
Category Theory in Coq 8.5

Amin Timany Bart Jacobs

iMinds-Distrinet KU Leuven

7th Coq Workshop – Sophia Antipolis
June 26, 2015

Amin Timany Bart Jacobs Category Theory in Coq 8.5

1

List of the most important formalized notions

basic constructions:

terminal/initial object
products/sums
equalizers/coequalizers

pullbacks/pushouts
exponentials
+ a ∆ a × and (−× a) a a−

external constructions:
comma categories
product category

for Cat: (Obj := Category, Hom := Functor)
cartesian closure
initial object

for Set: (Obj := Type, Hom := fun A B ⇒ A → B)

initial object
sums
equalizers
coequalizers†

pullbacks
cartesian closure

local cartesian closure†

completeness

co-completeness†

sub-object classifier (Prop : Type)†

topos†

†uses the axioms of propositional extensionality and constructive indefinite
description (axiom of choice).

the Yoneda lemma

Amin Timany Bart Jacobs Category Theory in Coq 8.5

2

adjunction
hom-functor adjunction, unit-counit adjunction, universal morphism adjunction
and their conversions
duality : F a G⇒ Gop a F op

uniqueness up to natural isomorphism
category of adjunctions

kan extensions
global definition
local definition with both hom-functor and cones (along a functor)
uniqueness
preservation by adjoint functors
pointwise kan extensions (preserved by representable functors)

(co)limits
as (left)right local kan extensions along the unique functor to the terminal category
(sum)product-(co)equalizer (co)limits
pointwise (as kan extensions)

T − (co)algebras (for an endofunctor T)

we use proof functional extensionality

we use proof irrelevance in many cases (mostly for proof of equality of arrows)

This implementation can be found at:
https://bitbucket.org/amintimany/categories/

Amin Timany Bart Jacobs Category Theory in Coq 8.5

https://bitbucket.org/amintimany/categories/

3

This implementation uses some features of Coq 8.5, most notably:
Primitive projections for records:
Universe polymorphism: for relative smallness/largeness

Amin Timany Bart Jacobs Category Theory in Coq 8.5

4

Primitive projections for records:
The η rule for records: two instance of a record type are definitionally equal if all
their respective projections are

E.g., for {|x : A; y: A|} and f u = {|x := y u; y:= x u|}, we have f (f u) ≡ u

This provides definitional equalities, e.g.: (similar to Coq/HoTT implementation)
For Categories: (Cˆop)ˆop ≡ C

For Functors: (Fˆop)ˆop ≡ F

For Natural Transformations: (Nˆop)ˆop ≡ N

Amin Timany Bart Jacobs Category Theory in Coq 8.5

4

Primitive projections for records:
The η rule for records: two instance of a record type are definitionally equal if all
their respective projections are

E.g., for {|x : A; y: A|} and f u = {|x := y u; y:= x u|}, we have f (f u) ≡ u

This provides definitional equalities, e.g.: (similar to Coq/HoTT implementation)
For Categories: (Cˆop)ˆop ≡ C

For Functors: (Fˆop)ˆop ≡ F

For Natural Transformations: (Nˆop)ˆop ≡ N

Amin Timany Bart Jacobs Category Theory in Coq 8.5

5

Universe polymorphism: for relative smallness/largeness

Class Category : Type@{max(i+1, j+1)} :=
{
Obj : Type@{i}
Hom : Obj → Obj → Type@{j}
id : forall a : Obj, Hom a a
compose : forall a b c, (f : Hom a b) (g : Hom c d) : Hom a c

...
}

Category is universe polymorphic

For each pair of levels (m,n), Category@{m, n} is a copy at level (m,n)

Universe levels in definitions and theorems are inferred by Coq and never appear
in the source code

For each definition, theorem, etc., we get some constraints on universe levels

The definition, theorem, etc. only works for those copies that satisfy the side
constraint

Amin Timany Bart Jacobs Category Theory in Coq 8.5

5

Universe polymorphism: for relative smallness/largeness

Class Category : Type@{max(i+1, j+1)} :=
{
Obj : Type@{i}
Hom : Obj → Obj → Type@{j}
id : forall a : Obj, Hom a a
compose : forall a b c, (f : Hom a b) (g : Hom c d) : Hom a c

...
}

Category is universe polymorphic

For each pair of levels (m,n), Category@{m, n} is a copy at level (m,n)

Universe levels in definitions and theorems are inferred by Coq and never appear
in the source code

For each definition, theorem, etc., we get some constraints on universe levels

The definition, theorem, etc. only works for those copies that satisfy the side
constraint

Amin Timany Bart Jacobs Category Theory in Coq 8.5

5

Universe polymorphism: for relative smallness/largeness

Class Category : Type@{max(i+1, j+1)} :=
{
Obj : Type@{i}
Hom : Obj → Obj → Type@{j}
id : forall a : Obj, Hom a a
compose : forall a b c, (f : Hom a b) (g : Hom c d) : Hom a c

