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Abstract
Model checking is an automated approach to verification of systems, e.g., soft-
ware systems, hardware systems, communication protocols, etc. This is done via
representing the system as a transition system, that is, representing different
situations that the system can be in as a number of states and their relations,
while representing properties that have to be verified as temporal logic formu-
las. Unfortunately, when the system at hand is comprised of a number of sub-
systems (processes or components) that run in parallel, the number of states of
the system grows exponentially in the number of sub-systems that run in par-
allel. For tackling the phenomenon, called state space explosion problem, there
have been several approaches developed. A well known and widely practiced ap-
proach is symmetry reduction that makes use of symmetry of sub-systems run-
ning in parallel to reduce the number of states of the composite system.
Constraint automata are a variation of transition systems where, there are a
number of data-flow locations allowing transmutation of data. The name con-
straint automata refers to the fact that each transition puts a number of re-
strictions (constraints) on the data flow throughout constraint automata as that
transition is being executed. Reo is an exogenous channel based communication
language providing orchestration among components of a system. The semantics
underlying Reo circuits can be expressed as constraint automata. In this thesis,
we adapt the technique of symmetry reduction to the case of systems expressed
in constraint automata and discuss how Reo circuits can be helpful in isolating
symmetrical parts of the system, facilitating more efficient dealing with symme-
try reduction.
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1 Introduction

1.1 Model Checking and State Space Explosion

Model checking is an automated technique to verify properties of systems, e.g., software
systems, hardware systems, communication protocols, etc. In this technique, models are
specified as a transition system, while the properties to be checked are expressed in tempo-
ral logics. It was introduced by Clarke and Emerson in [CE82] and by Queille and Sifakis
in [QS82], independently.

A transition system consists of a set of states S, a relation R ⊆ S × S on those states
called the transition relation and a set of initial states (subset of S). At the beginning the
system is assumed to be in an initial state and after passage of each temporal unit the
system moves to a new state following one of the transitions originating in that state.

Properties, on the other hand, are specified in temporal logics which specify conditions
on states of the system over time; e.g., “the system is never in a deadlock situation”, ”after
a finite time after receiving a request that request is acknowledged” and so on.

In such a scenario a model checker tool, given a model (specified as a transition system)
and a property (expressed as a temporal logic formula), either confirms the given property
or gives a counter example in the given model.

As an example, consider the example of a transition system depicted in Figure 1.1. It
depicts the transition system of a process that is initially in standby state, i.e., ‘st’. It then
goes to a state where it requests two resources, i.e., ‘r1r2’ where ri stands for “request for

st

r1r2

o1r2 r1o2

o1o2

Figure 1.1: An example of a transition system of a process requesting and acquiring two
resources.
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st, st

r1r2, st st, r1r2

r1r2, r1r2o1r2, st r1o2, st st,o1r2st, r1o2

o1o2, st st,o1o2

o1r2, r1r2

r1o2, r1r2 r1r2,o1r2

r1r2, r1o2

o1o2, r1r2 o1r2, r1o2 r1o2,o1r2 r1r2,o1o2

Figure 1.2: The transition system of interleaving two instances of process in Figure 1.1
after restricting resources – a resource cannot be owned by both processes.

resource number i”, and after owning them both, i.e., ‘o1o2’ where oi stands for “resource
number i is owned by the process”, it goes back to standby state.

Figure 1.2, on the other hand, illustrates a system where two instance of the process
depicted in Figure 1.1 are running in parallel. Furthermore, in the system of Figure 1.2,
states of the system are restricted to the cases where resource ownerships are not violated,
i.e., no resource is owned by more than one process. In this system, though, there has been
no measures taken to avoid deadlocks, i.e., situations in which each process owns a resource
and is waiting for the other (which is owned by the other process). In Figure 1.2, the states
where a deadlock occurs are distinguished by double line borders.

Clearly, in Figure 1.2, the deadlock states are reachable which is undesirable. Therefore,
if this system is given to a model checker together with a temporal logic formula specifying
“never deadlock”, the system will reject the property and provides a counter example of an
execution path where a deadlock state is reached.

As it is evident in the example of Figure 1.1 and Figure 1.2, the number of states of a
system increases exponentially in the number of processes (or components of the system)
that are run in parallel. In this case, the system in Figure 1.1 has 5 states while the
system in Figure 1.2 has 18 states (there are 7 states removed due to having both processes
owning the same resource). There are a number of approaches that have been introduced
and investigated so far among which are techniques like symmetry reduction. We will
discuss some of these approaches and in particular symmetry reduction in the next section.

2



For a rigorous and more precise consideration of the subject, the reader is kindly referred
to [CK96, CW96, Wol95, Mer01, BK08].

1.2 Approaches to Tackle State Space Explosion
The state space explosion problem refers to the problem of an exponential increase of the
number of states of the composite system in the number processes (or components of the
system) that run in parallel. During past decades there have been many approaches devel-
oped to tackle this problem. These approaches use different aspects of the nature of this
exponential blow up (or the nature of the model checking problem) to tackle this problem.
These approaches include but are not limited to: symbolic model checking, model slicing,
partial order reduction, symmetry reduction.

Here, we will give an overview of these approaches while focussing on symmetry reduc-
tion which is the main subject of this thesis. As it is mentioned in [Pel09], the best way
for a system to achieve efficiency, the best measure to take is not to be limited to a single
approach and rather combine different approaches for an added merit. For further detail
about approaches to tackle the state space explosion problem, refer to [Pel09, CGJ+01,
BCM+92, McM92, CMCHG96, KB07, EW03, HDZ00, DHH+06, Pel93, HP94, Pel96, GP93,
GvLH+96, Val91b, Val91a, KLY02, BP02, CEFJ96, CJ95, GS05, ID96, CEJS98, ES97, Ios02,
MDC06, SG04, ET03, DM05, DMP07, DM06, KNP06, BDE+12].

Symbolic Model Checking In this approach, introduced by Burch et. al. in [BCM+92],
a number of binary variables (variables with domain B = {0, 1}) are considered to represent
the transition system. States, the set of initial states and transition relation of the tran-
sition system, are in turn represented by binary functions (functions of the type Bn → B),
over these variables or two copies of them representing before and after states in case of
transitions.

Example 1.1. As an example, consider the system in Figure 1.1. This system can be rep-
resented by three binary variables vst, vr1 and vr2 . We can simply have the set of states, the
set of initial states and transition relation represented as binary functions over vst, vr1 and
vr2 as follows:

fst(vst, vr1 , vr2) = vst

fr1r2(vst, vr1 , vr2) = vst ∧ vr1 ∧ vr2
fo1r2(vst, vr1 , vr2) = vst ∧ vr1 ∧ vr2
fr1o2(vst, vr1 , vr2) = vst ∧ vr1 ∧ vr2
fo1o2(vst, vr1 , vr2) = vst ∧ vr1 ∧ vr2

finit(vst, vr1 , vr2) = vst

frel(vst, vr1 , vr2 , v
′
st, v

′
r1 , v

′
r2) = (vst ∧ v′st ∧ v′r1 ∧ v′r2)

∨ (vst ∧ vr1 ∧ vr2 ∧ v′st ∧ v′r1 ∧ v′r2)

∨ (vst ∧ vr1 ∧ vr2 ∧ v′st ∧ v′r1 ∧ v
′
r2)

∨ (vst ∧ vr1 ∧ vr2 ∧ v′st ∧ v′r1 ∧ v
′
r2)

∨ (vst ∧ vr1 ∧ vr2 ∧ v′st ∧ v′r1 ∧ v
′
r2)

∨ (vst ∧ vr1 ∧ vr2 ∧ v′st)

3



where, the line above variable names represents negation and ∨ and ∧ represent disjunc-
tion and conjunction respectively; while, fst, fr1r2 , fo1r2 , fr1,o2 and fo1o2 each represent the
binary functions of their subscript, finit is the binary function representing the set of initial
states and frel is the binary function representing the transition relation of the system. �

Using binary representations helps compress the size of transition systems while giving
the opportunity of using very efficient algorithms (see [Bry86, Ake78]) for the manipulation
of sets of states which in turn helps alleviate the state space explosion problem. For further
details on symbolic model checking see [McM92, BCM+92, CMCHG96, KB07, EW03].

Model Slicing Slicing is a technique introduced by Mark Weiser in [Wei84] for computing
portions of a program that are relevant to a particular part of the program which is of
interest for analysis. In this technique, given a slicing criterion, i.e., a line of the program
and some variables whose value is important at that line, the program code is analyzed
to produce a fragment of the system that (potentially) has an effect on the value of the
variables of the given slicing criterion at the line specified in the given slicing criterion. For
further reading on the subject of program slicing, the reader can refer to [Wei84, Tip95].

This approach can be and has been lifted to the case of model checking. This approach
is most useful where the model is expressed in a form of guarded command language (see
[Dij78]) or is generated from the source code of a programming language – which usually
is first translated to some variant of guarded command language before translation to a
transition system. In such a scenario, the model checking after receiving the source code
(of a high level programming language or a variant of guarded command language) and the
property in question, slices the program according to the elements that are of importance
in the given property before translating the source code into a transition system. As an
example of using program slicing to tackle state space explosion in model checking see
[HDZ00, DHH+06].

Example 1.2. As an example of such reduction in practice, consider the model in Fig-
ure 1.1. In this system, the resources are simply obtained and then released. Here, this is
for the sake of succinctness of the examples. Yet, this system can very well be thought of
as the result of slicing a system for checking whether deadlocks exist or not. As what the
system does with the resources after it acquires them has no effect on whether the system
is in deadlock situation, the unnecessary states between the state where the process owns
both resources and the state where it is back in standby state can be simply neglected by a
slicing algorithm, resulting in a system as small as depicted in Figure 1.1 for analysis. �

Partial Order Reduction The nature of state space explosion has its root in parallel
running of different processes (or components). Therefore, it often happens that in the tran-
sition system of a compound system some different paths are just different interleavings of
parallel transitions. In some cases, i.e., where the interleaved transitions are independent,
the outcome does not depend on the order of taking these transitions and thus can be ab-
stracted. Partial order reduction approaches analyze the paths of the system and determine
which paths of transitions can be considered equivalent; in which case model checking al-
gorithm would need to only examine one, lowering the number of states that should be
assessed in practice. These approaches, inspired by [Lip75] and [Maz87], have been widely
investigated and adopted in different systems. For further reading on this subject, refer to
[Pel93, HP94, Pel96, GP93, GvLH+96, Val91b, Val91a, KLY02, BP02].

Example 1.3. As an example, consider the system in Figure 1.2. In this system, transi-
tions that correspond to requesting and acquiring different resources are independent. In
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st, st

r1r2, st st, r1r2

o1r2, st st,o1r2

o1o2, st st,o1o2

o1r2, r1r2

r1r2,o1r2

o1o2, r1r2 o1r2, r1o2 r1o2,o1r2 r1r2,o1o2

Figure 1.3: The transition system in Figure 1.2 reduced by a path based reduction approach.
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other words, it does not matter which one makes the request first or which resource is first
allocated and which one afterwards, what matters is that the system is never in a deadlock
situation. Thus, in stead of considering the system in Figure 1.2, we can consider a system
as simple as the system in Figure 1.3.

Please note that Figure 1.3 is only for the sake of illustration and in practice these
techniques usually do not remove states and rather make changes in the system graph (or
its representation) to assist the algorithms responsible for checking properties only explore
a fragment of the state space. �

Yet, one should note that such a reduction depends on the property being examined.
Here, we have considered that the property being examined is that the system is never in
a deadlock situation. Although, if we hypothetically want to check that the process that
makes the first request is the one whose request is first acknowledged, the reduction for
which the result is depicted in Figure 1.3 would not be useful, as we are interested in the
order of the requests being acknowledged. Still, in such a situation, we do not care which
resource is first allocated and which afterwards, hence, path based reduction would not be
totally useless but perhaps less effective.

1.2.1 Symmetry Reduction
Symmetry is a well known and widely used state space reduction technique. Which utilizes
the symmetry of the processes running in parallel to reduce their size. Symmetry occurs
when there are identical processes in the system that are run in parallel. As an example,
consider a hardware system with n processors.

Although, it should be noted that the sole identity does not by any means guarantee
symmetry as interaction with the rest of the system is also of crucial importance in deter-
mining existence of symmetry as well. For instance, a system with n processors would only
be symmetric if the processors are used symmetrically, e.g., for processing an instance of
input, one of them is chosen non-deterministically to carry out the processing operations.
On the other hand, if, hypothetically, each processor is designated to interact with different
parts of the system – e.g., one only for graphical processing, one solely dedicated to handle
network throughput, etc. – symmetry would not exists in spite of the existence of identical
components of the system.

Example 1.4. As an example, consider the system in Figure 1.2. In this system, there are
two identical processes running in parallel. A quick inspection of the model should unravel
the symmetry of this model. In particular, there, when we are interested to know if it is
possible for the system to end up in a deadlock, we don’t care which process holds which
resource or has made the request but we want not to have the situation in which each
process owns a resource and is waiting for the other one. In other words, when one process
is in state q1 and the other is in state q2, we don’t care which one is in state q1 and which
one is in q2. Therefore, we can simply neglect the order of states in each pair, which results
in a system depicted in Figure 1.4. �

Nevertheless, it should be noted that using symmetry – as it dismisses the order of state
of individual symmetric processes in the states of the composite system – would not allow
for checking of properties that depend on the order of states of individual symmetric states.

In the literature, symmetry is defined with the help of the notion of symmetry groups.
In short, symmetry groups can be seen as sets of bijections over a set – here the set of
states of the transition system – with some conditions on them. Put simply, a bijection f
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st, st
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r1r2, r1r2o1r2, st; st,o1r2 r1o2, st; st, r1o2

o1o2, st; st,o1o2

o1r2, r1r2; r1r2,o1r2

r1o2, r1r2; r1r2, r1o2

o1o2, r1r2; r1r2,o1o2 r1o2,o1r2; o1r2, r1o2

Figure 1.4: The transition system in Figure 1.2 reduced based on symmetry of processes.

is a symmetry permutation if for any pair of states q1 and q2 we have, there is a transition
from q1 to q2 if and only if there is a transition from f(q1) to f(q2). We will later elaborate on
these notions. For further reading on the subject, the reader is referred to [CEFJ96, CJ95,
GS05, ID96, CEJS98, ES97, Ios02, MDC06, SG04, EW03, ET03, DM05, DMP07, DM06,
KNP06, BDE+12]. In particular, [MDC06], provides a survey on the subject.

There also has been some efforts to broaden the domain where symmetry can be (more
effectively) used. For instance, [SG04], discusses how by adding annotations to symmetry
reduced model, one can check also properties that distinguish symmetric processes by un-
folding the model on-demand. Emerson. et.al., in [EW03] show how reducing the structure
before symbolically representing it helps dramatically reduce the size of symbolic represen-
tation. This is achieved by making use of generic representatives – counting the number of
processes in each state (of the state space of individual symmetric components). In [ET03],
on the other hand, the authors discuss how slight changes in the definition of symmetry
can help enabling this approach for systems where symmetry is not present by the stan-
dard definition while a near symmetry, as they call it, is present and can be utilized to
reduce the state space of the model.

1.3 Methodology
Introduced in [BSAR06], constraint automata are a type of transition system which are en-
dowed with data-flow locations that mediate data-flow in and out of constraint automata.
Moreover, each transition is endowed with a number of constraints over the data-flow
throughout constraint automata. We will give a formal definition of the notion of constraint
automata in Chapter 3. Yet, for further details on constraint automata, the reader is kindly
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referred to [Arb04, BBKK09a, BBKK09b, BSAR06, BKK11, BB08, KB07, Klü12].
For instance, consider the case of a synchronous channel expressed in constraint au-

tomata. Such a channel should simply replicate the value of its input to its output at the
same time as it receives it. The constraint automata of such a channel would only have as-
signed input data-flow location, A, and an output data-flow location, B, as well as a single
state, q, and a single transition, from q to q, which puts the constraint “the data on A should
be the same as the data on B”, on the data-flow locations through that transition.

The idea of data-flow locations facilitates combination of constraint automata as com-
ponents that run in parallel. In other words, an output data-flow location of a constraint
automata can be joined to an input data-flow location of another constraint automaton to
form a medium for data transfer from one constraint automaton to the other. In turn,
any data-flow through a data-flow location that is joined with another data-flow location of
another constraint automata should have the agreement of both constraint automata.

In practice, as expected, the combination of constraint automata produces an exponen-
tial number of states in the number of components (constraint automata) being joined to-
gether.

In this thesis, we are going to define symmetry for constraint automata and show that
the result of symmetry reduction is bisimilar – bisimilar transition systems have equivalent
behavior – to the original constraint automata; if only those properties are considered that
do not depend on the order of symmetric components.

