
Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

First Steps Towards Cumulative Inductive Types in CIC

Amin Timany

Bart Jacobs

iMinds-Distrinet KU Leuven

ICTAC’15 – October 31, 2015

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



1

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Outline

1 Universe polymorphism and Inductive Types

2 pCIC

3 pCuIC

4 lpCuIC

5 Future Work – Conclusion

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



2

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

In higher order dependent type theories:
Types are also terms and hence have a type

Type of all types, as it should be the type of itself, leads to paradoxes, like
Russell’s paradox in set theory
Thus, we have a countably infinite hierarchy of universes (types of types):

Type0, Type1, Type2, . . .

where:
Type0 : Type1, Type1 : Type2, . . .

Such a system is cumulative if for any type T and i:

T : Typei ⇒ T : Typei+1

Example: Predicative Calculus of Inductive Constructions (pCIC), the logic of
the proof assistant Coq

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



2

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

In higher order dependent type theories:
Types are also terms and hence have a type
Type of all types, as it should be the type of itself, leads to paradoxes, like
Russell’s paradox in set theory

Thus, we have a countably infinite hierarchy of universes (types of types):

Type0, Type1, Type2, . . .

where:
Type0 : Type1, Type1 : Type2, . . .

Such a system is cumulative if for any type T and i:

T : Typei ⇒ T : Typei+1

Example: Predicative Calculus of Inductive Constructions (pCIC), the logic of
the proof assistant Coq

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



2

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

In higher order dependent type theories:
Types are also terms and hence have a type
Type of all types, as it should be the type of itself, leads to paradoxes, like
Russell’s paradox in set theory
Thus, we have a countably infinite hierarchy of universes (types of types):

Type0, Type1, Type2, . . .

where:
Type0 : Type1, Type1 : Type2, . . .

Such a system is cumulative if for any type T and i:

T : Typei ⇒ T : Typei+1

Example: Predicative Calculus of Inductive Constructions (pCIC), the logic of
the proof assistant Coq

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



2

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

In higher order dependent type theories:
Types are also terms and hence have a type
Type of all types, as it should be the type of itself, leads to paradoxes, like
Russell’s paradox in set theory
Thus, we have a countably infinite hierarchy of universes (types of types):

Type0, Type1, Type2, . . .

where:
Type0 : Type1, Type1 : Type2, . . .

Such a system is cumulative if for any type T and i:

T : Typei ⇒ T : Typei+1

Example: Predicative Calculus of Inductive Constructions (pCIC), the logic of
the proof assistant Coq

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



2

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

In higher order dependent type theories:
Types are also terms and hence have a type
Type of all types, as it should be the type of itself, leads to paradoxes, like
Russell’s paradox in set theory
Thus, we have a countably infinite hierarchy of universes (types of types):

Type0, Type1, Type2, . . .

where:
Type0 : Type1, Type1 : Type2, . . .

Such a system is cumulative if for any type T and i:

T : Typei ⇒ T : Typei+1

Example: Predicative Calculus of Inductive Constructions (pCIC), the logic of
the proof assistant Coq

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



2

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

In higher order dependent type theories:
Types are also terms and hence have a type
Type of all types, as it should be the type of itself, leads to paradoxes, like
Russell’s paradox in set theory
Thus, we have a countably infinite hierarchy of universes (types of types):

Type0, Type1, Type2, . . .

where:
Type0 : Type1, Type1 : Type2, . . .

Such a system is cumulative if for any type T and i:

T : Typei ⇒ T : Typei+1

Example: Predicative Calculus of Inductive Constructions (pCIC), the logic of
the proof assistant Coq

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



3

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

pCIC has recently been extended with universe polymorphism
Definitions can be polymorphic in universe levels, e.g., categories:

Record Category@{i j} : Type@{max(i+1, j+1)} :=
{

Obj : Type@{i};
Hom : Obj → Obj → Type@{j};
...

}.

To keep consistent, universe polymorphic definitions come with constraints, e.g.,
category of categories:

Definition Cat@{i j k l} :=
{|

Obj := Category@{k l};
Hom := fun C D ⇒ Functor@{k l k l} C D;

...
|}

: Category@{i j}.

with constraints:
k < i and l < i

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



3

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

pCIC has recently been extended with universe polymorphism
Definitions can be polymorphic in universe levels, e.g., categories:

Record Category@{i j} : Type@{max(i+1, j+1)} :=
{

Obj : Type@{i};
Hom : Obj → Obj → Type@{j};
...

}.

To keep consistent, universe polymorphic definitions come with constraints, e.g.,
category of categories:

Definition Cat@{i j k l} :=
{|

Obj := Category@{k l};
Hom := fun C D ⇒ Functor@{k l k l} C D;

...
|}

: Category@{i j}.

with constraints:
k < i and l < i

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



3

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

pCIC has recently been extended with universe polymorphism
Definitions can be polymorphic in universe levels, e.g., categories:

Record Category@{i j} : Type@{max(i+1, j+1)} :=
{

Obj : Type@{i};
Hom : Obj → Obj → Type@{j};
...

}.

To keep consistent, universe polymorphic definitions come with constraints, e.g.,
category of categories:

Definition Cat@{i j k l} :=
{|

Obj := Category@{k l};
Hom := fun C D ⇒ Functor@{k l k l} C D;

...
|}

: Category@{i j}.

with constraints:
k < i and l < i

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



3

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

pCIC has recently been extended with universe polymorphism
Definitions can be polymorphic in universe levels, e.g., categories:

Record Category@{i j} : Type@{max(i+1, j+1)} :=
{

Obj : Type@{i};
Hom : Obj → Obj → Type@{j};
...

}.

To keep consistent, universe polymorphic definitions come with constraints, e.g.,
category of categories:

Definition Cat@{i j k l} :=
{|

Obj := Category@{k l};
Hom := fun C D ⇒ Functor@{k l k l} C D;

...
|}

: Category@{i j}.

with constraints:
k < i and l < i

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



4

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

For universe polymorphic inductive types, e.g., Category, copies are considered

With no cumulativity, i.e.,
C : Category@{i j} and C : Category@{k l} implies i = k and j = l

This means Cat@{i j k l} is the category of all categories at {k l} and not lower

Constraints on statements about universe polymorphic inductive definitions
restrict to which copies they apply

For Cat@{i j k l} the fact that it has exponentials has constraints j = k = l

In particular:

Definition Type_Cat@{i j} :=
{|

Obj := Type@{j};
Hom := fun A B ⇒ A → B;

..

.
|} : Category@{i j}.

with constraints: j < i

is not an object of any copy of Cat with exponentials!

Yoneda embedding can’t be simply defined as the exponential transpose of the
hom functor

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



4

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

For universe polymorphic inductive types, e.g., Category, copies are considered

With no cumulativity, i.e.,

C : Category@{i j} and C : Category@{k l} implies i = k and j = l

This means Cat@{i j k l} is the category of all categories at {k l} and not lower

Constraints on statements about universe polymorphic inductive definitions
restrict to which copies they apply

For Cat@{i j k l} the fact that it has exponentials has constraints j = k = l

In particular:

Definition Type_Cat@{i j} :=
{|

Obj := Type@{j};
Hom := fun A B ⇒ A → B;

..

.
|} : Category@{i j}.

with constraints: j < i

is not an object of any copy of Cat with exponentials!

Yoneda embedding can’t be simply defined as the exponential transpose of the
hom functor

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



4

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

For universe polymorphic inductive types, e.g., Category, copies are considered

With no cumulativity, i.e.,
C : Category@{i j} and C : Category@{k l} implies i = k and j = l

This means Cat@{i j k l} is the category of all categories at {k l} and not lower

Constraints on statements about universe polymorphic inductive definitions
restrict to which copies they apply

For Cat@{i j k l} the fact that it has exponentials has constraints j = k = l

In particular:

Definition Type_Cat@{i j} :=
{|

Obj := Type@{j};
Hom := fun A B ⇒ A → B;

..

.
|} : Category@{i j}.

with constraints: j < i

is not an object of any copy of Cat with exponentials!