...
}

Category is universe polymorphic

For each pair of levels (m,n), Category@{m, n} is a copy at level (m,n)

Universe levels in definitions and theorems are inferred by Coq and never appear
in the source code

For each definition, theorem, etc., we get some constraints on universe levels

The definition, theorem, etc. only works for those copies that satisfy the side
constraint

Amin Timany Bart Jacobs Category Theory in Coq 8.5

5

Universe polymorphism: for relative smallness/largeness

Class Category : Type@{max(i+1, j+1)} :=
{
Obj : Type@{i}
Hom : Obj → Obj → Type@{j}
id : forall a : Obj, Hom a a
compose : forall a b c, (f : Hom a b) (g : Hom c d) : Hom a c

...
}

Category is universe polymorphic

For each pair of levels (m,n), Category@{m, n} is a copy at level (m,n)

Universe levels in definitions and theorems are inferred by Coq and never appear
in the source code

For each definition, theorem, etc., we get some constraints on universe levels

The definition, theorem, etc. only works for those copies that satisfy the side
constraint

Amin Timany Bart Jacobs Category Theory in Coq 8.5

5

Universe polymorphism: for relative smallness/largeness

Class Category : Type@{max(i+1, j+1)} :=
{
Obj : Type@{i}
Hom : Obj → Obj → Type@{j}
id : forall a : Obj, Hom a a
compose : forall a b c, (f : Hom a b) (g : Hom c d) : Hom a c

...
}

Category is universe polymorphic

For each pair of levels (m,n), Category@{m, n} is a copy at level (m,n)

Universe levels in definitions and theorems are inferred by Coq and never appear
in the source code

For each definition, theorem, etc., we get some constraints on universe levels

The definition, theorem, etc. only works for those copies that satisfy the side
constraint

Amin Timany Bart Jacobs Category Theory in Coq 8.5

5

Universe polymorphism: for relative smallness/largeness

Class Category : Type@{max(i+1, j+1)} :=
{
Obj : Type@{i}
Hom : Obj → Obj → Type@{j}
id : forall a : Obj, Hom a a
compose : forall a b c, (f : Hom a b) (g : Hom c d) : Hom a c

...
}

Category is universe polymorphic

For each pair of levels (m,n), Category@{m, n} is a copy at level (m,n)

Universe levels in definitions and theorems are inferred by Coq and never appear
in the source code

For each definition, theorem, etc., we get some constraints on universe levels

The definition, theorem, etc. only works for those copies that satisfy the side
constraint

Amin Timany Bart Jacobs Category Theory in Coq 8.5

6

This notion of smallness/largeness using universe levels works so well that we
can define Cat:

Instance Cat : Category := {Obj := Category; Hom := Functor; . . .}

Or prove the following:

Theorem Complete_Preorder (C : Category) (CC : Complete C) :
forall x y : (Obj C), Hom x y’ ' ((Arrow C) → Hom x y)

This theorem results in a contradiction as soon as there are objects a and b in C
such that |hom(a, b)| ≥ 2

In fact, this theorem holds only for small categories

This can be seen in universe constraints of this theorem
For C : Category@{k, l} we get the restriction that k ≤ l
This is in contradiction with the fact that Set : Category@{m, n} with m > n

Set@{m, n} :=
{|
Obj := Type@{n} : Type@{m};
Hom := fun A B ⇒ A → B : Obj → Obj → Type@{n}; . . .
|} : Category@{m, n}

Amin Timany Bart Jacobs Category Theory in Coq 8.5

6

This notion of smallness/largeness using universe levels works so well that we
can define Cat:

Instance Cat : Category := {Obj := Category; Hom := Functor; . . .}

Or prove the following:

Theorem Complete_Preorder (C : Category) (CC : Complete C) :
forall x y : (Obj C), Hom x y’ ' ((Arrow C) → Hom x y)

This theorem results in a contradiction as soon as there are objects a and b in C
such that |hom(a, b)| ≥ 2

In fact, this theorem holds only for small categories

This can be seen in universe constraints of this theorem
For C : Category@{k, l} we get the restriction that k ≤ l
This is in contradiction with the fact that Set : Category@{m, n} with m > n

Set@{m, n} :=
{|
Obj := Type@{n} : Type@{m};
Hom := fun A B ⇒ A → B : Obj → Obj → Type@{n}; . . .
|} : Category@{m, n}

Amin Timany Bart Jacobs Category Theory in Coq 8.5

6

This notion of smallness/largeness using universe levels works so well that we
can define Cat:

Instance Cat : Category := {Obj := Category; Hom := Functor; . . .}

Or prove the following:

Theorem Complete_Preorder (C : Category) (CC : Complete C) :
forall x y : (Obj C), Hom x y’ ' ((Arrow C) → Hom x y)

This theorem results in a contradiction as soon as there are objects a and b in C
such that |hom(a, b)| ≥ 2

