Category Theory in Coq 8.5

Amin Timany Bart Jacobs

iMinds-Distrinet KU Leuven

 $7^{\rm th}$ Coq Workshop – Sophia Antipolis June 26, 2015

List of the most important formalized notions

- basic constructions:
 - terminal/initial object
 - products/sums
 - equalizers/coequalizers
- external constructions:
 - comma categories
 - product category
- for Cat: (Obj := Category, Hom := Functor)
 - cartesian closure
 - initial object

• for **Set**: $(Obj := Type, Hom := fun A B \Rightarrow A \rightarrow B)$

- \blacksquare initial object
- sums
- equalizers
- coequalizers[†]
- pullbacks
- cartesian closure

- pullbacks/pushouts
- exponentials
- $\blacksquare + \dashv \Delta \dashv \times \text{ and } (- \times a) \dashv a^-$

- local cartesian closure[†]
- completeness
- co-completeness[†]
- sub-object classifier (Prop : Type)[†]
- topos[†]

 $^{\dagger}\text{uses}$ the axioms of propositional extensionality and constructive indefinite description (axiom of choice).

the Yoneda lemma

- adjunction
 - hom-functor adjunction, unit-counit adjunction, universal morphism adjunction and their conversions
 - duality : $F \dashv G \Rightarrow G^{op} \dashv F^{op}$
 - uniqueness up to natural isomorphism
 - category of adjunctions
- kan extensions
 - global definition
 - local definition with both hom-functor and cones (along a functor)
 - uniqueness
 - preservation by adjoint functors
 - pointwise kan extensions (preserved by representable functors)
- (co)limits
 - as (left)right local kan extensions along the unique functor to the terminal category
 - (sum)product-(co)equalizer (co)limits
 - pointwise (as kan extensions)
- T (co)algebras (for an endofunctor T)

we use proof functional extensionality

we use proof irrelevance in many cases (mostly for proof of equality of arrows)

This implementation can be found at: https://bitbucket.org/amintimany/categories/

- This implementation uses some features of Coq 8.5, most notably:
 - Primitive projections for records:
 - Universe polymorphism: for relative smallness/largeness

Primitive projections for records:

The η rule for records: two instance of a record type are *definitionally* equal if all their respective projections are

• E.g., for $\{|x : A; y: A|\}$ and f $u = \{|x := y u; y := x u|\}$, we have f (f u) $\equiv u$

- Primitive projections for records:
 - The η rule for records: two instance of a record type are *definitionally* equal if all their respective projections are
 - $\blacksquare \ \mathrm{E.g., \ for \ } \{| \mathtt{x} \ : \ \mathtt{A}; \ \mathtt{y}: \ \mathtt{A}| \} \ \mathrm{and} \ \mathtt{f} \ \mathtt{u} = \{| \mathtt{x} := \mathtt{y} \ \mathtt{u}; \ \mathtt{y} := \mathtt{x} \ \mathtt{u}| \}, \ \mathrm{we \ have \ } \mathtt{f} \ (\mathtt{f} \ \mathtt{u}) \ \equiv \mathtt{u}$
 - This provides *definitional* equalities, e.g.: (similar to Coq/HoTT implementation)
 - For Categories: (C^{op})^{op} ≡ C
 - For Functors: (F^op)^op = F
 - For Natural Transformations: (N^{op})^{op} ≡ N

```
Class Category : Type@{max(i+1, j+1)} := 
{
    Obj : Type@{i}
    Hom : Obj \rightarrow Obj \rightarrow Type@{j}
    id : forall a : Obj, Hom a a
    compose : forall a b c, (f : Hom a b) (g : Hom c d) : Hom a c
    :
}
```

```
\begin{array}{l} \mbox{Class Category: Type@{max(i+1, j+1)} := } \\ \{ & \mbox{Obj: Type@{i}} \\ & \mbox{Hom: Obj} \rightarrow \mbox{Obj} \rightarrow \mbox{Type@{j}} \\ & \mbox{id: forall a: Obj, Hom a a} \\ & \mbox{compose: forall a b c, (f: Hom a b) (g: Hom c d) : Hom a c} \\ & \mbox{\vdots} \\ \} \end{array}
```

