The Category-theoretic Solution of Recursive Ultra-metric Space

Amin Ti

Equations

Amin Timany Bart Jacobs

iMinds-Distrinet KU Leuven

CoqPL — January 23", 2016
St. Petersburg, Florida




Introduction

m In order to define Kripke-style semantics of a higher-order imperative
programming language we need to solve equations

W:NAHHT

and

T: W —mon 2V




Introduction

m In order to define Kripke-style semantics of a higher-order imperative
programming language we need to solve equations

W:NAHHT

and
T - W —mon 2V

m W is the set of Kripke worlds (each assigns types to locations)




Introduction

m In order to define Kripke-style semantics of a higher-order imperative
programming language we need to solve equations

W:NAHHT

and
T - W —mon 2V

m W is the set of Kripke worlds (each assigns types to locations)

m 7 is the set of interpretations of types (depends on worlds to determine
interpretation of refrences)

Amin Timany Bart Jacobs



Introduction

m In order to define Kripke-style semantics of a higher-order imperative
programming language we need to solve equations

W:NAHHT

and
T - W —mon 2V

m W is the set of Kripke worlds (each assigns types to locations)

m 7 is the set of interpretations of types (depends on worlds to determine
interpretation of refrences)

m Impossible due to cardinality issues
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m We use step-indexing
T = ((N—=5a T) —mon P(V))

IP(V)é{pEnHT/ | Vn,v. v € p(n) = Vm < n.v € p(m)}
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W=N—a. T

and
TEW —men P(V)

Amin Timany



Introduction

Outline

Introduction

Theory
m Ultra-metric spaces
m M-categories and the fixed point theorem
= Example

Implementation
m Ultra-metric spaces
n M-categories

Very high level proof sketch (existence)




Ultra-metric spaces
M-categories and the fixed point theorem

Example

Theory

m Bounded Ultra-metric Space:
A space A with a distance function § : A x A — [0, b] such that:

Amin



Ultra-metric spaces
M-categories and the fixed point theorem

Example

Theory

m Bounded Ultra-metric Space:

A space A with a distance function § : A x A — [0, b] such that:
Vz,y. 6(z,y) =0 =y

Amin



Ultra-metric spaces
M-categories and the fixed point theorem

Example

Theory

m Bounded Ultra-metric Space:
A space A with a distance function § : A x A — [0, b] such that:
Vz,y. 0(z,y) =0 x=y
Va,y. 5(x,y) = 6(y, =)

Amin



Ultra-metric spaces
M-categories and the fixed point theorem

Example

Theory

m Bounded Ultra-metric Space:
A space A with a distance function § : A x A — [0, b] such that:
Vz,y. 6(z,y) =0 =y
Va,y. 6(x,y) = 6(y, =)
Va,y, z. 6(z,y) < maxz(d(z, 2),0(y, 2))




Ultra-met

Theory

d the fixed point theorem

m Bounded Ultra-metric Space:
A space A with a distance function § : A x A — [0, b] such that:
Vz,y. 6(z,y) =0 =y
Va,y. 6(x,y) = 6(y, =)
Va,y, z. 6(z,y) < maxz(d(z, 2),0(y, 2))

m ) can be though of as degree of similarity




Theory

m Bounded Ultra-metric Space:

A space A with a distance function § : A x A — [0, b] such that:
Vz,y. 6(z,y) =0z =y
Va,y. 6(z,y) = 8(y, z)
Va,y, z. 6(z,y) < maxz(d(z, 2),0(y, 2))

m ) can be though of as degree of similarity

m An Ultra-metric space is complete if every Cauchy sequence {a, }nen converges:

Ve > 0. IN. Vm,k > N. 6(am,ax) < &
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Example

Bounded Ultra-metric Space:

A space A with a distance function § : A x A — [0, b] such that:
Vz,y. 6(z,y) =0 =y
Va,y. 6(z,y) = 6(y, z)
Va,y, 2. 6(z,y) < max(d(z, 2),8(y, 2))

6 can be though of as degree of similarity

An Ultra-metric space is complete if every Cauchy sequence {an }nen converges:

Ve > 0. IN. Vm,k > N. 6(am,ax) < &

Example (bisected distance):
§:5"x SN 0,1]
with )
of.9) = { g_m”{"wmgn' Fm=g(m)} :)ftlJ:er:ngse

forms a complete bounded ultra-metric space

Amin Timany Bart Jacobs The Cat.-theor.
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Example

m for (A,d) and (B,d’), f : A — B is non-expansive if:

Vo,y: A8 (f(2), f(y) < d(z,y)

m Example:

f:8" = S where f(z)(n)=h(z(n)) for some h:S — S
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m for (A,d) and (B,d’), f : A — B is non-expansive if:

Vo,y: A8 (f(2), f(y) < d(z,y)

m Example:
f:8" = S where f(z)(n)=h(z(n)) for some h:S — S
m for (A,d) and (B,d’), f : A — B is contractive if:

Y,y A 8 (f(z), f(y) < c-8(z,y) forsome 0<c< 1

Amin Timany



Ultra-metric spaces
] sries and the fixed point theorem

Theory

m for (A,d) and (B,d’), f : A — B is non-expansive if:

Vo,y: A8 (f(2), f(y) < d(z,y)

m Example:

f:8" = S where f(z)(n)=h(z(n)) for some h:S — S

for (A,6) and (B,¢'), f: A — B is contractive if:

Y,y A 8 (f(z), f(y) < c-8(z,y) forsome 0<c< 1

m Example:

a ifn=0

2(n—1) otherwise for some fixed a € S

f:S" = 8" where f(z)(n)= {

Amin Timany art Jacobs The Cat.- c. Ultra- Equations
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m An M-category C is a category such that:
m For A,B€C, da,B: hom(A, B) x hom(A, B) — [0,b] makes hom 4, g a complete
bounded ultra-metric space
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m An M-category C is a category such that:

m For A,B€C, da,B: hom(A, B) x hom(A, B) — [0,b] makes hom 4, g a complete

bounded ultra-metric space

m The composition functions are non-expansive

m A functor F on M-categories is locally non-ezpansive (resp. locally contractive) if
its morphism map is non-expansive (resp. contractive)
m An increasing Cauchy tower in C is a diagram
fo f1 f2
Ao Aq As

go g1 92

such that:
m g;ofi =ida,;
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Theory

m An M-category C is a category such that:

m For A,B€C, da,p: hom(A, B) x hom(A, B) — [0,b] makes hom 4, g a complete

bounded ultra-metric space

m The composition functions are non-expansive

m A functor F on M-categories is locally non-expansive (resp. locally contractive) if
its morphism map is non-expansive (resp. contractive)
m An increasing Cauchy tower in C is a diagram
fo f1 f2
Ao Aq As

go g1 92

such that:
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m lim 6(f; 0 gs,ida,,,) =0
71— 00

m The inverse limit of an increasing Cauchy tower is the (category theoretical
limit) of:
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Theory

m An M-category C is a category such that:
m For A,B €C, d4,p: hom(A, B) x hom(A, B) — [0,b] makes hom 4, g a complete
bounded ultra-metric space
m The composition functions are non-expansive
m A functor F on M-categories is locally non-expansive (resp. locally contractive) if
its morphism map is non-expansive (resp. contractive)
m An increasing Cauchy tower in C is a diagram

fo f1 f2
Ao Ay Ao

go g1 92

such that:
m g;o f; =ida,
m lim §(f; 0 gi,idAi+1) =0
71— 00
The inverse limit of an increasing Cauchy tower is the (category theoretical
limit) of:
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Theory

m An M-category C is a category such that:
m For A,B €C, d4,p: hom(A, B) x hom(A, B) — [0,b] makes hom 4, g a complete
bounded ultra-metric space
m The composition functions are non-expansive
m A functor F on M-categories is locally non-expansive (resp. locally contractive) if
its morphism map is non-expansive (resp. contractive)
m An increasing Cauchy tower in C is a diagram