In fact, this theorem holds only for small categories

This can be seen in universe constraints of this theorem
For C : Category@{k, l} we get the restriction that k ≤ l
This is in contradiction with the fact that Set : Category@{m, n} with m > n

Set@{m, n} :=
{|
Obj := Type@{n} : Type@{m};
Hom := fun A B ⇒ A → B : Obj → Obj → Type@{n}; . . .
|} : Category@{m, n}

Amin Timany Bart Jacobs Category Theory in Coq 8.5

6

This notion of smallness/largeness using universe levels works so well that we
can define Cat:

Instance Cat : Category := {Obj := Category; Hom := Functor; . . .}

Or prove the following:

Theorem Complete_Preorder (C : Category) (CC : Complete C) :
forall x y : (Obj C), Hom x y’ ' ((Arrow C) → Hom x y)

This theorem results in a contradiction as soon as there are objects a and b in C
such that |hom(a, b)| ≥ 2

In fact, this theorem holds only for small categories

This can be seen in universe constraints of this theorem
For C : Category@{k, l} we get the restriction that k ≤ l
This is in contradiction with the fact that Set : Category@{m, n} with m > n

Set@{m, n} :=
{|
Obj := Type@{n} : Type@{m};
Hom := fun A B ⇒ A → B : Obj → Obj → Type@{n}; . . .
|} : Category@{m, n}

Amin Timany Bart Jacobs Category Theory in Coq 8.5

6

This notion of smallness/largeness using universe levels works so well that we
can define Cat:

Instance Cat : Category := {Obj := Category; Hom := Functor; . . .}

Or prove the following:

Theorem Complete_Preorder (C : Category) (CC : Complete C) :
forall x y : (Obj C), Hom x y’ ' ((Arrow C) → Hom x y)

This theorem results in a contradiction as soon as there are objects a and b in C
such that |hom(a, b)| ≥ 2

In fact, this theorem holds only for small categories

This can be seen in universe constraints of this theorem

For C : Category@{k, l} we get the restriction that k ≤ l
This is in contradiction with the fact that Set : Category@{m, n} with m > n

Set@{m, n} :=
{|
Obj := Type@{n} : Type@{m};
Hom := fun A B ⇒ A → B : Obj → Obj → Type@{n}; . . .
|} : Category@{m, n}

Amin Timany Bart Jacobs Category Theory in Coq 8.5

6

This notion of smallness/largeness using universe levels works so well that we
can define Cat:

Instance Cat : Category := {Obj := Category; Hom := Functor; . . .}

Or prove the following:

Theorem Complete_Preorder (C : Category) (CC : Complete C) :
forall x y : (Obj C), Hom x y’ ' ((Arrow C) → Hom x y)

This theorem results in a contradiction as soon as there are objects a and b in C
such that |hom(a, b)| ≥ 2

In fact, this theorem holds only for small categories

This can be seen in universe constraints of this theorem
For C : Category@{k, l} we get the restriction that k ≤ l
This is in contradiction with the fact that Set : Category@{m, n} with m > n

Set@{m, n} :=
{|
Obj := Type@{n} : Type@{m};
Hom := fun A B ⇒ A → B : Obj → Obj → Type@{n}; . . .
|} : Category@{m, n}

Amin Timany Bart Jacobs Category Theory in Coq 8.5

6

This notion of smallness/largeness using universe levels works so well that we
can define Cat:

Instance Cat : Category := {Obj := Category; Hom := Functor; . . .}

Or prove the following:

Theorem Complete_Preorder (C : Category) (CC : Complete C) :
forall x y : (Obj C), Hom x y’ ' ((Arrow C) → Hom x y)

This theorem results in a contradiction as soon as there are objects a and b in C
such that |hom(a, b)| ≥ 2

In fact, this theorem holds only for small categories

This can be seen in universe constraints of this theorem
For C : Category@{k, l} we get the restriction that k ≤ l
This is in contradiction with the fact that Set : Category@{m, n} with m > n

Set@{m, n} :=
{|
Obj := Type@{n} : Type@{m};
Hom := fun A B ⇒ A → B : Obj → Obj → Type@{n}; . . .
|} : Category@{m, n}

Amin Timany Bart Jacobs Category Theory in Coq 8.5

7

Cat in Coq:

Instance Cat : Category@{i, j} := {Obj := Category@{k, l}; Hom := Functor; . . .}

But according to Coq’s universe polymorphism, if C : Category@{k, l} and
C : Category@{k’, l’}, we must have k = k’ and l = l’

This means Cat@{i, j, k, l} is not the category of all categories at level (k, l) or
lower but only at level (k, l)

We can lift category:

lift (C : Category@{k, l}) : Category@{k’, l’} :=
{|
Obj := Obj C;
Hom := Hom C;

...
|}

for k < k′ and l < l′

But
We can’t prove or even specify (universe inconsistency)
forall (C : Category), C = lift C
We can’t prove forall (C : Category), JMeq C (lift C)
The equality forall (C : Category), lift C = lift (lift C) is not definitional

