
First Steps Towards Cumulative Inductive Types
in CIC

Amin Timany and Bart Jacobs

iMinds-DistriNet, KU Leuven
firstname.lastname@cs.kuleuven.be

Abstract. Having the type of all types in a type system results in para-
doxes like Russel’s paradox. Therefore type theories like predicative cal-
culus of inductive constructions (pCIC) – the logic of the Coq proof assis-
tant – have a hierarchy of types Type0, Type1, Type2, . . . , where Type0 :
Type1, Type1 : Type2, In a cumulative type system, e.g., pCIC, for
a term t such that t: Typei we also have that t: Typei+1. The system
pCIC has recently been extended to support universe polymorphism, i.e.,
definitions can be parametrized by universe levels. This extension does
not support cumulativity for inductive types. For example, we do not
have that a pair of types at levels i and j is also considered a pair of
types at levels i+ 1 and j + 1.

In this paper, we discuss our on-going research on making inductive types
cumulative in the pCIC. Having inductive types be cumulative alleviates
some problems that occur while working with large inductive types, e.g.,
the category of small categories, in pCIC.

We present the pCuIC system which adds cumulativity for inductive
types to pCIC and briefly discuss some of its properties and possible
extensions. We, in addition, give a justification for the introduced cumu-
lativity relation for inductive types.

1 Introduction

The type system of the proof assistant Coq, a variant of the predicative calculus
of inductive constructions (pCIC) (see [3] for details), has recently been extended
to support universe polymorphism [6]. There the calculus is extended with sup-
port for universe polymorphic definitions and inductive types are treated by con-
sidering copies of them at different universe levels – so long as levels satisfy con-
straints imposed by the inductive type and the environment. In this system the
simple definition for a category, Class Category: Type := {O: Type; H: O →O→Type;

...} defines a type Categoryij where i is the universe level for objects and j is
the universe level for homomorphisms. This allows a straightforward definition
of the category of small1 categories, Definition Cat: Category := {|O:= Category;

H:= Functor;...|} which defines a term of type category, Catijkl :Categoryij , with

1 Here, smallness and largeness are to be understood as relative to universe levels.

object type Categorykl
2. However, inductive types such as Category not being cu-

mulative implies that having a term t such that t: Categorykl and t : Categoryk′l′

is possible if and only if k = k′ and l = l′.

This side condition, however, has undesirable consequences. First and fore-
most, the term Cat above is not the category of all small categories, rather
all categories at some particular lower universe level. Furthermore, statements
about Cat impose restrictions on its universe levels. That is, only those copies
of Cat that conform to the restrictions imposed are subject to the stated fact.
For instance, showing that the trivial category (a category with a single object
and its identity arrow) with object type unit: Type0 is the terminal object of
Catijkl, implies k = 0. Also, showing that Catijkl has exponentials (functor cate-
gories) implies j = k = l. The latter restriction is inconsistent with the restric-
tion n < m on TypeCat: Categorymn, the category of types and functions in Coq:
Definition Type_Cat: Category := {|O:= Type; H:= fun A B ⇒ A → B;...|}. Note that
here m is the level of type of O:=Type@{k} for some k while n is the level of type
of A → B, i.e., Type@{k}, hence n = k. This means, a copy of Cat cannot both
have exponentials and a copy of TypeCat in its objects. Furthermore, having
Catijkl cartesian closed restricts it so that j = k = l = 0. For further details of
using universe levels to represent smallness/largeness in category theory see [7].
There, in addition to the issues mentioned above, we shortly discuss how this
representation works intuitively and as expected.

It is, furthermore, noteworthy that such issues are not particular to cat-
egory theory and are rather prevalent in any case incorporating large induc-
tive types. Take the well-known definition of sets in type theory with induc-
tive types: Inductive Ens: Type :=ens : Π(A: Type),(A → Ens) → Ens. In this case,
Ensi: Typei+1 has constructor ensi: Π (A: Typei),(A → Ensi) → Ensi. As a result,
the ensemble of small ensembles, ens Ens (λ(x: Ens). x), can’t be formed as x in
the body of the lambda-term is at a strictly lower universe level than the result
ensemble.