Yoneda embedding can’t be simply defined as the exponential transpose of the
hom functor

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



4

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

For universe polymorphic inductive types, e.g., Category, copies are considered

With no cumulativity, i.e.,
C : Category@{i j} and C : Category@{k l} implies i = k and j = l

This means Cat@{i j k l} is the category of all categories at {k l} and not lower

Constraints on statements about universe polymorphic inductive definitions
restrict to which copies they apply

For Cat@{i j k l} the fact that it has exponentials has constraints j = k = l

In particular:

Definition Type_Cat@{i j} :=
{|

Obj := Type@{j};
Hom := fun A B ⇒ A → B;

..

.
|} : Category@{i j}.

with constraints: j < i

is not an object of any copy of Cat with exponentials!

Yoneda embedding can’t be simply defined as the exponential transpose of the
hom functor

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



4

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

For universe polymorphic inductive types, e.g., Category, copies are considered

With no cumulativity, i.e.,
C : Category@{i j} and C : Category@{k l} implies i = k and j = l

This means Cat@{i j k l} is the category of all categories at {k l} and not lower

Constraints on statements about universe polymorphic inductive definitions
restrict to which copies they apply

For Cat@{i j k l} the fact that it has exponentials has constraints j = k = l

In particular:

Definition Type_Cat@{i j} :=
{|

Obj := Type@{j};
Hom := fun A B ⇒ A → B;

..

.
|} : Category@{i j}.

with constraints: j < i

is not an object of any copy of Cat with exponentials!

Yoneda embedding can’t be simply defined as the exponential transpose of the
hom functor

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



4

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

For universe polymorphic inductive types, e.g., Category, copies are considered

With no cumulativity, i.e.,
C : Category@{i j} and C : Category@{k l} implies i = k and j = l

This means Cat@{i j k l} is the category of all categories at {k l} and not lower

Constraints on statements about universe polymorphic inductive definitions
restrict to which copies they apply

For Cat@{i j k l} the fact that it has exponentials has constraints j = k = l

In particular:

Definition Type_Cat@{i j} :=
{|

Obj := Type@{j};
Hom := fun A B ⇒ A → B;

..

.
|} : Category@{i j}.

with constraints: j < i

is not an object of any copy of Cat with exponentials!

Yoneda embedding can’t be simply defined as the exponential transpose of the
hom functor

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



4

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

For universe polymorphic inductive types, e.g., Category, copies are considered

With no cumulativity, i.e.,
C : Category@{i j} and C : Category@{k l} implies i = k and j = l

This means Cat@{i j k l} is the category of all categories at {k l} and not lower

Constraints on statements about universe polymorphic inductive definitions
restrict to which copies they apply

For Cat@{i j k l} the fact that it has exponentials has constraints j = k = l

In particular:

Definition Type_Cat@{i j} :=
{|

Obj := Type@{j};
Hom := fun A B ⇒ A → B;

..

.
|} : Category@{i j}.

with constraints: j < i

is not an object of any copy of Cat with exponentials!

Yoneda embedding can’t be simply defined as the exponential transpose of the
hom functor

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



4

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

For universe polymorphic inductive types, e.g., Category, copies are considered

With no cumulativity, i.e.,
C : Category@{i j} and C : Category@{k l} implies i = k and j = l

This means Cat@{i j k l} is the category of all categories at {k l} and not lower

Constraints on statements about universe polymorphic inductive definitions
restrict to which copies they apply

For Cat@{i j k l} the fact that it has exponentials has constraints j = k = l

In particular:

Definition Type_Cat@{i j} :=
{|

Obj := Type@{j};
Hom := fun A B ⇒ A → B;

..

.
|} : Category@{i j}.

with constraints: j < i

is not an object of any copy of Cat with exponentials!

Yoneda embedding can’t be simply defined as the exponential transpose of the
hom functor

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



4

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

For universe polymorphic inductive types, e.g., Category, copies are considered

With no cumulativity, i.e.,
C : Category@{i j} and C : Category@{k l} implies i = k and j = l

This means Cat@{i j k l} is the category of all categories at {k l} and not lower

Constraints on statements about universe polymorphic inductive definitions
restrict to which copies they apply

For Cat@{i j k l} the fact that it has exponentials has constraints j = k = l

In particular:

Definition Type_Cat@{i j} :=
{|

Obj := Type@{j};
Hom := fun A B ⇒ A → B;

..

.
|} : Category@{i j}.

with constraints: j < i

is not an object of any copy of Cat with exponentials!

Yoneda embedding can’t be simply defined as the exponential transpose of the
hom functor

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



5

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Not restricted to categories:

Consider inductive representation of ensembles:

Inductive Ens@{i} : Type@{i+1} :=
ens@{i} : forall (A : Type@{i}), (A → Ens@{i}) → Ens@{i}

.

Examples:

empty := ens@{0} Empty (Empty_rect Ens@{i})

union (ens@{i} A f) (ens@{i} B g) := ens@{i} (A + B) (f + g)

intersection (ens@{i} A f) (ens@{i} B g) := ens@{i} (A × B) (f × g)

Ensemble of small ensembles can’t be directly formed:

ens@{j+1} Ens@{j} (fun x : Ens@{j} ⇒ x)

Can be solved using liftings, e.g.,

ens_lift@{i k} : Ens@{i} → Ens@{k}

with the side condition: i ≤ k.

Problem: e and ens_lift e are not necessarily the same

Any statement about e is not usable with ens_lift e and needs to be proven
separately

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



5

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Not restricted to categories:
Consider inductive representation of ensembles:

Inductive Ens@{i} : Type@{i+1} :=
ens@{i} : forall (A : Type@{i}), (A → Ens@{i}) → Ens@{i}

.

Examples:

empty := ens@{0} Empty (Empty_rect Ens@{i})

union (ens@{i} A f) (ens@{i} B g) := ens@{i} (A + B) (f + g)

intersection (ens@{i} A f) (ens@{i} B g) := ens@{i} (A × B) (f × g)

Ensemble of small ensembles can’t be directly formed:

ens@{j+1} Ens@{j} (fun x : Ens@{j} ⇒ x)

Can be solved using liftings, e.g.,

ens_lift@{i k} : Ens@{i} → Ens@{k}

with the side condition: i ≤ k.

Problem: e and ens_lift e are not necessarily the same

Any statement about e is not usable with ens_lift e and needs to be proven
separately

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



5

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Not restricted to categories:
Consider inductive representation of ensembles:

Inductive Ens@{i} : Type@{i+1} :=
ens@{i} : forall (A : Type@{i}), (A → Ens@{i}) → Ens@{i}

.

Examples:

empty := ens@{0} Empty (Empty_rect Ens@{i})

union (ens@{i} A f) (ens@{i} B g) := ens@{i} (A + B) (f + g)

intersection (ens@{i} A f) (ens@{i} B g) := ens@{i} (A × B) (f × g)

Ensemble of small ensembles can’t be directly formed:

ens@{j+1} Ens@{j} (fun x : Ens@{j} ⇒ x)

Can be solved using liftings, e.g.,

ens_lift@{i k} : Ens@{i} → Ens@{k}

with the side condition: i ≤ k.

Problem: e and ens_lift e are not necessarily the same

Any statement about e is not usable with ens_lift e and needs to be proven
separately

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



5

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Not restricted to categories:
Consider inductive representation of ensembles:

Inductive Ens@{i} : Type@{i+1} :=
ens@{i} : forall (A : Type@{i}), (A → Ens@{i}) → Ens@{i}

.

Examples:

empty := ens@{0} Empty (Empty_rect Ens@{i})

union (ens@{i} A f) (ens@{i} B g) := ens@{i} (A + B) (f + g)

intersection (ens@{i} A f) (ens@{i} B g) := ens@{i} (A × B) (f × g)

Ensemble of small ensembles can’t be directly formed:

ens@{j+1} Ens@{j} (fun x : Ens@{j} ⇒ x)

Can be solved using liftings, e.g.,

ens_lift@{i k} : Ens@{i} → Ens@{k}

with the side condition: i ≤ k.

Problem: e and ens_lift e are not necessarily the same

Any statement about e is not usable with ens_lift e and needs to be proven
separately

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



5

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Not restricted to categories:
Consider inductive representation of ensembles:

Inductive Ens@{i} : Type@{i+1} :=
ens@{i} : forall (A : Type@{i}), (A → Ens@{i}) → Ens@{i}

.