Later, we will up-lift the notion of symmetry to the level of components (individual con-
straint automata that are symmetric) and discuss how such component symmetry can be
confirmed and how reduction can be performed.

In a third step, we will discuss a specific formation of components, named three tier
symmetry, where symmetry can be, in many cases if not most, efficiently confirmed by only
investigating a small fragment of the system. This is done by separating components in
three tiers, the symmetry tier, where symmetric components are, glue tier which provides
an intermediate medium for data-flow from symmetric components tier to the rest of the
system (third tier). We will show that symmetry of such a system can be efficiently (in
many cases) confirmed by only examining the glue tier.

In the second part of the thesis, we will discuss how this approach can be employed in the
Vereofy model checker. Vereofy is a model checking tool based on constraint automata. It
utilizes two languages, CARML (constraint automata reactive module language) and RSL
(Reo scripting language), to express models. CARML provides a low level specification of
constraint automata which is a form of guarded command language, while, RSL provides a
facility for composing constraint automata by specifying which data-flow locations should
be joined to form data-flow lines. We will employ the three tier symmetry approach by
considering symmetric components specified in CARML while RSL is used to provide the
glue tier. There, we will discuss a number of exemplary symmetry scenarios where different
glue tiers can be considered to provide an efficient dealing with symmetry. For further
details on Vereofy and CARML and RSL specification languages refer to [BKKa, BKKb,
Arb04, BSAR06, BBKK09a, KB07].

1.4 Thesis Structure

The rest of this thesis is structured as follows. In Chapter 2 we will introduce the notions
of group theory and discuss how they can be utilized to capture and reason about sym-
metry. In Chapter 3, we will give a formal definition of constraint automata, discuss how
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Figure 1.5: The diagram representing the rest of chapters of this thesis and their depen-
dency.
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their compositions which allows for building composite systems, and lastly, discuss their
bisimilarity.

In Chapter 4, we present the notions of Reo circuits and explain Vereofy and its two
languages, CARML and RSL, in more details.

Chapter 5 will introduce the notion of symmetry for constraint automata. Furthermore,
in this chapter, we discuss the complexity of checking whether symmetry holds or not, which
is CoNP-Complete, and show that the result of symmetry reduction is indeed bisimilar
to the original constraint automata – if only those properties are considered that are not
dependent on the order of symmetric components.

In Chapter 6, we lift the notion of symmetry to the level of components – which are
themselves constraint automata. Later, we give a discussion of how without requiring to
build the whole composite system and by considering different parts of it at each time sym-
metry can be confirmed for components; followed by a discussion on how we can compute
the result of symmetry reduction without building the whole system.

On the other hand, in Chapter 7, we describe the three tiered symmetry as a type of
symmetry over components where the layout of components follows a specific pattern. We
will show that considering such restrictions allows for more efficient handling of confirma-
tion and reduction of symmetry of components – by requiring only to reduce only parts of
the system as well as needing just to investigate an even smaller portion of the system.

In Chapter 8, we use the results from Chapter 7 to specify a number of scenarios where
symmetry can be efficiently handled for models expressed in CARML and RSL that follow
those scenarios.

Finally, in Chapter 9, we will give an overview of the contributions of this thesis, discuss
possible further research directions and discuss how Vereofy and the implementation of
symmetry reduction in it can be improved to cope better with symmetry reduction.
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2 Group Theory and
Symmetry

In this chapter, we will formally present the well known notion of groups and discuss how
they are used to represent and reason about symmetry. This is a well known and practiced
method to use groups to reason about symmetry in various contexts including symmetry
analysis for model checking. The formalizations in this chapter should be considered as
fixing a notation rather than introduction to group theory and the reader should refer to
other sources, e.g. [Mil12, MVO04], for a careful consideration of the subject.

2.1 Group Theory
Group theory is an important branch of abstract algebra. Abstract algebra is the general-
ization of algebra to abstract mathematical structures. In this sense, a group can be seen
as the abstraction of very important algebras such as the set of integers together with ad-
dition or the set of positive reals together with multiplication. Group theory and in general
abstract algebra try to generalize these notions in order to pave the grounds for usage of
similar structures in different contexts. An example of such usage is groups of symmetry
which are widely used to express and reason about symmetries in various contexts. For fur-
ther information regarding group theory and groups of symmetry refer to [Mil12, MVO04].

Before presenting the notion of a group, we define two key notions of algebra, i.e., the
notion of a set being closed under some operations and the notion of closing a set under some
operations. In plain words, a set is closed under some operations if and only if applying any
of those operations to any members of that set results in a member of that set.

Definition 2.1 (Closed). Let S be a set and o : Sk → S a k-ary operation over it. We say S
is closed under f if and only if the following holds:

∀s1, ..., sk ∈ S.(o(s1, ..., sk) ∈ S)

�

On the other hand, given a set, we can close that set under some operations. In other
words, the result of closing a set under some operations is a set that is the smallest – with
respect to subset relation – superset of the given set that is closed under those operations.

Definition 2.2 (Closing). Let S be a set and o1, ..., ok a number of operations over it. Then,
the result of closing S under o1, ..., ok denoted by 〈S〉o1,...,ok is the smallest (with respect to
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subset relation) non-empty set T such that:

T 6= ∅, S ⊆ T and T is closed under o1, ..., ok

�

Put simply, a group is a set (usually referred to as underlying set or carrier set) together
with two operations called the group operation (binary) and inverse operation (unary).
Moreover, there is a specific member of the group called identity element, usually denoted
by e. The underlying set of the group is closed under both operations and the group opera-
tion is associative. In addition, the result of applying group operation to any member of the
group to its inverse (the result of applying inverse operation to it) is the identity element
and the result of applying group operation to an arbitrary element of the group and identity
element is the that element.

Definition 2.3. A group G is a mathematical structure G =
〈
G, ∗, .−1, e

〉
, where G is a set,

usually called carrier set or underlying set, ∗ is a binary operation over G called group
operation, .−1 is a unary operation over G called inverse operation, G is closed under ∗ and
.−1, e ∈ G is the neutral element of the group and the following group properties hold:

∀a,b,c∈G : (a ∗ b) ∗ c = a ∗ (b ∗ c) (Associativity)

∀a ∈ G : a ∗ 0 = 0 ∗ a = e (Neutral Element)

∀a ∈ G : a ∗ a−1 = a−1 ∗ a = e (Inverse Element)

�

Definition 2.4 (Subgroups). A subgroup of a group G =
〈
G, ∗, .−1, e

〉
is a group H =〈

H, ∗, .−1, e
〉

such that it has the same operations and neutral element and we have H ⊆ G.
�

A group is said to be generated by a set if the carrier set of that group is the result of clos-
ing that set with group operations. Groups are oftentimes represented by their generating
sets.

Definition 2.5 (Generating Set). A group G =
〈
G, ∗, .−1, e

〉
is generated by a set S if we

have 〈S〉∗,.−1 = G. �

Since, we are taking closure of the set in question and by definition the closure of a set
can’t be empty, we can easily see that the closure of a set under group operations always
contains the neutral element of that group.

As we explained earlier, groups are generalization of important algebraic structures
such as the set of integers together with addition operation or positive reals (or positive
rationals) together with multiplication. Therefore, they can be considered as examples of
groups.

Although, other than these simple cases, we have more complicated groups which have
their respective and usually quiet important applications. As a more complicated example
of groups, we have groups of symmetry whose members are bijections from a set to itself.
The fact that function compositions of bijections as well as their inverses (as functions) are
also bijections, together with the fact that the identity function of any set is a bijection and
is indeed the neutral element of function composition allude to usage of bijections from a
set to itself as a group. Which are very useful in definition and reasoning of symmetries in
various contexts.
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2.2 Symmetry
Given a set S, we can construct a group whose underlying set is a set of bijective func-
tions from S to itself. The group operation and inverse operation of such a group would be
function composition and function inversion operations and its neutral element, the iden-
tity function over the set S. Such a group is said to be acting on S or a symmetry group
of S. The name symmetry group comes from the fact that we can assume bijections to be
assigning to each member of S a symmetric (in some sense) member. Symmetry groups are
very widely used in different scientific areas, especially in computer science, to express and
reason about symmetries in a diversity of contexts.

Definition 2.6 (Groups of Symmetry). Let S be a set. Then, a group acting on S, sometimes
called a group of symmetries of S, is any group G =

〈
G, ◦, .−1, id

〉
such that G ⊆ {f | f : S →

S, f is a bijection} is a set of bijective functions, called permutations, from S to itself, ◦ is the
function composition operation, .−1 is the function inverse operation and the permutation
id which is the neutral element of group of symmetry is the identity function of set S. �

For a group of symmetries of a set, orbits of members of that set are the members of the
set that are symmetric to that member.

Definition 2.7 (Orbits). Let S be a set, G =
〈
G, ◦, .−1, id

〉
a symmetry group acting on it

and s ∈ S a member of that set. Then, the orbit of s with respect to G, denoted by ΘG(s), is
the set of all elements that G indicates as symmetric to s. More formally,

ΘG(s) = {g(s) | g ∈ G}

�

Using properties of groups, we can show that orbits partition the underlying sets of the
structure. In other words, we can show that given a group acting on a set, we can obtain an
equivalence relation whose quotients are the orbits of the given symmetry group.

Definition 2.8. Given a group G acting on a set S, we define the relation induced by G,
denoted by ≡G . For all s, t ∈ S:

s ≡G t if and only if s ∈ ΘG(t)

�

Lemma 2.9. Let G =
〈
G, ◦, .−1, id

〉
be a group acting on a set S and ≡G be the relation

induced by it. Then, ≡G is an equivalence relation on S and its quotient is the set of orbits
of G. �

Proof. We first prove that ≡G is an equivalence relation by showing properties of equiva-
lence relations as follows:

Reflexivity:
∀s ∈ S.(id(s) = s) ∧ id ∈ G

thus,
∀s ∈ S. s ≡G s
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Symmetry:
s ≡G t =⇒ s ∈ ΘG(t) =⇒ ∃g ∈ G. g(t) = s

by group properties, we have,
g−1 ∈ G

and,
g−1(s) = t =⇒ t ∈ ΘG(s)

which results in,
t ≡G s

Transitivity:
s ≡G t =⇒ s ∈ ΘG(t) =⇒ ∃g ∈ G. g(t) = s

t ≡G t′ =⇒ t ∈ ΘG(t′) =⇒ ∃g′ ∈ G. g′(t′) = t

by group properties, we have,
g′ ◦ g ∈ G

and,
(g′ ◦ g)(s) = t′ =⇒ t′ ∈ ΘG(s)

which results in,
s ≡G t′

Since, for any s ∈ S the equivalence class of s with respect to ≡G , denoted by [s]≡G , and
its orbit with respect to G are uniquely defined, and always exist, we only need to show that
these two sets are equal. Which is trivial from Definition 2.8. The following is a restatement
of the condition of Definition 2.8 which makes it clearer:

∀s, t ∈ S.((s ∈ [t]≡G )⇔ (s ∈ ΘG(t)))
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3 Constraint
Automata and Bismulation

Constraint automata, introduced in [BSAR06] and inspired by the exogenous coordination
language Reo presented in [Arb04], are a type of transition system where transitions are
subject to satisfying a number of constraints associated with them, which restrict data-
flow throughout the constraint automata by constraining activation and valuation of data-
flow locations – entities which represent mediums through which data flows. There are
three kinds of data-flow locations, input data-flow locations, output data-flow locations and
internal data-flow locations; which are respectively, to mediate data flow, from “outside
world” to the constraint automata, from constraint automata to the “outside world” and
internally. Constraint automata can be used to describe the behavior of components of the
system – the whole system can also be considered a component. In this regard, the term
“outside world” refers to the rest of the components of the system or the environment which
system works in.

Considering constraint automata as components of the system, there should be a mecha-
nism for composing these components to get bigger components – or the whole system. This
mechanism, called joining, uses data-flow locations to compose constraint automata. That
is, output data-flow locations of one constraint automaton are “connected” to input data-
flow locations of the other constraint automaton to form some sort of “data communication
lines” through which data can flow from one component to the other. In turn, the data-
flow locations that are used to join the two components have been connected to some other
data-flow location to form a communication line to mediate data flow which is now consid-
ered internal data-flow and hence, such data-flow locations would be considered internal
data-flow locations of the result of joining the two constraint automata. On the other hand,
the flow of data through these communication lines should be in compliance with both con-
straint automata of both ends of the communication line. This facilitates synchronization
throughout the network of constraint automata that are composed to form the system.

In addition, in a constraint automata, we can hide a data-flow location. The operation
of hiding a data-flow location, removes a data-flow location from a constraint automata,
while, changes the constraints of the transition in such way that existence of some non-
deterministically chosen value is assumed to be on that data-flow location. As a result,
the activity of, and the data-flow through, the hidden data-flow location is hidden from
the outside world. Hence, hiding a data-flow location, in the case of internal data-flow
locations, makes it hidden from the outside world, and in the case of input or output data-
flow locations makes it unavailable for other components of the system to use it to connect
to that component. This operation can be seen as hiding implementation details when
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observing a model with a higher level of abstraction.
Additionally, two constraint automata are said to be bisimilar, if they can simulate the

behavior of one another. In other words, if for any state in a constraint automaton, there
is (at least) a state in the other constraint automaton which behaves similarly, i.e., has
transitions to and from states which are bisimilar to the states where the other state has
transitions to and from them. Among other notions of equivalence for transition systems,
bisimulation has particular importance, as two bisimilar transition systems are guaranteed
to have the same temporal properties (expressible in LTL, CTL and CTL∗ temporal logics).
Hence, the result of model checking (satisfaction or rejection) of a property expressed in
temporal logic for two bisimilar transition systems is guaranteed to be the same. This is
of particular interest in this thesis as we will show the result of symmetry reduction is
bisimilar to the original constraint automaton – if only those properties are considered that
are preserved under symmetry – which means the result of reduction can be safely used for
model checking instead of the original constraint automaton.

In this chapter, we will give the formal definition of constraint automata and well as
their join and hide operations. Afterwards, we will give the formal definition of their basim-
ilarity.

In the rest of this thesis, we will use notations very similar to that of [BKK11] and
[BBKK09a]. In this chapter, we will formally and concisely introduce these notions. For
further reading on constraint automata and their bisimulation, an interested reader can
always refer to [BKK11, BBKK09a, BBKK09b, BB08]. For further reading on bismulation
and other measures of equivalence for transition systems in general, the reader is kindly
referred to [Mil80, Par81, vG93, vG90] and [BCG88].

3.1 Constraint Automata
Constraint automata are a type of transition system in which transitions are labeled with
a set of active data-flow locations as well as constraints that specify what data values those
active data-flow locations can have throughout that transition. Before introducing con-
straint automata, we will first introduce the form of constraints that are going to be used
in the definition of constraint automata.

Definition 3.1 (Data Constraint). Let N be the set of data-flow locations and D be the set
of values that can be used in component communications. Then, the following grammar
describes the language of data constraints.

ϕ ::= true
| dA = a where A ∈ N , a ∈ D
| dA = dB where A,B ∈ N
| ϕ1 ∨ ϕ2

| ¬ϕ

Here, dA denotes the value of data-flow location A. Furthermore, the set of all data con-
straints over a set of data-flow locations N is denoted by Dcon(N ) �

Please note that, ¬ and ∨ form a complete set of connectives for propositional logic and
hence, other connectives, e.g., ∧,→, etc., are derived and used as usual.

Definition 3.2 (Constraint automata). A constraint automaton is a tuple

A = 〈Q,N ,Nin,Nout →, Q0〉
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where

• Q is a set of states

• N is a set of data-flow locations

• Nin,Nout ⊆ N with Nin ∩Nout = ∅

• →⊆ Q× 2N ×Dcon(N )×Q is the transition relation

• Q0 ⊆ Q is the set of initial states

�

In the rest of this thesis, we will usually abbreviate transitions of the form (q,N, g, q′) ∈→
as q N,g−−→ q′.

When the current state of the automaton changes as a result of a transition being per-
formed, the data constraints of the transition define a notion of concurrent data flow to and
from the automaton and outside world. As an example, the transition q

{A,B},dA=dB−−−−−−−−−→ q′,
where A ∈ Nin and B ∈ Nout, the underlying concurrent data flow is: “transition from q to
q′ while channeling the data value at data-flow location A to data-flow location B”.

In order to define the semantics of constraint automata we first formally define the
concept of concurrent I/O operations to represent the flow of data throughout data-flow
locations during transitions of constraint automata.

Definition 3.3 (Concurrent I/O operation). Let N be a set of data-flow locations and D be
the set of values that these data-flow locations can take. Then, a concurrent I/O operation,
usually abbreviated as CIO, is a partial function c : N → D. For a data-flow location A, we
use c(A) = ⊥ to indicate that there is no value for A assigned by concurrent IO operation c.