To solve these problems, explicit lifting functions, e.g., Lift_Ens: Ensi → Ensj

with i ≤ j, could be used. They allow formation of terms such as the en-
semble of lifted small ensembles. However, we can’t prove, or even specify,
Π(t: T), t = Lift_T t. As a result, working with such lifted values and types
depending on them in particular is very complicated.

The rest of this paper is structured as follows: in Section 2 we present an
extension of pCIC with cumulative inductive types and discuss its properties. In
Section 3, we introduce lpCuIC; a subsystem of pCuIC for which we can prove
soundness by reducing it to the soundness of pCIC using lifter terms. These
lifters will in addition provide an intuitive reason why the cumulativity rela-
tion introduced in pCuIC is suitable. In Section 4, we conclude with discussing
possible extensions to the presented system.

2 Subject to side constraints on universe levels, e.g., k, l < i.

2 pCIC with Cumulative Inductive Types (pCuIC)

In this section we present the predicative calculus of cumulative inductive con-
structions (pCuIC for short), an extension of the predicative calculus of induc-
tive constructions (pCIC) which additionally supports cumulativity for inductive
types. The definition of pCuIC is identical to that of pCIC, except for the cumu-
lativity rule C-Ind of Figure 2. The rules for typing judgements of this system
are presented in Figure 1. In the sequel, we use x, y, z . . .X, Y, Z . . . to denote

(Empty)

· `

(Decl)
Γ ` T : s x 6∈ Γ

Γ, x : T `

(Type)
Γ `

Γ ` Typei : Typei+1

(Prop)
Γ `

Γ ` Prop : Typei

(Var)
Γ ` (x : T) ∈ Γ

Γ ` x : T

Γ ` t : (Πx : A.B) Γ ` t′ : A

Γ ` (t t′) : B[t′/x]
(App)

Γ ` A : s Γ, x : A ` B : s′ (s, s′, s′′) ∈ RΠ
Γ ` Πx : A. B : s′′

(Prod)

(Lam)
Γ, x : A ` t : B

Γ ` (λx : A. t) : (Πx : A. B)

Γ ` t : A Γ ` B : s A � B
Γ ` t : B

(Conv)

A ∈ Ar(s) Γ ` A : s′ (Γ,X : A ` Ci : s Ci ∈ Co(X) ∀1 ≤ i ≤ n)

Γ ` Ind(X : A){C1, . . . , Cn} : A
(Ind)

I ≡ Ind(X : A){C1, . . . , Cn} Γ ` I : A 1 ≤ i ≤ n
Γ ` Constr(i, I) : Ci[I/X]

(Constr)

I ≡ Ind(X : Π
→
x :

→
A. s){C1, . . . , Cn} Γ ` →

a :
→
A (s, s′) ∈ Rξ Γ ` c : (I

→
a)

Γ ` Q : (Π
→
x :

→
A.(I

→
x)→ s′) (Γ ` fi : ξ(I,Q,Constr(i, I), Ci) ∀1 ≤ i ≤ n)

Γ ` Elim(c,Q){f1, . . . , fn} : (Q
→
a) c

(Elim)

Fig. 1. Typing Judgements

variables, m,n, . . . , M,N, . . . for terms, i, j, . . . for natural numbers and s to
stand for a sort, i.e., Prop or Typei.

2.1 Typing Rules

Figure 1 contains typing rules of PCuIC where the conversion/cumulativity re-
lation, �, of rule Conv is defined in Figure 2.

The relation RΠ governs the level of products formed in the system and is
given by RΠ = {(, Prop, Prop), (Typei, Typej , Typemax(i,j))}. In other words, Prop
is impredicative while Type is predicative. The relation Rξ governs formation of
eliminations, Rξ = {(Prop, Prop), (Typei, Typej), (Typei, Prop)} That is, we do not
allow terms that are not proofs to be constructed by case analysis on a proof.
The judgement Γ ` expresses validity of context Γ and judgement Γ ` t : A
expresses the fact that term t has type A under context Γ . In case x does not
appear freely in B, we abbreviate Πx : A. B as A→ B.