Examples:

empty := ens@{0} Empty (Empty_rect Ens@{i})

union (ens@{i} A f) (ens@{i} B g) := ens@{i} (A + B) (f + g)

intersection (ens@{i} A f) (ens@{i} B g) := ens@{i} (A × B) (f × g)

Ensemble of small ensembles can’t be directly formed:

ens@{j+1} Ens@{j} (fun x : Ens@{j} ⇒ x)

Can be solved using liftings, e.g.,

ens_lift@{i k} : Ens@{i} → Ens@{k}

with the side condition: i ≤ k.

Problem: e and ens_lift e are not necessarily the same

Any statement about e is not usable with ens_lift e and needs to be proven
separately

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



5

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Not restricted to categories:
Consider inductive representation of ensembles:

Inductive Ens@{i} : Type@{i+1} :=
ens@{i} : forall (A : Type@{i}), (A → Ens@{i}) → Ens@{i}

.

Examples:

empty := ens@{0} Empty (Empty_rect Ens@{i})

union (ens@{i} A f) (ens@{i} B g) := ens@{i} (A + B) (f + g)

intersection (ens@{i} A f) (ens@{i} B g) := ens@{i} (A × B) (f × g)

Ensemble of small ensembles can’t be directly formed:

ens@{j+1} Ens@{j} (fun x : Ens@{j} ⇒ x)

Can be solved using liftings, e.g.,

ens_lift@{i k} : Ens@{i} → Ens@{k}

with the side condition: i ≤ k.

Problem: e and ens_lift e are not necessarily the same

Any statement about e is not usable with ens_lift e and needs to be proven
separately

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



5

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Not restricted to categories:
Consider inductive representation of ensembles:

Inductive Ens@{i} : Type@{i+1} :=
ens@{i} : forall (A : Type@{i}), (A → Ens@{i}) → Ens@{i}

.

Examples:

empty := ens@{0} Empty (Empty_rect Ens@{i})

union (ens@{i} A f) (ens@{i} B g) := ens@{i} (A + B) (f + g)

intersection (ens@{i} A f) (ens@{i} B g) := ens@{i} (A × B) (f × g)

Ensemble of small ensembles can’t be directly formed:

ens@{j+1} Ens@{j} (fun x : Ens@{j} ⇒ x)

Can be solved using liftings, e.g.,

ens_lift@{i k} : Ens@{i} → Ens@{k}

with the side condition: i ≤ k.

Problem: e and ens_lift e are not necessarily the same

Any statement about e is not usable with ens_lift e and needs to be proven
separately

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



5

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Not restricted to categories:
Consider inductive representation of ensembles:

Inductive Ens@{i} : Type@{i+1} :=
ens@{i} : forall (A : Type@{i}), (A → Ens@{i}) → Ens@{i}

.

Examples:

empty := ens@{0} Empty (Empty_rect Ens@{i})

union (ens@{i} A f) (ens@{i} B g) := ens@{i} (A + B) (f + g)

intersection (ens@{i} A f) (ens@{i} B g) := ens@{i} (A × B) (f × g)

Ensemble of small ensembles can’t be directly formed:

ens@{j+1} Ens@{j} (fun x : Ens@{j} ⇒ x)

Can be solved using liftings, e.g.,

ens_lift@{i k} : Ens@{i} → Ens@{k}

with the side condition: i ≤ k.

Problem: e and ens_lift e are not necessarily the same

Any statement about e is not usable with ens_lift e and needs to be proven
separately

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



5

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Not restricted to categories:
Consider inductive representation of ensembles:

Inductive Ens@{i} : Type@{i+1} :=
ens@{i} : forall (A : Type@{i}), (A → Ens@{i}) → Ens@{i}

.

Examples:

empty := ens@{0} Empty (Empty_rect Ens@{i})

union (ens@{i} A f) (ens@{i} B g) := ens@{i} (A + B) (f + g)

intersection (ens@{i} A f) (ens@{i} B g) := ens@{i} (A × B) (f × g)

Ensemble of small ensembles can’t be directly formed:

ens@{j+1} Ens@{j} (fun x : Ens@{j} ⇒ x)

Can be solved using liftings, e.g.,

ens_lift@{i k} : Ens@{i} → Ens@{k}

with the side condition: i ≤ k.

Problem: e and ens_lift e are not necessarily the same

Any statement about e is not usable with ens_lift e and needs to be proven
separately

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



5

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Not restricted to categories:
Consider inductive representation of ensembles:

Inductive Ens@{i} : Type@{i+1} :=
ens@{i} : forall (A : Type@{i}), (A → Ens@{i}) → Ens@{i}

.

Examples:

empty := ens@{0} Empty (Empty_rect Ens@{i})

union (ens@{i} A f) (ens@{i} B g) := ens@{i} (A + B) (f + g)

intersection (ens@{i} A f) (ens@{i} B g) := ens@{i} (A × B) (f × g)

Ensemble of small ensembles can’t be directly formed:

ens@{j+1} Ens@{j} (fun x : Ens@{j} ⇒ x)

Can be solved using liftings, e.g.,

ens_lift@{i k} : Ens@{i} → Ens@{k}

with the side condition: i ≤ k.

Problem: e and ens_lift e are not necessarily the same

Any statement about e is not usable with ens_lift e and needs to be proven
separately

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



6

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Outline

1 Universe polymorphism and Inductive Types

2 pCIC

3 pCuIC

4 lpCuIC

5 Future Work – Conclusion

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



7

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Some (simplified) typing rules of pCIC:

Γ ` A : Typei Γ, x : A ` B : Typej
Γ ` Πx : A. B : Typemax(i,j)

(Prod)

Γ, x : A ` t : B

Γ ` (λx : A. t) : (Πx : A. B)
(Lam)

Γ ` t : (Πx : A.B) Γ ` t′ : A

Γ ` (t t′) : B[t′/x]
(App)

Γ ` t : A Γ ` B : s A � B
Γ ` t : B

(Conv)

A ∈ Ar(s) Γ ` A : s′ (Γ, X : A ` Ci : s Ci ∈ Co(X) ∀1 ≤ i ≤ n)

Γ ` Ind(X : A){C1, . . . , Cn} : A
(Ind)

Ar(s) is the set of types of the form: Π
→
x :

→
M. s

Co(X) is the set of types of the form: Π
→
x :

→
M. X

→
m

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



7

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Some (simplified) typing rules of pCIC:

Γ ` A : Typei Γ, x : A ` B : Typej
Γ ` Πx : A. B : Typemax(i,j)

(Prod)

Γ, x : A ` t : B

Γ ` (λx : A. t) : (Πx : A. B)
(Lam)

Γ ` t : (Πx : A.B) Γ ` t′ : A

Γ ` (t t′) : B[t′/x]
(App)

Γ ` t : A Γ ` B : s A � B
Γ ` t : B

(Conv)

A ∈ Ar(s) Γ ` A : s′ (Γ, X : A ` Ci : s Ci ∈ Co(X) ∀1 ≤ i ≤ n)

Γ ` Ind(X : A){C1, . . . , Cn} : A
(Ind)

Ar(s) is the set of types of the form: Π
→
x :

→
M. s

Co(X) is the set of types of the form: Π
→
x :

→
M. X

→
m

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



7

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Some (simplified) typing rules of pCIC:

Γ ` A : Typei Γ, x : A ` B : Typej
Γ ` Πx : A. B : Typemax(i,j)

(Prod)

Γ, x : A ` t : B

Γ ` (λx : A. t) : (Πx : A. B)
(Lam)

Γ ` t : (Πx : A.B) Γ ` t′ : A

Γ ` (t t′) : B[t′/x]
(App)

Γ ` t : A Γ ` B : s A � B
Γ ` t : B

(Conv)

A ∈ Ar(s) Γ ` A : s′ (Γ, X : A ` Ci : s Ci ∈ Co(X) ∀1 ≤ i ≤ n)

Γ ` Ind(X : A){C1, . . . , Cn} : A
(Ind)

Ar(s) is the set of types of the form: Π
→
x :