We denote the set of all concurrent I/O operations defined over the set of data-flow lo-
cations N as Cio(N ). The set active(c) = {A ∈ N | c(A) 6= ⊥} denotes the active data-flow
locations in the concurrent I/O operation c. In addition, we use ε to denote the unique
concurrent I/O operation that does not assign any value to any data-flow location, i.e.,
active(c) = ∅. �

In order to define the semantics underlying constraint automata, we need to define the
semantics of data constraints. We say a CIO models a data constraint, if it is consistent
with that constraint.

Definition 3.4 (Constraint Modeling and Equivalence Relation). Let N be the set of data-
flow locations, c ∈ Cio(N ) and g ∈ Dcon(N ) be a data constraint over N . Then, c is a model
of g, denoted by c |= g, if and only if:

c |= true
c |= dA = d if c(A) = d
c |= dA = dB if c(A) = c(B)
c |= g1 ∨ g2 if c |= g1 or c |= g2

c |= ¬g′ if c 6|= g′

And for g′ ∈ Dcon(N ), g is equivalent with g′, denoted by g ≡ g′, if and only if:

∀c ∈ Cio(N ). c |= g ⇔ c |= g′

�
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Definition 3.5 (CIO Consistency). Let N be the set of data-flow locations, N ⊆ N be a set
of data-flow locations and g ∈ Cio(N ) be a data constraint over N . Then, Cio(N, g) denotes
the set of all CIOs that are consistent with N (as active data-flow locations) and g (as data
constraint):

Cio(N, g) = {c ∈ Cio(N ) | active(c) = N ∧ c |= g}
�

As discussed earlier, constraint automata have been introduced with the intuition of
their application in modeling and verification. Therefore, we define paths in the constraint
automata which would allow for temporal logic model checking, as they provide the means
to analyze the chronology of state transitions within a constraint automata.

Definition 3.6 (Paths). In a constraint automaton A = 〈Q,N ,Nin,Nout →, Q0〉, an execu-
tion path is an infinite sequence:

π = q0
c0−→ q1

c1−→ q2
c2−→ . . .

where, ∀i ≥ 0 : qi ∈ Q, ci ∈ Cio(N ) and there exists a transition qi
N,g−−→ qi+1 such that

ci ∈ Cio(N, g). �

Please note that in model checking contexts, it is assumed that paths are infinite and
in case of blocking states, transitions are added to the system from those states to some
trap states to make sure all paths in the transition system can be extended to infinite
ones. As it is not directly related to the topic of this thesis, we will not formally introduce
model checking for constraint automata and stop at defining paths to give an intuition. The
interested reader is kindly referred to [BKK11, BBKK09a, Klü12].

3.1.1 Composition of Constraint Automata
As we said earlier, constraint automata can represent the components of the system and
therefore we require a mechanism to compose the automata of individual components to get
bigger components or the whole system. In this process, called joining, data-flow locations
play an important role, as they provide lines of communication for components.

In the process of joining two constraint automata, we assume that, there are no data
flow locations shared by the two automata other than those that are an input data-flow
location for one and output data-flow location for another. As a result, the process of com-
posing two constraint automata is unifying those shared data-flow locations. In doing so, we
consider three different cases. Cases where only one the constraint automata is undergoing
a transition and the other is not – which is only possible if the transition does not have
any of the shared data-flow locations active, as though they should both agree on its value.
Case where they are each are undergoing a transition (at the same time) – in which case
both transitions should agree on the activation and values of shared data-flow locations.
The result of joining two constraint automaton is referred to as product automaton and is
defined in the followings. In Definition 3.7, these cases can be seen as conditions (3.1), (3.2)
and (3.3). Condition (3.2) and (3.3) represent cases where A1 is making a transition while
A2 is not and cases where A2 is making a transition while A1 is not, respectively. While,
condition (3.1) corresponds to cases where both A1 and A2 are making a transition. It is
worth noting that this latter condition (Condition (3.1)) can be satisfied in two ways. Either,
if they share some active shared data-flow locations – in which case they should agree upon
their values –, or, if they don’t have any active shared data-flow locations in common.
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Definition 3.7 (Product Automaton). Let Ai =
〈
Qi,Ni,N i

in,N i
out →i, Q

i
0

〉
for i ∈ {1, 2} be

two constraint automata, where N1 ∩ N2 = (N 1
in ∩ N 2

out) ∪ (N 1
out ∩ N 2

in). Then, the product
automaton, A1 ./ A2, is defined as follows:

A1 ./ A2 =
〈
Q1 ×Q2,N1 ∪N2,Nin,Nout →, Q1

0 ×Q2
0

〉
where,

Nin = (N 1
in ∪N 2

in) \ (N1 ∩N2)

Nout = (N 1
out ∪N 2

out) \ (N1 ∩N2)

and

q1
N1,g1−−−−→ q′1, q2

N2,g2−−−−→ q′2, N1 ∩N2 = N2 ∩N1

〈q1, q2〉
N1∪N2,g1∧g2−−−−−−−−−→ 〈q′1, q′2〉

(3.1)

q1
N1,g1−−−−→ q′1, N1 ∩N2 = ∅

〈q1, q2〉
N1,g1−−−−→ 〈q′1, q2〉

(3.2)
q2

N2,g2−−−−→ q′2, N2 ∩N1 = ∅

〈q1, q2〉
N2,g2−−−−→ 〈q1, q′2〉

(3.3)

�

3.1.2 Hiding Data-Flow Locations

There are several different reasons why a data-flow location might be required hidden. For
instance, if its activity is of no particular interest seen from outside world, for increasing
the level of abstraction of the model, etc. During the operation, the data-flow location being
hidden is removed from the constraint automaton and the set of active data-flow locations
of every transition while transition constraints are altered to cope with this removal. More
specifically, in the constraints of each transition it is assumed that there is a value of data-
domain, D, is present on that data-flow location. Hence, the hidden data-flow location is not
observable anymore while its effect is still present in the resulting constraint automaton
–as a result of assuming existence of some value.

Definition 3.8 (Hiding). Let A = 〈Q,N ,Nin,Nout,→, Q0〉 be a constraint automaton and
A ∈ N be a data-flow location. Then, the result of hiding data-flow location A from A is a
constraint automaton

∃[A]A =
〈
Q,N \ {A},Nin \ {A},Nout \ {A},→\{A}, Q0

〉
where:

q
N,g−−→ q′

q
N\{A},∃[A]g−−−−−−−−→\{A} q′

and

∃[A]g =
∨
d∈D

g[dA/d]
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A1 : N = {A,B},Nin = {A},Nout = {B}

e 01

{A}, dA = 0{A}, dA = 1

{B}, dB = 0{B}, dB = 1

A2 : N = {B,C},Nin = {B},Nout = {C}

e 01

{B}, dB = 0{B}, dB = 1

{C}, dC = 0{C}, dC = 1

Figure 3.1: Example of two constraint automata (components). See Example 3.9.

where g[dA/d] is defined as follows:

true[dA/d] = true

(g1 ∨ g2)[dA/d] = g1[dA/d] ∨ g2[dA/d]

(¬g)[dA/d] = ¬(g[dA/d])

(dA = dB)[dA/d] = dB = d

(dB = dC)[dA/d] = dB = dC

(dA = d′)[dA/d] = true d = d′

(dA = d′)[dA/d] = false d 6= d′

(dB = d′)[dA/d] = dB = d′

In the rest of this thesis, we will use the short hand notation

∃[A1, . . . , Ak]A = ∃[A1](. . . ∃[Ak−1](∃[Ak]A) . . . )

to denote simultaneous hiding of data-flow locations A1, . . . , Ak from A. �

As an example of constraint automata, join and hide operations see Example 3.9 below.

Example 3.9. Figure 3.1 depicts two constraint automata each of which representing a
FIFO queue with one cell – state e representing empty fifo, state 0 and 1 representing fifo
containing value 0 and 1 respectively. For A1 the input data-flow location is A and the
output data-flow location is B while for the second, the input data-flow location is B and
output data-flow location is C. Hence, the result of joining these two constraint automata
– as data-flow location B is shared – would result in a fifo with two cells, depicted in Fig-
ure 3.2.

The composite component depicted in Figure 3.2, has a data-flow location B, though,
which is neither an input nor an output data-flow location. Data flow through this data-
flow location is in fact an internal data-flow – corresponding to internal operation of sending
data from first cell to the next. Figure 3.3, depicts the result of hiding this data-flow location
– making internal data flow invisible from outside world. �
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∃[B](A1 ./ A2) : N = {A,B,C},Nin = {A},Nout = {C}

e, e

0, e

1, e

e, 0

0, 0

1, 0

0, 1

1, 1

e, 1

{A},
dA = 0

{A}, dA = 1
{B
},
d B

=
0

{A,B}, dA = 0 ∧ dB = 0

{A,B}, dA = 1 ∧ dB = 0

{A,B}, dA = 0 ∧ dB = 1

{A,B}, dA = 1 ∧ dB = 1

{C}, dC = 0

{C}, dC = 1

{C}, dC = 0

{C}, dC = 1{B}, d
B

=
1

{C}, dC = 0

{C}, dC = 1

{A}, dA = 0

{A}, dA = 1

{A}, dA = 0

{A}, dA = 1

{A
,C
},
d A

=
0,
d C

=
0

{A
,C
},
d A

=
1,
d C

=
0

{A
,C
}, d

A
=

0, d
C

=
1

{A
,C}, d

A
=

1, d
C

=
1

Figure 3.2: The result of joining components in Figure 3.1 – Where, D = {0, 1}. See Exam-
ple 3.9.

3.2 Bisimilarity of Constraint Automata

Other than checking whether a transition system possesses the properties of the design
goal, it can in some cases be necessary to check if two transition systems have similar
behavior, e.g., when different abstractions of the same model must be confirmed having
similar behavior (approximations of the behavior of the implementation), or when we want
to show that the result of a process (like symmetry reduction) preserves the behavior (or
certain parts of it) of the original model. There are several different methods of comparison
of the behavior of transition systems, bisimulation being one of them. For more details on
various methods to compare behavior of transition systems, please refer to [vG90, vG93].

Action-based bisimulariy was first brought into attention independently in [Mil80] and
[Par81] which was the inspiration of state based bisimulation (the notion that we present
here as bisimulation). In general, two transition systems are said to be bisimilar if they
can’t be distinguished when only considering their temporal behavior, i.e., the chronology
of their state changes. More precisely, for each state in one system there should exist at
least one state in the other system such that they have equivalent behavior, i.e., all their
transitions are to and from states which in turn have similar temporal behavior.

In particular, bisimulation is of importance because of the fact that two bisimilar tran-
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∃[B](A1 ./ A2) : N = {A,C},Nin = {A},Nout = {C}

e, e

0, e

1, e

e, 0

0, 0

1, 0

0, 1

1, 1

e, 1

{A},
dA = 0

{A}, dA = 1

∅,
tr
ue

{A,B}, dA = 0

{A,B}, dA = 1

{A,B}, dA = 0

{A,B}, dA = 1

{C}, dC = 0

{C}, dC = 1

{C}, dC = 0

{C}, dC = 1

∅, true

{C}, dC = 0

{C}, dC = 1

{A}, dA = 0

{A}, dA = 1

{A}, dA = 0

{A}, dA = 1

{A
,C
},
d A

=
0,
d C

=
0

{A
,C
},
d A

=
1,
d C

=
0

{A
,C
}, d

A
=

0, d
C

=
1

{A
,C}, d

A
=

1, d
C

=
1

Figure 3.3: The result of hiding data-flow location B from the constraint automata in Fig-
ure 3.2. See Example 3.9.

sition systems are guaranteed to satisfy the same properties expressed in LTL, CTL (which
are included in CTL∗) and CTL∗ – temporal logics which are used to express temporal prop-
erties for model checking purposes – which was shown in [BCG88].

In model checking, instead of inspecting temporal flow of states, temporal flow of atomic
propositions are considered. Atomic propositions are basic characteristics that a state can
have. Each state is usually labeled with atomic propositions. This would allow for more
concise temporal formula. As an example, consider the constraint automaton of Figure 3.3.
In this figure, we can simply label the state (e, e) with empty, label all those states of the
form (e, i) and (i, e) for i ∈ {0, 1} with half-full and label all states of the form (i, j) for
i, j ∈ {0, 1} with full. Then, we can simply specify the temporal property “the FIFO never
goes from empty to full without first being half-full”, while without atomic propositions such
property would have been longer and a lot more complicated.

On the other hand, since the purpose of defining bisimilarity is to capture constraint
automata that simulate the behavior of one another, we will first formally define the con-
cept of labeled constraint automata which is the constraint automata endowed with atomic
propositions and then use it to define the notion of bisimilarity.

Definition 3.10 (Labeled Constraint Automata). A labeled constraint automaton is a tuple
A = 〈Q,N ,Nin,Nout →, Q0, AP, L〉 where
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• 〈Q,N ,Nin,Nout →, Q0〉 is a constraint automaton

• AP is a finite set of atomic propositions (labels) and

• L : Q→ 2AP is the labelling function

�

In the sequel, we will use names ‘constraint automata’ and ‘labeled constraint automata’
interchangeably and only take atomic propositions in account if they are needed.

When defining bisimilarity for constraint automata, one has to be taking constraints
into account as well; as for equivalence of behavior, one should consider equivalence of
underlying data constraints as well. Basically, not only do we want similar states to be
transitioning to similar states but also these transitions should be through possible with
the same data-flow. For further clarity, consider Example 3.11. In this example, the pair
of states q1 and q′1 are bisimilar, yet considering only the syntax of data constraints and
transition relation of the constraint automata it can not be observed.

Example 3.11. Consider two constraint automata A1 and A2:

A1

q1 q2

{A}, dA = 1

{A}, dA = 2

N = {A},Nin = ∅,Nout = ∅

A2

q′1 q′2

{A}, dA 6= 0

N = {A},Nin = ∅,Nout = ∅

Obviously, assuming data-domain is D = {0, 1, 2}, the two constraint automata are
bisimilar, yet this can not be concluded if only the transition relation and the syntax of
data constraints are considered.

�

Therefore, we will introduce the notion of constraints between two states as the general
constraint that make state transitions viable. In Example 3.11, for both state pairs (q1, q2)
and (q′1, q

′
2) the constraints between states of each pair, “dA = 1 ∨ dA = 2” and “dA 6= 0”,

respectively, are equivalent. In other words, they are both only satisfied by CIOs that
assign a value of 1 or 2 to data-flow locationA. The notion of constraints between is formally
defined as follows.

Definition 3.12 (Constraints Between Two States). Let A be a constraint automaton with
the set of states QA, the set of data-flow locationsNA and the transition relation→A. Then,
the set of Constraints between two states q, q′ ∈ QA for a set of data-flow locations N ⊆ NA
denoted by CAq,q′ : NA → Dcon(NA) is defined as follows:

CAq,q′(N) =
∨

q
N,g−−→Aq′

g

Please note that, in case there is no transition such transition as q N,g−−→A q′, CAq,q′(N) would
be equal to the empty generalized disjunction which is false. �

The notion of bisimilarity for constraint automata was firstly defined in the introductory
paper of the constraint automata, [BSAR06]. The concept of bisimilarity presented here
is very similar to that of [BSAR06]. It is only that here, we have incorporated atomic
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propositions in the definition of bisimilarity, as it is oftentimes done (e.g., Chapter 7 of
[BK08]), so that we can discuss properties that are preserved under symmetry reduction.
This is due to the fact that, as we will see, there is some sort of bisimulation between a
constraint automatan and the result of its reduction with respect to symmetry.

Definition 3.13 (Bisimilarity). Let Ai =
〈
Qi,N ,Nin,Nout →i, Q

i
0, AP, Li

〉
for i ∈ {1, 2} be

two labeled constraint automata with the same data-flow locations and atomic propositions.
Then, A1 and A2 are bisimilar if and only if there exists a relation ∼⊆ Q1 × Q2, usually
referred to as bisimulation relation, such that:

(A) ∀q1 ∈ Q1
0∃q2 ∈ Q2

0. q1 ∼ q2 and ∀q2 ∈ Q2
0∃q1 ∈ Q1

0. q1 ∼ q2

(B) q1 ∼ q2 then, the followings hold:

(1) L1(q1) = L2(q2)

(2) ∀q′1 ∈ Q1∃q′2 ∈ Q2.
(
q′1 ∼ q′2 ∧

(
∀N ⊆ N . CA1

q1,q′1
(N) ≡ CA2

q2,q′2
(N)

))
(3) ∀q′2 ∈ Q2∃q′1 ∈ Q1.