Amin Timany Bart Jacobs Category Theory in Coq 8.5

7

Cat in Coq:

Instance Cat : Category@{i, j} := {Obj := Category@{k, l}; Hom := Functor; . . .}

But according to Coq’s universe polymorphism, if C : Category@{k, l} and
C : Category@{k’, l’}, we must have k = k’ and l = l’

This means Cat@{i, j, k, l} is not the category of all categories at level (k, l) or
lower but only at level (k, l)

We can lift category:

lift (C : Category@{k, l}) : Category@{k’, l’} :=
{|
Obj := Obj C;
Hom := Hom C;

...
|}

for k < k′ and l < l′

But
We can’t prove or even specify (universe inconsistency)
forall (C : Category), C = lift C
We can’t prove forall (C : Category), JMeq C (lift C)
The equality forall (C : Category), lift C = lift (lift C) is not definitional

Amin Timany Bart Jacobs Category Theory in Coq 8.5

7

Cat in Coq:

Instance Cat : Category@{i, j} := {Obj := Category@{k, l}; Hom := Functor; . . .}

But according to Coq’s universe polymorphism, if C : Category@{k, l} and
C : Category@{k’, l’}, we must have k = k’ and l = l’

This means Cat@{i, j, k, l} is not the category of all categories at level (k, l) or
lower but only at level (k, l)

We can lift category:

lift (C : Category@{k, l}) : Category@{k’, l’} :=
{|
Obj := Obj C;
Hom := Hom C;

...
|}

for k < k′ and l < l′

But
We can’t prove or even specify (universe inconsistency)
forall (C : Category), C = lift C
We can’t prove forall (C : Category), JMeq C (lift C)
The equality forall (C : Category), lift C = lift (lift C) is not definitional

Amin Timany Bart Jacobs Category Theory in Coq 8.5

7

Cat in Coq:

Instance Cat : Category@{i, j} := {Obj := Category@{k, l}; Hom := Functor; . . .}

But according to Coq’s universe polymorphism, if C : Category@{k, l} and
C : Category@{k’, l’}, we must have k = k’ and l = l’

This means Cat@{i, j, k, l} is not the category of all categories at level (k, l) or
lower but only at level (k, l)

We can lift category:

lift (C : Category@{k, l}) : Category@{k’, l’} :=
{|
Obj := Obj C;
Hom := Hom C;

...
|}

for k < k′ and l < l′

But
We can’t prove or even specify (universe inconsistency)
forall (C : Category), C = lift C
We can’t prove forall (C : Category), JMeq C (lift C)
The equality forall (C : Category), lift C = lift (lift C) is not definitional

Amin Timany Bart Jacobs Category Theory in Coq 8.5

7

Cat in Coq:

Instance Cat : Category@{i, j} := {Obj := Category@{k, l}; Hom := Functor; . . .}

But according to Coq’s universe polymorphism, if C : Category@{k, l} and
C : Category@{k’, l’}, we must have k = k’ and l = l’

This means Cat@{i, j, k, l} is not the category of all categories at level (k, l) or
lower but only at level (k, l)

We can lift category:

lift (C : Category@{k, l}) : Category@{k’, l’} :=
{|
Obj := Obj C;
Hom := Hom C;

...
|}

for k < k′ and l < l′

But
We can’t prove or even specify (universe inconsistency)
forall (C : Category), C = lift C

We can’t prove forall (C : Category), JMeq C (lift C)
The equality forall (C : Category), lift C = lift (lift C) is not definitional

Amin Timany Bart Jacobs Category Theory in Coq 8.5

7

Cat in Coq:

Instance Cat : Category@{i, j} := {Obj := Category@{k, l}; Hom := Functor; . . .}

But according to Coq’s universe polymorphism, if C : Category@{k, l} and
C : Category@{k’, l’}, we must have k = k’ and l = l’

This means Cat@{i, j, k, l} is not the category of all categories at level (k, l) or
lower but only at level (k, l)

We can lift category:

lift (C : Category@{k, l}) : Category@{k’, l’} :=
{|
Obj := Obj C;
Hom := Hom C;

...
|}

for k < k′ and l < l′

But
We can’t prove or even specify (universe inconsistency)
forall (C : Category), C = lift C
We can’t prove forall (C : Category), JMeq C (lift C)

The equality forall (C : Category), lift C = lift (lift C) is not definitional

Amin Timany Bart Jacobs Category Theory in Coq 8.5

7

Cat in Coq:

Instance Cat : Category@{i, j} := {Obj := Category@{k, l}; Hom := Functor; . . .}

But according to Coq’s universe polymorphism, if C : Category@{k, l} and
C : Category@{k’, l’}, we must have k = k’ and l = l’

This means Cat@{i, j, k, l} is not the category of all categories at level (k, l) or
lower but only at level (k, l)

We can lift category:

lift (C : Category@{k, l}) : Category@{k’, l’} :=
{|
Obj := Obj C;
Hom := Hom C;

...
|}

for k < k′ and l < l′

But
We can’t prove or even specify (universe inconsistency)
forall (C : Category), C = lift C
We can’t prove forall (C : Category), JMeq C (lift C)
The equality forall (C : Category), lift C = lift (lift C) is not definitional

Amin Timany Bart Jacobs Category Theory in Coq 8.5

8

If we show that Cat@{i, j, k, l} has exponentials, we get the constraints that
j = k = l

Therefore, no copy of Set is in a copy of Cat in which we have exponentials

That means we can’t define Yoneda embedding as exponential transpose
(currying) of the hom functor

Defining Yoneda separately, it still can only be applied in a category
C : Category@{i, j} if i = j.