■ Category is universe polymorphic

```
Class Category : TypeQ{max(i+1, j+1)} := 
{
    Obj : TypeQ{i}
    Hom : Obj \rightarrow Obj \rightarrow TypeQ{j}
    id : forall a : Obj, Hom a a
    compose : forall a b c, (f : Hom a b) (g : Hom c d) : Hom a c
    :
}
```

- Category is universe polymorphic
- For each pair of levels (m, n), CategoryQ{m, n} is a copy at level (m, n)

```
Class Category : Type@{max(i+1, j+1)} := 
{
    Obj : Type@{i}
    Hom : Obj \rightarrow Obj \rightarrow Type@{j}
    id : forall a : Obj, Hom a a
    compose : forall a b c, (f : Hom a b) (g : Hom c d) : Hom a c
    :
}
```

- Category is universe polymorphic
- For each pair of levels (m, n), Category@{m, n} is a copy at level (m, n)
- Universe levels in definitions and theorems are inferred by Coq and never appear in the source code

```
Class Category : Type@{max(i+1, j+1)} := 
{
    Obj : Type@{i}
    Hom : Obj \rightarrow Obj \rightarrow Type@{j}
    id : forall a : Obj, Hom a a
    compose : forall a b c, (f : Hom a b) (g : Hom c d) : Hom a c
    :
}
```

- Category is universe polymorphic
- For each pair of levels (m, n), Category@{m, n} is a copy at level (m, n)
- Universe levels in definitions and theorems are inferred by Coq and never appear in the source code
- For each definition, theorem, etc., we get some constraints on universe levels
- The definition, theorem, etc. only works for those copies that satisfy the side constraint

- This notion of smallness/largeness using universe levels works so well that we can define **Cat**:
- Instance Cat : Category := {Obj := Category; Hom := Functor; ...}

- This notion of smallness/largeness using universe levels works so well that we can define **Cat**:
- Instance Cat : Category := {Obj := Category; Hom := Functor; ...}
- Or prove the following:

```
Theorem Complete_Preorder (C : Category) (CC : Complete C) : forall x y : (Obj C), Hom x y' \simeq ((Arrow C) \rightarrow Hom x y)
```

- This notion of smallness/largeness using universe levels works so well that we can define **Cat**:
- Instance Cat : Category := {Obj := Category; Hom := Functor; ...}
- Or prove the following:

```
Theorem Complete_Preorder (C : Category) (CC : Complete C) : forall x y : (Obj C), Hom x y' \simeq ((Arrow C) \rightarrow Hom x y)
```

This theorem results in a contradiction as soon as there are objects a and b in C such that $|hom(a,b)| \ge 2$

- This notion of smallness/largeness using universe levels works so well that we can define **Cat**:
- Instance Cat : Category := {Obj := Category; Hom := Functor; ...}
- Or prove the following:

```
Theorem Complete_Preorder (C : Category) (CC : Complete C) : forall x y : (Obj C), Hom x y' \simeq ((Arrow C) \rightarrow Hom x y)
```

- This theorem results in a contradiction as soon as there are objects a and b in C such that $|hom(a,b)| \ge 2$
- In fact, this theorem holds only for small categories

- This notion of smallness/largeness using universe levels works so well that we can define **Cat**:
- Instance Cat : Category := {Obj := Category; Hom := Functor; ...}
- Or prove the following:

```
Theorem Complete_Preorder (C : Category) (CC : Complete C) : forall x y : (Obj C), Hom x y' \simeq ((Arrow C) \rightarrow Hom x y)
```

- This theorem results in a contradiction as soon as there are objects a and b in C such that $|hom(a,b)| \ge 2$
- In fact, this theorem holds only for small categories
- This can be seen in universe constraints of this theorem

- This notion of smallness/largeness using universe levels works so well that we can define **Cat**:
- Instance Cat : Category := {Obj := Category; Hom := Functor; ...}
- Or prove the following:

```
Theorem Complete_Preorder (C : Category) (CC : Complete C) : forall x y : (Obj C), Hom x y' \simeq ((Arrow C) \rightarrow Hom x y)
```