(
q′1 ∼ q′2 ∧

(
∀N ⊆ N . CA1

q1,q′1
(N) ≡ CA2

q2,q′2
(N)

))
�

In this thesis, we have not given any details on model checking problems; and only
referred the reader to relevant material. Yet, it should be noted that in model checking
scenarios, only states are considered that are reachable from some initial state. As a result,
those states that are not reachable from some initial state do not impose any effect on
the outcome of model checking tasks. Hence, the definition of bisimilarity is defined to
capture only states that are reachable from some initial state – in Definition 3.13, the
bisimulation relation is only required to have bisimilar initial states while the second and
third conditions of that definition guarantees that for any reachable state in one constraint
automaton there is a bisimilar one in the other constraint automaton. Furthermore, here,
for the sake of simplicity, we have assumed any transition system in general – and hence
constraint automata – have only those states that are reachable from some initial state.

Baier et.al, in [BSAR06], show that the bisimulation problem for constraint automata
is CoNP-hard. This is due to the fact that for confirming bisimilarity, we should show the
underlying constraints for reachability of corresponding pairs of states are equivalent. This
requirement, is a very powerful one and would easily allow for confirmation of equivalence
of propositional formula, which is well known to be CoNP-Complete. For further details
on bisimilarity of constraint automata and its complexity, please refer to [BSAR06]. For
further reading on the subject of computational complexity, refer to [AB09].

For further information on bisimulation, in general, see [BK08, BBKK09a, BSAR06,
Mil80, Par81, vG90, vG93, BCG88].
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4 Reo and Verofy

Reo is an exogenous channel based coordination language introduced in [Arb04]. In Reo, a
model (Reo circuit) consists of a number of components for which Reo nodes (points of distri-
bution of data) and channels provide communication. Baier et. al., in [BSAR06], introduced
constraint automata to form semantics for Reo circuits. In such a framework, constraint au-
tomata are used to describe components as well as Reo nodes and channels – see [BKK11].
Vereofy (see [BKK11, BBKK09b, BKKa, BKKb, Klü12]) is a model checking tool that is
based on this idea. Here, we briefly describe the the parts of Reo circuits and Vereofy that
we are going to need in this thesis. We will consicely describe the notions of Reo circuits
and Vereofy model checking tool together with its model specification languages CARML
(Constraint Automata Reactive Module Language) which is used to describe components
and RSL (Reo Scripting Language).

4.1 Reo

Reo, introduced in [Arb04], is a channel based exogenous coordination language devised
for coordination of components of a system. In this framework, Channels and nodes are the
basic concepts forming the core of coordination language. Put simply, a channel is a medium
through which data is transmuted in Reo circuits. While nodes are data concentration
points where it is decided how data are distributed over different components and channels.

Constraint automata, as they were initially introduce to this end (see [BSAR06]), are
a well-suited candidate for underlying semantics of Reo coordination language. In such a
modeling framework, constraint automata are utilized to express the semantics of compo-
nents as well as channels and nodes. Indeed, Model checking tool Vereofy, which we will
later discuss in more details, follows this idea.

4.1.1 Channels
In Reo, each component is equipped with a number of channel ends which are points of their
communication to and from the outside world (the rest of the circuit). Each channel end
can either be a source channel end or a sink channel end, which are points through which
data flows into and out of a channel respectively. From this perspective, Reo channels are
components that have exactly two channel ends. Reo has a library of predefined channels
with different underlying semantics, this collection can be complemented with user defined
channels to provide a suitable coordination for the system at hand.

Figure 4.1 shows some exemplary channels of Reo library. The first channel in this figure
is a synchronous channel, which has two channel ends represented by small hollow circles
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1. Synchronous Channel

q {A,B}, dA = dB

N = {A,B},Nin = {A},Nout = {B}

2. Synchronous Drain

q {A,B}, true

N = {A,B},Nin = {A,B},Nout = ∅

3. FIFO Channel

0 e 1

{A}, dA = 0 {A}, dA = 1

{B}, dB = 0 {B}, dB = 1

N = {A,B},Nin = {A},Nout = {B}

Figure 4.1: A few exemplary Reo channels from Reo’s builtin library of channels.

at either side in its graphical representation. This channel simply replicates the data on its
source channel end (represented by data-flow location A in the corresponding automaton) to
its sink channel end (represented by data-flow location B in the corresponding automaton)
at the same time as it receives it. The second channel is a synchronous drain, which has
two source channel ends. This channel would allow data-flow only if both its source channel
ends (represented by data-flow locationsA andB in its corresponding automaton) are active
at the same time.

The third channel in Figure 4.1, i.e., FIFO channel, on the other hand, is slightly more
complex. This channel has a source and a sink channel end, represented by data-flow
locations A and B, respectively. When ever it receives a data value through its source
channel end, it stores that value, and does not accept any activity on its source channel
end until the stored data value is sent out through its sink channel end. The constraint
automata depicted in the Figure 4.1 for this channel is depicted under the assumption that
data domain D = {0, 1}.

4.1.2 Reo Nodes
Reo nodes, or simply nodes, are points of concentration and distribution of data in a Reo
circuit. Nodes can be thought of as a collection of channel ends, each of which with a specific
distribution semantics. In this thesis, we are going to assume two types of nodes, replicate
nodes (depicted by ) and route nodes (depicted by ). On the other hand, a node can be
a source node, if it only contains source channel ends, a sink node, if it only contains sink
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1. Replicate Node (with two source and two sink channel ends)

q {A,C,D}, dA = dC ∧ dA = dD

{B,C,D}, dB = dC ∧ dB = dD

N = {A,B,C,D},Nin = {A,B},Nout = {C,D}

2. Route Node (with two source and two sink channel ends)

q {A,C}, dA = dC{A,D}, dA = dD

{B,C}, dB = dC

{B,D}, dB = dD

N = {A,B,C,D},Nin = {A,B},Nout = {C,D}

Figure 4.2: Reo route and replicate nodes.

channel ends, and a mixed node if it contains both source and sink channel ends.
In a Reo circuit, a source node or sink node can be seen as a point where data can be,

respectively, written to or read from, from the outside world, and can thus serve as interface
points, if that Reo circuit is to represent a component or a channel.

A node with replicate semantic is active with a value d ∈ D if exactly one of its sink
channel ends (or none in case of source nodes) as well as all its source channel ends (or
none in the case of sink nodes), are all active with value d. On the other hand, a node with
route semantics is active with a value d ∈ D if exactly one of its sink channel ends (or none
in case of source nodes) as well as exactly one of its source channel ends (or none in case of
sink nodes) are active with value d.

Intuitively, a replicate node, sends the value of a non-deterministically chosen sink
channel end to all its source channel ends; while, a route node, sends the value of a non-
deterministically chosen sink channel end to a non-deterministically chosen source channel
end.

Therefore, nodes don’t simply have a single constraint automata for their semantics,
rather, they are templates for constructing one, depending on the number of sink and source
channel ends they have. Figure 4.2 depicts constraint automata corresponding to a replicate
node and a route node each having two source channel ends and two sink channel ends.

4.1.3 Reo Circuits
A Reo circuit is simply a collection of components, channels (from library or user-defined)
whose channel ends can be combined into nodes.

Figure 4.3, depicts an example of a Reo circuit. This circuit represents a synchronization
mechanism. This system accepts input on its three source nodes, A,B and C, and stores
their values into FIFO channels. The values received from nodes A, B and C (which are
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Figure 4.3: An example of a Reo Circuit.

now stored in FIFO channels), on the other hand, are respectively sent to sink nodes M,
N and O, once there can be two of them sent simultaneously. In case all three values are
ready, two of them are chosen non-deterministically. In this Reo circuit, nodes D, E and F
are mixed nodes with route semantics while nodes G, H, I, J, K and L are mixed nodes with
replicate semantics.

4.2 Vereofy

In this section, we are going to present an overall description of Vereofy (see [BKK11,
BBKK09b, BKKa, BKKb, Klü12]), the model checking tool which uses constraint automata
as its underlying model specification approach, developed at technical university of Dres-
den. It is equipped with the two languages CARML (Constraint Automata Reactive Module
Language) and RSL (Reo Scripting Language). Both these languages are in fact equally
powerful as they both specify constraint automata. While the former specifies constraint
automata in an almost direct way by specifying state space of the automaton as well as its
transitions, atomic propositions and so on, the latter provides the facility to specify a script
(executable code) to construct Reo circuits where components can be expressed in CARML
or be Reo circuits themselves.

Vereofy internally uses symbolic representation of constraint automata. It also is ca-
pable of verifying linear and branching time properties as well as checking bisimulation
between two constraint automata. Although, bisimulation checking done by Vereofy is not
exactly the same as the one we have provided in this thesis and only considers data-flow
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of the constraint automata – it ignores atomic propositions. Please note that the notion
of bisimulation presented in this thesis was to help show that the result of reduction can
be effectively used to check certain temporal properties as a replacement for the original
system.

We have implemented and integrated, as we will later see, some parts of the approach
of symmetry reduction that was introduced in this thesis.

4.2.1 CARML (Constraint Automata Reactive Module Language)
CARML is a language – a variant of guarded command language (see [Dij78]) – which fa-
cilitates a low-level expression of constraint automata. This is done via providing a syntax
to specify ports (data-flow locations), a number of variables called state variables, atomic
propositions, and transitions which are used to specify CARML modules. Each of the vari-
ables comes together with a type as well as an initial value. Therefore, before introducing
any feature of the CARML language we first introduce the data types.

Here, while we will describe various notions of CARML language, present examples with
the agenda of putting them together at the end to form a CARML module corresponding to
FIFO1 – A module very similar to the definition of builtin channel FIFO1 in vereofy – see
[BKKa].

4.2.1.1 Data Types

In CARML modeling language we have data types for state variables and ports. These data
types can be any of the following different types:

Integer Range An integer range with a lower bound ‘l’ and upper bound ‘u’, both inclu-
sive, written as follows:

int(l, u)

The “Bool” data type is a specific case of integer range, i.e., “int(0,1)”.

Enumeration Enumerations represent an enumeration of identifiers. As an example:

enum {id 1, id 2}

A variable v of the type of the enumeration above can have a value of either “id 1” or “id 2”.

Struct Structures represent tuples of data types. Each element has its own data type. An
example of a structure is as follows:

struct {type1 : a; type2 : b;}

The values can be accessed using the name of the element, e.g. v.a==1.

Tagged union A tagged union is a disjoint union of a number of data types. A variable
with data type of a tagged union can at any time hold the value with the data type of one
of its member data types. An example of a tagged union is as follows:

tagged union {type1 : a; type1 : b;}

In the example above, the value can be either of type type “type1” or type “type2”. To
check the type of the current value, a special member name called ‘tag’ is provided, e.g.,
“v.tag==type1” where v is a variable of the type of the tagged union above.
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4.2.1.2 Ports (Data-Flow Locations)

In CARML, ports are specified directly by their name and direction (input or output). The
lines below create an input port named ‘A’ and an output port ‘B’:

in: A;
out: B;

The values that can be transferred through ports (data domain), is the members of the data
type ‘Data’. This specific type can be specified explicitly in the input file where the system is
designed or it can be given to vereofy model checking tool via a specific parameter. In case
this type is not explicitly specified by the user the type ‘int(0,1)’ which can take up values
‘0’ and ‘1’ will automatically be assumed.

4.2.1.3 State Variables

The state space of the constraint automaton is specified using a number of variables each of
which have a type (which is explained later on) and possibly an initial value. The following
lines describe two variables: X of type int(0,1) without any initial value and a a variable
Y of the type ‘enum{empty, full}’ with an initial value ‘empty’.

var: int(0,1) X;
var: enum{empty, full} Y := empty;

The state space of the generated constraint automaton is the tuples of values of state vari-
ables. For instance if a CARML module has variable definitions as above, the set of states of
the resulting constraint automata would be the set {(0, empty), (0, full), (1, empty), (1, full)}
and the initial state space would be {(0, empty), (1, empty)}.

4.2.1.4 Atomic Propositions

Given the provided facility of specifying state space of the constraint automaton as a num-
ber of variables, the definition of atomic propositions can be as easy as specifying conditions
on state variables. As an example, given the state variables X and Y in the previous part, we
can simply define atomic propositions to capture the states where the constraint automaton
is in a state where X is empty as follows:

ap: EMPTY <=> Y == empty;

4.2.1.5 Transitions

In CARML, transitions consist of three parts, state guards, IO guards and state assign-
ments. State guards, are simply conditions that specify the states from which the transi-
tion can take place, IO guards on the other hand, are the counterparts for data constraints
while the state assignments describe the target of the transition. As an example consider
the following transitions for which we have assumed existence of the ports and variables as
examples brought above.

Y == empty -[{A}]-> Y := full & X := #A;
Y == full -[{B} & #B == X]-> Y := empty;
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Here, the first transition, can be used when the constrain automaton is in a state where the
value of X is ‘empty’ (state guard), and port A is the only port that is active (IO guard) and
after the execution of the transition, the constraint automata goes to a state where value of
X is ‘full’ and the value of Y is the same as the value of port A. The second transition, on
the other hand, can be used when the constrain automaton is in a state where the value of
X is ‘full’ (state guard), and port B is the only port that is active and its value is the same
as the state variable Y (IO guard) and after the execution of the transition, the constraint
automata goes to a state where value of X is ‘empty’. Please note that here the type Data
(the data type designated for ports) is assumed to be the default type int(0,1).

Even in this small example, one can easily see the conciseness of this approach. We can
easily see that the transitions above are in fact describing the following transitions:

First Transition:

(0,empty)
{A},dA=0−−−−−−→ (0,full)

(0,empty)
{A},dA=1−−−−−−→ (1,full)

(1,empty)
{A},dA=0−−−−−−→ (0,full)

(1,empty)
{A},dA=1−−−−−−→ (1,full)

Second Transition:

(0,full)
{A},dA=0−−−−−−→ (0,empty)

(1,full)
{A},dA=1−−−−−−→ (1,empty)

Altogether, the CARML codes of examples above put together form a CARML module
that resembles a first in first out queue (the FIFO1 channel). The following code is the code
of such a module.
MODULE fifo {

in: A;
out: B;

var: int(0,1) X;
var: enum{empty, full} Y := empty;

ap: EMPTY <=> Y == empty;

Y == empty -[{A}]-> Y := full & X := #A;
Y == full -[{B} & #B == X]-> Y := empty;

}

4.2.2 RSL (Reo Scripting Language)

In spite of CARML which provides facility for a low level description of constraint automata,
RSL provides a scripting language to construct Reo circuits. RSL provides facility for in-
stantiation of CARML modules, other Reo circuits or built in channels which constructs an
instance of them as a sub-component of the circuit being formed. It furthermore, provides
facility to combine channel ends (and nodes) to form (or extend) nodes.
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4.2.2.1 Sub-component Instantiation

In a Reo circuit, one can instantiate CARML modules, other Reo circuits or builtin circuits
as sub-components of a circuit. As an example, consider the following Reo circuit:

CIRCUIT fifo3{
f[0] = new fifo;
f[1] = new fifo;
f[2] = new fifo;

}
In this example, the Reo circuit ‘fifo3’ declares existence of three sub-components each of
which are instances of the CARML module ‘fifo’ introduced earlier. In Reo circuits variables
are created as they are assigned a value to and are all assumed to be arrays. Using the
name of a variable without an array access, e.g., ‘f’, is simply equivalent to accessing its
first member (i.e., f[0]). In this example the variable ‘f’ is an array of length 3 and each
of the array cells contains a ‘fifo’ sub-component.

RSL, other than simple commands like ‘new’ which is used to create sub-components,
has the facility of loops and conditional statements. For example the circuit above could as
well be created as shown below.
CIRCUIT fifo3{

for(i=0;i<3;i=i+1){
f[i] = new fifo;

}
}

4.2.2.2 Channel Ends

In a Reo circuit, described in RSL, for each sub-component, there is a number of chan-
nel ends which represent the ports (if the sub-component is CARML module) or exported
nodes (if the sub-component is another Reo circuit) of that sub-component. A channel end
is of type ‘source’ if it represents an input port of a CARML module sub-component or
a source node (a node which it self is collection of source channel ends) of a Reo circuit
sub-component; and it is of type ‘sink’ if it represents an output port of a CARML module
sub-component or a sink node (a node which it self is collection of sink channel ends) of a
Reo circuit sub-component. In the example above, the channel ends of the three subcompo-
nents can be accessed under the names:
f[0].A
f[0].B
f[1].A
f[1].B
f[2].A
f[2].B

Or equivalently (respectively):
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f[0].source[0]
f[0].sink[0]
f[1].source[0]
f[1].sink[0]
f[2].source[0]
f[2].sink[0]

The arrays source and sink are the arrays of source channel ends and sink channel ends
of each sub-component with which the circuit can access source and sink channel ends
of each sub-component without needing to directly access them by their individual (local)
names. Sizes of these arrays can respectively be accessed by ‘.sources’ and ‘.sinks’ for each
sub-component1.

