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In higher order dependent type theories:
Types are also terms and hence have a type

Type of all types, as it should be the type of itself, leads to paradoxes, like
Russell’s paradox in set theory
Thus, we have a countably infinite hierarchy of universes (types of types):

Type0, Type1, Type2, . . .

where:
Type0 : Type1, Type1 : Type2, . . .

Such a system is cumulative if for any type T and i:

T : Typei ⇒ T : Typei+1

Example: Predicative Calculus of Inductive Constructions (pCIC), the logic of
the proof assistant Coq
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pCIC has recently been extended with universe polymorphism
Definitions can be polymorphic in universe levels, e.g., categories:

Record Category@{i j} : Type@{max(i+1, j+1)} :=
{

Obj : Type@{i};
Hom : Obj → Obj → Type@{j};
...

}.

To keep consistent, universe polymorphic definitions come with constraints, e.g.,
category of categories:

Definition Cat@{i j k l} :=
{|

Obj := Category@{k l};
Hom := fun C D ⇒ Functor@{k l k l} C D;

...
|}

: Category@{i j}.

with constraints:
k < i and l < i
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For universe polymorphic inductive types, e.g., Category, copies are considered

With no cumulativity, i.e.,
C : Category@{i j} and C : Category@{k l} implies i = k and j = l

This means Cat@{i j k l} is the category of all categories at {k l} and not lower

Constraints on statements about universe polymorphic inductive definitions
restrict to which copies they apply

For Cat@{i j k l} the fact that it has exponentials has constraints j = k = l

In particular:

Definition Type_Cat@{i j} :=
{|

Obj := Type@{j};
Hom := fun A B ⇒ A → B;

..

.
|} : Category@{i j}.

with constraints: j < i

is not an object of any copy of Cat with exponentials!

Yoneda embedding can’t be simply defined as the exponential transpose of the
hom functor
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Not restricted to categories:

Consider inductive representation of ensembles:

Inductive Ens@{i} : Type@{i+1} :=
ens@{i} : forall (A : Type@{i}), (A → Ens@{i}) → Ens@{i}

.

Examples:

empty := ens@{0} Empty (Empty_rect Ens@{i})

union (ens@{i} A f) (ens@{i} B g) := ens@{i} (A + B) (f + g)

intersection (ens@{i} A f) (ens@{i} B g) := ens@{i} (A × B) (f × g)

Ensemble of small ensembles can’t be directly formed:

ens@{j+1} Ens@{j} (fun x : Ens@{j} ⇒ x)

Can be solved using liftings, e.g.,

ens_lift@{i k} : Ens@{i} → Ens@{k}

with the side condition: i ≤ k.

Problem: e and ens_lift e are not necessarily the same

Any statement about e is not usable with ens_lift e and needs to be proven
separately
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Some (simplified) typing rules of pCIC:

Γ ` A : Typei Γ, x : A ` B : Typej
Γ ` Πx : A. B : Typemax(i,j)

(Prod)

Γ, x : A ` t : B

Γ ` (λx : A. t) : (Πx : A. B)
(Lam)

Γ ` t : (Πx : A.B) Γ ` t′ : A

Γ ` (t t′) : B[t′/x]
(App)

Γ ` t : A Γ ` B : s A � B
Γ ` t : B

(Conv)

A ∈ Ar(s) Γ ` A : s′ (Γ, X : A ` Ci : s Ci ∈ Co(X) ∀1 ≤ i ≤ n)

Γ ` Ind(X : A){C1, . . . , Cn} : A
(Ind)

Ar(s) is the set of types of the form: Π
→
x :

→
M. s

Co(X) is the set of types of the form: Π
→
x :

→
M. X

→
m
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Examples:
Prod:

A : Typei, n : nat ` VectA,n : Typei A : Typei ` nat : Type0
A : Typei ` (Πn : nat. VectA,n) : Typei

Lam:
A : Typei, n : nat ` t : VectA,n

A : Typei ` (λn : nat. t) : (Πn : nat. VectA,n)