Rules Ind, Constr and Elim, respectively, concern formation of inductive
types, their constructor terms and their elimination. For further reading on in-
ductive types in calculus of constructions refer to [4,5]. Here, arity for a sort s,
Ar(s), types strictly positive in X, Pos(X) and types of constructors, Co(X),
are as follows:

Ar(s) := Π
→
x :

→
M. s Pos(X) := Π

→
x :

→
M. X

→
m

Co(X) := X
→
m | Pos(X)→ Co(X) | Π→x :

→
M. Co(X)

provided that in Pos(X) and Co(X), above, X does not appear in
→
m or

→
M . This

is to ensure that X appears in constructors only strictly positively. In Figure 1,
ξ is the type for eliminators defined below.

Definition 1 (Eliminator Type). Let C be a type of constructor for X and
let Q and c be two terms. Then, the type of eliminator for C, ξ(I,Q, c, C) ≡
(ξX(Q, c, C))[I/X] is defined as follows:

ξX(Q, c, P → N) = Πp : P. (Π
→
x :

→
M. (Q

→
m (p

→
x)))→ ξX(Q, (c p), N)

for P ≡ Π→x :
→
M. (X

→
m)

ξX(Q, c,Πx : M. N) = Πx : M. ξX(Q, (c x), N)

ξX(Q, c,X
→
a) = (Q

→
a c)

�

In this system, variable x in terms λx : A. B and Πx : A. B are bound in B
and variable X in Ind(X : A){C1, . . . , Cn} is bound in C1, . . . , Cn. We consider
terms equal up to renaming of bound variables, α-conversion. Additionally, we
assume that before any substitution, if necessary, α-conversion is performed so
as to prevent any variable capture.

2.2 Reduction Rules

The computational rule corresponding to inductive types, expectedly, corre-
sponds to induction/recursion. The elimination of a term of an inductive type
should perform a case analysis on its input and apply the corresponding pro-
vided elimination for that case by recursively eliminating any argument of the
constructor that is of the inductive type. This will be made more clear later. For
now let us consider recursors for constructors. A recursor for a constructor, as the
name suggests, takes the arguments of a constructor and performs the provided
elimination by recursively eliminating sub-terms. The recursor µ(I, F, f, C) for
a constructor C of an inductive type I takes two terms f and F . The term f is
the term that performs elimination for constructor C while term F corresponds
to recursive elimination of sub-terms.

Definition 2 (Recursor). Let C be a type of constructor for X and F and f be
terms. Then, recursor µ(I, F, f, C) = (µX(F, f, C))[I/X] is defined as follows:

µX(F, f, P → N) = λp : P.µX(F, (f p (λ
→
x :

→
M. (F

→
m (p

→
x)))), N)

for P ≡ Π→x :
→
M.(X

→
m)

µX(F, f,Πx : M. N) = λx : M. µX(F, (f x), N)

µX(F, f,X
→
a) = f

�

We consider two computation rules for pCuIC, β, for function application,
(λx : A. t)t′ →β t[t

′/x] and ι for elimination of inductive types,

Elim((Constr(i, I)
→
m), Q){f1, . . . , fn} →ι (µ(I, Felim(I,Q, f1, . . . , fn), fi, Ci)

→
m)

for I ≡ Ind(X : A){C1, . . . , Cn}, A ≡ Π
→
x :

→
A.s where Felim(I,Q, f1, . . . , fn) ≡

λ
→
x :

→
A. λc : (I

→
x). Elim(c,Q){f1, . . . , fn}. In the sequel, we write ' to denote

definitional equality, i.e., αβιη-conversion. For proofs of why eliminator types
and recursors above are well-typed, refer to [4,5].

As an example of inductive types and their elimination, let us define in
pCuIC the prime example of inductive types, natural numbers, nat ≡ Ind(X :
Type0){X,X → X}. Let us use Zero ≡ Constr(1, nat) : nat and Succ ≡
Constr(2, nat) : nat → nat to refer to the zero and successor constructors of
the natural numbers. We construct the eliminator for type nat as follows.

· `
(
λQ : (nat→ s).λf1 : (Q Zero).

