathrm{fin}} \widehat{\mathcal{T}}) \rightarrow_{\mathrm{mon}} \mathbb{P}(V))$$

- In the M-category **CBULt** of
 - Objects: (bisected) Complete Bounded Ultra metric spaces

• We use the theory to solve

$$\widehat{\mathcal{T}} \simeq \blacktriangleright ((\mathbb{N} \rightharpoonup_{\mathrm{fin}} \widehat{\mathcal{T}}) \rightarrow_{\mathrm{mon}} \mathbb{P}(V))$$

- \blacksquare In the M-category \mathbf{CBULt} of
 - Objects: (bisected) Complete Bounded Ultra metric spaces
 - \blacksquare Morphisms: non-expansive maps

Introduction Theory Implementation Very high level proof sketch (existence) Introduction Implementation Very high level proof sketch (existence)

• We use the theory to solve

$$\widehat{\mathcal{T}} \simeq \blacktriangleright ((\mathbb{N} \rightharpoonup_{\mathrm{fin}} \widehat{\mathcal{T}}) \rightarrow_{\mathrm{mon}} \mathbb{P}(V))$$

- In the M-category **CBULt** of
 - Objects: (bisected) Complete Bounded Ultra metric spaces
 - Morphisms: non-expansive maps
- By constructing a locally contractive functor

$$\mathcal{F}(X,Y) = \blacktriangleright ((\mathbb{N} \rightharpoonup_{\mathrm{fin}} X) \rightarrow_{\mathrm{mon}} \mathbb{P}(V))$$

Introduction Theory Implementation Very high level proof sketch (existence) Introduction Implementation Very high level proof sketch (existence)

• We use the theory to solve

$$\widehat{\mathcal{T}} \simeq \blacktriangleright ((\mathbb{N} \rightharpoonup_{\mathrm{fin}} \widehat{\mathcal{T}}) \rightarrow_{\mathrm{mon}} \mathbb{P}(V))$$

- \blacksquare In the M-category \mathbf{CBULt} of
 - Objects: (bisected) Complete Bounded Ultra metric spaces
 - Morphisms: non-expansive maps
- By constructing a locally contractive functor

$$\mathcal{F}(X,Y) = \blacktriangleright((\mathbb{N} \rightharpoonup_{\mathrm{fin}} X) \rightarrow_{\mathrm{mon}} \mathbb{P}(V))$$

• For any complete bounded ultra metric space X

$$\mathbb{N} \rightharpoonup_{\text{fin}} X$$

is a complete bounded ultra metric space with a partial order relation:

$$f \sqsubseteq g \Leftrightarrow \forall x \in dom(f). \ f(x) = g(x)$$
$$\delta(f,g) = \begin{cases} b & \text{if } dom(f) \neq dom(g) \\ \bigsqcup_{x \in dom(f)} \delta(f(x), g(x)) & \text{otherwise} \end{cases}$$

Introduction Theory Implementation Very high level proof sketch (existence)	Ultra-metric spaces M-categories and the fixed point theorem Example
---	---

$$p \sqsubseteq q \Leftrightarrow \forall n \in \mathbb{N}. \ p(n) \subseteq q(n)$$
$$\delta(p,q) = \begin{cases} 0 & \text{if } p = q\\ 2^{-max\{n | \forall m \le n. \ p(n) = q(n)\}} & \text{otherwise} \end{cases}$$

Introduction Theory Implementation Very high level proof sketch (existence)	Ultra-metric spaces M-categories and the fixed point theorem Example
---	---

$$p \sqsubseteq q \Leftrightarrow \forall n \in \mathbb{N}. \ p(n) \subseteq q(n)$$
$$\delta(p,q) = \begin{cases} 0 & \text{if } p = q\\ 2^{-max\{n | \forall m \le n. \ p(n) = q(n)\}} & \text{otherwise} \end{cases}$$