4.2.2.3 Nodes

In RSL, nodes can be explicitly created or created via the key command ‘join’. This com-
mand given two parameters joins them together according to their types. If both arguments
are channel ends, a new replicate node is created with these two channel ends and the node
is returned. If one argument is a channel end and the other is node, the channel end is
simply attached to the node and the node (the argument) is returned. In this case, the
operation actively alters the node argument and if the return value is assigned to a vari-
able, the variable name that the return value was assigned to is simply considered as an
alias for the node argument. If both arguments are nodes of the same semantics (replicate
or route) then both nodes are considered equal to (overwritten) a node with the common
semantics and the union of channel ends of both nodes, the node (which is equal to any of
the arguments now) is returned. This operation also alters both nodes and causing them
to be aliases of the same node. If the return value is assigned to a variable, the variable
that the result was assigned to is also considered as an alias of the two nodes. In case the
arguments of join operation are nodes with different semantics, the operation will result
in an error and consequently failure to construct the Reo circuit. If the result of the join
operation is not assigned to a variable, it is considered anonymous and it can no longer be
accessed, except for the two latter cases where the node argument(s) is (are) changed and
is (are) now equal to the result. As an example we can put the sink channel end of the each
fifo (except for the last fifo) and the source channel end of the next fifo in a node to make a
cascading line of fifo queues acting as a fifo queue of a size 3.

CIRCUIT fifo3{
for(i=0;i<3;i=i+1){

f[i] = new fifo;
}
for(i=0;i<2;i=i+1){

join(f[i].sink, f[i+1].source);
}

}

1The facility of accessing the number of source channel ends and sink channel ends is only implemented in the
version where experiments with symmetry are being carried out and are not available in the release version yet.
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source[0] sink[0]

Figure 4.4: An example of a Reo Circuit for RSL Code.

4.2.2.4 Node Exporting and Hiding

In Vereofy, in a Reo circuit, nodes must be explicitly exported. For this purpose, there are
two special arrays source and sink in each circuit (which we earlier used to access channel
ends without referring to their local names). Each node that is to be exported should be
assigned to a member of these arrays. It should although be noted that, as we explained
earlier for Reo circuits, only source and sink nodes can be exported and mixed nodes are
always considered internal and are not exportable. Furthermore, any node that is not ex-
ported is hidden from the constraint automaton of the result of the circuit. This hiding
always happens except for the case where the circuit is considered the main circuit repre-
senting the system at hand. As an example, the source channel end of first fifo and the
sink channel end of the last fifo in the last example can be exported (by joining – or assign-
ing them, which is automatically assumed as joining by Vereofy – them with a member of
source or sink array), so that the circuit would practically have a single source and a sin-
gle sink node exported which would play the role of input and out for our 3 cell fifo queue,
respectively. In this example, the mixed nodes, namely those anonymous nodes that are
providing the connection between the consecutive fifo queues are automatically hidden, if
this circuit is not considered the main circuit of the model.
CIRCUIT fifo3{

for(i=0;i<3;i=i+1){
f[i] = new fifo;

}
for(i=0;i<2;i=i+1){

join(f[i].source, f[i+1].sink);
}
source[0] = f[0].source;
sink[0] = f[2].sink;

}

The Reo circuit ‘fifo3’, defined above, is depicted in Figure 4.4.

4.2.2.5 Circuit Parameters

Parameters for circuits provide a form of polymorphism for Reo circuits. In definition of
circuits, there can be some parameters defined. In the body of circuits, parameters are dealt
with as constant entities (e.g., numbers, name of CARML modules, name of Reo circuits,
etc.). As an example consider the following circuit which generalizes fifo as defined earlier
by getting the number of cells of the queue as a parameter.
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CIRCUIT gen fifo<k>{
if(k==0){

f = new SYNC;
source[0] = f[0].source;
sink[0] = f[0].sink;

}
if(k>=1){

for(i=0;i<k;i=i+1){
f[i] = new fifo;

}
for(i=0;i<k-1;i=i+1){

join(f[i].source, f[i+1].sink);
}
source[0] = f[0].source;
sink[0] = f[k-1].sink;

}
}

Here, the name ‘SYNC’ refers to the builtin synchronous channel. In case a fifo queue of size
zero is requested, the circuit simply produces a synchronizer and exports is ports so that
the resulting constraint automaton would behave as a synchronizer which is expected of a
queue of size zero – anything that is put into the queue should instantaneously be taken
out from it.
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5 Symmetry in
Constraint Automata

Using symmetry in models to tackle the state space explosion problem is a well known ap-
proach which was widely used in various cases, e.g. [CEFJ96, CJ95, GS05, ID96, CEJS98,
ES97, Ios02, MDC06, SG04, EW03, ET03, DM05, DMP07, DM06, KNP06, BDE+12], where
groups of symmetry are used to define and reason about symmetry in models.

In this chapter, we are going to present a similar notion of symmetry specifically in-
troduced for constraint automata. We will later discuss the complexity of certifying such
symmetries and, most importantly, show that reducing a system with respect to such sym-
metry, results in a bisimilar system – if we only consider those atomic propositions that are
preserved under the action of the symmetry group in question.

The notion of symmetry introduced here is similar to the one introduced in [CEFJ96],
adapted to take into account constraints between states rather than their immediate reach-
ability. There, they show that the result of symmetry reduction preserves satisfiability of
CTL∗ formulas (by induction over the structure of CTL∗ formulas) that only use atomic
propositions that are preserved by the group of symmetry at hand. Here, on the other
hand, we show an equally strong result by showing that result of reduction is bisimilar to
the original constraint automaton if only those atomic propositions are considered that are
preserved by the symmetry group at hand. This is due to the fact that bisimulation and
CTL∗ preservation are equivalent which was shown in [BCG88].

5.1 Symmetry for Contraint Automata
When dealing with symmetries in different contexts, it is usually the case that a restriction
is put on permutations so that they capture a specific form of symmetry relevant to the
context in question. Groups of symmetry that capture that form of symmetry are then
defined to be groups acting on the structure in question while their permutations are of
the specific form defined to capture that form of symmetry. As we discussed earlier, we
are going to define symmetries in such a form that the result of reduction based on those
symmetries shall be bisimilar to original automaton.

Definition 5.1 (Permutations for Constraint Automata). Let A be a constraint automaton
with the set of statesQ and the set of data-flow locationsN . Then, a symmetry permutation
σ : Q→ Q for constraint automaton A is a bijective function such that:

∀q1, q2 ∈ Q ∀N ⊆ N .
(
CAq1,q2(N) ≡ CAσ(q1),σ(q2)(N)

)
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Before defining groups of symmetry for constraint automata, we show that if two bijec-
tive functions over the set of states of a constraint automaton are symmetry permutations
for that constraint automaton, then their composition as well as their inverses are also
symmetry permutations for that constraint automaton.

Theorem 5.2 (Composition and Inversion of Symmetry Permutations for Constraint Au-
tomata). Let A be a constraint automata with the set of states Q and σ1 : Q → Q and
σ2 : Q→ Q be two symmetry permutations for A. Then, σ1 ◦ σ2, σ2 ◦ σ1, σ−1

1 and σ−1
2 are all

symmetry permutations for A. �

Proof. Here, we only show it for σ1◦σ2 and σ−1
1 , the proof for σ2◦σ1 and σ−1

2 are respectively
similar and are thus left out.
To show σ1 ◦ σ2, we only need to consider the fact that σ1 and σ2 are both symmetry permu-
tations. From this, we know:

∀q1, q2 ∈ Q ∀N ⊆ N .
(
CAq1,q2(N) ≡ CAσ1(q1),σ2(q2)(N)

)
(5.1)

and
∀q1, q2 ∈ Q ∀N ⊆ N .

(
CAq1,q2(N) ≡ CAσ2(q1),σ2(q2)(N)

)
(5.2)

On the other hand, since σ1 is a bijection, it maps each member of Q to some other member
of it. Thus, according to (5.1), we can simply replace CAq1,q2(N) with CAσ1(q1),σ1(q2)(N) and
CAσ2(q1),σ2(q2)(N) with CAσ1(σ2(q1)),σ1(σ2(q2))(N) in Formula (5.2), which would result in:

∀q1, q2 ∈ Q ∀N ⊆ N .
(
CAσ1(q1),σ1(q2)(N) ≡ CAσ1(σ2(q1)),σ1(σ2(q2))(N)

)
(5.3)

Furthermore, according to (5.1) we can simply replace CAσ1(q1),σ1(q2)(N) with CAq1,q2(N), in
(5.3), since they are equal, which results in:

∀q1, q2 ∈ Q.
(
CAq1,q2(N) ≡ CAσ1(σ2(q1)),σ1(σ2(q2))(N)

)
Which means σ1 ◦ σ2 is a symmetry permutation for A.
On the other hand, to show σ−1

1 is also a symmetry permutation, since σ−1
1 is itself a bijec-

tion over Q and according to (5.1), we can simply replace CAq1,q2(N) with CA
σ−1
1 (q1),σ−1

1 (q2)
(N)

and replace CAσ1(q1),σ1(q2)(N) with CA
σ1(σ−1

1 (q1)),σ1(σ−1
1 (q2))

(N) in (5.1) itself and get:

∀q1, q2 ∈ Q ∀N ⊆ N .
(
CA
σ−1
1 (q1),σ−1

1 (q2)
(N) ≡ CA

σ1(σ−1
1 (q1)),σ1(σ−1

1 (q2))
(N)

)
Which, according to group theoretic notions, can be simplified to

∀q1, q2 ∈ Q ∀N ⊆ N .
(
CA
σ−1
1 (q1),σ−1

1 (q2)
(N) ≡ CAq1,q2(N)

)
Which means σ−1

1 is a symmetry permutation for A.

Hence, we can use symmetry permutations for constraint automata to form symmetry
groups for them.
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Definition 5.3 (Groups acting on Constraint Automata). Let A be a constraint automaton.
Then, a group acting on A is a group G =

〈
G, ◦, .−1, id

〉
where G is a set of permutations for

constraint automaton A.
�

Remark 5.4 (Groups Acting on Constraint Automata versus groups Acting on State Set of
Constraint Automata). This is very important to note that not any group that is acting on
the set of states of a constraint automaton is a symmetry group of that constraint automa-
ton (acting on the automaton). Hence, whenever we say a group is acting on the set of states
of a constraint automaton it does not necessarily mean that it is acting on the constraint
automaton itself. �

According to Theorem 5.2, we can easily see that a group that is represented by its
generating set is acting on a constraint automaton if and only if all of the members of the
generating set are symmetry permutations for that constraint automata, since all mem-
bers are generated from members of generating set by applying function composition and
inversion.

5.1.1 Complexity of Certifying Symmetry
Similarly to the problem of bismilarity, the problem of checking whether a given bijective
function over the set of states of a constraint automaton, is a symmetry permutation for
that constraint automaton, Definition 5.5, is CoNP-Complete. The proof provided here
for hardness is very similar to the proof of CoNP-hardness of bisimulation problem for
constraint automata in [BSAR06]. For further reading on computational complexity and
the propositional validity problem, please refer to [AB09].

Definition 5.5 (Symmetry Permutation Certification Problem for Constraint Automata).
Given a constraint automaton, A = 〈Q,N ,Nin,Nout,→, Q0〉, a bijective function σ : Q →
Q and a data domain D, the symmetry permutation certification problem is the decision
problem whether σ is a symmetry permutation for A considering data domain D. �

Theorem 5.6 (CoNP-Completeness of Certification of Symmetry Permutation for Con-
straint Automata). Given a constraint automaton A with the set of states Q and a bijective
function σ : Q → Q, assuming data domain D, the problem of checking whether σ is a
symmetry permutation for A is CoNP-Complete. �

Proof. To show CoNP-Hardness, we do a reduction from propositional validity problem –
which is well known to be CoNP-Complete – to the problem of certification of symmetry
permutation – the reduction is very similar to the proof of CoNP-Hardness of bisimilarity
for constraint automaton, presented in [BSAR06]. To do so, we simply consider a propo-
sitional formula f which only uses propositional variables p1, . . . , pk. It is easy to see that
formula f is a valid propositional formula if and only if σ such that

σ(q1) = q3, σ(q2) = q4, σ(q3) = q3, σ(q4) = q4

is a symmetry permutation for the following constraint automata, A, assuming D = {0, 1}.

A
q1 q2

{p1, . . . , pk}, gf

q3 q4

{p1, . . . , pk}, true

N = {p1, . . . , pk},Nin = ∅,Nout = ∅
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To show CoNP-Containment, on the other hand, we simply consider the complementary
problem – the problem where the given bijective function is not a symmetry permuta-
tion for the provided constraint automaton – and show that it can be solved with a non-
deterministic polynomially time-bounded turing machine. In order to show that a given
permutation σ is not a symmetry permutation for a constraint automaton A with the
set of states Q and set of data-flow locations N for some data domain D, we can non-
deterministically choose a set of data-flow locations N ⊆ N , a CIO c ∈ Cio(N ) and two
states q and q′ simply check if

c |= CAq,q′(N) and c 6|= CAσ(q),σ(q′)(N)

or
c 6|= CAq,q′(N) and c |= CAσ(q),σ(q′)(N)

holds. Which can be simply carried out by a deterministic polynomial time-bounded turing
machine.

The complexity results above are pertaining to symmetry permutations. Yet, we can eas-
ily see that these results can be extended to the case of symmetry groups as well. In other
words, certification of symmetry groups for constraint automata is also CoNP-Complete.

We can simply see that to certify a group’s action on a constraint automaton, we sim-
ply need to check all its permutations (or equivalently permutations of its generating set).
Which means carrying out a CoNP-Complete task a number of times polynomially (in fact
linearly) bound to the size of the group at hand. Which is trivially CoNP-Complete.

5.2 Reduction and Symmetry
So far, we have introduced the notion of symmetry and groups of symmetry for constraint
automata. We introduced these notions in order to use them for reducing constraint au-
tomata in presence of a symmetry in the system. In order to do so, we will first introduce
symmetry reduction for constraint automata. Later, we will show that such reductions
would result in constraint automata that are bisimilar to the original automata, if only
those atomic propositions are considered that are preserved by the symmetry group. More
precisely, we show that if we only consider those atomic propositions that the group is
invariant for the resulting constraint automaton is bisimilar to the original constraint au-
tomaton, considering only those atomic propositions that the group in question is an invari-
ance group for. A group is said to be an invariance group for a set of atomic propositions if
for any orbit of that symmetry group all states are labeled with the same subset of that set
of atomic propositions.

5.2.1 Symmetry Reduction
Given a constraint automaton and a group acting on it, the result of reduction of that con-
straint automaton with respect to the given group symmetry is a constraint automaton
where each state is substituted with its orbit and for the transitions and labels of the states
of the reduced constraint automaton (orbits) are obtained from an arbitrary but fixed mem-
ber of that orbit.

Definition 5.7 (Symmetry Reduction for Constraint Automata). Given constraint automa-
ton A = 〈Q,N ,Nin,Nout →, Q0, AP, L〉, a group G that acts on it, the result of reducing A
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with respect to G, denoted by A/G , is defined as follows:

A/G = 〈R,N ,Nin,Nout →′, R0, AP, L
′〉

such that,

• R = {ΘG(q) | q ∈ Q}

• R0 = {ΘG(q) | ∃q ∈ Q0}

• →′= {(r1, N, g, r2) | r1, r2 ∈ R ∧ rep(r1)
N,g−−→ rep(r2)}

• L′(r) = L(rep(r))

where, rep : 2Q → Q is a function that maps each set of states to a unique representative
(an arbitrary but fixed member) of that set. Furthermore, in the sequel, we consider RedG =
{(q,ΘG(q)) | q ∈ Q} as the reduction relation for symmetry group G, where Q is the set that
G is acting on.

�

Here, we can see that each orbit gets the labels of a single (chosen by rep) member of
itself. Therefore, there can possibly be a state q′ ∈ ΘG(q) for which L(q′) 6= (L(ΘG(q)) =
L′(ΘG(q))). Therefore, here, we define the notion of groups being invariant for some set of
atomic propositions, which captures those atomic propositions for which we always have
L(q) = L(rep(ΘG(q))) = L′(ΘG(q)).

5.2.2 Group invariance for Atomic Propositions and AP-Restricted
Constraint Automata

A group G is said to be invariant for a set of atomic propositions B if for any atomic propo-
sition in b ∈ B, members of each of the orbits of G, either all have b as one of their labels or
they all don’t.