We can use Yoneda to prove that in any cartesian closed category:

(ab)
c ' ab×c

but this lemma can’t be applied to Cat or Set

Amin Timany Bart Jacobs Category Theory in Coq 8.5

8

If we show that Cat@{i, j, k, l} has exponentials, we get the constraints that
j = k = l

Therefore, no copy of Set is in a copy of Cat in which we have exponentials

That means we can’t define Yoneda embedding as exponential transpose
(currying) of the hom functor

Defining Yoneda separately, it still can only be applied in a category
C : Category@{i, j} if i = j.

We can use Yoneda to prove that in any cartesian closed category:

(ab)
c ' ab×c

but this lemma can’t be applied to Cat or Set

Amin Timany Bart Jacobs Category Theory in Coq 8.5

8

If we show that Cat@{i, j, k, l} has exponentials, we get the constraints that
j = k = l

Therefore, no copy of Set is in a copy of Cat in which we have exponentials

That means we can’t define Yoneda embedding as exponential transpose
(currying) of the hom functor

Defining Yoneda separately, it still can only be applied in a category
C : Category@{i, j} if i = j.

We can use Yoneda to prove that in any cartesian closed category:

(ab)
c ' ab×c

but this lemma can’t be applied to Cat or Set

Amin Timany Bart Jacobs Category Theory in Coq 8.5

8

If we show that Cat@{i, j, k, l} has exponentials, we get the constraints that
j = k = l

Therefore, no copy of Set is in a copy of Cat in which we have exponentials

That means we can’t define Yoneda embedding as exponential transpose
(currying) of the hom functor

Defining Yoneda separately, it still can only be applied in a category
C : Category@{i, j} if i = j.

We can use Yoneda to prove that in any cartesian closed category:

(ab)
c ' ab×c

but this lemma can’t be applied to Cat or Set

Amin Timany Bart Jacobs Category Theory in Coq 8.5

8

If we show that Cat@{i, j, k, l} has exponentials, we get the constraints that
j = k = l

Therefore, no copy of Set is in a copy of Cat in which we have exponentials

That means we can’t define Yoneda embedding as exponential transpose
(currying) of the hom functor

Defining Yoneda separately, it still can only be applied in a category
C : Category@{i, j} if i = j.

We can use Yoneda to prove that in any cartesian closed category:

(ab)
c ' ab×c

but this lemma can’t be applied to Cat or Set

Amin Timany Bart Jacobs Category Theory in Coq 8.5

9

Consider our proof of uniqueness of adjoint functors (up to natural isomorphism)

Assume for F, F ′ : C → D : G, we have F a G and F ′ a G, i.e.,

homD(F,−) ' homC(−, G) and homD(F ′,−) ' homC(−, G)

Thus we have:
homD(F,−) ' homD(F ′,−)

but for H,H ′ : C × C′ → D, H ' H ′ iff curry(H) ' curry(H ′)1

so, we can assume:

curry(homD(F,−)) ' curry(homD(F ′,−))

But according to axioms of exponentials we have

curry(homD(F,−)) = F ◦ curry(homD)

Which means:
F ◦ YD ' F ′ ◦ YD

This immediately gives F ' F ′ as YD (the Yoneda embedding for D) is an
embedding

But, we can’t use the general fact above, as it involves both exponentials and Set

(through hom) in Cat – we have proven a separate instance of this fact for Cat

1for f : a× b→ c we have curry(f) : a→ cb

Amin Timany Bart Jacobs Category Theory in Coq 8.5

9

Consider our proof of uniqueness of adjoint functors (up to natural isomorphism)

Assume for F, F ′ : C → D : G, we have F a G and F ′ a G, i.e.,

homD(F,−) ' homC(−, G) and homD(F ′,−) ' homC(−, G)

Thus we have:
homD(F,−) ' homD(F ′,−)

but for H,H ′ : C × C′ → D, H ' H ′ iff curry(H) ' curry(H ′)1

so, we can assume:

curry(homD(F,−)) ' curry(homD(F ′,−))

But according to axioms of exponentials we have

curry(homD(F,−)) = F ◦ curry(homD)

Which means:
F ◦ YD ' F ′ ◦ YD

This immediately gives F ' F ′ as YD (the Yoneda embedding for D) is an
embedding