→
M. s

Co(X) is the set of types of the form: Π
→
x :

→
M. X

→
m

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



7

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Some (simplified) typing rules of pCIC:

Γ ` A : Typei Γ, x : A ` B : Typej
Γ ` Πx : A. B : Typemax(i,j)

(Prod)

Γ, x : A ` t : B

Γ ` (λx : A. t) : (Πx : A. B)
(Lam)

Γ ` t : (Πx : A.B) Γ ` t′ : A

Γ ` (t t′) : B[t′/x]
(App)

Γ ` t : A Γ ` B : s A � B
Γ ` t : B

(Conv)

A ∈ Ar(s) Γ ` A : s′ (Γ, X : A ` Ci : s Ci ∈ Co(X) ∀1 ≤ i ≤ n)

Γ ` Ind(X : A){C1, . . . , Cn} : A
(Ind)

Ar(s) is the set of types of the form: Π
→
x :

→
M. s

Co(X) is the set of types of the form: Π
→
x :

→
M. X

→
m

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



7

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Some (simplified) typing rules of pCIC:

Γ ` A : Typei Γ, x : A ` B : Typej
Γ ` Πx : A. B : Typemax(i,j)

(Prod)

Γ, x : A ` t : B

Γ ` (λx : A. t) : (Πx : A. B)
(Lam)

Γ ` t : (Πx : A.B) Γ ` t′ : A

Γ ` (t t′) : B[t′/x]
(App)

Γ ` t : A Γ ` B : s A � B
Γ ` t : B

(Conv)

A ∈ Ar(s) Γ ` A : s′ (Γ, X : A ` Ci : s Ci ∈ Co(X) ∀1 ≤ i ≤ n)

Γ ` Ind(X : A){C1, . . . , Cn} : A
(Ind)

Ar(s) is the set of types of the form: Π
→
x :

→
M. s

Co(X) is the set of types of the form: Π
→
x :

→
M. X

→
m

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



7

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Some (simplified) typing rules of pCIC:

Γ ` A : Typei Γ, x : A ` B : Typej
Γ ` Πx : A. B : Typemax(i,j)

(Prod)

Γ, x : A ` t : B

Γ ` (λx : A. t) : (Πx : A. B)
(Lam)

Γ ` t : (Πx : A.B) Γ ` t′ : A

Γ ` (t t′) : B[t′/x]
(App)

Γ ` t : A Γ ` B : s A � B
Γ ` t : B

(Conv)

A ∈ Ar(s) Γ ` A : s′ (Γ, X : A ` Ci : s Ci ∈ Co(X) ∀1 ≤ i ≤ n)

Γ ` Ind(X : A){C1, . . . , Cn} : A
(Ind)

Ar(s) is the set of types of the form: Π
→
x :

→
M. s

Co(X) is the set of types of the form: Π
→
x :

→
M. X

→
m

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



8

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Examples:
Prod:

A : Typei, n : nat ` VectA,n : Typei A : Typei ` nat : Type0
A : Typei ` (Πn : nat. VectA,n) : Typei

Lam:
A : Typei, n : nat ` t : VectA,n

A : Typei ` (λn : nat. t) : (Πn : nat. VectA,n)

App:
A : Typei ` f : (Πn : nat. VectA,n) A : Typei ` x : nat

A : Typei ` f x : VectA,x

Ind:
· ` Ind(nat : Type0){nat ,nat → nat}

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



8

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Examples:
Prod:

A : Typei, n : nat ` VectA,n : Typei A : Typei ` nat : Type0
A : Typei ` (Πn : nat. VectA,n) : Typei

Lam:
A : Typei, n : nat ` t : VectA,n

A : Typei ` (λn : nat. t) : (Πn : nat. VectA,n)

App:
A : Typei ` f : (Πn : nat. VectA,n) A : Typei ` x : nat

A : Typei ` f x : VectA,x

Ind:
· ` Ind(nat : Type0){nat ,nat → nat}

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



8

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Examples:
Prod:

A : Typei, n : nat ` VectA,n : Typei A : Typei ` nat : Type0
A : Typei ` (Πn : nat. VectA,n) : Typei

Lam:
A : Typei, n : nat ` t : VectA,n

A : Typei ` (λn : nat. t) : (Πn : nat. VectA,n)

App:
A : Typei ` f : (Πn : nat. VectA,n) A : Typei ` x : nat

A : Typei ` f x : VectA,x

Ind:
· ` Ind(nat : Type0){nat ,nat → nat}

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



8

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Examples:
Prod:

A : Typei, n : nat ` VectA,n : Typei A : Typei ` nat : Type0
A : Typei ` (Πn : nat. VectA,n) : Typei

Lam:
A : Typei, n : nat ` t : VectA,n

A : Typei ` (λn : nat. t) : (Πn : nat. VectA,n)

App:
A : Typei ` f : (Πn : nat. VectA,n) A : Typei ` x : nat

A : Typei ` f x : VectA,x

Ind:
· ` Ind(nat : Type0){nat ,nat → nat}

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



8

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Examples:
Prod:

A : Typei, n : nat ` VectA,n : Typei A : Typei ` nat : Type0
A : Typei ` (Πn : nat. VectA,n) : Typei

Lam:
A : Typei, n : nat ` t : VectA,n

A : Typei ` (λn : nat. t) : (Πn : nat. VectA,n)

App:
A : Typei ` f : (Πn : nat. VectA,n) A : Typei ` x : nat

A : Typei ` f x : VectA,x

Ind:
· ` Ind(nat : Type0){nat ,nat → nat}

A : Typei ` Ind(VectA : nat → Typei){VectA 0,Πn : nat . A→ VectA n→ VectA (S n)}

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



8

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Examples:
Prod:

A : Typei, n : nat ` VectA,n : Typei A : Typei ` nat : Type0
A : Typei ` (Πn : nat. VectA,n) : Typei

Lam:
A : Typei, n : nat ` t : VectA,n

A : Typei ` (λn : nat. t) : (Πn : nat. VectA,n)

App:
A : Typei ` f : (Πn : nat. VectA,n) A : Typei ` x : nat

A : Typei ` f x : VectA,x

Ind:
· ` Ind(nat : Type0){nat ,nat → nat}

A : Typei ` Ind(VectA : nat → Typei){VectA 0,Πn : nat . A→ VectA n→ VectA (S n)}︸ ︷︷ ︸
I

VectA,n , I n

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



9

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Conversion/cumulativity rules of pCIC:

i ≤ j
Typei � Typej

(C-Type)

A ' A′ B � B′

Πx : A. B � Πx : A′. B′
(C-Prod)

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



9

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Conversion/cumulativity rules of pCIC:

i ≤ j
Typei � Typej

(C-Type)

A ' A′ B � B′

Πx : A. B � Πx : A′. B′
(C-Prod)

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



9

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Conversion/cumulativity rules of pCIC:

i ≤ j
Typei � Typej

(C-Type)

A ' A′ B � B′

Πx : A. B � Πx : A′. B′
(C-Prod)

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



10

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Outline

1 Universe polymorphism and Inductive Types

2 pCIC

3 pCuIC

4 lpCuIC

5 Future Work – Conclusion

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



11

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Predicative Calculus of Cumulative Inductive Types (pCuIC):

pCuIC is pCIC + C-Ind rule:

Example:

Category@{i j} ≡ Ind(X : Typemax(i+1,j+1)){Πo : Typei.Πh : o→ o→ Typej .N}
where i and j don’t appear in term N

By C-Ind:

Typei � Typek and Typej � Typel ⇒ Category@{i j} � Category@{k l}

Also:

Ens@{i} ≡ Ind(X : Typei+1){ΠA : Typei.(A→ X)→ X}
Typei � Typek ⇒ Ens@{i} � Ens@{k}

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



11

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Predicative Calculus of Cumulative Inductive Types (pCuIC):

pCuIC is pCIC + C-Ind rule:

I ≡ (Ind(X : Π
→
x :
→
N. s){Π→x1 :

→
M1. X

→
m1, . . . ,Π

→
xn :

→
Mn. X

→
mn}

I ′ ≡ (Ind(X : Π
→
x :

→
N ′. s′){Π→x1 :