Definition 5.8 (Label Invariance). Let A = 〈Q,N ,Nin,Nout →, Q0, AP, L〉 be constraint
automaton, G be a a group acting on A and AP ′ ⊆ AP be a set of atomic propositions. Then,
we say G is an invariance group of AP ′ if and only if:

∀q∈Q∀q′∈ΘG(q) : L(q) ∩AP ′ = L(q′) ∩AP ′

�

On the other hand, since we are going to establish a relation between the original con-
straint automaton and the result of reducing it with respect to some reduction relation
justified by a group acting on the original constraint automaton, we need to have a way to
restrict the atomic propositions of a constraint automata. We define this restriction as a
constraint automaton that is identical to the original constraint automaton except for the
set of atomic propositions and labeling function. The atomic proposition restriction restricts
the labels of a constraint automaton by simply removing those that are not members of the
restricted atomic propositions set.

Definition 5.9 (AP-Restricted Constraint Automata). Given a constraint automaton A =
〈Q,N ,Nin,Nout →, Q0, AP, L〉 and a set B of atomic propositions the result of restricting A
to B, denoted by A|B , is defined as follows:

A|B = 〈Q,N ,Nin,Nout →, Q0, AP ∩B,L′〉
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where
L′(q) = L(q) ∩B

�

5.3 Bismilarity of the Result of Reduction with Respect
to Symmetry

Here, we show that given a constraint automaton A, a group G acting on it such that G is
invariant of a set of atomic propositions B and the result of reducing A with respect to G,
we have, A|B and (A/G)|B are bisimilar.

Theorem 5.10 (Bisimilarity of Symmetry Reduction). Let A be a constraint automaton
with the set of states Q and G be a group acting on it that is invariant of B, a subset of
atomic propositions of A. Then, RedG is a bisimulation relation for (A/G)|B and A|B . �

Proof. Let A|B = 〈Q,N ,Nin,Nout,→, Q0, B, L1〉 be the original constraint automaton re-
stricted to B and (A/G)|B = 〈R,N ,Nin,Nout,→′, R0, B, L2〉 be the result of restricting A/G
to B.

According to the definition of reduction we have, R0 = {Θ(q) | q ∈ Q0}. Therefore, we have:

∀q ∈ Q0∃r ∈ R0. (q, r) ∈ RedG

and
∀r ∈ R0∃q ∈ Q0. (q, r) ∈ RedG

In other words, for any initial state of A|B , there is an initial state of (A/G)|B which are
related by RedG and vice versa.
Since we have G is an invariance group of B, we have, any two states that are symmetric
have the same atomic propositions (as those not complying have already been removed):

∀q′ ≡G q. L1(q′) = L1(q) (5.4)

From Formula (5.4) and the fact that the representative of each set of states is in that set
(∀Q′ ⊆ Q. rep(Q′) ∈ Q′), we get:

∀(q, r) ∈ RedG . L1(q) = L1(rep(r))

and consequently,
∀(q, r) ∈ RedG . L1(q) = L2(r)

Which means any state q from A|B and any state r from (A/G)|B that are related by RedG
have the same set of atomic propositions, that is condition (B.1) of Definition 3.13.

On the other hand, as G is a group acting on A and in turn also A|B – as they both have the
same set of states and atomic propositions and the same transition relation –, we have:

(q1,ΘG(q1)), (q2,ΘG(q1)) ∈ RedG ⇒

∀N ⊆ N .
(
C
A|B
q1,q2(N) ≡ CAq1,q2(N) ≡ CAq1,rep(ΘG(q2))(N) ≡ CArep(ΘG(q1)),q2

(N)

≡ CArep(ΘG(q1)),rep(ΘG(q2))(N) ≡ C
A/G
ΘG(q1),ΘG(q2)(N)

≡ C
(A/G)|B
ΘG(q1),ΘG(q2)(N)

)
(5.5)
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Which means, for any pair of states q1 and q2 from A|B , the constraints between them is
equivalent with the constriants between their representatives (orbits) in (A/G)|B .
As a result, for (q1,ΘG(q1)) ∈ RedG ; we can take r2 = ΘG(q2) as the other state in (A/Red)|B
that is bisimilar to q1. This choice together with Equation (5.5) result in the condition (B.2)
of Definition 3.13 hold and be as follows:

∀q2 ∈ Q ∃r2 ∈ R ∀N ⊆ N .
((

C
A|B
q1,q2(N) ≡ C

(A/Red)|B
ΘG(q1),r2

(N)
)
∧ (q2, r2) ∈ RedG

)

On the other hand, we can take q2 = rep(ΘG(q2)) as the other state in A|B that is bisimilar
to q2. This choice together with Equation (5.5) and the fact that ∀q ∈ Q. ΘG(rep(ΘG(q))) =
ΘG(q), result in the condition (B.3) of Definition 3.13 hold and be as follows:

∀ΘG(q1) ∈ R ∃q2 ∈ Q ∀N ⊆ N .
((

C
A|B
q1,q2(N) ≡ C

(A/Red)|B
ΘG(q1),ΘG(q2)(N)

)
∧ (q2,ΘG(q2)) ∈ Red

)
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6 Symmetry of
Components

In Chapter 5, we defined the notion of symmetry and symmetry reduction for constraint au-
tomata. We, specifically, showed (Theorem 5.10) that constraint automata remain bisimilar
– if only those atomic propositions are considered that group is invariant for (Definition 5.8)
– under symmetry reduction.

These results show that, in practice, the notion of symmetry, as defined earlier, simply
captures bisimilarities within a system which are usually rather hidden (by atomic propo-
sitions). The aspect of revealing hidden bisimilarities is a double-edged sword; while it can
be useful to capture bisimilarities that wouldn’t have been visible otherwise, not any kind
of symmetry is useful as it may cause loss of information (labels of states) that are of cru-
cial importance in verification of the property at hand. On the other hand, symmetry can
be extended to the level of components, where the symmetry itself can be evident from the
high-level layout of system design. These reasons render blind search for symmetries in a
system improper and rather impractical. Although, Symmetry can be sought out in a sys-
tem on the level of components automatically. Donaldson et. al. do this in [DM05], where
they consider analysis of channel based diagrams of communications among components
and use the information provided by those diagrams to detect symmetries.

As an instance, consider the case of a system with a number of identical components
that process an input producing an output. Assume that the system sends the requests it
received to a non-deterministically chosen idle component for it to be processed and gathers
the results of components that have a result ready to the output. In this scenario, the
identical components carrying out process of inputs are used symmetrically – inputs and
outputs of them are handled symmetrically (non-deterministic choice). Therefore, we can
simply forget about their order and for each state of the composite system simply consider
the number of processor components that are idle and number of components that are not.

Therefore, in this chapter, we lift the notion of symmetry to the level of components of
the system. Assuming that the designer of the system, alongside providing the model of
the system, provides the symmetry of components of the system as well. The approach of
obtaining symmetry over the states of the composite system from the symmetry expressed
over components of the system has widely been used in various applications of symmetry
to model checking, e.g., [CEFJ96, ET03, DMP07, DM06, EW03, GS05, CEJS98, BDE+12].

This lifting of the notion of symmetry then, allows us to inspect the symmetry provided
by the system designer on the level of components of the system to confirm or reject the
symmetry and do the symmetry reduction of the system without requiring to build and
store the whole system beforehand.
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6.1 Symmetry of Identical Components
As we discussed earlier, we can see the notion of symmetry of components as the equiva-
lence of behavior of a system in which we keep track of state of every single component and
a system in which we only keep track of number of components in each state (idle or work-
ing in the example above) – if the system is seen as a black box, as properties that depend
on the order of those components will not be preserved. Ergo, we can use this intuition to
take the symmetry on the level of components to the level of states of the composite sys-
tem. States of the composite system are tuples of states of individual components. Hence,
in each tuple we count the number of symmetric components in each state (all symmetric
components are identical and thus have the same set of states). For instance in the example
above we consider two states of the composite system symmetric if they agree on the state
of non-symmetric components and the number of idle and working processors.

Taking this approach, however, as expected, would cause loss of some information of the
system, in particular, those labels that rely on the order of symmetric components to be
distinguished; as they no longer can be distinguished, as we only keep track of number of
components in each state rather than the state individual components are in.

Moreover, we will see that in many cases, if not all, this loss of information of the model
is not restricted to the labels and also includes the information on data-flow to and from
individual components for which there are other components that are symmetric to them.
This is due to the fact that, as we are not keeping track of the states of individual compo-
nents (those that have a symmetric counterpart in the system), we cannot know to which
component the data-flow pertains. For further clarity, consider the aforementioned exam-
ple of a system with identical processor components, if we are going to only consider the
number of processors that are idle or working, we cannot know to which idle processor the
received request is being assigned – all we know is that it is being assigned to some idle
processor. That is why, as we will see, that data-flow locations of components with sym-
metric counterparts are in many cases blocking the symmetry as the result of translating
component level symmetry to the level of states of the components would not hold unless if
they are hidden. We will later elaborate on this phenomenon.

In this chapter, we put the restriction that the designer of the system can only declare
two component symmetric, if they are identical – they only differ in the name of data-
flow locations. Under this assumption, we can take the symmetry of components down
to the level of states of the composite system by abstracting away the order of states of
symmetric components. Therefore, given an instance of component symmetry, we can take
that symmetry to the level of states of the composite system and check its validity and carry
out the reduction on the level of states of the composite system without requiring to build
and store the whole composite system.

6.1.1 Identical Components
As we discussed earlier, we are going to allow two components to be declared symmetric
by the system designer if the components are identical. Two components are considered
identical if they only differ in the name of their data-flow locations. In other words, two
components are considered symmetric if renaming data-flow locations of one could result in
the other.

Before, formally defining this notion, we first define the notion of data-flow mapping.
That is, using a bijection to map data-flow location of a constraint automaton. The result
of data-flow mapping a constraint automaton A with a set of data-flow locations N with
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respect to a bijective mapping over its data-flow locations f : N → N ′ is denoted byAN→fN ′

and is defined as follows:

Definition 6.1 (Data-Flow Mapping). Let A = 〈Q,N ,Nin,Nout,→, Q0, AP, L〉 be a con-
straint automaton and f : N → N ′ be a bijective mapping. Then, the result of mapping
data-flow locations of A with respect to f , A−→

f
, is as follows:

A−→
f

= 〈Q,N ′,N ′in,N ′out,→′, Q0, AP, L〉

where,
N ′in = {f(A) | A ∈ Nin}

N ′out = {f(A) | A ∈ Nout}

and,
q1

N,g−−→ q2

q1
N ′,g′−−−→

′
q2

where,
N ′ = {f(A) | A ∈ N}

and g′ is the result of substituting dA by df(A) in g. �

Now, given the notion of data-flow mapping, we can simply define the notion of identical
components by saying, two components (constraint automata) are identical if the result of
chaining the data-flow locations of one of them with a data-flow mapping that maps its
data-flow locations to the data-flow locations of the other results in the other constraint
automaton.

Definition 6.2 (Identical Constraint Automata). LetA1 andA2 be two constraint automata
such that for i ∈ {1, 2}, we have:

Ai = 〈Q,Ni,Ni,in,Ni,out,→i, Q0, AP, L〉

Then, A1 and A2 are identical if there is a bijective function f : N1 → N2 such that:

A2 = A1−→
f

�

6.1.2 Symmetry Translation
As we discussed earlier, according to the fact that we have put the restriction that only those
identical components can be declared symmetric by system designer; we can translate this
symmetry to the level of states of the composite system. To do so, we assume two states
of the composite system are symmetric if they agree on the state of individual components
that have no symmetric counter part in system and the number of symmetric components
that are in each state (of the state space of the symmetric components).

In plain words, if the system is composed of n components A1, . . . ,An and Ak and Al
(1 ≤ k < l ≤ n) are symmetric (and identical) then a state (q1, . . . , qn) (a state where for
1 ≤ i ≤ n Ai is in state qi) of the composite system, and another state of the composite
system,

(q1, . . . , qk−1, ql, qk+1, . . . , ql−1, qk, ql+1, . . . , qn)
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should be declared symmetric in the result of translation.
In order to formally define this notion we assume that the designer of the system has

provided us with the group acting on the components of the system they have specified.
Therefore, we translate such a group into a group on the states of the composite system.

Definition 6.3 (Symmetry Translation). Let S = {A1, . . . ,An} be a system consisting of n
components (constraint automata) and G =

〈
G, ◦, .−1

〉
be a group acting on components of

S such that components that are considered symmetric by G are identical. Then, the result
of translation of G to the level of states of the composite system, is a group acting on the set
of states of A1 ./ . . . ./ An, denoted by G./ and defined as follows:

G./ =
〈
{σk,l | k 6= l ∧ ∃σ ∈ G. σ(Ak) = Al}, ◦, .−1

〉
where,

σk,l(q1, . . . , qn) = (qi1 , . . . , qin)

such that,

qij =

 ql if ij = k
qk if ij = l
qij otherwise

�

Given the possibility to translate the symmetry expressed on the level of components
of the system to the states of the composite system, we have grounds paved for formally
defining symmetry for components. One naive way to do so would be to translate the given
symmetry on the level of components to the symmetry on the level of states of the composite
system and check whether the translated symmetry holds in the composite system. Yet, be-
fore doing so, one should pay attention to the problem of data-flow to and from components
that have symmetric counterpart in the system.

6.1.3 Component Symmetry and Symmetry Blockage
A moment’s reflection on the process of translation (Definition 6.3), should make it crystal
clear that we are considering two states symmetric if they correspond to swapping states of
symmetric components. Whereas, these states would have transitions to other symmetric
states but with a different data-flow. For further clarity, let’s turn back to the example of
a system with processor components. That system would send each received request to an
idle processor to be processed. If in one state of the system only the i-th processor is idle
and a request comes, the system picks the i-th processor component to pass the request
to. During the transition that passes the data through, the data-flow location between the
broker part of the system and the i-th processor would be active with the request on the
line. Whereas, considering another state which is symmetric to this state only to differ in
the j-th (j 6= i) component being the only idle processor component. This time, the data-
flow location between the part distributing the input and the j-th processor will be active
carrying the request being passed. Therefore, even though, we expected these two state to
be symmetric, their data-flow locations are blocking this symmetry. Example 6.4, provides
a more detailed example of this phenomenon.

Example 6.4 (Symmetry Blockage). Figure 6.1 shows the Reo circuit of a component to-
gether with the underlying constraint automaton for the component ‘alt’ (alternator). This
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alt

alt

N1

N2 N3

N4 N5

N6 N7

N8

Where, ‘alt’ is a component with underlying constraint automaton:

0 1

{A,B}, dA = 0 ∧ dB = 1

{A,B}, dA = 1 ∧ dB = 0

N = {A,B},Nin = {A},Nout = {B}

Figure 6.1: Example of component symmetry blocked by data-flow locations. See Exam-
ple 6.4.

component simply alternates between accepting ‘zero’ on its source channel end (repre-
sented by data-flow location A) and sending ‘one’ out on its sink channel end (represented
by data-flow location B) and accepting ‘one’ on its source channel and and sending ‘zero’ out
on its sink channel end.

The circuit has a single source node (N1) and a single sink channel end (N8). This system
non-deterministically chooses one of the ‘alt’ components that accept the value on its source
node and sends that value to it, which causes the negation of that value to be sent on its
sink node.

The constraint automaton of the composite system of this circuit is depicted in Fig-
ure 6.2. In this figure, nodes N1, . . . , N8 are represented by A, A1, B1, A2, B2, A3, B3 and B,
respectively. Moreover, the name of states only reflect the states of individual ‘alt’ compo-
nents. This is due to the fact that the constraint automata corresponding to nodes have a
single state and would just be repeated in each state just making the names bigger.

Assuming G is the symmetry group that declares all ‘alt’ components symmetric, we
can easily see that the result of translating group G to the level of states of the composite
system, G./, does not act on the system depicted in Figure 6.2.

Yet, G./ acts on this system after hiding data-flow locations A1, B1, A2, B2, A3 and B3,
which correspond to nodes N2, . . . N7, the result of which is depicted in Figure 6.3. The
orbits of group G./ are depicted as translucent ovals in Figure 6.3. �

Even though, symmetry can be blocked by data-flow locations of symmetric components,
as shown in Example 6.4, this is not always the case. Consider a case similar to the system
in Example 6.4, where instead of distributing input to the source channel end over the ‘alt’
components and sending their result out through the sink channel end of the system; the
system would send an incoming value to all ‘alt’ components and require them to produce
the same output in order for that output to be accepted and sent out through the systems
sink channel end. In this case, even without hiding data-flow locations of the symmetric
components, symmetry would be evident and that is due to the fact that all the source
channel ends of all ‘alt’ components and all their channel ends would always have the same
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where, Ni = {A,Ai,Bi,B}, gi,0 = “dA = 0 ∧ dAi
= 0 ∧ dB = 1 ∧ dBi

= 1”,

gi,1 = “dA = 1 ∧ dAi
= 1 ∧ dB = 0 ∧ dBi

= 0”

Figure 6.2: Example of component symmetry blocked by data-flow locations – composite
system. See Example 6.4.
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where, N = {A,B}, g0 = “dA = 0 ∧ dB = 1”, g1 = “dA = 1 ∧ dB = 0”

Figure 6.3: Example of component symmetry hidden by data-flow locations – composed
system after blocking data-flow locations of symmetric components. See Example 6.4.
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activation and valuation throughout all transitions of the system, which is a phenomenon
that rarely occurs in real world situations.