λf2 : (Πp : nat. (Q p)→ Q (Succ p)). λn : nat. Elim(n,Q){f1, f2}
)

:(
ΠQ : (nat→ s). (Q Zero)→ (Πp : nat. (Q p)→ Q (Succ p))→ Πn : nat. Q n

)
Which is precisely the induction (in case s = Prop) and recursion principle for
natural numbers.

As another example of an inductive type consider the even predicate de-
fined inductively. even ≡ Ind(X : nat → Prop){X Zero,Πn : nat. X n →
X (Succ (Succ n))} This type has two constructors. The first constructor con-
structs a proof that Zero is an even number. The second constructor, takes
a natural number n and a proof that n is even and produces a proof that
(Succ (Succ n)) is even.

2.3 Cumulativity

The relation � in rule Conv reflects both convertibility and cumulativity. Rules
for this relation are depicted in Figure 2. Rule C-Ind corresponds to cumulativity
of inductive types. Intuitively, rule C-Ind establishes relation I

→
m � I ′

→
m,

if every arity type and constructor parameter type of I is a subtype of the

(C-Prop) (C-Type)

Prop � Typei

i ≤ j
Typei � Typej

(C-Prod)
A ' A′ B � B′

Πx : A. B � Πx : A′. B′

(C-Conv)
A ' B
A � B

A ' A′ A′ � B′ B ' B′

A � B (C-Congr)

I ≡ (Ind(X : Π
→
x :

→
N. s){Π→

x1 :
→
M1. X

→
m1, . . . , Π

→
xn :

→
Mn. X

→
mn}

I ′ ≡ (Ind(X : Π
→
x :

→
N ′. s′){Π→

x1 :
→
M ′

1. X
→
m′

1, . . . , Π
→
xn :

→
M ′
n. X

→
m′
n}

s � s′ ∀i. Ni � N ′
i ∀i, j. (Mi)j � (M ′

i)j

length(
→
m) = length(

→
x) ∀i. X →

mi ' X
→
m′
i

I
→
m � I ′ →

m
(C-Ind)

Fig. 2. Conversion/Cumulativity Relation

corresponding type in I ′. As a condition of C-Ind we have ∀i. X →
mi ' X

→
m′i.

This means that the ith constructor of I and I ′ if applied to the same terms
must produce instances of I and I ′ with the same values for arities.

As an example, consider the type of categories which in pCuIC is of the form:
Categoryi,j ≡ Ind(X : Typemax(i+1,j+1)){Πo : Typei.Πh : o→ o→ Typej .N} for
i, j ∈ N where i and j don’t appear in N . Clearly, we can use C-Ind to derive
Categoryi,j � Categoryk,l given that i ≤ k and j ≤ l. A similar argument can
show that Ensi � Ensj given that i ≤ j. Hence, pCuIC doesn’t suffer from the
problems mentioned earlier regarding the category of small categories and the
ensemble of small ensembles.

2.4 Properties

Although we do not provide any proof, we believe that the following two con-
jectures, stating properties of pCuIC and relation �, respectively, hold and can
be proven in a way akin to their counterparts in [2] or [4].

Conjecture 1. pCuIC has the following properties:

1. Church-Rosser property for βι-reduction (Church-Rosser)
2. βι strong normalization (Strong Normalization)
3. Every derivation Γ ` t : A has a sub-derivation that derives Γ ` and every

derivation Γ, x : T, Γ ′ ` has a sub-derivation that derives Γ ` T : s for some
sort s (Context-Validity)

4. if Γ ` t : A, then there is a sort s such that Γ ` A : s (Typing-Validity)
5. if Γ ` t : A and t→∗βι t′ then Γ ` t′ : A (Subject Reduction) �

Conjecture 2. Properties of �:

1. � is a partial order relation over ': t�t
t�t′ t′�t′′

t�t′′
t�t′ t′�t

t't′

2. The relation � is well-founded, i.e., there is no infinite decreasing chain
A0 � A1 � . . . , where t ≺ t′ if t � t′ and t 6' t′ (Well-Founded)

3. if Γ ` t : A, then there exists B such that Γ ` t : B and for any C such that
Γ ` t : C we have B � C (Principal Type) �

The system presented in this paper, pCuIC, has a strictly richer type system
compared to pCIC. In other words, Γ `pCIC t : A implies Γ `pCuIC t : A but the
converse does not hold. Consider the instance of the ensemble of small ensembles
expressed in pCuIC as EEi ≡ (Constr(1, Ensi+1) Ensi (λx : Ensi. x)) · ` EEi :
Ensi+1 is derivable in pCuIC but not in pCIC. The inductive type Ensi is
defined as: Ensi ≡ Ind(X : Typei+1){ΠA : Typei. (A→ X)→ X}.