→
M ′1. X

→
m′1, . . . ,Π

→
xn :

→
M ′n. X

→
m′n}

s � s′ ∀i. Ni � N ′i ∀i, j. (Mi)j � (M ′i)j

length(
→
m) = length(

→
x) ∀i. X →

mi ' X
→
m′i

I
→
m � I ′ →m

(C-Ind)

Example:

Category@{i j} ≡ Ind(X : Typemax(i+1,j+1)){Πo : Typei.Πh : o→ o→ Typej .N}
where i and j don’t appear in term N

By C-Ind:

Typei � Typek and Typej � Typel ⇒ Category@{i j} � Category@{k l}
Also:

Ens@{i} ≡ Ind(X : Typei+1){ΠA : Typei.(A→ X)→ X}
Typei � Typek ⇒ Ens@{i} � Ens@{k}

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



11

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Predicative Calculus of Cumulative Inductive Types (pCuIC):

pCuIC is pCIC + C-Ind rule:

I ≡ (Ind(X : Π
→
x :
→
N. s){Π→x1 :

→
M1. X

→
m1, . . . ,Π

→
xn :

→
Mn. X

→
mn}

I ′ ≡ (Ind(X : Π
→
x :

→
N ′. s′){Π→x1 :

→
M ′1. X

→
m′1, . . . ,Π

→
xn :

→
M ′n. X

→
m′n}

s � s′ ∀i. Ni � N ′i ∀i, j. (Mi)j � (M ′i)j

length(
→
m) = length(

→
x) ∀i. X →

mi ' X
→
m′i

I
→
m � I ′ →m

(C-Ind)

Example:

Category@{i j} ≡ Ind(X : Typemax(i+1,j+1)){Πo : Typei.Πh : o→ o→ Typej .N}
where i and j don’t appear in term N

By C-Ind:

Typei � Typek and Typej � Typel ⇒ Category@{i j} � Category@{k l}
Also:

Ens@{i} ≡ Ind(X : Typei+1){ΠA : Typei.(A→ X)→ X}
Typei � Typek ⇒ Ens@{i} � Ens@{k}

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



11

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Predicative Calculus of Cumulative Inductive Types (pCuIC):

pCuIC is pCIC + C-Ind rule:

I ≡ (Ind(X : Π
→
x :
→
N. s){Π→x1 :

→
M1. X

→
m1, . . . ,Π

→
xn :

→
Mn. X

→
mn}

I ′ ≡ (Ind(X : Π
→
x :

→
N ′. s′){Π→x1 :

→
M ′1. X

→
m′1, . . . ,Π

→
xn :

→
M ′n. X

→
m′n}

s � s′ ∀i. Ni � N ′i ∀i, j. (Mi)j � (M ′i)j

length(
→
m) = length(

→
x) ∀i. X →

mi ' X
→
m′i

I
→
m � I ′ →m

(C-Ind)

Example:

Category@{i j} ≡ Ind(X : Typemax(i+1,j+1)){Πo : Typei.Πh : o→ o→ Typej .N}
where i and j don’t appear in term N

By C-Ind:

Typei � Typek and Typej � Typel ⇒ Category@{i j} � Category@{k l}
Also:

Ens@{i} ≡ Ind(X : Typei+1){ΠA : Typei.(A→ X)→ X}
Typei � Typek ⇒ Ens@{i} � Ens@{k}

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



11

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Predicative Calculus of Cumulative Inductive Types (pCuIC):

pCuIC is pCIC + C-Ind rule:

I ≡ (Ind(X : Π
→
x :
→
N. s){Π→x1 :

→
M1. X

→
m1, . . . ,Π

→
xn :

→
Mn. X

→
mn}

I ′ ≡ (Ind(X : Π
→
x :

→
N ′. s′){Π→x1 :

→
M ′1. X

→
m′1, . . . ,Π

→
xn :

→
M ′n. X

→
m′n}

s � s′ ∀i. Ni � N ′i ∀i, j. (Mi)j � (M ′i)j

length(
→
m) = length(

→
x) ∀i. X →

mi ' X
→
m′i

I
→
m � I ′ →m

(C-Ind)

Example:

Category@{i j} ≡ Ind(X : Typemax(i+1,j+1)){Πo : Typei.Πh : o→ o→ Typej .N}
where i and j don’t appear in term N

By C-Ind:

Typei � Typek and Typej � Typel ⇒ Category@{i j} � Category@{k l}
Also:

Ens@{i} ≡ Ind(X : Typei+1){ΠA : Typei.(A→ X)→ X}
Typei � Typek ⇒ Ens@{i} � Ens@{k}

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



11

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Predicative Calculus of Cumulative Inductive Types (pCuIC):

pCuIC is pCIC + C-Ind rule:

I ≡ (Ind(X : Π
→
x :
→
N. s){Π→x1 :

→
M1. X

→
m1, . . . ,Π

→
xn :

→
Mn. X

→
mn}

I ′ ≡ (Ind(X : Π
→
x :

→
N ′. s′){Π→x1 :

→
M ′1. X

→
m′1, . . . ,Π

→
xn :

→
M ′n. X

→
m′n}

s � s′ ∀i. Ni � N ′i ∀i, j. (Mi)j � (M ′i)j

length(
→
m) = length(

→
x) ∀i. X →

mi ' X
→
m′i

I
→
m � I ′ →m

(C-Ind)

Example:

Category@{i j} ≡ Ind(X : Typemax(i+1,j+1)){Πo : Typei.Πh : o→ o→ Typej .N}
where i and j don’t appear in term N

By C-Ind:

Typei � Typek and Typej � Typel ⇒ Category@{i j} � Category@{k l}
Also:

Ens@{i} ≡ Ind(X : Typei+1){ΠA : Typei.(A→ X)→ X}
Typei � Typek ⇒ Ens@{i} � Ens@{k}

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



11

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Predicative Calculus of Cumulative Inductive Types (pCuIC):

pCuIC is pCIC + C-Ind rule:

I ≡ (Ind(X : Π
→
x :
→
N. s){Π→x1 :

→
M1. X

→
m1, . . . ,Π

→
xn :

→
Mn. X

→
mn}

I ′ ≡ (Ind(X : Π
→
x :

→
N ′. s′){Π→x1 :

→
M ′1. X

→
m′1, . . . ,Π

→
xn :

→
M ′n. X

→
m′n}

s � s′ ∀i. Ni � N ′i ∀i, j. (Mi)j � (M ′i)j

length(
→
m) = length(

→
x) ∀i. X →

mi ' X
→
m′i

I
→
m � I ′ →m

(C-Ind)

Example:

Category@{i j} ≡ Ind(X : Typemax(i+1,j+1)){Πo : Typei.Πh : o→ o→ Typej .N}
where i and j don’t appear in term N

By C-Ind:

Typei � Typek and Typej � Typel ⇒ Category@{i j} � Category@{k l}
Also:

Ens@{i} ≡ Ind(X : Typei+1){ΠA : Typei.(A→ X)→ X}
Typei � Typek ⇒ Ens@{i} � Ens@{k}

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



11

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Predicative Calculus of Cumulative Inductive Types (pCuIC):

pCuIC is pCIC + C-Ind rule:

I ≡ (Ind(X : Π
→
x :
→
N. s){Π→x1 :

→
M1. X

→
m1, . . . ,Π

→
xn :

→
Mn. X

→
mn}

I ′ ≡ (Ind(X : Π
→
x :

→
N ′. s′){Π→x1 :

→
M ′1. X

→
m′1, . . . ,Π

→
xn :

→
M ′n. X

→
m′n}

s � s′ ∀i. Ni � N ′i ∀i, j. (Mi)j � (M ′i)j

length(
→
m) = length(

→
x) ∀i. X →

mi ' X
→
m′i

I
→
m � I ′ →m

(C-Ind)

Example:

Category@{i j} ≡ Ind(X : Typemax(i+1,j+1)){Πo : Typei.Πh : o→ o→ Typej .N}
where i and j don’t appear in term N

By C-Ind:

Typei � Typek and Typej � Typel ⇒ Category@{i j} � Category@{k l}
Also:

Ens@{i} ≡ Ind(X : Typei+1){ΠA : Typei.(A→ X)→ X}
Typei � Typek ⇒ Ens@{i} � Ens@{k}