- This theorem results in a contradiction as soon as there are objects a and b in C such that $|hom(a,b)| \ge 2$
- In fact, this theorem holds only for small categories
- This can be seen in universe constraints of this theorem
 - For C: Category@{k, 1} we get the restriction that $k \leq 1$
 - \blacksquare This is in contradiction with the fact that ${\bf Set}:{\tt Category}{\tt Q}{\tt m,n}$ with ${\tt m} > {\tt n}$

- This notion of smallness/largeness using universe levels works so well that we can define **Cat**:
- Instance Cat : Category := {Obj := Category; Hom := Functor; ...}
- Or prove the following:

- This theorem results in a contradiction as soon as there are objects a and b in C such that $|hom(a,b)| \ge 2$
- In fact, this theorem holds only for small categories
- This can be seen in universe constraints of this theorem
 - For C : Category0{k, 1} we get the restriction that $k \leq 1$
 - This is in contradiction with the fact that $\mathbf{Set} : \mathtt{Category} \mathbb{Q}\{\mathtt{m}, \mathtt{n}\}$ with $\mathtt{m} > \mathtt{n}$

```
 \begin{array}{l} \texttt{Set} \texttt{0}\{\texttt{m}, \texttt{n}\} := \\ \{ | \\ \texttt{Obj} := \texttt{Type}\texttt{0}\{\texttt{n}\} : \texttt{Type}\texttt{0}\{\texttt{m}\}; \\ \texttt{Hom} := \texttt{fun} \texttt{A} \texttt{B} \Rightarrow \texttt{A} \rightarrow \texttt{B} : \texttt{Obj} \rightarrow \texttt{Obj} \rightarrow \texttt{Type}\texttt{0}\{\texttt{n}\}; \\ | \} : \texttt{Category}\texttt{0}\{\texttt{m}, \texttt{n}\} \end{array}
```

 $\texttt{Instance Cat}: \texttt{Category} \texttt{@} \texttt{\{i, j\}} := \texttt{{Obj}} := \texttt{Category} \texttt{@} \texttt{\{k, 1\}}; \texttt{Hom} := \texttt{Functor}; \ldots \texttt{\}}$

 $\texttt{Instance Cat}: \texttt{Category} \texttt{@} \{\texttt{i}, \texttt{j}\} := \{\texttt{Obj} := \texttt{Category} \texttt{@} \{\texttt{k}, \texttt{l}\}; \texttt{Hom} := \texttt{Functor}; \ldots \}$

But according to Coq's universe polymorphism, if C : Category@{k, 1} and
 C : Category@{k', 1'}, we must have k = k' and l = l'

 $\texttt{Instance Cat}: \texttt{Category} \texttt{Q} \{\texttt{i}, \texttt{j}\} := \{\texttt{Obj} := \texttt{Category} \texttt{Q} \{\texttt{k}, \texttt{l}\}; \texttt{Hom} := \texttt{Functor}; \ldots\}$

- But according to Coq's universe polymorphism, if C: Category@{k, 1} and C: Category@{k', 1'}, we must have k = k' and l = l'
- This means Cat0{i, j, k, 1} is not the category of all categories at level (k, l) or lower but *only* at level (k, l)

 $\texttt{Instance Cat}: \texttt{Category} \texttt{Q} \{\texttt{i}, \texttt{j}\} := \{\texttt{Obj} := \texttt{Category} \texttt{Q} \{\texttt{k}, \texttt{l}\}; \texttt{Hom} := \texttt{Functor}; \ldots\}$

- But according to Coq's universe polymorphism, if C : Category@{k, 1} and
 C : Category@{k', 1'}, we must have k = k' and l = l'
- This means Cat@{i, j, k, 1} is not the category of all categories at level (k, l) or lower but only at level (k, l)
- We can lift category:

```
lift (C : Category@{k, 1}) : Category@{k', 1'} := {|

Obj := Obj C;

Hom := Hom C;

:

|}

for k < k' and l < l'
```