In pCuIC, Π types are considered invariant in their domain type. However,
we believe that results similar to those discussed in this paper hold for the case
with full contravariance for the domain type of Π types. Note that points 2 and
3 of Conjecture 2 don’t hold in the version of pCuIC with full contravariance.
Although, we believe they do hold in the subsystem pCuICn, a subsystem of
PCuIC in which the universe levels are squashed such that Typen is the type
of all types (note that Typen itself has no type in pCuICn). This treatment is
similar to that of ECCn in the proof of quasi normalization of ECC in [2].

For systems such as pCuIC, the strong normalization and subject reduction
properties (stated in Conjecture 1 for pCuIC) imply (see [2]) the soundness and
decidability of type checking. However, as of writing of this paper we have not
yet proven the conjectures above. Another approach to proving soundness of
pCuIC is by reducing it to the soundness of pCIC. That is, the soundness of
pCuIC follows from the following conjecture:

Conjecture 3. Let Γ `pCIC T : s be a pCIC type such that Γ `pCuIC t : T . Then
there exists a term t′ such that Γ `pCIC t′ : T . �

In other words, every pCIC type that is inhabited in pCuIC is also inhabited in
pCIC. We can use this conjecture to prove the soundness of pCuIC as follows. Let
False ≡ Ind(X : Prop){} be the inductive type with no constructors. According
to the Conjecture 3, if there is a term t such that · `pCuIC t : False then there is
a term t′ such that · `pCIC t′ : False which implies unsoundness of pCIC which is
a contradiction. The main difficulty in proving this conjecture though is the fact
that there are types in pCuIC that are not valid types in pCIC. As an example
consider any type that involves the term EEi (ensemble of small ensembles)
above. Lifting such a term results in a type where the dependent argument is
ensemble of lifted small ensembles (and not ensemble of small ensembles). Note
that such terms and types can be part of a term which has a pCIC type. The
situation is particularly complicated with the functions whose domain type is a
type that is not a valid pCIC type.

3 Lesser pCuIC

In this section we introduce the lesser pCuIC (lpCuIC for short) which is a
subsystem of pCuIC for which we can prove soundness by reducing it to the
soundness of pCIC. This furthermore gives an intuition why the cumulativity
relation introduced in this paper for inductive types is suitable.

Definition 3 (lpCuIC). The system lpCuIC is the system pCuIC where rules
C-Ind and App are replace respectively by:

I ≡ (Ind(X : Π
→
x :

→
N. s){Π(

→
x1 :

→
M1. X

→
m1, . . . , Π

→
xn :

→
Mn. X

→
mn}

I ′ ≡ (Ind(X : Π
→
x :

→
N ′. s′){Π→

x1 :
→
M ′

1. X
→
m′

1, . . . , Π
→
xn :

→
M ′
n. X

→
m′
n}

s � s′ ∀i. Ni �pCIC N
′
i ∀i, j. (Mi)j �pCIC (M ′

i)j

length(
→
m) = length(

→
x) ∀i. X →

mi ' X
→
m′
i

I
→
m � I ′ →

m
(C-Ind’)

(App’)
Γ ` t : (Πx : A. B) Γ ` t′ : A

Γ ` (t t′) : B[t′/x]
(Γ `pCIC t′ : A or x 6∈ FV (B))

We furthermore impose the restrictions that in any derivation of Γ `lpCuIC t : T ,
for any sub-derivation of Γ ′ `lpCuIC t′ : T ′ we have Γ ′ `pCIC T ′ : s and for any

sub-derivation of Γ ′ `lpCuIC T ′ : Π
→
x :
→
A.s we have Γ ′ `pCIC T ′ : Π

→
x :
→
A.s �

In other words, lpCuIC is a subsystem of pCuIC in which every valid type is
also a valid type in pCIC and any functions whose output type depend on their
input can’t be applied to terms that are not of the appropriate type in pCIC.