App:
A : Typei ` f : (Πn : nat. VectA,n) A : Typei ` x : nat

A : Typei ` f x : VectA,x

Ind:
· ` Ind(nat : Type0){nat ,nat → nat}
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Conversion/cumulativity rules of pCIC:

i ≤ j
Typei � Typej

(C-Type)

A ' A′ B � B′

Πx : A. B � Πx : A′. B′
(C-Prod)
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Predicative Calculus of Cumulative Inductive Types (pCuIC):

pCuIC is pCIC + C-Ind rule:

Example:

Category@{i j} ≡ Ind(X : Typemax(i+1,j+1)){Πo : Typei.Πh : o→ o→ Typej .N}
where i and j don’t appear in term N

By C-Ind:

Typei � Typek and Typej � Typel ⇒ Category@{i j} � Category@{k l}

Also:

Ens@{i} ≡ Ind(X : Typei+1){ΠA : Typei.(A→ X)→ X}
Typei � Typek ⇒ Ens@{i} � Ens@{k}
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(C-Ind)

Example:

Category@{i j} ≡ Ind(X : Typemax(i+1,j+1)){Πo : Typei.Πh : o→ o→ Typej .N}
where i and j don’t appear in term N

By C-Ind:

Typei � Typek and Typej � Typel ⇒ Category@{i j} � Category@{k l}

Also:

Ens@{i} ≡ Ind(X : Typei+1){ΠA : Typei.(A→ X)→ X}
Typei � Typek ⇒ Ens@{i} � Ens@{k}
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Conjecture

pCuIC has the following properties:

1 Church-Rosser property

2 Strong normalization

3 Context Validity

4 Typing Validity

5 Subject Reduction

Conjecture

Let Γ `pCIC T : s be a pCIC type such that Γ `pCuIC t : T . Then there exists a term t′

such that Γ `pCIC t′ : T .

The latter reduces the soundness of pCuIC to the soundness of pCIC:

· apCuIC t : False⇒ ∃t′. · apCIC t′ : False

We prove this conjecture for the lesser pCuIC (lpCuIC), a fragment of pCuIC
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The lesser pCuIC (lpCuIC) is a fragment of pCuIC:

For any sub-derivation Γ `lpCuIC t : T we have Γ `pCIC T : s

For any sub-derivation Γ `lpCuIC T : Π
→
x :
→
A.s we have Γ `pCIC T : Π

→
x :
→
A.s

C-Ind is replaced by C-Ind’

In lpCuIC,

Typei � Typek and Typej � Typel ⇒ Category@{i j} � Category@{k l}

Also:

Typei � Typek ⇒ Ens@{i} � Ens@{k}
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We prove soundness of lpCuIC:

Theorem (Inhabitants in lpCuIC)

Let t and T be terms such that Γ `lpCuIC t : T . Then there exists t′ such that
Γ `pCIC t′ : T .

Proof sketch.

We build lifters Γ apCIC ΥT�lpCuICT
′ : T → T ′ for T �lpCuIC T

′.
Each sub-term t : T for which we have used Conv to derive t : T ′ is replaced with
(ΥT�lpCuICT

′ t).

Corollary (Soundness of lpCuIC)

· `lpCuIC t : False implies that there exists t′ such that · `pCIC t′ : False.
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Future work:
Proof of conjectures about pCuIC

Implementation
Considering parameters of inductive types:

Inductive List@{i} (A: Type@{i}) :=
| Nil : List@{i} A
| Cons : A → List@{i} A → List@{i} A

.

We can have List@{i} A � List@{i’} B when A � B.

Inductive Img_inh@{i j} (F : Type@{i} → Type@{j}) (A : Type@{i}) :=
fa : (F A) → Img_inh F A

.

Whether (Img_inh@{i j} F A) � (Img_inh@{i’ j’} F B) when A � B depends on
variance of F.

Conclusion:
Presented pCuIC
Discussed how it makes working with structures such as categories and ensembles
easier
Presented lpCuIC

As an intuitive reason why we believe pCuIC is sound

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC
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