But, we can’t use the general fact above, as it involves both exponentials and Set

(through hom) in Cat – we have proven a separate instance of this fact for Cat

1for f : a× b→ c we have curry(f) : a→ cb

Amin Timany Bart Jacobs Category Theory in Coq 8.5

9

Consider our proof of uniqueness of adjoint functors (up to natural isomorphism)

Assume for F, F ′ : C → D : G, we have F a G and F ′ a G, i.e.,

homD(F,−) ' homC(−, G) and homD(F ′,−) ' homC(−, G)

Thus we have:
homD(F,−) ' homD(F ′,−)

but for H,H ′ : C × C′ → D, H ' H ′ iff curry(H) ' curry(H ′)1

so, we can assume:

curry(homD(F,−)) ' curry(homD(F ′,−))

But according to axioms of exponentials we have

curry(homD(F,−)) = F ◦ curry(homD)

Which means:
F ◦ YD ' F ′ ◦ YD

This immediately gives F ' F ′ as YD (the Yoneda embedding for D) is an
embedding

But, we can’t use the general fact above, as it involves both exponentials and Set

(through hom) in Cat – we have proven a separate instance of this fact for Cat

1for f : a× b→ c we have curry(f) : a→ cb

Amin Timany Bart Jacobs Category Theory in Coq 8.5

9

Consider our proof of uniqueness of adjoint functors (up to natural isomorphism)

Assume for F, F ′ : C → D : G, we have F a G and F ′ a G, i.e.,

homD(F,−) ' homC(−, G) and homD(F ′,−) ' homC(−, G)

Thus we have:
homD(F,−) ' homD(F ′,−)

but for H,H ′ : C × C′ → D, H ' H ′ iff curry(H) ' curry(H ′)1

so, we can assume:

curry(homD(F,−)) ' curry(homD(F ′,−))

But according to axioms of exponentials we have

curry(homD(F,−)) = F ◦ curry(homD)

Which means:
F ◦ YD ' F ′ ◦ YD

This immediately gives F ' F ′ as YD (the Yoneda embedding for D) is an
embedding

But, we can’t use the general fact above, as it involves both exponentials and Set

(through hom) in Cat – we have proven a separate instance of this fact for Cat

1for f : a× b→ c we have curry(f) : a→ cb

Amin Timany Bart Jacobs Category Theory in Coq 8.5

9

Consider our proof of uniqueness of adjoint functors (up to natural isomorphism)

Assume for F, F ′ : C → D : G, we have F a G and F ′ a G, i.e.,

homD(F,−) ' homC(−, G) and homD(F ′,−) ' homC(−, G)

Thus we have:
homD(F,−) ' homD(F ′,−)

but for H,H ′ : C × C′ → D, H ' H ′ iff curry(H) ' curry(H ′)1

so, we can assume:

curry(homD(F,−)) ' curry(homD(F ′,−))

But according to axioms of exponentials we have

curry(homD(F,−)) = F ◦ curry(homD)

Which means:
F ◦ YD ' F ′ ◦ YD

This immediately gives F ' F ′ as YD (the Yoneda embedding for D) is an
embedding

But, we can’t use the general fact above, as it involves both exponentials and Set

(through hom) in Cat – we have proven a separate instance of this fact for Cat

1for f : a× b→ c we have curry(f) : a→ cb

Amin Timany Bart Jacobs Category Theory in Coq 8.5

9

Consider our proof of uniqueness of adjoint functors (up to natural isomorphism)

Assume for F, F ′ : C → D : G, we have F a G and F ′ a G, i.e.,

homD(F,−) ' homC(−, G) and homD(F ′,−) ' homC(−, G)

Thus we have:
homD(F,−) ' homD(F ′,−)

but for H,H ′ : C × C′ → D, H ' H ′ iff curry(H) ' curry(H ′)1

so, we can assume:

curry(homD(F,−)) ' curry(homD(F ′,−))

But according to axioms of exponentials we have

curry(homD(F,−)) = F ◦ curry(homD)

Which means:
F ◦ YD ' F ′ ◦ YD

This immediately gives F ' F ′ as YD (the Yoneda embedding for D) is an
embedding

But, we can’t use the general fact above, as it involves both exponentials and Set

(through hom) in Cat – we have proven a separate instance of this fact for Cat

1for f : a× b→ c we have curry(f) : a→ cb

Amin Timany Bart Jacobs Category Theory in Coq 8.5

9

Consider our proof of uniqueness of adjoint functors (up to natural isomorphism)

Assume for F, F ′ : C → D : G, we have F a G and F ′ a G, i.e.,

homD(F,−) ' homC(−, G) and homD(F ′,−) ' homC(−, G)

Thus we have:
homD(F,−) ' homD(F ′,−)

but for H,H ′ : C × C′ → D, H ' H ′ iff curry(H) ' curry(H ′)1

so, we can assume:

curry(homD(F,−)) ' curry(homD(F ′,−))