In lpCuIC, we define the following lifters for the cumulativity relation. These
lifters are then used to show that any type inhabited in lpCuIC is also inhabited
in pCIC. This will give us a soundness proof for lpCuIC.

Definition 4 (Lifters). Let T and T ′ be two terms such that T �lpCuIC T ′.
Then, we define the lifter ΥT�lpCuICT ′ recursively on derivation of T �lpCuIC T

′. If
the last rule used to derive T �lpCuIC T

′ is:

C-Prop, C-Type or C-Conv then ΥT�lpCuICT ′ = λx : T. x

C-Prod then ΥΠx:A. B�lpCuICΠx:A′. B′ = λf : Πx : A. B.λx : A′.
ΥB�lpCuICB′ (f x)

C-Congr then ΥA�lpCuICB = ΥA′�lpCuICB′

C-Ind then Υ
I

→
t �lpCuICI′

→
t

= λx : I
→
t .Elim(x,Q){φ1, . . . , φn} for:

Q ≡ λ→y :
→
MA. λz : I

→
y .I ′

→
y φi = υ(I,Q,Constr(i, I), Ci,Constr(i, I

′), C ′i)

I ′≡ Ind(X : Π(
→
x :

→
M ′A). s′){C ′1, . . . , C ′n}

I≡ Ind(X : Π(
→
x :

→
MA). s){C1, . . . , Cn}

Here, the constructor lifter for C, υ(I,Q, c, C, f, C ′) = υX(Q, c, C, f, C ′)[I/X]
is defined as follows:

υX(Q, c, P → N, f, P ′ → N ′) = λp : P. λz : (Π
→
x :

→
M.Q

→
t (p

→
x)).

υX(Q, (c p), N, (f z), N ′)

for P ≡ Π→x :
→
M. X

→
t

υX(Q, c,Πx : M. N, f,Πx : M ′. N ′) = λx : M. υX(Q, (c x), N, (f x), N ′)

υX(Q, c,X
→
t , f,X

→
t) = f

�

Lemma 1 (Type Correctness of Lifters). Let T and T ′ be two terms such
that T �lpCuIC T ′ and Γ `lpCuIC T : s and Γ `lpCuIC T ′ : s′. Then, Γ `pCIC
ΥT�lpCuICT ′ : T → T ′. �

Theorem 1 (Inhabitants in lpCuIC). Let t and T be terms such that Γ `lpCuIC
t : T . Then there exists t′ such that Γ `pCIC t′ : T . �

Corollary 1 (Soundness of lpCuIC). · `lpCuIC t : False implies that there
exists t′ such that · `pCIC t′ : False. �

For proofs of the above lemma, theorem and corollary refer to [8].
The ensemble of ensembles EEi is a valid term in lpCuIC, i.e., · `lpCuIC EEi :

Ensi+1. For the cumulativity relation Ensi �lpCuIC Ensi+1, we have the lifter:

ΥEnsi�lpCuICEnsi+1 = λx : Ensi.Elim(x, λz : Ensi.Ensi+1){φ}

for φ ≡ λA : Typei.λp : (A → Ensi).λz : (A → Ensi+1).Constr(1, Ensi+1) A z.
As an example, Theorem 1 gives the following term in pCIC for EEi:

Constr(1, Ensi+1) Ensi (λx : Ensi.ΥEnsi�lpCuICEnsi+1
x)

Which is the ensemble of lifted small ensembles and a valid term in pCIC.
The whole purpose of lpCuIC is to demonstrate an intuition of the work-

ings of pCuIC and why we believe it has the properties discussed earlier. Note
that although lpCuIC can express terms like ensemble of ensembles, it does not
provide us with a flexible enough working environment. As an example, the
type eq Ensi+1 EEi EEi is not a valid lpCuIC type when eq T is the equality
for type T . This is due to the fact that EEi and hence eq Ensi+1 EEi EEi
is not a valid type in pCIC. Here the inductive equality type is defined as:
eq ≡ λA : Typei. λx : A. Ind(X : A→ Prop){X x}