fo f1 f2
Ao Ay Ao

go g1 92

such that:
mg;ofi= ida,
m lim §(f; 0 gi7idAi+1) =0
71— 00

m The inverse limit of an increasing Cauchy tower is the (category theoretical
limit) of:
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m C be an M-category

m with a terminal object 1

m such that C has inverse limit of all increasing Cauchy towers
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m C be an M-category

m with a terminal object 1

m such that C has inverse limit of all increasing Cauchy towers

m F:C°P x C — C be a mized-variance locally contractive functor
m such that m :1 — F(1,1)
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Theory M-categories and the fixed point theorem
Example

m C be an M-category

m with a terminal object 1

m such that C has inverse limit of all increasing Cauchy towers

m F:C°P x C — C be a mized-variance locally contractive functor
m such that m :1 — F(1,1)

m Then, F has a unique fixed point, i.e.,

JA. A~ F(A, A)

Ultra-m
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Example

m We use the theory to solve
'7: =~ »((N —fin 7\‘) —mon IP(V))

m In the M-category CBULt of

m Objects: (bisected) Complete Bounded Ultra metric spaces
m Morphisms: non-expansive maps

m By constructing a locally contractive functor
.F(AX'7 Y) = »((N —fin X) —>mon ]P(V))

m For any complete bounded ultra metric space X
N—g, X
is a complete bounded ultra metric space with a partial order relation:
[ E g Va € dom(f). f(z) = g(x)
b if dom(f) # dom(g)
8(f,9) = |_| 6(f(z),g(x)) otherwise

zedom(f)

Amin Timany Bart Jacobs
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m P(V) is a complete bounded ultra metric space with a partial order
pCgeVneN p(n) Cq(n)

if p=gq

s _ 0
(p7 q) - 2—mam{n|Vm§nA p(n)=q(n)} otherwise
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m P(V) is a complete bounded ultra metric space with a partial order
pCgeVneN p(n) Cq(n)

if p=gq

s _ 0
(p7 q) - 2—mam{n|Vm§nA p(n)=q(n)} otherwise

m G(X,Y)=(N—g,; X) —mon P(V) is locally non-expansive
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Example

m P(V) is a complete bounded ultra metric space with a partial order
pCgeVneN p(n) Cq(n)

if p=gq

5 ~_J 0
(p7 (]) - g—maz{n|ym<n. p(n)=q(n)}  Gtherwise

m G(X,Y)=(N—g, X) —mon P(V) is locally non-expansive
m »(X): CBULt — CBULTt is space X with distances halved
m > is locally contractive

m Thus, 7 = » oG is locally contractive
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| the fixed point theorem

m P(V) is a complete bounded ultra metric space with a partial order
pCgeVneN p(n) Cq(n)

if p=gq

5 ~_J 0
(p7 (]) - g—maz{n|ym<n. p(n)=q(n)}  Gtherwise

m G(X,Y)=(N—g, X) —mon P(V) is locally non-expansive
m »(X): CBULt — CBULTt is space X with distances halved
m > is locally contractive

m Thus, 7 = » oG is locally contractive

m The fix point is T is uniquely determined:

T~ F(T,T) =»((N =4n T) —men P(V))
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m Implementation:

m Instead of R, we use an M-lattice: a poset (X, C) such that:
m Has a bottom element L

Has a top element T

m Has meet (U) of arbitrary subsets of X

m Appr(X) is a subset of X of approximation elements

m Va.a € Appr(X) > L Ca
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m Instead of R, we use an M-lattice: a poset (X, C) such that:

Has a bottom element L
Has a top element T

Has meet (L) of arbitrary subsets of X
Appr(X) is a subset of X of approximation elements

Va.a € Appr(X) —» L C
Va. L C a— 3b e Appr(

a
X).bCa

Va. (Vb € Appr(X). aCb) wa= 1

(Va € Appr(X). 3b € Appr(X). bC a) V (3c € Appr(X).Va.aTc—a=1)
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m Implementation:
m Instead of R, we use an M-lattice: a poset (X, C) such that:

Has a bottom element L

Has a top element T

Has meet (L) of arbitrary subsets of X

Appr(X) is a subset of X of approximation elements
Va.a € Appr(X) > L Ca

Va. L Ca—3be Appr(X). bCa

Va. (Vb € Appr(X). aCb) wa= 1

(Va € Appr(X). 3b € Appr(X).bC a) vV (3c € Appr(X).Ya. aTc—a=1)
m Bisected spaces can be represented using M-lattice (B, Cg):

B = {f :nat — Prop | Vm,n. m <n — f(n) = f(m)}

Amin Tim

zCpy iff Vn.y(n) = z(n)
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m Implementation:
m Instead of R, we use an M-lattice: a poset (X, C) such that:
m Has a bottom element L
Has a top element T
Has meet (L) of arbitrary subsets of X
Appr(X) is a subset of X of approximation elements
Va.a € Appr(X) > L Ca
Va. L Ca—3be Appr(X). bCa
Va. (Vb € Appr(X). aCb) wa= 1
(Va € Appr(X). 3b € Appr(X). bC a) V (3c € Appr(X).Va.aTc—a=1)
m Bisected spaces can be represented using M-lattice (B, Cg):

B = {f :nat — Prop | Vm,n. m <n — f(n) = f(m)}

zCpy iff Vn.y(n) = z(n)
m lpg =fun _ = True
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m Implementation:
m Instead of R, we use an M-lattice: a poset (X, C) such that:
m Has a bottom element L
Has a top element T
Has meet (L) of arbitrary subsets of X
Appr(X) is a subset of X of approximation elements
Va.a € Appr(X) > L Ca
Va. L Ca—3be Appr(X). bCa
Va. (Vb € Appr(X). aCb) wa= 1
(Va € Appr(X). 3b € Appr(X). bC a) V (3c € Appr(X).Va.aTc—a=1)
m Bisected spaces can be represented using M-lattice (B, Cg):

B = {f :nat — Prop | Vm,n. m <n — f(n) = f(m)}

zCpy iff Vn.y(n) = z(n)
m lpg =fun _ = True
m Tp = fun _ = False

Amin Timany Bart Jacobs
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Implementation ries

m Implementation:
m Instead of R, we use an M-lattice: a poset (X, C) such that:
m Has a bottom element L
Has a top element T
Has meet (L) of arbitrary subsets of X
Appr(X) is a subset of X of approximation elements
Va.a € Appr(X) > L Ca
Va. L Ca—3be Appr(X). bCa
Va. (Vb € Appr(X). aCb) wa= 1
(Va € Appr(X). 3b € Appr(X). bC a) V (3c € Appr(X).Va.aTc—a=1)
m Bisected spaces can be represented using M-lattice (B, Cg):

B = {f :nat — Prop | Vm,n. m <n — f(n) = f(m)}

zCpy iff Vn.y(n) = z(n)
m lpg =fun _ = True
m Tp = fun _ = False
mfor F: I — A (UgF)(n)=Vz: 1. f(z)(n)

Amin Timany Bart Jacobs The Cat.-theor.
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m Implementation:
m Instead of R, we use an M-lattice: a poset (X, C) such that:
m Has a bottom element L
Has a top element T
Has meet (L) of arbitrary subsets of X
Appr(X) is a subset of X of approximation elements
Va.a € Appr(X) > L Ca
Va. L Ca—3be Appr(X). bCa
Va. (Vb € Appr(X). aCb) wa= 1
(Va € Appr(X). 3b € Appr(X). bC a) V (3c € Appr(X).Va.aTc—a=1)
m Bisected spaces can be represented using M-lattice (B, Cg):

B = {f :nat — Prop | Vm,n. m <n — f(n) = f(m)}

zCpy iff Vn.y(n) = z(n)
1lp = fun _ = True
Tp = fun _ = False
for F: I — A, (UpF)(n) =Vz:I. f(z)(n)
Appr(B) = {(1/2)" Ty | n € N}
True ifn=0