But according to axioms of exponentials we have

curry(homD(F,−)) = F ◦ curry(homD)

Which means:
F ◦ YD ' F ′ ◦ YD

This immediately gives F ' F ′ as YD (the Yoneda embedding for D) is an
embedding

But, we can’t use the general fact above, as it involves both exponentials and Set

(through hom) in Cat – we have proven a separate instance of this fact for Cat

1for f : a× b→ c we have curry(f) : a→ cb

Amin Timany Bart Jacobs Category Theory in Coq 8.5

9

Consider our proof of uniqueness of adjoint functors (up to natural isomorphism)

Assume for F, F ′ : C → D : G, we have F a G and F ′ a G, i.e.,

homD(F,−) ' homC(−, G) and homD(F ′,−) ' homC(−, G)

Thus we have:
homD(F,−) ' homD(F ′,−)

but for H,H ′ : C × C′ → D, H ' H ′ iff curry(H) ' curry(H ′)1

so, we can assume:

curry(homD(F,−)) ' curry(homD(F ′,−))

But according to axioms of exponentials we have

curry(homD(F,−)) = F ◦ curry(homD)

Which means:
F ◦ YD ' F ′ ◦ YD

This immediately gives F ' F ′ as YD (the Yoneda embedding for D) is an
embedding

But, we can’t use the general fact above, as it involves both exponentials and Set

(through hom) in Cat – we have proven a separate instance of this fact for Cat

1for f : a× b→ c we have curry(f) : a→ cb

Amin Timany Bart Jacobs Category Theory in Coq 8.5

9

Consider our proof of uniqueness of adjoint functors (up to natural isomorphism)

Assume for F, F ′ : C → D : G, we have F a G and F ′ a G, i.e.,

homD(F,−) ' homC(−, G) and homD(F ′,−) ' homC(−, G)

Thus we have:
homD(F,−) ' homD(F ′,−)

but for H,H ′ : C × C′ → D, H ' H ′ iff curry(H) ' curry(H ′)1

so, we can assume:

curry(homD(F,−)) ' curry(homD(F ′,−))

But according to axioms of exponentials we have

curry(homD(F,−)) = F ◦ curry(homD)

Which means:
F ◦ YD ' F ′ ◦ YD

This immediately gives F ' F ′ as YD (the Yoneda embedding for D) is an
embedding

But, we can’t use the general fact above, as it involves both exponentials and Set

(through hom) in Cat

– we have proven a separate instance of this fact for Cat

1for f : a× b→ c we have curry(f) : a→ cb

Amin Timany Bart Jacobs Category Theory in Coq 8.5

9

Consider our proof of uniqueness of adjoint functors (up to natural isomorphism)

Assume for F, F ′ : C → D : G, we have F a G and F ′ a G, i.e.,

homD(F,−) ' homC(−, G) and homD(F ′,−) ' homC(−, G)

Thus we have:
homD(F,−) ' homD(F ′,−)

but for H,H ′ : C × C′ → D, H ' H ′ iff curry(H) ' curry(H ′)1

so, we can assume:

curry(homD(F,−)) ' curry(homD(F ′,−))

But according to axioms of exponentials we have

curry(homD(F,−)) = F ◦ curry(homD)

Which means:
F ◦ YD ' F ′ ◦ YD

This immediately gives F ' F ′ as YD (the Yoneda embedding for D) is an
embedding

But, we can’t use the general fact above, as it involves both exponentials and Set

(through hom) in Cat – we have proven a separate instance of this fact for Cat
1for f : a× b→ c we have curry(f) : a→ cb

Amin Timany Bart Jacobs Category Theory in Coq 8.5

10

Another issue that we faced is that Set seems to have a special place:
If we show that Set : Category@{i, j} has unit : Set as the terminal object, we
get the restriction j = Set

The problem occurs when we want to show that Prop is the subobject classifier for
Set. As then we need a monic arrow:

tr : unit→ Prop

and unit → Prop is not a term of type Set
This can be solved by defining a singleton inductive type at a level strictly higher
than Set
But, that would cause a problem for the part where we show that type nat : Set
of the library of Coq is the initial algebra for T (X) = 1 +X in category Set
We therefore postulate existence of a universe polymorphic singleton type:

Parameter UNIT : Type.
Parameter TT : UNIT.
Axiom UNIT_SINGLETON : forall x y : UNIT, x = y.

Amin Timany Bart Jacobs Category Theory in Coq 8.5

10

Another issue that we faced is that Set seems to have a special place:
If we show that Set : Category@{i, j} has unit : Set as the terminal object, we
get the restriction j = Set
The problem occurs when we want to show that Prop is the subobject classifier for
Set. As then we need a monic arrow:

tr : unit→ Prop

and unit → Prop is not a term of type Set

This can be solved by defining a singleton inductive type at a level strictly higher
than Set
But, that would cause a problem for the part where we show that type nat : Set
of the library of Coq is the initial algebra for T (X) = 1 +X in category Set
We therefore postulate existence of a universe polymorphic singleton type:

Parameter UNIT : Type.
Parameter TT : UNIT.
Axiom UNIT_SINGLETON : forall x y : UNIT, x = y.