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



11

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Predicative Calculus of Cumulative Inductive Types (pCuIC):

pCuIC is pCIC + C-Ind rule:

I ≡ (Ind(X : Π
→
x :
→
N. s){Π→x1 :

→
M1. X

→
m1, . . . ,Π

→
xn :

→
Mn. X

→
mn}

I ′ ≡ (Ind(X : Π
→
x :

→
N ′. s′){Π→x1 :

→
M ′1. X

→
m′1, . . . ,Π

→
xn :

→
M ′n. X

→
m′n}

s � s′ ∀i. Ni � N ′i ∀i, j. (Mi)j � (M ′i)j

length(
→
m) = length(

→
x) ∀i. X →

mi ' X
→
m′i

I
→
m � I ′ →m

(C-Ind)

Example:

Category@{i j} ≡ Ind(X : Typemax(i+1,j+1)){Πo : Typei.Πh : o→ o→ Typej .N}
where i and j don’t appear in term N

By C-Ind:

Typei � Typek and Typej � Typel ⇒ Category@{i j} � Category@{k l}

Also:

Ens@{i} ≡ Ind(X : Typei+1){ΠA : Typei.(A→ X)→ X}
Typei � Typek ⇒ Ens@{i} � Ens@{k}

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



11

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Predicative Calculus of Cumulative Inductive Types (pCuIC):

pCuIC is pCIC + C-Ind rule:

I ≡ (Ind(X : Π
→
x :
→
N. s){Π→x1 :

→
M1. X

→
m1, . . . ,Π

→
xn :

→
Mn. X

→
mn}

I ′ ≡ (Ind(X : Π
→
x :

→
N ′. s′){Π→x1 :

→
M ′1. X

→
m′1, . . . ,Π

→
xn :

→
M ′n. X

→
m′n}

s � s′ ∀i. Ni � N ′i ∀i, j. (Mi)j � (M ′i)j

length(
→
m) = length(

→
x) ∀i. X →

mi ' X
→
m′i

I
→
m � I ′ →m

(C-Ind)

Example:

Category@{i j} ≡ Ind(X : Typemax(i+1,j+1)){Πo : Typei.Πh : o→ o→ Typej .N}
where i and j don’t appear in term N

By C-Ind:

Typei � Typek and Typej � Typel ⇒ Category@{i j} � Category@{k l}
Also:

Ens@{i} ≡ Ind(X : Typei+1){ΠA : Typei.(A→ X)→ X}

Typei � Typek ⇒ Ens@{i} � Ens@{k}

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



11

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Predicative Calculus of Cumulative Inductive Types (pCuIC):

pCuIC is pCIC + C-Ind rule:

I ≡ (Ind(X : Π
→
x :
→
N. s){Π→x1 :

→
M1. X

→
m1, . . . ,Π

→
xn :

→
Mn. X

→
mn}

I ′ ≡ (Ind(X : Π
→
x :

→
N ′. s′){Π→x1 :

→
M ′1. X

→
m′1, . . . ,Π

→
xn :

→
M ′n. X

→
m′n}

s � s′ ∀i. Ni � N ′i ∀i, j. (Mi)j � (M ′i)j

length(
→
m) = length(

→
x) ∀i. X →

mi ' X
→
m′i

I
→
m � I ′ →m

(C-Ind)

Example:

Category@{i j} ≡ Ind(X : Typemax(i+1,j+1)){Πo : Typei.Πh : o→ o→ Typej .N}
where i and j don’t appear in term N

By C-Ind:

Typei � Typek and Typej � Typel ⇒ Category@{i j} � Category@{k l}
Also:

Ens@{i} ≡ Ind(X : Typei+1){ΠA : Typei.(A→ X)→ X}
Typei � Typek ⇒ Ens@{i} � Ens@{k}

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



12

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Conjecture

pCuIC has the following properties:

1 Church-Rosser property

2 Strong normalization

3 Context Validity

4 Typing Validity

5 Subject Reduction

Conjecture

Let Γ `pCIC T : s be a pCIC type such that Γ `pCuIC t : T . Then there exists a term t′

such that Γ `pCIC t′ : T .

The latter reduces the soundness of pCuIC to the soundness of pCIC:

· apCuIC t : False⇒ ∃t′. · apCIC t′ : False

We prove this conjecture for the lesser pCuIC (lpCuIC), a fragment of pCuIC

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



12

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Conjecture

pCuIC has the following properties:

1 Church-Rosser property

2 Strong normalization

3 Context Validity

4 Typing Validity

5 Subject Reduction

Conjecture

Let Γ `pCIC T : s be a pCIC type such that Γ `pCuIC t : T . Then there exists a term t′

such that Γ `pCIC t′ : T .

The latter reduces the soundness of pCuIC to the soundness of pCIC:

· apCuIC t : False⇒ ∃t′. · apCIC t′ : False

We prove this conjecture for the lesser pCuIC (lpCuIC), a fragment of pCuIC

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



12

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Conjecture

pCuIC has the following properties:

1 Church-Rosser property

2 Strong normalization

3 Context Validity

4 Typing Validity

5 Subject Reduction

Conjecture

Let Γ `pCIC T : s be a pCIC type such that Γ `pCuIC t : T . Then there exists a term t′

such that Γ `pCIC t′ : T .

The latter reduces the soundness of pCuIC to the soundness of pCIC:

· apCuIC t : False⇒ ∃t′. · apCIC t′ : False

We prove this conjecture for the lesser pCuIC (lpCuIC), a fragment of pCuIC

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



12

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Conjecture

pCuIC has the following properties:

1 Church-Rosser property

2 Strong normalization

3 Context Validity

4 Typing Validity

5 Subject Reduction

Conjecture

Let Γ `pCIC T : s be a pCIC type such that Γ `pCuIC t : T . Then there exists a term t′

such that Γ `pCIC t′ : T .

The latter reduces the soundness of pCuIC to the soundness of pCIC:

· apCuIC t : False⇒ ∃t′. · apCIC t′ : False

We prove this conjecture for the lesser pCuIC (lpCuIC), a fragment of pCuIC

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



13

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Outline

1 Universe polymorphism and Inductive Types

2 pCIC

3 pCuIC

4 lpCuIC

5 Future Work – Conclusion

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



14

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

The lesser pCuIC (lpCuIC) is a fragment of pCuIC:

For any sub-derivation Γ `lpCuIC t : T we have Γ `pCIC T : s

For any sub-derivation Γ `lpCuIC T : Π
→
x :
→
A.s we have Γ `pCIC T : Π

→
x :
→
A.s

C-Ind is replaced by C-Ind’

In lpCuIC,

Typei � Typek and Typej � Typel ⇒ Category@{i j} � Category@{k l}

Also:

Typei � Typek ⇒ Ens@{i} � Ens@{k}

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



14

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

The lesser pCuIC (lpCuIC) is a fragment of pCuIC:

For any sub-derivation Γ `lpCuIC t : T we have Γ `pCIC T : s

For any sub-derivation Γ `lpCuIC T : Π
→
x :
→
A.s we have Γ `pCIC T : Π

→
x :
→
A.s

C-Ind is replaced by C-Ind’

In lpCuIC,

Typei � Typek and Typej � Typel ⇒ Category@{i j} � Category@{k l}

Also:

Typei � Typek ⇒ Ens@{i} � Ens@{k}

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



14

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

The lesser pCuIC (lpCuIC) is a fragment of pCuIC:

For any sub-derivation Γ `lpCuIC t : T we have Γ `pCIC T : s

For any sub-derivation Γ `lpCuIC T : Π
→
x :
→
A.s we have Γ `pCIC T : Π

→
x :
→
A.s

C-Ind is replaced by C-Ind’

In lpCuIC,

Typei � Typek and Typej � Typel ⇒ Category@{i j} � Category@{k l}

Also:

Typei � Typek ⇒ Ens@{i} � Ens@{k}

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



14

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

The lesser pCuIC (lpCuIC) is a fragment of pCuIC:

For any sub-derivation Γ `lpCuIC t : T we have Γ `pCIC T : s

For any sub-derivation Γ `lpCuIC T : Π
→
x :
→
A.s we have Γ `pCIC T : Π

→
x :
→
A.s

C-Ind is replaced by C-Ind’

I ≡ (Ind(X : Π
→
x :
→
N. s){Π(

→
x1 :

→
M1. X

→
m1, . . . ,Π

→
xn :

→
Mn. X

→
mn}

I′ ≡ (Ind(X : Π
→
x :
→
N ′. s′){Π→x1 :

→
M ′1. X

→
m′1, . . . ,Π

→
xn :

→
M ′n. X

→
m′n}

s � s′ ∀i. Ni �pCIC N
′
i ∀i, j. (Mi)j �pCIC (M ′i)j

length(
→
m) = length(

→
x ) ∀i. X →

mi ' X
→
m′i

I
→
m � I′ →m

(C-Ind’)

In lpCuIC,

Typei � Typek and Typej � Typel ⇒ Category@{i j} � Category@{k l}
Also:

Typei � Typek ⇒ Ens@{i} � Ens@{k}

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



14

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

The lesser pCuIC (lpCuIC) is a fragment of pCuIC:

For any sub-derivation Γ `lpCuIC t : T we have Γ `pCIC T : s

For any sub-derivation Γ `lpCuIC T : Π
→
x :
→
A.s we have Γ `pCIC T : Π

→
x :
→
A.s

C-Ind is replaced by C-Ind’

I ≡ (Ind(X : Π
→
x :
→
N. s){Π(

→
x1 :

→
M1. X

→
m1, . . . ,Π

→
xn :

→
Mn. X

→
mn}

I′ ≡ (Ind(X : Π
→
x :
→
N ′. s′){Π→x1 :

→
M ′1. X

→
m′1, . . . ,Π

→
xn :

→
M ′n. X

→
m′n}

s � s′ ∀i. Ni �
pCIC

N ′i ∀i, j. (Mi)j �
pCIC

(M ′i)j

length(
→
m) = length(

→
x ) ∀i. X →

mi ' X
→
m′i

I
→
m � I′ →m

(C-Ind’)

In lpCuIC,

Typei � Typek and Typej � Typel ⇒ Category@{i j} � Category@{k l}
Also:

Typei � Typek ⇒ Ens@{i} � Ens@{k}

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



14

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

The lesser pCuIC (lpCuIC) is a fragment of pCuIC:

For any sub-derivation Γ `lpCuIC t : T we have Γ `pCIC T : s

For any sub-derivation Γ `lpCuIC T : Π
→
x :
→
A.s we have Γ `pCIC T : Π

→
x :
→
A.s

C-Ind is replaced by C-Ind’

I ≡ (Ind(X : Π
→
x :
→
N. s){Π(

→
x1 :

→
M1. X

→
m1, . . . ,Π

→
xn :

→
Mn. X

→
mn}

I′ ≡ (Ind(X : Π
→
x :
→
N ′. s′){Π→x1 :

→
M ′1. X

→
m′1, . . . ,Π

→
xn :

→
M ′n. X

→
m′n}

s � s′ ∀i. Ni �
pCIC

N ′i ∀i, j. (Mi)j �
pCIC

(M ′i)j

length(
→
m) = length(

→
x ) ∀i. X →

mi ' X
→
m′i

I
→
m � I′ →m

(C-Ind’)

App is replaced by App’

(App’)
Γ ` t : (Πx : A. B) Γ ` t′ : A

Γ ` (t t′) : B[t′/x]
(Γ `pCIC t′ : A or x 6∈ FV (B))

In lpCuIC,

Typei � Typek and Typej � Typel ⇒ Category@{i j} � Category@{k l}
Also:

Typei � Typek ⇒ Ens@{i} � Ens@{k}

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



14

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

The lesser pCuIC (lpCuIC) is a fragment of pCuIC:

For any sub-derivation Γ `lpCuIC t : T we have Γ `pCIC T : s

For any sub-derivation Γ `lpCuIC T : Π
→
x :
→
A.s we have Γ `pCIC T : Π

→
x :
→
A.s

C-Ind is replaced by C-Ind’

I ≡ (Ind(X : Π
→
x :
→
N. s){Π(

→
x1 :

→
M1. X

→
m1, . . . ,Π

→
xn :

→
Mn. X

→
mn}

I′ ≡ (Ind(X : Π
→
x :
→
N ′. s′){Π→x1 :

→
M ′1. X

→
m′1, . . . ,Π

→
xn :

→
M ′n. X

→
m′n}

s � s′ ∀i. Ni �
pCIC

N ′i ∀i, j. (Mi)j �
pCIC

(M ′i)j

length(
→
m) = length(

→
x ) ∀i. X →

mi ' X
→
m′i

I
→
m � I′ →m

(C-Ind’)

App is replaced by App’

(App’)
Γ ` t : (Πx : A. B) Γ ` t′ : A

Γ ` (t t′) : B[t′/x]
(Γ `pCIC t′ : A or x 6∈ FV (B))

In lpCuIC,

Typei � Typek and Typej � Typel ⇒ Category@{i j} � Category@{k l}

Also:

Typei � Typek ⇒ Ens@{i} � Ens@{k}

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



14

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

The lesser pCuIC (lpCuIC) is a fragment of pCuIC:

For any sub-derivation Γ `lpCuIC t : T we have Γ `pCIC T : s

For any sub-derivation Γ `lpCuIC T : Π
→
x :
→
A.s we have Γ `pCIC T : Π

→
x :
→
A.s

C-Ind is replaced by C-Ind’

I ≡ (Ind(X : Π
→
x :
→
N. s){Π(

→
x1 :

→
M1. X

→
m1, . . . ,Π

→
xn :

→
Mn. X

→
mn}

I′ ≡ (Ind(X : Π
→
x :
→
N ′. s′){Π→x1 :

→
M ′1. X

→
m′1, . . . ,Π

→
xn :

→
M ′n. X

→
m′n}

s � s′ ∀i. Ni �
pCIC

N ′i ∀i, j. (Mi)j �
pCIC

(M ′i)j

length(
→
m) = length(

→
x ) ∀i. X →

mi ' X
→
m′i

I
→
m � I′ →m

(C-Ind’)

App is replaced by App’

(App’)
Γ ` t : (Πx : A. B) Γ ` t′ : A

Γ ` (t t′) : B[t′/x]
(Γ `pCIC t′ : A or x 6∈ FV (B))

In lpCuIC,

Typei � Typek and Typej � Typel ⇒ Category@{i j} � Category@{k l}
Also:

Typei � Typek ⇒ Ens@{i} � Ens@{k}

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



15

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

We prove soundness of lpCuIC:

Theorem (Inhabitants in lpCuIC)

Let t and T be terms such that Γ `lpCuIC t : T . Then there exists t′ such that
Γ `pCIC t′ : T .

Proof sketch.

We build lifters Γ apCIC ΥT�lpCuICT
′ : T → T ′ for T �lpCuIC T

′.
Each sub-term t : T for which we have used Conv to derive t : T ′ is replaced with
(ΥT�lpCuICT

′ t).

Corollary (Soundness of lpCuIC)

· `lpCuIC t : False implies that there exists t′ such that · `pCIC t′ : False.

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



15

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

We prove soundness of lpCuIC:

Theorem (Inhabitants in lpCuIC)

Let t and T be terms such that Γ `lpCuIC t : T . Then there exists t′ such that
Γ `pCIC t′ : T .

Proof sketch.

We build lifters Γ apCIC ΥT�lpCuICT
′ : T → T ′ for T �lpCuIC T

′.
Each sub-term t : T for which we have used Conv to derive t : T ′ is replaced with
(ΥT�lpCuICT

′ t).

Corollary (Soundness of lpCuIC)

· `lpCuIC t : False implies that there exists t′ such that · `pCIC t′ : False.

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



15

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

We prove soundness of lpCuIC:

Theorem (Inhabitants in lpCuIC)

Let t and T be terms such that Γ `lpCuIC t : T . Then there exists t′ such that
Γ `pCIC t′ : T .

Proof sketch.

We build lifters Γ apCIC ΥT�lpCuICT
′ : T → T ′ for T �lpCuIC T

′.
Each sub-term t : T for which we have used Conv to derive t : T ′ is replaced with
(ΥT�lpCuICT

′ t).