 $\texttt{Instance Cat}: \texttt{Category} \texttt{@} \{\texttt{i}, \texttt{j}\} := \{\texttt{Obj} := \texttt{Category} \texttt{@} \{\texttt{k}, \texttt{l}\}; \texttt{Hom} := \texttt{Functor}; \ldots\}$

- But according to Coq's universe polymorphism, if C : Category@{k, 1} and
 C : Category@{k', 1'}, we must have k = k' and l = l'
- This means $Cat0{i, j, k, 1}$ is not the category of all categories at level (k, l) or lower but *only* at level (k, l)
- We can lift category:

```
lift (C : Category@{k, 1}) : Category@{k', 1'} := 
{|
Obj := Obj C;
Hom := Hom C;
.
.
|}
for k < k' and l < l'
But
We can't prove or even specify (universe inconsistency)
```

```
forall (C : Category), C = lift C
```

 $\texttt{Instance Cat}: \texttt{Category} \texttt{Q} \{\texttt{i}, \texttt{j}\} := \{\texttt{Obj} := \texttt{Category} \texttt{Q} \{\texttt{k}, \texttt{l}\}; \texttt{Hom} := \texttt{Functor}; \ldots \}$

- But according to Coq's universe polymorphism, if C : Category@{k, 1} and
 C : Category@{k', 1'}, we must have k = k' and l = l'
- This means $Cat@{i, j, k, 1}$ is not the category of all categories at level (k, l) or lower but *only* at level (k, l)
- We can lift category:

 $\texttt{Instance Cat}: \texttt{Category} \texttt{@} \{i, j\} := \{\texttt{Obj} := \texttt{Category} \texttt{@} \{k, 1\}; \texttt{Hom} := \texttt{Functor}; \ldots \}$

- But according to Coq's universe polymorphism, if C : Category@{k, 1} and
 C : Category@{k', 1'}, we must have k = k' and l = l'
- This means $Cat@{i, j, k, 1}$ is not the category of all categories at level (k, l) or lower but *only* at level (k, l)
- We can lift category:

 \blacksquare If we show that Cat0{i, j, k, 1} has exponentials, we get the constraints that j=k=l

- \blacksquare If we show that Cat0{i, j, k, l} has exponentials, we get the constraints that j=k=l
- Therefore, no copy of **Set** is in a copy of **Cat** in which we have exponentials

- \blacksquare If we show that Cat0{i, j, k, l} has exponentials, we get the constraints that j=k=l
- Therefore, no copy of **Set** is in a copy of **Cat** in which we have exponentials
- That means we can't define Yoneda embedding as exponential transpose (currying) of the hom functor

- \blacksquare If we show that Cat0{i, j, k, l} has exponentials, we get the constraints that j=k=l
- Therefore, no copy of **Set** is in a copy of **Cat** in which we have exponentials
- That means we can't define Yoneda embedding as exponential transpose (currying) of the hom functor
- Defining Yoneda separately, it still can only be applied in a category
 - $\texttt{C}: \texttt{Category}\texttt{Q}\{\texttt{i},\,\texttt{j}\} \text{ if } i=j.$

- \blacksquare If we show that Cat0{i, j, k, 1} has exponentials, we get the constraints that j=k=l
- Therefore, no copy of **Set** is in a copy of **Cat** in which we have exponentials
- That means we can't define Yoneda embedding as exponential transpose (currying) of the hom functor
- Defining Yoneda separately, it still can only be applied in a category C : Category@{i, j} if i = j.
- We can use Yoneda to prove that in any cartesian closed category:

$$(a^b)^c \simeq a^{b \times c}$$

but this lemma can't be applied to **Cat** or **Set**

• Consider our proof of uniqueness of adjoint functors (up to natural isomorphism)