• $\mathcal{G}(X,Y) = (\mathbb{N} \rightharpoonup_{\text{fin}} X) \rightarrow_{\text{mon}} \mathbb{P}(V)$ is locally non-expansive

Introduction Theory Implementation Very high level proof sketch (existence)	Ultra-metric spaces M-categories and the fixed point theorem Example
---	---

$$p \sqsubseteq q \Leftrightarrow \forall n \in \mathbb{N}. \ p(n) \subseteq q(n)$$
$$\delta(p,q) = \begin{cases} 0 & \text{if } p = q\\ 2^{-max\{n | \forall m \le n. \ p(n) = q(n)\}} & \text{otherwise} \end{cases}$$

■ $\mathcal{G}(X, Y) = (\mathbb{N} \rightarrow_{\text{fin}} X) \rightarrow_{\text{mon}} \mathbb{P}(V)$ is locally non-expansive ■ $\triangleright(X) : \mathbf{CBULt} \rightarrow \mathbf{CBULt}$ is space X with distances halved

Introduction Theory Implementation Very high level proof sketch (existence)	Ultra-metric spaces M-categories and the fixed point theorem Example
---	---

$$p \sqsubseteq q \Leftrightarrow \forall n \in \mathbb{N}. \ p(n) \subseteq q(n)$$
$$\delta(p,q) = \begin{cases} 0 & \text{if } p = q\\ 2^{-max\{n | \forall m \le n. \ p(n) = q(n)\}} & \text{otherwise} \end{cases}$$

■ $\mathcal{G}(X, Y) = (\mathbb{N} \to_{\text{fin}} X) \to_{\text{mon}} \mathbb{P}(V)$ is locally non-expansive ■ $\triangleright(X) : \mathbf{CBULt} \to \mathbf{CBULt}$ is space X with distances halved ■ \triangleright is locally contractive

Introduction Theory Implementation Very high level proof sketch (existence)	Ultra-metric spaces M-categories and the fixed point theorem Example
---	---

$$p \sqsubseteq q \Leftrightarrow \forall n \in \mathbb{N}. \ p(n) \subseteq q(n)$$
$$\delta(p,q) = \begin{cases} 0 & \text{if } p = q\\ 2^{-max\{n | \forall m \le n. \ p(n) = q(n)\}} & \text{otherwise} \end{cases}$$

 \blacktriangleright (X) : **CBULt** \rightarrow **CBULt** is space X with distances halved

- ► is locally contractive
- Thus, $\mathcal{F} = \mathbf{b} \circ \mathcal{G}$ is locally contractive

Introduction Theory Implementation Very high level proof sketch (existence)	Ultra-metric spaces M-categories and the fixed point theorem Example
---	---

$$p \sqsubseteq q \Leftrightarrow \forall n \in \mathbb{N}. \ p(n) \subseteq q(n)$$
$$\delta(p,q) = \begin{cases} 0 & \text{if } p = q\\ 2^{-max\{n | \forall m \le n. \ p(n) = q(n)\}} & \text{otherwise} \end{cases}$$

• $\mathcal{G}(X,Y) = (\mathbb{N} \rightharpoonup_{\text{fin}} X) \rightarrow_{\text{mon}} \mathbb{P}(V)$ is locally non-expansive

 \blacktriangleright (X) : **CBULt** \rightarrow **CBULt** is space X with distances halved

- ► is locally contractive
- Thus, $\mathcal{F} = \mathbf{b} \circ \mathcal{G}$ is locally contractive

• The fix point is $\widehat{\mathcal{T}}$ is uniquely determined:

$$\widehat{\mathcal{T}} \simeq F(\widehat{\mathcal{T}}, \widehat{\mathcal{T}}) = \blacktriangleright ((\mathbb{N} \rightharpoonup_{\mathrm{fin}} \widehat{\mathcal{T}}) \rightarrow_{\mathrm{mon}} \mathbb{P}(V))$$

Ultra-metric spaces M-categories

■ Implementation:

- Implementation:
- Instead of \mathbb{R} , we use an M-lattice: a poset (X, \sqsubseteq) such that:

			Theory
		Impl	lementation
	proof		

- Implementation:
- Instead of \mathbb{R} , we use an M-lattice: a poset (X, \sqsubseteq) such that:
 - \blacksquare Has a bottom element \bot

			Theory
		Impl	lementation
	proof		

- Implementation:
- Instead of \mathbb{R} , we use an M-lattice: a poset (X, \sqsubseteq) such that:
 - \blacksquare Has a bottom element \bot
 - \blacksquare Has a top element \top

- Implementation:
- Instead of \mathbb{R} , we use an M-lattice: a poset (X, \sqsubseteq) such that:
 - \blacksquare Has a bottom element \bot
 - \blacksquare Has a top element \top
 - Has meet (\sqcup) of arbitrary subsets of X

- Implementation:
- Instead of \mathbb{R} , we use an M-lattice: a poset (X, \sqsubseteq) such that:
 - \blacksquare Has a bottom element \bot
 - Has a top element \top
 - Has meet (\sqcup) of arbitrary subsets of X
 - Appr(X) is a subset of X of approximation elements

- Implementation:
- Instead of \mathbb{R} , we use an M-lattice: a poset (X, \sqsubseteq) such that:
 - \blacksquare Has a bottom element \bot
 - Has a top element \top
 - Has meet (\sqcup) of arbitrary subsets of X
 - Appr(X) is a subset of X of approximation elements
 - $\forall a. \ a \in Appr(X) \to \bot \sqsubset a$

- Implementation:
- Instead of \mathbb{R} , we use an M-lattice: a poset (X, \sqsubseteq) such that:
 - \blacksquare Has a bottom element \bot
 - Has a top element \top
 - Has meet (\sqcup) of arbitrary subsets of X
 - Appr(X) is a subset of X of approximation elements
 - $\forall a. \ a \in Appr(X) \to \bot \sqsubset a$
 - $\blacksquare \ \forall a. \perp \sqsubset a \rightarrow \exists b \in Appr(X). \ b \sqsubseteq a$

Ultra-metric spaces

- Implementation:
- Instead of \mathbb{R} , we use an M-lattice: a poset (X, \sqsubseteq) such that:
 - \blacksquare Has a bottom element \bot
 - Has a top element \top
 - Has meet (\sqcup) of arbitrary subsets of X
 - Appr(X) is a subset of X of approximation elements
 - $\forall a. \ a \in Appr(X) \to \bot \sqsubset a$
 - $\forall a. \perp \sqsubset a \rightarrow \exists b \in Appr(X). \ b \sqsubseteq a$
 - $\forall a. \ (\forall b \in Appr(X). \ a \sqsubset b) \to a = \bot$

 $(\forall a \in Appr(X)). \ \exists b \in Appr(X). \ b \sqsubset a) \lor (\exists c \in Appr(X). \ \forall a. \ a \sqsubset c \to a = \bot)$

 $\blacksquare \forall a. \ (\forall b \in Appr(X). \ a \sqsubset b) \rightarrow a = \bot$

$$\begin{split} \mathbb{B} &= \{f: \texttt{nat} \to \texttt{Prop} \mid \forall m, n. \ m \leq n \to f(n) \to f(m) \} \\ &\quad x \sqsubseteq_{\mathbb{B}} y \ \text{ iff } \ \forall n. \ y(n) \to x(n) \end{split}$$

$$x \sqsubseteq_{\mathbb{B}} y$$
 iff $\forall n. \ y(n) \to x(n)$

• $\perp_{\mathbb{B}} = \texttt{fun} _ \Rightarrow \texttt{True}$

$$x \sqsubseteq_{\mathbb{B}} y$$
 iff $\forall n. \ y(n) \to x(n)$

 $\begin{array}{c} \bot_{\mathbb{B}} = \texttt{fun} _ \Rightarrow \texttt{True} \\ \blacksquare \top_{\mathbb{B}} = \texttt{fun} _ \Rightarrow \texttt{False} \end{array}$