Corollary (Soundness of lpCuIC)

· `lpCuIC t : False implies that there exists t′ such that · `pCIC t′ : False.

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



16

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Future work:
Proof of conjectures about pCuIC

Implementation
Considering parameters of inductive types:

Inductive List@{i} (A: Type@{i}) :=
| Nil : List@{i} A
| Cons : A → List@{i} A → List@{i} A

.

We can have List@{i} A � List@{i’} B when A � B.

Inductive Img_inh@{i j} (F : Type@{i} → Type@{j}) (A : Type@{i}) :=
fa : (F A) → Img_inh F A

.

Whether (Img_inh@{i j} F A) � (Img_inh@{i’ j’} F B) when A � B depends on
variance of F.

Conclusion:
Presented pCuIC
Discussed how it makes working with structures such as categories and ensembles
easier
Presented lpCuIC

As an intuitive reason why we believe pCuIC is sound

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



16

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Future work:
Proof of conjectures about pCuIC
Implementation

Considering parameters of inductive types:

Inductive List@{i} (A: Type@{i}) :=
| Nil : List@{i} A
| Cons : A → List@{i} A → List@{i} A

.

We can have List@{i} A � List@{i’} B when A � B.

Inductive Img_inh@{i j} (F : Type@{i} → Type@{j}) (A : Type@{i}) :=
fa : (F A) → Img_inh F A

.

Whether (Img_inh@{i j} F A) � (Img_inh@{i’ j’} F B) when A � B depends on
variance of F.

Conclusion:
Presented pCuIC
Discussed how it makes working with structures such as categories and ensembles
easier
Presented lpCuIC

As an intuitive reason why we believe pCuIC is sound

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



16

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Future work:
Proof of conjectures about pCuIC
Implementation
Considering parameters of inductive types:

Inductive List@{i} (A: Type@{i}) :=
| Nil : List@{i} A
| Cons : A → List@{i} A → List@{i} A

.

We can have List@{i} A � List@{i’} B when A � B.

Inductive Img_inh@{i j} (F : Type@{i} → Type@{j}) (A : Type@{i}) :=
fa : (F A) → Img_inh F A

.

Whether (Img_inh@{i j} F A) � (Img_inh@{i’ j’} F B) when A � B depends on
variance of F.

Conclusion:
Presented pCuIC
Discussed how it makes working with structures such as categories and ensembles
easier
Presented lpCuIC

As an intuitive reason why we believe pCuIC is sound

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



16

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Future work:
Proof of conjectures about pCuIC
Implementation
Considering parameters of inductive types:

Inductive List@{i} (A: Type@{i}) :=
| Nil : List@{i} A
| Cons : A → List@{i} A → List@{i} A

.

We can have List@{i} A � List@{i’} B when A � B.

Inductive Img_inh@{i j} (F : Type@{i} → Type@{j}) (A : Type@{i}) :=
fa : (F A) → Img_inh F A

.

Whether (Img_inh@{i j} F A) � (Img_inh@{i’ j’} F B) when A � B depends on
variance of F.

Conclusion:
Presented pCuIC
Discussed how it makes working with structures such as categories and ensembles
easier
Presented lpCuIC

As an intuitive reason why we believe pCuIC is sound

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



16

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Future work:
Proof of conjectures about pCuIC
Implementation
Considering parameters of inductive types:

Inductive List@{i} (A: Type@{i}) :=
| Nil : List@{i} A
| Cons : A → List@{i} A → List@{i} A

.

We can have List@{i} A � List@{i’} B when A � B.

Inductive Img_inh@{i j} (F : Type@{i} → Type@{j}) (A : Type@{i}) :=
fa : (F A) → Img_inh F A

.

Whether (Img_inh@{i j} F A) � (Img_inh@{i’ j’} F B) when A � B depends on
variance of F.

Conclusion:
Presented pCuIC
Discussed how it makes working with structures such as categories and ensembles
easier
Presented lpCuIC

As an intuitive reason why we believe pCuIC is sound

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



16

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Future work:
Proof of conjectures about pCuIC
Implementation
Considering parameters of inductive types:

Inductive List@{i} (A: Type@{i}) :=
| Nil : List@{i} A
| Cons : A → List@{i} A → List@{i} A

.

We can have List@{i} A � List@{i’} B when A � B.

Inductive Img_inh@{i j} (F : Type@{i} → Type@{j}) (A : Type@{i}) :=
fa : (F A) → Img_inh F A

.

Whether (Img_inh@{i j} F A) � (Img_inh@{i’ j’} F B) when A � B depends on
variance of F.

Conclusion:
Presented pCuIC
Discussed how it makes working with structures such as categories and ensembles
easier
Presented lpCuIC

As an intuitive reason why we believe pCuIC is sound

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



16

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Future work:
Proof of conjectures about pCuIC
Implementation
Considering parameters of inductive types:

Inductive List@{i} (A: Type@{i}) :=
| Nil : List@{i} A
| Cons : A → List@{i} A → List@{i} A

.

We can have List@{i} A � List@{i’} B when A � B.

Inductive Img_inh@{i j} (F : Type@{i} → Type@{j}) (A : Type@{i}) :=
fa : (F A) → Img_inh F A

.

Whether (Img_inh@{i j} F A) � (Img_inh@{i’ j’} F B) when A � B depends on
variance of F.

Conclusion:
Presented pCuIC

Discussed how it makes working with structures such as categories and ensembles
easier
Presented lpCuIC

As an intuitive reason why we believe pCuIC is sound

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



16

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Future work:
Proof of conjectures about pCuIC
Implementation
Considering parameters of inductive types:

Inductive List@{i} (A: Type@{i}) :=
| Nil : List@{i} A
| Cons : A → List@{i} A → List@{i} A

.

We can have List@{i} A � List@{i’} B when A � B.

Inductive Img_inh@{i j} (F : Type@{i} → Type@{j}) (A : Type@{i}) :=
fa : (F A) → Img_inh F A

.

Whether (Img_inh@{i j} F A) � (Img_inh@{i’ j’} F B) when A � B depends on
variance of F.

Conclusion:
Presented pCuIC
Discussed how it makes working with structures such as categories and ensembles
easier

Presented lpCuIC
As an intuitive reason why we believe pCuIC is sound

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



16

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Future work:
Proof of conjectures about pCuIC
Implementation
Considering parameters of inductive types:

Inductive List@{i} (A: Type@{i}) :=
| Nil : List@{i} A
| Cons : A → List@{i} A → List@{i} A

.

We can have List@{i} A � List@{i’} B when A � B.

Inductive Img_inh@{i j} (F : Type@{i} → Type@{j}) (A : Type@{i}) :=
fa : (F A) → Img_inh F A

.

Whether (Img_inh@{i j} F A) � (Img_inh@{i’ j’} F B) when A � B depends on
variance of F.

Conclusion:
Presented pCuIC
Discussed how it makes working with structures such as categories and ensembles
easier
Presented lpCuIC

As an intuitive reason why we believe pCuIC is sound

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC



16

Universe polymorphism and Inductive Types
pCIC

pCuIC
lpCuIC

Future Work – Conclusion

Future work:
Proof of conjectures about pCuIC
Implementation
Considering parameters of inductive types:

Inductive List@{i} (A: Type@{i}) :=
| Nil : List@{i} A
| Cons : A → List@{i} A → List@{i} A

.

We can have List@{i} A � List@{i’} B when A � B.

Inductive Img_inh@{i j} (F : Type@{i} → Type@{j}) (A : Type@{i}) :=
fa : (F A) → Img_inh F A

.

Whether (Img_inh@{i j} F A) � (Img_inh@{i’ j’} F B) when A � B depends on
variance of F.

Conclusion:
Presented pCuIC
Discussed how it makes working with structures such as categories and ensembles
easier
Presented lpCuIC

As an intuitive reason why we believe pCuIC is sound

A. Timany and B. Jacobs First Steps Towards Cumulative Inductive Types in CIC


	Universe polymorphism and Inductive Types
	pCIC
	pCuIC
	lpCuIC
	Future Work – Conclusion