4 Discussion and Conclusion

We presented pCuIC which extends pCIC with cumulativity for inductive types
and discussed issues that this treatment helps mitigate. We furthermore justified
the cumulativity relation for inductive types that we introduced by showing that
there is a sub-system of pCuIC, lpCuIC, in which any such cumulativity relation
has a corresponding lifting in pCIC. This, in addition, allowed us to reduce
soundness of lpCuIC to the soundness of pCIC.

Inductive types considered lack parameters and mutual inductive types (see
[5] for details). Parameters can be considered as variables in the context while
an inductive type is being defined. For instance, consider the type of equality eq
defined above. There, A and x are parameters of the inductive type eq. In gen-
eral, the values of parameters can influence the variance of types involving them

in an inductive definition. Consider F : Typei → Typej ` Ind(X : Typel){ΠA :
Typek.(F A) → X}. In this case we can’t determine, e.g., whether F A � F B
for A � B. Hence separate analysis of different instances of inductive types with
different parameters can help make the cumulativity results more fine-grained.
In a different approach, we could add support for variables in the context, e.g.,
F above, to specify variance of their result with respect to their input, if appro-
priate, in addition to their type.

On the other hand, mutually inductive types are restricted to only appear
strictly positively in one another. Therefore, although it is subject to further
research, it seems natural that the approach presented here can be straightfor-
wardly extended to the case of mutual inductive types.

Another interesting case is when we have x: Typei in an inductive type. We
have not considered variance of x in our relation. Doing so will result in having,
e.g., list A � list B for A � B. Such cumulativity relations can be very useful
in practice, lessening the need of explicit conversions.

We believe that the typical ambiguity and also elaboration and unification
algorithms presented in [6] can be directly extended to this system. However,
as higher order unification is undecidable in general, lifting functions can be
used as hints to facilitate unification when necessary. Note that these liftings
are not based on case analysis on the input anymore and are hence free of the
aforementioned problems.

Acknowledgements

This work was funded by EU FP7 FET-Open project ADVENT under grant
number 308830.

References

1. Coquand, T., Paulin, C.: Inductively defined types. In: COLOG-88, International
Conference on Computer Logic, Tallinn, USSR, Proceedings. pp. 50–66 (December
1988)

2. Luo, Z.: An Extended Calculus of Constructions. Ph.D. thesis, University of Edin-
brugh, Department of Computer Science (June 1990)

3. The Coq development team: Coq 8.2 Reference Manual. Inria (2008)
4. Paulin-Mohring, C.: Inductive definitions in the system Coq - rules and properties.

In: International Conference on Typed Lambda Calculi and Applications, TLCA
’93, Utrecht, The Netherlands, Proceedings. pp. 328–345 (March 1993)

5. Paulin-Mohring, C.: Introduction to the Calculus of Inductive Constructions (Nov
2014), https://hal.inria.fr/hal-01094195

6. Sozeau, M., Tabareau, N.: Universe polymorphism in Coq. In: Interactive Theorem
Proving, ITP 2014, Proceedings. pp. 499–514 (July 2014)

7. Timany, A., Jacobs, B.: Category theory in Coq 8.5. CoRR abs/1505.06430 (2015),
http://arxiv.org/abs/1505.06430, accepted for a presentation at the 7th Coq
workshop, Sophia Antipolis, France on June 26, 2015

8. Timany, A., Jacobs, B.: First Steps Towards Cumulative Inductive Types in CIC:
Extended Version. Tech. Rep. CW684, iMinds-Distrinet, KU Leuven (March 2015),
http://www2.cs.kuleuven.be/publicaties/rapporten/cw/CW684.abs.html

https://hal.inria.fr/hal-01094195
http://arxiv.org/abs/1505.06430
http://www2.cs.kuleuven.be/publicaties/rapporten/cw/CW684.abs.html

	First Steps Towards Cumulative Inductive Types in CIC