¹for $f: a \times b \to c$ we have $curry(f): a \to c^b$

 $hom_D(F, -) \simeq hom_C(-, G)$ and $hom_D(F', -) \simeq hom_C(-, G)$

¹for $f: a \times b \to c$ we have $curry(f): a \to c^b$

$$hom_D(F, -) \simeq hom_C(-, G)$$
 and $hom_D(F', -) \simeq hom_C(-, G)$

Thus we have:

$$hom_D(F, -) \simeq hom_D(F', -)$$

¹for $f: a \times b \to c$ we have $curry(f): a \to c^b$

$$hom_D(F, -) \simeq hom_C(-, G)$$
 and $hom_D(F', -) \simeq hom_C(-, G)$

Thus we have:

$$hom_D(F,-) \simeq hom_D(F',-)$$

but for $H, H': C \times C' \to D, H \simeq H'$ iff $curry(H) \simeq curry(H')^1$

¹for $f: a \times b \to c$ we have $curry(f): a \to c^b$

$$hom_D(F, -) \simeq hom_C(-, G)$$
 and $hom_D(F', -) \simeq hom_C(-, G)$

Thus we have:

$$hom_D(F,-) \simeq hom_D(F',-)$$

but for $H, H' : C \times C' \to D, H \simeq H'$ iff $curry(H) \simeq curry(H')^1$ so, we can assume:

$$curry(hom_D(F, -)) \simeq curry(hom_D(F', -))$$

¹for $f: a \times b \to c$ we have $curry(f): a \to c^b$

$$hom_D(F, -) \simeq hom_C(-, G)$$
 and $hom_D(F', -) \simeq hom_C(-, G)$

Thus we have:

$$hom_D(F,-) \simeq hom_D(F',-)$$

but for $H, H' : C \times C' \to D, H \simeq H'$ iff $curry(H) \simeq curry(H')^1$ so, we can assume:

$$curry(hom_D(F, -)) \simeq curry(hom_D(F', -))$$

But according to axioms of exponentials we have

$$curry(hom_D(F, -)) = F \circ curry(hom_D)$$

$$hom_D(F, -) \simeq hom_C(-, G)$$
 and $hom_D(F', -) \simeq hom_C(-, G)$

Thus we have:

$$hom_D(F,-) \simeq hom_D(F',-)$$

but for $H, H' : C \times C' \to D, H \simeq H'$ iff $curry(H) \simeq curry(H')^1$ so, we can assume:

$$curry(hom_D(F, -)) \simeq curry(hom_D(F', -))$$

But according to axioms of exponentials we have

$$curry(hom_D(F, -)) = F \circ curry(hom_D)$$

Which means:

$$F \circ Y_D \simeq F' \circ Y_D$$

$$hom_D(F, -) \simeq hom_C(-, G)$$
 and $hom_D(F', -) \simeq hom_C(-, G)$

Thus we have:

$$hom_D(F,-) \simeq hom_D(F',-)$$

but for $H, H' : C \times C' \to D, H \simeq H'$ iff $curry(H) \simeq curry(H')^1$ so, we can assume:

$$curry(hom_D(F, -)) \simeq curry(hom_D(F', -))$$

But according to axioms of exponentials we have

$$curry(hom_D(F, -)) = F \circ curry(hom_D)$$

Which means:

$$F \circ Y_D \simeq F' \circ Y_D$$

This immediately gives $F \simeq F'$ as Y_D (the Yoneda embedding for D) is an embedding

$$hom_D(F,-) \simeq hom_C(-,G)$$
 and $hom_D(F',-) \simeq hom_C(-,G)$

Thus we have:

$$hom_D(F, -) \simeq hom_D(F', -)$$

but for $H, H' : C \times C' \to D, H \simeq H'$ iff $curry(H) \simeq curry(H')^1$ so, we can assume:

$$curry(hom_D(F, -)) \simeq curry(hom_D(F', -))$$

But according to axioms of exponentials we have

$$curry(hom_D(F, -)) = F \circ curry(hom_D)$$

Which means:

$$F \circ Y_D \simeq F' \circ Y_D$$

This immediately gives $F \simeq F'$ as Y_D (the Yoneda embedding for D) is an embedding

 But, we can't use the general fact above, as it involves both exponentials and Set (through hom) in Cat