Nevertheless, following the line of reasoning presented in the beginning of this section,
we conclude that; even though is not always the case, yet, as in practice, in many appli-
cations (e.g., when information are distributed over a number of symmetric components),
if not most, data-flow locations do actually block the systemwide symmetry. Henceforth,
when we formally define the notion of component symmetry in the followings, we shall in-
clude hiding of (potentially blocking) data-flow locations of symmetric components as part
of the requirements.

Considering all aforementioned discussions, here, we define the notion of groups that
act on a system as groups that act on the components of the that system such that com-
ponents considered symmetric by those groups are identical and, in addition, the result of
translating that group acting on the components of the system to the level of states of the
composite system acts on the result of hiding data-flow locations of symmetric components
from constraint automata of the composite system.

Definition 6.5 (Component Symmetry (Groups Acting on a System)). Let S = {Ai | 1 ≤ i ≤
n} be a set of n constraint automata where Ai = 〈Qi,Ni,Ni,in,Ni,out,→i, Q0,i, APi, Li〉. Let
G be a group acting on S for which any two components that are considered symmetric by
G are identical. Then, group G is said to be acting on S if and only if,

G./ is acting on ∃[N1, . . . , Nk](A1 ./ . . . ./ An)

where, {N1, . . . , Nk} =
⋃
i: {Ai}⊂ΘG(Ai)

Ni, is the set of data-flow locations of all components
that have a symmetric counterpart in the system. �

6.2 Certification and Reduction of Component Symme-
try

Given a system, S, together with a group, G, acting on its components, we can certify the
provided symmetry without having to build and store the whole system beforehand. To do
so, we can simply translate G to the level of states of the composite system, G./. To represent
G./, on the other hand, we don’t need to compute the whole set of states of the composite
system and it would rather suffice to consider the set of states of single member of each
orbit of G and the size of orbits. As an instance, for the system depicted in Figure 6.1, we
only need to consider the states of the two nodes and the set of states of an instance of
‘alt’ component and note that there are 3 instances of ‘alt’ in the system. This way, we can
simply enumerate states of the composite system (or members of each orbit) on the fly – by
simply considering k states out of each orbit where k is the size the orbit, e.g., k = 3 for ‘alt’.

To certify the symmetry on the other hand, we have to consider any pair of orbits of G./
and make sure that the data constraints between all pair of their members (one from each
orbit) are equivalent after hiding data-flow locations of symmetric components. To this end,
we consider all pairs ΘG./(q) and ΘG./(q′) where q, q′ are states of the composite system.
Then, we should choose a representative for each of the orbits rep(ΘG./(q)) and rep(ΘG./(q′))
and for any set of data-flow locations, N , of the composite system, compare (for equivalence)
the data constraints between these representatives (after hiding of data-flow locations of
symmetric components) for N with the data constraints between any other pair of states
(after hiding of data-flow locations of symmetric components) from those orbits (one from
each orbit) for the set of data-flow locations N .
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For the reduction of component symmetry, the set of states of the result of reduction
would simply be the set of orbits of G./, the set of its initial states would be the set of all
those orbits of G./ that have an initial state of the composite system in them (the tuples
where each states is an initial state of some component) and the set of data-flow locations
(as well as the set of in and out data-flow locations) of the result of reduction would be that
of the composite system except for those that are shared by the symmetric components.

For the transition relation, on the other hand, we have to consider all pairs of orbits of
G./, ΘG./(q) and ΘG./(q′) where q, q′ are states of the composite system. For each orbit then,
we should consider a representative, rep(ΘG./(q)) and rep(ΘG./(q′)), respectively. Then we
should consider a set N of data-flow locations of the composite system A./. Assuming that
A1, . . . , Ak are the data-flow locations that belong to symmetric components – those that
should be hidden–, the data constraint between rep(ΘG./(q)) and rep(ΘG./(q′)) for the set of
data-flow locations N ′ = N \ {A1, . . . , Ak} in the result of reduction would simply be:

∃[A1, . . . , Ak]CA./rep(ΘG./ (q)),rep(ΘG./ (q′))(N)

To compute this, on the other hand, assuming rep(ΘG./(q)) = (q1, . . . , qn) and rep(ΘG./(q′)) =
(q′1, . . . , q

′
n) where, n is the number of components of the system, we should consider all

combinations of components and each combination consider all transitions from qi to q′i if
the i-th component is in the considered combination. Therefore, we would need to consider
(in the worst case) 2n.tr combination of transitions, where tr is the maximum number of
transitions for one component.

For the certification of component symmetry, as discussed above, we need to check data
constraints between all pairs of states of the composite system which means we have to
consider an exponential number of constraints with respect to the number of symmetric
components. Later, we will consider a specific layout of components of the system with
respect to symmetry group provided for them that allows for the symmetry to be certified
by only inspecting a relatively small portion of the system.

On the hand, for the reduction, the number of states in the reduced system is the same
as the number of orbits of composite system. Two states of the composite system are con-
sidered symmetric by component symmetric if they only differ in the ordering of states of
symmetric components. Therefore, we can represent each orbit of G./ by a tuple of the form
((q1, n1), . . . , (ql, nl)) where l is the number of orbits of G – the group acting on the compo-
nents –, qi belongs to the state space of the components of i-th orbit of G – all components
in each orbit of G have the same set of states, as they are identical – and ni is a number
between 0 and the number of components in the i-th orbit of G. In plain words, we can label
each orbit of G./ with the number symmetric components in each state (of the respective
state space of the symmetric components).

In other words, the number states in the result of reduction, would be proportional to
the (k+ 1)n where n is the maximum number of states of a component and k is the number
of symmetric components. Which means, there will be a polynomial growth in the number
of states of the reduced system, instead of the exponential growth in the number of states
of the composite system – state space explosion problem –, when the number of symmetric
components grow.

Therefore, using symmetry reduction by considering symmetries of components speci-
fied in constraint automata can help alleviate the state space explosion problem for con-
straint automata – as it is widely known and practiced on other formalisms.

As we discussed in Chapter 5, the result of reduction can only be used for checking prop-
erties that use those atomic propositions in their temporal logic formulas that the group
of symmetry is an invariant group for. In this chapter, we have introduced specific form of
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symmetry groups (the result of translation of symmetries) for the case of component sym-
metry. In particular, two states are symmetric if one is the result of reordering of members
of the tuple of the other where only the states of symmetric components can be swapped.
Therefore, in the case of component symmetry, we know precisely what atomic propositions
the group is invariant for. Namely, those atomic propositions that do not depend on the
order of states of symmetric components.

On the other hand, it is usually the case that in the composite system, the atomic propo-
sitions are the tuples of atomic propositions of individual components in the same order as
their states. In other words, in a system with n components, a state (q1, . . . , qn) is labeled
with the set of atomic propositions L1(q1)× · · ·×Ln(qn), where Li is the labeling function of
the i-th component.

However, here, we cannot simply label each state with tuples of atomic propositions of
the individual states of the tuple. Yet, we can use the same technique that we used for
reasoning about the growth of reduced system in the number of symmetric components –
counting number of symmetric components in each state, of the symmetric component, in
each state of the composite system. In other words, as identical components have the same
atomic propositions and labeling function, as well as having the same set of states, we can
simply, for each state of the reduced system, count the number of components being labeled
to each atomic propositions.

As an example, consider the case where a component has the set of atomic propositions,
{ap1, ap2}, and there are n symmetric copies of this component in the system, then we can
use atomic propositions {(i, ap1) | 0 ≤ i ≤ n} ∪ {(i, ap2) | 0 ≤ i ≤ n} to label the states of the
reduced system.
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7 Three Tier
Component Symmetry

So far, we have defined the notion of symmetry on the level of states of constraint automata
(Chapter 5) and lifted it to the case of symmetry over components of a system (Chapter 6).
There, we saw that reducing the system with respect to component symmetry helps bring
the growth of the states of the system (in the number of symmetric components) from expo-
nential down to polynomial. We discussed that for reduction and certification of component
symmetry, we do not need to build and store the whole composite system and we can simply
examine or reduce it by considering small portions of the system one after another.

However, in this chapter, we are going to discuss the notion of three tier symmetry, a case
of component symmetry where, the components of the system follow a specific layout. In
particular, we are going to isolate the part of the system that is directly connected (via data-
flow locations) to the symmetric components while we assume that symmetric components
have no communications (no shared data-flow locations).

We refer to this isolated part of the system that has direct contact (shared data-flow
locations) with the symmetric components as glue tier. Glue tier, sits between the tier of
symmetric components and the rest of the system. This, as we will discuss in this chapter,
allows us to carry out certification of component symmetry with much less effort by only
having to examine the glue tier.

On the other hand, this would help make reduction simpler, as we can simply reduce
the tier of symmetric components and glue tier together. Since the result of this reduction
is bisimilar to the composite system consisting of the symmetry tier and glue tier, we can
simply compose the result of reduction with the rest of the system and be sure that the
result is bisimilar to the whole composite system.

7.1 Three Tier Layout of Symmetry and Three Tier Com-
ponent Symmetry

We will use the name three tier component symmetry to refer to the specific case of compo-
nent symmetry we are going to discuss in this chapter. Given a system and a group acting
on the components of that system, they form a three tier component symmetry if they form
a three tier layout of symmetry and the provided group acts on the given system. The name
three tier layout of symmetry comes from the fact that we divide the system into three tiers,
the tier of symmetric components, the tier of the non-symmetric components (which we usu-
ally refer to as “the rest of the system”) and the glue tier which mediates communication of
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the symmetric components and the rest of the system.
In other words, the components of the symmetric components’ tier, do not share any

data-flow locations among themselves and with the rest of the system and they only share
data-flow locations with glue tier components which could have data-flow locations shared
with the rest of the system. On the other hand, two components can have data-flow loca-
tions with the same component in the glue tier only if they are symmetric to one another.
Figure 7.1 shows the topology of a system in three tier component symmetry.

Definition 7.1 (Three Tier Layout of Symmetry). Let S = {A1, . . . ,An} be a system and G
be a group acting on its components. Let

Ai = 〈Qi,Ni,Ni,in,Ni,out,→, Qi,0〉

and
Sym = {A ∈ S | {A} ⊂ ΘG(A)}

Glue = {Ai ∈ S | ∃Aj ∈ Sym. Ni ∩Nj 6= ∅}

Rest = S \ (Sym ∪Glue)

Then, S and G form a three tier layout of symmetry (or a three tier layout for short) if and
only if we have:

∀Ai,Aj ∈ Sym. Ni ∩Nj = ∅ (7.1)

∀Ai,Aj ∈ Sym. ((∃Ak ∈ Glue. Ni ∩Nk 6= ∅ ∧ Nj ∩Nk 6= ∅) =⇒ Ai ∈ ΘG(Aj)) (7.2)

and
∀Ai,Aj ∈ Glue.

(
(Ni ∩Nj 6= ∅) =⇒

(∀Ak,A′k. ((Nk ∩Ni 6= ∅) ∧ (N ′k ∩Nj 6= ∅)) =⇒ A′k ∈ ΘG(Ak))
) (7.3)

�

In the definition of three tier layout of symmetry (Definition 7.1), above, Condition (7.1),
specifies that no two components within the symmetry tier can share any data-flow loca-
tions. Condition (7.2), specifies that if there are two components that have data-flow loca-
tions shared with the same component in the glue tier, then, those two components should
be symmetric. And finally, Condition (7.3), specifies that if there are two components in
the glue tier that share some data-flow locations among themselves, then any two compo-
nents in the symmetry tier that share any data-flow locations with either of them should be
symmetric. Conditions (7.2) and (7.3) together, specify the fact that the components of the
glue tier can be separated into sets in such a way that components of each set only share
data-flow locations with components of the rest of the system, other glue components of the
same set or a specific orbit of components in the symmetric tier. This fact can be clearly
seen in the schematic of Figure 7.1.

In the sequel, we say a system has three tier component symmetry (or three tier sym-
metry for short) if there is a symmetry group acting on that system such that the system
and the group have a three tier layout.

As we already mentioned, the certification and reduction of three tier component sym-
metries, for many cases if not most, is easier and more efficient. To show this, we will need
to introduce two new notions, symmetry support and data-flow symmetry.
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Figure 7.1: The Topography of a System and a Group Acting on that System that Form a
Three Tier Layout of Symmetry. Here, for all 1 ≤ i ≤ m and 1 ≤ j, k ≤ ni, we have Ai,j is
declared symmetric (by the group) and is identical to Ai,k. Data-flow locations are denoted
by small black circles on the border of the components (or tiers) they belong to. Two data-
flow locations connected by an arrow have the same name while the one on the source of the
arrow is in the set of output data-flow location of its constraint automaton and similarly the
one at the target of the arrow belongs to the set of input data-flow locations of its respective
constraint automaton. Please note that this schematic is not a Reo circuit.
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7.2 Symmetry Support and Data-Flow Symmetry
Let’s recall the reason why we defined the component symmetry in such a way that hiding
of data-flow locations was part of it. It was due to the fact that swapping the states cor-
responding to symmetric (and hence identical) components in the states of the composite
system (which are tuples of states of individual components), would result in having differ-
ent data-flows (as result of different data constraints) throughout the system which blocked
symmetry of the system altogether.

On the other hand, we know that in a system and a group forming a three tier layout,
components that are declared symmetric by the symmetry group do not share any data-flow
locations with any components that are not in their glue tier. This means that, swapping
states of components that are declared symmetric by the symmetry group of the three tier
layout, would result in data-flow of the whole system to be different in the values of data-
flow locations of symmetric components – and of glue tier as they share data-flow locations
with symmetric components.

In this sense, we can say glue layer accepts symmetric data-flow (or it is data-flow sym-
metric), if, in any state, it accepts a data-flow from symmetric components if and only if it
accepts the result of swapping values (of data-flow locations) of that data-flow in any way
that corresponds to swapping of symmetric components.

As an instance consider the case where the glue code only consists of Reo nodes (route or
replicate). Reo nodes, in any of their states – as they only have one–, accept a value on some
source or sink node connected to them if and only if they accept the same value on any other
source or sink, respectively. Hence, if there is a component that has a single source and a
single sink channel end (e.g., a channel), connecting a number of these components in such
a way that all their source channel ends are connected to a single Reo node and all their
sinks to another, would result in a system that is symmetric – the translation of component
level symmetry that declares all instances of the component at hand symmetric to the level
of states of the composite system would act on the composite system after hiding of data-
flow locations corresponding to individual source and sink channel ends of the symmetric
components.

In order to make use of this phenomenon to make certification of three tier symmetry
easier, we define the notions of symmetry support and data-flow symmetry.

7.2.1 Symmetry Support
Consider the case where there are four states q1, q2, q3 and q4 in a constraint automaton
A, such that for some set of data-flow locations of A, N , CAq1,q2(N) 6≡ CAq3,q4(N). Then a
permutation σ, for which we have σ(q1) = q3 and σ(q2) = q4, would not be a symmetry
permutation for A.

Although, it can very well be the case that, considering two data-flow locations A1 and
A2 in A, such that N ′ is the set obtained from N by renaming A1 to N2 and vise versa,
would result in having CAq1,q2(N) equivalent to (CAq3,q4(N))′, where (CAq3,q4(N))′ is obtained
from CAq3,q4(N) by swapping dA1

and dA2
. In such a case, hiding data-flow locations A1 and

A2 from A would result in:

C∃[A1,A2]A
q1,q2 (N) ≡ C∃[A1,A2]A

q3,q4 (N)

Which means, the permutation σ, would be a symmetry permutation for ∃[A,B]A – provided
that other symmetries indicated by σ hold. Here, we generalize this notion, by introducing
the notion of symmetry support.
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Definition 7.2 (Supported State Symmetry). Let A be a constraint automaton with the set
of states Q and the set of data-flow locations N , G be a group acting on Q and H be a group
acting onN . Then,H supports action of G on constraint automatonA if and only if we have:

∀σ ∈ G ∀q1, q2 ∈ Q ∃σ′ ∈ H ∀N ⊆ N .
(
CAq1,q2(N) ≡ γσ′

(
CAσ(q1),σ(q2)(δσ′(N))

))
(7.4)

where, γσ : Dcon(N ) → Dcon(N ) is the function that maps each dA in a data constraint to
dσ(A) and δσ : N → N is as follows:

δσ(N) = {σ(A) | A ∈ N}

�

7.2.1.1 Symmetry Support Leads to Symmetry

As explained earlier, the motivation of introducing the notion of symmetry support is to
help us account for the data-flow locations that are blocking the symmetry. Here, we show
that if group H supports the action of a group G on a constraint automaton A, then, G is
acting on the result of hiding those data-flow locations from A that according to H have
another data-flow location symmetric to them.