((1/2)f)(n) = { f(n+1) otherwise
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Implementation ries

m Implementation:
m Instead of R, we use an M-lattice: a poset (X, C) such that:
m Has a bottom element L
Has a top element T
Has meet (L) of arbitrary subsets of X
Appr(X) is a subset of X of approximation elements
Va.a € Appr(X) > L Ca
Va. L Ca—3be Appr(X). bCa
Va. (Vb € Appr(X). aCb) wa= 1
(Va € Appr(X). 3b € Appr(X). bC a) V (3c € Appr(X).Va.aTc—a=1)
m Bisected spaces can be represented using M-lattice (B, Cg):

B = {f :nat — Prop | Vm,n. m <n — f(n) = f(m)}

zCpy iff Vn.y(n) = z(n)
1lp = fun _ = True
Tp = fun _ = False
for F: I — A, (UpF)(n) =Vz:I. f(z)(n)
Appr(B) = {(1/2)" Ty | n € N}
True ifn=0

((1/2))(n) = { f(n+1) otherwise
m Distance § : S¥ x SN — B in a bisected space (4, d):

S(fg)m) = N Fn)=gn)

0<i<n

Amin Timany Bart Jacobs The Cat.-theor.
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Implementation

m To represent contractiveness in L, we use a contraction rate p: L — L
m Vz. p(z) Cx
mVe. LCz—pz)Ca
m Vz,y € Appr(A). In € N. p"(z) C y

m Example: (1/2) : B — B is a contraction rate:

True ifn=0

(1/2)f)(n) = { f(n+1) otherwise




c spaces

Implementation

m To represent contractiveness in L, we use a contraction rate p: L — L

m Vz. p(z) Cx
mVe. LCz—pz)Ca
m Vz,y € Appr(A). In € N. p"(z) C y

m Example: (1/2) : B — B is a contraction rate:
True ifn=0
(1/2)f)(n) = { f(n+1) otherwise
m For (A,6) and (B,¢'), f : A — B we change the contractiveness condition from:
Va,y: A 8 (f(z), f(y)) < c-6(z,y) forsome 0<c<1

to
Va,y: A. §'(f(2), f(y)) C p(d(z,y)) for some contraction rate p

Amin Timany
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Ultra-metric

Implementation M-categ

m It is all implemented on top of a general purpose category theory library®

m All category theoretical constructions and facts, e.g., (co)limits, their
uniqueness, etc. are taken from there

m M-categories are defined as:

Record MCat (L : MLattice) : Type :=
{ MC_0bj : Type;
MC_Hom : MC_Obj — MC_Obj — (Complete_UltraMetric L);
MC_compose : forall {a b c : MC_Obj}, NonExpansive
(product_CUM (MC_Hom a b) (MC_Hom b ¢)) (MC_Hom a c);

MC_Cat :> Category := {| Obj := MC_Obj; Hom := MC_Hom;
compose := fun _ _ _ x y = MC_compose (x, y);

Y

'nttps://github.com/amintimany/Categories
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Implementation M-categ

m It is all implemented on top of a general purpose category theory library®

m All category theoretical constructions and facts, e.g., (co)limits, their
uniqueness, etc. are taken from there

m M-categories are defined as:

Record MCat (L : MLattice) : Type :=
{ MC_0bj : Type;
MC_Hom : MC_Obj — MC_Obj — (Complete_UltraMetric L);
MC_compose : forall {a b c : MC_Obj}, NonExpansive
(product_CUM (MC_Hom a b) (MC_Hom b ¢)) (MC_Hom a c);

MC_Cat :> Category := {| Obj := MC_Obj; Hom := MC_Hom;
compose := fun _ _ _ x y = MC_compose (x, y);

Y

m Primitive projections guarantee that MC_Cat projection of an M-category ¢
constructed out of a category C is definitionally equal to C

'nttps://github.com/amintimany/Categories
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Ultra-metric

Implementation M-categ

m It is all implemented on top of a general purpose category theory library®

m All category theoretical constructions and facts, e.g., (co)limits, their
uniqueness, etc. are taken from there

m M-categories are defined as:

Record MCat (L : MLattice) : Type :=
{ MC_0bj : Type;
MC_Hom : MC_Obj — MC_Obj — (Complete_UltraMetric L);
MC_compose : forall {a b c : MC_Obj}, NonExpansive
(product_CUM (MC_Hom a b) (MC_Hom b ¢)) (MC_Hom a c);

MC_Cat :> Category := {| Obj := MC_Obj; Hom := MC_Hom;
compose := fun _ _ _ x y = MC_compose (x, y);

Y

m Primitive projections guarantee that MC_Cat projection of an M-category ¢
constructed out of a category C is definitionally equal to C

m We can use all facts about C on C

'nttps://github.com/amintimany/Categories
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Ultra-metric

Implementation M-categ

m Similarly for locally-contractive functors

Record LocallyContractive {L : MLattice} (M M’ : MCat L) : Type :=

LCN_FO : M — M;

LCN_ContrRate : ContrRate L;

LCN_FA : forall {a b}, Controlled_Contractive LCN_ContrRate
(MC_Hom M a b) (MC_Hom M’ (LCN_FO a) (LCN_FO b));

LCN_Func :> Functor M M’ :=

{l

FO := LCN_FO; FA := QLCN_FA;

i
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Lemma (2)

If F : C°? x C — C be a mized-variance locally contractive functor and

L
I
lo \x
0 f1 f2
Ao > Ay > Ay
0

U
g1 92

g

is a limit diagram, so is

F(L,L)

F(uo,lo) F(u1,l1) Flwil)

F(Ao, Ao) F(90,f0) > (A, Ay) F(91,f1) > F(As, As) F(92,f2)
0,410) ¢— = 1,41 2,42) ¢~
F(fo,90) F(f1,91) F(f2,92)

Amin Tim. Bart Jac 1 Rec. Ultra-n
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fo=m
1 l)M:’ F(1,1)
90=p(1,1)

c. Ultra-m



Very high level proof sketch (existence)

Proof of Theorem

Note that the following is an increasing Cauchy tower and has a limit in C

fo=m f1=F(g0fo0) f2=F(g1,f1)
— F(1,1) FF(1,1), F(1,1)) e -
90='r(1,1) 91=F(fo,90) 92=F(f1,91)

c. Ultra-m
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Proof of Theorem

Note that the following is an increasing Cauchy tower and has a limit in C

L
2
7 fo /lfl"(f)\) Fa=Fla1.1)
o=m 1=£(g0.J0 2=+(9g1,/1
F(1,1) _ F(F(1,1), F(1,1)) £ oo
90='F(1,1) 91=F(fo,90) 92=F(f1,91)

c. Ultra-m



Very high level proof sketch (existence)

Proof of Theorem (

Note that the following is an increasing Cauchy tower and has a limit in C

L
2
(// \
1 fo=m f1=F(g0,f0) f2=F(g1,f1)

F(1,1) F(F(1,1), F(1,1)) i3 o0
90='F(1,1) 91=F(fo,90) 92=F(f1,91)

By Lemma 1 and Lemma 2

L

/ X
1
! f1=F(g0.f0) f2a=F(g1,f1)

F(,1) —/————————— F(F(1,1),F(1,1))

91=F(fo,90) 92=F(f1,91)
7 (M F ‘:112)/

F(L,L)

Amin E B eo 1. of Rec. Ultr;
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Proof of Theorem (

Note that the following is an increasing Cauchy tower and has a limit in C

L
2
(// \
1 fo=m f1=F(g0,f0) f2=F(g1,f1)

F(1,1) F(F(1,1), F(1,1)) i3 o0
90='F(1,1) 91=F(fo,90) 92=F(f1,91)

By Lemma 1 and Lemma 2

L

/ X
1
! f1=F(g0.f0) f2a=F(g1,f1)

F(,1) —/————————— F(F(1,1),F(1,1))

91=F(fo,90) 92=F(f1,91)
7 (M F ‘:112)/

F(L,L)

By uniqueness of limits we have L ~ F(L, L) O

Amin E B eo 1. of Rec. Ultr;



Very high level proof sketch (existence)

m Available on: https://github.com/amintimany /CTDT

Thanks!

Amin
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