Amin Timany Bart Jacobs Category Theory in Coq 8.5

10

Another issue that we faced is that Set seems to have a special place:
If we show that Set : Category@{i, j} has unit : Set as the terminal object, we
get the restriction j = Set
The problem occurs when we want to show that Prop is the subobject classifier for
Set. As then we need a monic arrow:

tr : unit→ Prop

and unit → Prop is not a term of type Set
This can be solved by defining a singleton inductive type at a level strictly higher
than Set

But, that would cause a problem for the part where we show that type nat : Set
of the library of Coq is the initial algebra for T (X) = 1 +X in category Set
We therefore postulate existence of a universe polymorphic singleton type:

Parameter UNIT : Type.
Parameter TT : UNIT.
Axiom UNIT_SINGLETON : forall x y : UNIT, x = y.

Amin Timany Bart Jacobs Category Theory in Coq 8.5

10

Another issue that we faced is that Set seems to have a special place:
If we show that Set : Category@{i, j} has unit : Set as the terminal object, we
get the restriction j = Set
The problem occurs when we want to show that Prop is the subobject classifier for
Set. As then we need a monic arrow:

tr : unit→ Prop

and unit → Prop is not a term of type Set
This can be solved by defining a singleton inductive type at a level strictly higher
than Set
But, that would cause a problem for the part where we show that type nat : Set
of the library of Coq is the initial algebra for T (X) = 1 +X in category Set

We therefore postulate existence of a universe polymorphic singleton type:

Parameter UNIT : Type.
Parameter TT : UNIT.
Axiom UNIT_SINGLETON : forall x y : UNIT, x = y.

Amin Timany Bart Jacobs Category Theory in Coq 8.5

10

Another issue that we faced is that Set seems to have a special place:
If we show that Set : Category@{i, j} has unit : Set as the terminal object, we
get the restriction j = Set
The problem occurs when we want to show that Prop is the subobject classifier for
Set. As then we need a monic arrow:

tr : unit→ Prop

and unit → Prop is not a term of type Set
This can be solved by defining a singleton inductive type at a level strictly higher
than Set
But, that would cause a problem for the part where we show that type nat : Set
of the library of Coq is the initial algebra for T (X) = 1 +X in category Set
We therefore postulate existence of a universe polymorphic singleton type:

Parameter UNIT : Type.
Parameter TT : UNIT.
Axiom UNIT_SINGLETON : forall x y : UNIT, x = y.

Amin Timany Bart Jacobs Category Theory in Coq 8.5

11

Conclusion:
We presented an implementation of category theory covering some of the basic
category theory

We use features of Coq 8.5: primitive projections and universe polymorphism
Universe polymorphism to represent smallness/largeness

This works well to a degree that we don’t need to mention any universe levels and
can prove things like: Cat and Complete_Preorder
It also has shortcomings: e.g., can’t use Yoneda in Cat and Set

Amin Timany Bart Jacobs Category Theory in Coq 8.5

11

Conclusion:
We presented an implementation of category theory covering some of the basic
category theory
We use features of Coq 8.5: primitive projections and universe polymorphism

Universe polymorphism to represent smallness/largeness

This works well to a degree that we don’t need to mention any universe levels and
can prove things like: Cat and Complete_Preorder
It also has shortcomings: e.g., can’t use Yoneda in Cat and Set

Amin Timany Bart Jacobs Category Theory in Coq 8.5

11

Conclusion:
We presented an implementation of category theory covering some of the basic
category theory
We use features of Coq 8.5: primitive projections and universe polymorphism
Universe polymorphism to represent smallness/largeness

This works well to a degree that we don’t need to mention any universe levels and
can prove things like: Cat and Complete_Preorder
It also has shortcomings: e.g., can’t use Yoneda in Cat and Set

Amin Timany Bart Jacobs Category Theory in Coq 8.5

11

Conclusion:
We presented an implementation of category theory covering some of the basic
category theory
We use features of Coq 8.5: primitive projections and universe polymorphism
Universe polymorphism to represent smallness/largeness

This works well to a degree that we don’t need to mention any universe levels and
can prove things like: Cat and Complete_Preorder

It also has shortcomings: e.g., can’t use Yoneda in Cat and Set

Amin Timany Bart Jacobs Category Theory in Coq 8.5

11

Conclusion:
We presented an implementation of category theory covering some of the basic
category theory
We use features of Coq 8.5: primitive projections and universe polymorphism
Universe polymorphism to represent smallness/largeness

This works well to a degree that we don’t need to mention any universe levels and
can prove things like: Cat and Complete_Preorder
It also has shortcomings: e.g., can’t use Yoneda in Cat and Set

Amin Timany Bart Jacobs Category Theory in Coq 8.5