Amin Timany	Bart Jacobs	Category Theory in Coq 8.5	
-------------	-------------	----------------------------	--

$$hom_D(F,-) \simeq hom_C(-,G)$$
 and $hom_D(F',-) \simeq hom_C(-,G)$

Thus we have:

$$hom_D(F, -) \simeq hom_D(F', -)$$

but for $H, H' : C \times C' \to D, H \simeq H'$ iff $curry(H) \simeq curry(H')^1$ so, we can assume:

$$curry(hom_D(F, -)) \simeq curry(hom_D(F', -))$$

But according to axioms of exponentials we have

$$curry(hom_D(F, -)) = F \circ curry(hom_D)$$

Which means:

$$F \circ Y_D \simeq F' \circ Y_D$$

This immediately gives $F \simeq F'$ as Y_D (the Yoneda embedding for D) is an embedding

 But, we can't use the general fact above, as it involves both exponentials and Set (through hom) in Cat – we have proven a separate instance of this fact for Cat

■ If we show that **Set** : **Category**@{i, j} has **unit** : **Set** as the terminal object, we get the restriction *j* = **Set**

- If we show that **Set** : Category@{i, j} has unit : Set as the terminal object, we get the restriction j = Set
- The problem occurs when we want to show that **Prop** is the subobject classifier for **Set**. As then we need a monic arrow:

 $tr: unit \rightarrow \operatorname{Prop}$

and unit \rightarrow Prop is not a term of type Set

- If we show that **Set** : **Category**@{i, j} has **unit** : **Set** as the terminal object, we get the restriction *j* = **Set**
- The problem occurs when we want to show that **Prop** is the subobject classifier for **Set**. As then we need a monic arrow:

$tr: unit \rightarrow \operatorname{Prop}$

and unit \rightarrow Prop is not a term of type Set

• This can be solved by defining a singleton inductive type at a level *strictly* higher than **Set**

- If we show that **Set** : **Category**Q{i, j} has **unit** : **Set** as the terminal object, we get the restriction *j* = **Set**
- The problem occurs when we want to show that **Prop** is the subobject classifier for **Set**. As then we need a monic arrow:

$tr: unit \rightarrow \operatorname{Prop}$

and unit \rightarrow Prop is not a term of type Set

- This can be solved by defining a singleton inductive type at a level *strictly* higher than **Set**
- But, that would cause a problem for the part where we show that type nat : Set of the library of Coq is the initial algebra for T(X) = 1 + X in category Set

- If we show that **Set** : **Category**Q{i, j} has **unit** : **Set** as the terminal object, we get the restriction *j* = **Set**
- The problem occurs when we want to show that **Prop** is the subobject classifier for **Set**. As then we need a monic arrow:

```
tr: unit \rightarrow \operatorname{Prop}
```

and unit \rightarrow Prop is not a term of type Set

- This can be solved by defining a singleton inductive type at a level *strictly* higher than **Set**
- But, that would cause a problem for the part where we show that type nat : Set of the library of Coq is the initial algebra for T(X) = 1 + X in category Set
- We therefore postulate existence of a universe polymorphic singleton type:

```
Parameter UNIT : Type.
Parameter TT : UNIT.
Axiom UNIT_SINGLETON : forall x y : UNIT, x = y.
```

Conclusion:

• We presented an implementation of category theory covering some of the basic category theory

Conclusion:

- We presented an implementation of category theory covering some of the basic category theory
- We use features of Coq 8.5: primitive projections and universe polymorphism

■ Conclusion:

- We presented an implementation of category theory covering some of the basic category theory
- We use features of Coq 8.5: primitive projections and universe polymorphism
- Universe polymorphism to represent smallness/largeness

■ Conclusion:

- We presented an implementation of category theory covering some of the basic category theory
- We use features of Coq 8.5: primitive projections and universe polymorphism
- Universe polymorphism to represent smallness/largeness
 - This works well to a degree that we don't need to mention any universe levels and can prove things like: Cat and Complete_Preorder

■ Conclusion:

- We presented an implementation of category theory covering some of the basic category theory
- We use features of Coq 8.5: primitive projections and universe polymorphism
- Universe polymorphism to represent smallness/largeness
 - This works well to a degree that we don't need to mention any universe levels and can prove things like: Cat and Complete_Preorder
 - It also has shortcomings: e.g., can't use Yoneda in Cat and Set