 $\begin{array}{l} \bot_{\mathbb{B}} = \texttt{fun} _ \Rightarrow \texttt{True} \\ \blacksquare \ \top_{\mathbb{B}} = \texttt{fun} _ \Rightarrow \texttt{False} \\ \blacksquare \ \texttt{for} \ F: I \rightarrow A, \ (\sqcup_{\mathbb{B}} F)(n) = \forall x: I. \ f(x)(n) \end{array}$

$$((1/2)f)(n) = \begin{cases} \text{True} & \text{if } n = 0\\ f(n+1) & \text{otherwise} \end{cases}$$

Introduction Theory Ultra-metric spaces Implementation Very high level proof sketch (existence)

 \blacksquare To represent contractiveness in L, we use a contraction rate $\rho:L\rightarrow L$

• To represent contractiveness in L, we use a contraction rate $\rho: L \to L$ • $\forall x. \ \rho(x) \sqsubseteq x$

- To represent contractiveness in L, we use a contraction rate $\rho: L \to L$
 - $\blacksquare \ \forall x. \ \rho(x) \sqsubseteq x$
 - $\forall x. \perp \sqsubset x \rightarrow \rho(x) \sqsubset x$

• To represent contractiveness in L, we use a contraction rate $\rho: L \to L$

- $\blacksquare \ \forall x. \ \rho(x) \sqsubseteq x$
- $\forall x. \perp \sqsubset x \to \rho(x) \sqsubset x$
- $\forall x,y \in Appr(A). \exists n \in \mathbb{N}. \ \rho^n(x) \sqsubseteq y$

• To represent contractiveness in L, we use a contraction rate $\rho: L \to L$

- $\blacksquare \ \forall x. \ \rho(x) \sqsubseteq x$
- $\blacksquare \ \forall x. \perp \sqsubset x \rightarrow \rho(x) \sqsubset x$
- $\forall x,y \in Appr(A). \ \exists n \in \mathbb{N}. \ \rho^n(x) \sqsubseteq y$

• Example: $(1/2) : \mathbb{B} \to \mathbb{B}$ is a contraction rate:

$$((1/2)f)(n) = \begin{cases} \text{True} & \text{if } n = 0\\ f(n+1) & \text{otherwise} \end{cases}$$

Ultra-metric spaces M-categories

• To represent contractiveness in L, we use a contraction rate $\rho: L \to L$

- $\blacksquare \ \forall x. \ \rho(x) \sqsubseteq x$
- $\forall x. \perp \sqsubset x \to \rho(x) \sqsubset x$
- $\forall x, y \in Appr(A). \exists n \in \mathbb{N}. \ \rho^n(x) \sqsubseteq y$

• Example: $(1/2) : \mathbb{B} \to \mathbb{B}$ is a contraction rate:

$$((1/2)f)(n) = \begin{cases} \text{True} & \text{if } n = 0\\ f(n+1) & \text{otherwise} \end{cases}$$

• For (A, δ) and $(B, \delta'), f : A \to B$ we change the contractiveness condition from:

$$\forall x, y : A. \ \delta'(f(x), f(y)) \leq c \cdot \delta(x, y) \ \text{ for some } \ 0 \leq c < 1$$

 to

 $\forall x,y:A. \ \delta'(f(x),f(y)) \sqsubseteq \rho(\delta(x,y)) \ \text{ for some contraction rate } \rho$

Introduction Theory	
Implementation	M-categories
Very high level proof sketch (existence)	

• It is all implemented on top of a general purpose category theory library¹

¹https://github.com/amintimany/Categories

Theory	
Implementation	M-categories
Very high level proof sketch (existence)	

- It is all implemented on top of a general purpose category theory library¹
- All category theoretical constructions and facts, e.g., (co)limits, their uniqueness, etc. are taken from there

¹https://github.com/amintimany/Categories

- Introduction Theory Ultra-metric spaces Implementation M-categories Very high level proof sketch (existence)
- It is all implemented on top of a general purpose category theory library¹
- All category theoretical constructions and facts, e.g., (co)limits, their uniqueness, etc. are taken from there
- M-categories are defined as:

```
Record MCat (L : MLattice) : Type :=
{ MC_Obj : Type;
MC_Hom : MC_Obj → MC_Obj → (Complete_UltraMetric L);
MC_compose : forall {a b c : MC_Obj}, NonExpansive
    (product_CUM (MC_Hom a b) (MC_Hom b c)) (MC_Hom a c);
...
MC_Cat :> Category := {| Obj := MC_Obj; Hom := MC_Hom;
    compose := fun _ _ _ x y ⇒ MC_compose (x, y);
... |} }.
```

¹https://github.com/amintimany/Categories

- Introduction Theory Ultra-metric spaces Implementation M-categories Very high level proof sketch (existence)
- It is all implemented on top of a general purpose category theory library¹
- All category theoretical constructions and facts, e.g., (co)limits, their uniqueness, etc. are taken from there
- M-categories are defined as:

```
Record MCat (L : MLattice) : Type :=
{ MC_Obj : Type;
MC_Hom : MC_Obj → MC_Obj → (Complete_UltraMetric L);
MC_compose : forall {a b c : MC_Obj}, NonExpansive
    (product_CUM (MC_Hom a b) (MC_Hom b c)) (MC_Hom a c);
...
MC_Cat :> Category := {| Obj := MC_Obj; Hom := MC_Hom;
    compose := fun _ _ _ x y ⇒ MC_compose (x, y);
... |} }.
```

Primitive projections guarantee that MC_Cat projection of an M-category \hat{C} constructed out of a category C is definitionally equal to C

¹https://github.com/amintimany/Categories

- Introduction Theory Ultra-metric spaces Implementation M-categories Very high level proof sketch (existence)
- It is all implemented on top of a general purpose category theory library¹
- All category theoretical constructions and facts, e.g., (co)limits, their uniqueness, etc. are taken from there
- M-categories are defined as:

```
Record MCat (L : MLattice) : Type :=
{ MC_Obj : Type;
MC_Hom : MC_Obj → MC_Obj → (Complete_UltraMetric L);
MC_compose : forall {a b c : MC_Obj}, NonExpansive
    (product_CUM (MC_Hom a b) (MC_Hom b c)) (MC_Hom a c);
...
MC_Cat :> Category := {| Obj := MC_Obj; Hom := MC_Hom;
    compose := fun _ _ _ x y ⇒ MC_compose (x, y);
... |} }.
```

- Primitive projections guarantee that MC_Cat projection of an M-category \hat{C} constructed out of a category C is definitionally equal to C
- We can use all facts about \mathcal{C} on $\hat{\mathcal{C}}$

¹https://github.com/amintimany/Categories

■ Similarly for locally-contractive functors

Lemma (1)

If

is a limit diagram, so is

Lemma (2)

If $\mathcal{F}: \mathcal{C}^{op} \times \mathcal{C} \to \mathcal{C}$ be a mixed-variance locally contractive functor and

is a limit diagram, so is

$$1 \xrightarrow[g_0=!_{F(1,1)}]{f_0=m} F(1,1)$$

$$1 \xrightarrow[g_0=!_{F(1,1)}]{f_0=m} F(1,1) \xrightarrow[g_1=F(g_0,f_0]]{f_1=F(g_0,f_0)} F(F(1,1),F(1,1)) \xrightarrow[g_2=F(f_1,g_1)]{f_2=F(g_1,f_1)} \cdots$$

By Lemma 1 and Lemma 2

Note that the following is an increasing Cauchy tower and has a limit in $\ensuremath{\mathcal{C}}$

By Lemma 1 and Lemma 2

By uniqueness of limits we have $L \simeq F(L, L)$

16

Available on: https://github.com/amintimany/CTDT

Thanks!