Theorem 7.3 (Supported State Symmetry Leads to Symmetry). Let A be a constraint au-
tomaton with the set of states Q and the set of data-flow locations N . Let G be a group
acting on Q and H be a group acting on N such that H supports action of G on A. Then, G
is acting on

∃[A1, . . . , An]A

where,
{A1, . . . , An} = {A | {A} ⊂ ΘH(A)}

is the set of data-flow locations that have symmetric counterpart (apart from themselves)
according to H. �

Proof. It is easy to see that after hiding all those data-flow locations that have some other
data-flow locations declared symmetric to them by H, (A1, . . . , An), we will have:

∀g ∈ Dcon(N ) ∀σ ∈ H. γσ(g) = g

and
∀N ⊆ N ∀σ ∈ H. δσ(N) = N

It is due to the fact that all remaining data-flow locations (those that are not hidden) are
mapped to themselves by any permutation of H.

Therefore, we can rewrite Condition (7.4), from Defition 7.2, as:

∀σ ∈ G ∀q1, q2 ∈ Q ∀N ⊆ N .
(
CAq1,q2(N) ≡ CAσ(q1),σ(q2)(N)

)
Which is the same condition for having group G acting on ∃[A1, . . . , An]A.
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7.2.2 Data-Flow Symmetry
Data-flow symmetry is a form of symmetry where the nature of symmetry is witnessed in
data-flow locations rather than states of a constraint automaton. In plain words, two data-
flow locations are symmetric, if the data-flow that can pass through them in any transition
between any two states (the data-flow underlying the constraints between them) is sym-
metric. More precisely, two data-flow locations A and B are symmetric, if and only if, for
any pair of states q and q′, for any set of data-flow locations N , the constraints between q
and q′ for N is equivalent to the swapping dA and dB in constraints between q and q for
N ′ where N ′ is obtained from N by assuming A ∈ N ′ if and only if B ∈ N and B ∈ N ′ if
and only if A ∈ N . Similarly to the case of symmetry over states, we define the notions of
data-flow symmetry permutations, data-flow symmetry groups, etc.

In the sequel, we use DF as a short hand for data-flow, e.g., DF-action instead of data-
flow action or DF symmetry instead of data-flow symmetry.

Definition 7.4 (DF Permutations for Constraint Automata). Let A be a constraint au-
tomaton with the set of states Q and the set of data-flow locations N . Then, a DF symmetry
permutation σ : N → N for constraint automaton A is a bijective function such that:

∀q1, q2 ∈ Q ∀N ⊆ N .
(
CAq1,q2(N) ≡ γσ

(
CAq1,q2(δσ(N))

))
where, γσ and δσ are as in Definition 7.2. �

It is easy to see that if σ and σ′ are two DF symmetry permutation for a constraint au-
tomaton, then, their inverses as well as their compositions are also DF symmetry permu-
tations of that constraint automaton. The proof is very similar to the proof of Theorem 5.2,
and is thus omitted.

Definition 7.5 (DF Groups acting on Constraint Automata). Let A be a constraint au-
tomata. Then, a group acting on A is a group G =

〈
G, ◦, .−1, id

〉
where G is a set of permu-

tations for constraint automaton A.
�

Remark 7.6 (Groups DF Acting on Constraint Automata versus DF Groups Acting on
Data-Flow Locations of Constraint Automata). This is very important to note that not any
group that is acting on the set of data-flow locations of a constraint automaton is a DF sym-
metry group of that constraint automaton (DF acting on the automaton). Hence, whenever
we say a group is acting on the data-flow locations of a constraint automaton it does not
necessarily mean that it is DF acting on the constraint automaton itself. �

Analogously to the case of symmetry (state symmetry defined in Chapter 5), the prob-
lem of checking whether a group that acts on the data-flow locations of a constraint au-
tomaton also DF-acts on that constraint automaton is CoNP-Complete. The exact problem
statement and proof of complexity is very similar to the case of state symmetry (see Defini-
tion 5.5 and Theorem 5.6) and are thus omitted. It is yet worth noting that since to confirm
DF-action of a group we should certify each of its permutations (or equivalently each per-
mutation of its generating set), the complexity of certifying groups DF-acting on constraint
automata is also CoNP-Complete.

7.2.3 Data-Flow Symmetry and Symmetry Support under Join
If for a constraint automaton, A, a group H is supporting the action of another group,
G, on A, and there is another constraint automaton A′ such that it has all the data-flow
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locations of A (and possibly more), and there is a group H′ DF-acting on A′ in such a way
that permutations of H′ restricted to data-flow locations of A would result in permutations
of H; then, we can obtain a pair of groups G′′ and H′′ such that H′′ supports action of G′′ on
A ./ A′. Here, G′′ would declare a pairs of state of (q1, q) from A ./ A′ symmetric to another
pair of states q2, q, if and only if, G declares q1 and q2 symmetric.

This means, if we know that there is a group supporting action of another group on
a constraint automaton, we can extend this support through joining if we know the sup-
porting group can be extended to a group that DF-acts on the other constraint automaton.
Given this result, we can be sure that action support is propagated through joining of com-
ponents by just examining the DF action on the other constraint automaton that is joining
the one that has symmetry support.

Theorem 7.7 (Supporting State Symmetry under Joining). Let A1 and A2 be two con-
straint automata such that for i ∈ {1, 2}, we have, Qi, Ni, Ni,in and Ni,out are respectively,
the set of states, the set of data-flow locations, the set of input data-flow locations and the
set of output data-flow locations of Ai. In addition, (N1,in ∪N1,out) ⊆ N2 and A1 and A2 are
joinable, i.e.,

N1 ∩N2 = (N1,in ∩N2,out) ∪ (N1,out ∩N2,in)

In addition, let G1 =
〈
G1, ◦, .−1

〉
and H1 =

〈
H1, ◦, .−1

〉
be two groups acting on Q1 and N1

respectively, such that H1 supports action of G1 on A1 and we have,

∀A ∈ (N1,in ∪N1,out). ΘH1
(A) ⊆ (N1,in ∪N1,out)

Furthermore, let H2 =
〈
{ζσ | σ ∈ H1}, ◦, .−1

〉
be a group DF-acting on A2 – it is easy to see

that H2 is indeed a group and its proof is thus omitted –, where ζσ : N2 → N2 is obtained
from σ as follows:

ζσ(A) =

{
σ(A) if A ∈ N1,in ∪N1,out

A otherwise

Then, there exist groups H and G, such that H supports the action of group G on A1 ./ A2.
�

Proof. We take H2 =
〈
{ξσ | σ ∈ H1}, ◦, .−1

〉
, where ξσ : N1 ∪N2 → N1 ∩N2 is defined as:

ξσ(A) =

{
σ(A) if A ∈ N1

A otherwise

and G =
〈
{Υσ | σ ∈ H1}, ◦, .−1

〉
, where Υσ : Q1 ×Q2 → Q1 ×Q2 is defined as:

Υσ(q1, q2) = (σ(q1), q2)

Now, we need to show that H supports the action of G on A1 ./ A2. To do so, we take
arbitrary Υσ ∈ G and states (q1, q

′
1), (q2, q

′
2) ∈ Q1 × Q2 and show that there exists ξσ′ ∈ H

such that:

∀N ⊆ (N1 ∪N2).
(
CA1./A2

(q1,q′1),(q2,q′2)(N) ≡ γξσ′
(
CA1./A2

Υσ(q1,q′1),Υσ(q2,q′2)(δξσ′ (N))
))

or equivalently (by expanding application of Υσ):

∀N ⊆ (N1 ∪N2).
(
CA1./A2

(q1,q′1),(q2,q′2)(N) ≡ γξσ′
(
CA1./A2

(σ(q1),q′1),(σ(q2),q′2)(δξσ′ (N))
))

where, γσ and δσ are as in Definition 7.2.
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To show that ξσ′ exists, we take ξσ′ = ξσ̂, where, σ̂ is the permutation for which we have:

∀N ⊆ N1.
(
CA1
q1,q2(N) ≡ γσ̂

(
CA1

σ(q1),σ(q2)(δσ̂(N))
))

(7.5)

In other words, σ̂ is the permutation supporting permutation σ for constraints between
q1 and q2 and constraints between σ(q1) and σ(q2). For further clarity, see definition of
symmetry support (Definition 7.2). In particular, we have to show that:

∀N ⊆ (N1 ∪N2).
(
CA1./A2

(q1,q′1),(q2,q′2)(N) ≡ γξσ̂
(
CA1./A2

(σ(q1),q′1),(σ(q2),q′2)(δξσ̂ (N))
))

(7.6)

To show this on the hand, we consider that for any N ⊆ (N1 ∪ N2) and any pair of states
q ∈ Q1 ×Q2 and q′ ∈ Q1 ×Q2, we have:

CA1./A2

q,q′ (N) =
(

1C
A1./A2

q,q′ (N) ∨ 1,2C
A1./A2

q,q′ (N) ∨ 2C
A1./A2

q,q′ (N)
)

Where, 1C
A1./A2

q,q′ (N) is the constraints between q and q′ as a result ofA1 making a transition
alone (Rule (3.2), Definition 3.7), 1,2C

A1./A2

q,q′ (N) is the constraints between q and q′ as a
result ofA1 andA2 each making a transition simultaneously (Rule (3.1), Definition 3.7) and
2C
A1./A2

q,q′ (N) is the constraints between q and q′ as a result of A2 making a transition alone
(Rule (3.3), Definition 3.7). Please note that in case any of these conditions is not possible
(e.g., A1 cannot make a transition alone between q and q′), its corresponding constraint
would be false.

Hence, to show (7.6), above, we simply consider the following three cases:

Case 1: ∀N ⊆ (N1 ∪N2).
(

1C
A1./A2

(q1,q′1),(q2,q′2)(N) ≡ γξσ̂
(

1C
A1./A2

(σ(q1),q′1),(σ(q2),q′2)(δξσ̂ (N))
))

Case 2: ∀N ⊆ (N1 ∪N2).
(

1,2C
A1./A2

(q1,q′1),(q2,q′2)(N) ≡ γξσ̂
(

1,2C
A1./A2

(σ(q1),q′1),(σ(q2),q′2)(δξσ̂ (N))
))

Case 3: ∀N ⊆ (N1 ∪N2).
(

2C
A1./A2

(q1,q′1),(q2,q′2)(N) ≡ γξσ̂
(

2C
A1./A2

(σ(q1),q′1),(σ(q2),q′2)(δξσ̂ (N))
))

And use the fact that for any formulas f1, f2, f3, f ′1, f ′2 and f ′3 for which we have f1 ≡ f ′1,
f2 ≡ f ′2 and f3 ≡ f ′3, we will have f1 ∨ f2 ∨ f3 ≡ f ′1 ∨ f ′2 ∨ f ′3.

Case 1:
Based on definition of join (Definition 3.7), we can see that Case 1, above, assuming

N ⊆ N1, can be rewritten as:

∀N ⊆ N1.
(
CA1
q1,q2(N) ≡ γξσ̂

(
CA1

σ(q1),σ(q2)(δξσ̂ (N))
))

Then, since, ξσ̂ and σ̂ coincide for N ∈ N1 (based on the definition of ξσ above), we can
rewrite it as:

∀N ⊆ N1.
(
CA1
q1,q2(N) ≡ γσ̂

(
CA1

σ(q1),σ(q2)(δσ̂(N))
))

Which holds, according to (7.5), above. In case N 6⊆ N1, we will have:(
1C
A1./A2

(q1,q′1),(q2,q′2)(N) = false
)
≡
(
false = γξσ̂

(
1C
A1./A2

(σ(q1),q′1),(σ(q2),q′2)(δξσ̂ (N))
))

which holds trivially.
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Case 2:
Based on definition of join (Definition 3.7), we can see that Case 2, above, as:

∀N ⊆ (N1 ∪N2).
(
CA1
q1,q2(N ∩N1) ∧ CA2

q′1q
′
2
(N ∩N2)

)
≡(

γξσ̂

(
CA1

σ(q1),σ(q2)(δξσ̂ (N ∩N1)) ∧ CA2

q′1,q
′
2
(δξσ̂ (N ∩N2))

))
Which, we can simplify as follows, according to the fact that γξσ̂ applied to a conjunction, is
the same as conjunction applying γξσ̂ to both conjuncts.

∀N ⊆ (N1 ∪N2).
(
CA1
q1,q2(N ∩N1) ∧ CA2

q′1q
′
2
(N ∩N2)

)
≡(

γξσ̂

(
CA1

σ(q1),σ(q2)(δξσ̂ (N ∩N1))
)
∧ γξσ̂

(
CA2

q′1,q
′
2
(δξσ̂ (N ∩N2))

)) (7.7)

On the other hand, based on the definition of ξσ, above, we know that for any σ ∈ H1, the
values of ξσ coincides with the values of σ and ζσ for data-flow locations in N1 and data-flow
locations in N2 respectively. Hence, we can rewrite the (7.7), above, as follows:

∀N ⊆ (N1 ∪N2).
(
CA1
q1,q2(N ∩N1) ∧ CA2

q′1q
′
2
(N ∩N2)

)
≡(

γσ̂

(
CA1

σ(q1),σ(q2)(δσ̂(N ∩N1))
)
∧ γζσ̂

(
CA2

q′1,q
′
2
(δζσ̂ (N ∩N2))

))
Which can be easily concluded from (7.8) and (7.9), below:

∀N ⊆ (N1 ∪N2).
((

CA1
q1,q2(N ∩N1)

)
≡ γσ̂

(
CA1

σ(q1),σ(q2)(δσ̂(N ∩N1))
))

(7.8)

∀N ⊆ (N1 ∪N2).
((

CA2

q′1q
′
2
(N ∩N2)

)
≡ γζσ̂

(
CA2

q′1,q
′
2
(δζσ̂ (N ∩N2))

))
(7.9)

On the other hand, (7.8) easily follows from the fact that σ̂ was specifically chosen to be
the permutation that supports permutation σ for constraints between q1 and q′1 in A1 (see
(7.5)). Furthermore, (7.9) easily follows from the fact that H2 is DF-acting on A2.

Case 3: For this case, we simply have to consider the fact that according to definition of
joining (Definition 3.7), we can rewrite this case as follows, if we consider N ⊆ N2:

∀N ⊆ N2.
(
CA2

q′1,q
′
2
(N) ≡ γξσ̂

(
CA2

q′1,q
′
2
(δξσ̂ (N))

))
Which, according to the fact that values of ξσ̂ and ζσ̂ coincide for data-flow locations in N2,
can be rewritten as:

∀N ⊆ N2.
(
CA2

q′1,q
′
2
(N) ≡ γζσ̂

(
CA2

q′1,q
′
2
(δζσ̂ (N))

))
Which is trivial, according to the fact that H2 DF-acts on A2. On the other hand, if we
assume N 6⊆ N2, similarly to Case 1, we will have both sides of equivalence equal to false –
as there can be no such transitions – for which the equivalence is trivial for any permutation
on data-flow locations.

Putting all three cases together, we get that, (7.6) above holds. Since, we had chosen σ
as an arbitrary member of G and pairs (q1, q

′
1) and (q2, q

′
2) as arbitrary members of Q1 ×Q2,

we can rewrite, (7.6) as:

∀σ ∈ G ∀(q1, q
′
1), (q2, q

′
2) ∈ Q1 ×Q2 ∃σ′ ∈ H ∀N ⊆ (N1 ∪N2).(

CA1./A2

(q1,q′1),(q2,q′2)(N) ≡ γξσ′
(
CA1./A2

Υσ(q1,q′1),Υσ(q2,q′2)(δξσ′ (N))
))
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Which is the literal condition for H supporting action of G on A1 ./ A2 (see Definition 7.2).

7.2.4 Three Tier Symmetry Certification and Reduction
The notions of symmetry support and data-flow symmetry were introduced to help make
certification of component symmetry in case of three tier symmetry easier. To this end,
here, we will show that considering symmetry tier in isolation, it is always the case that
an instance of symmetry support is evident. Which, according to Theorem 7.7, allows us
to certify symmetry by only examining the glue tier. Taking such an approach, we simply
consider the group acting on the data-flow locations of the symmetry tier (the one that is
supporting a symmetry there) and check whether its extension (the way H2 was extended
from H1 in Theorem 7.7) is DF-acting on the glue tier.

Theorem 7.8 (The Intrinsic Symmetry Support of Symmetry Tier). Let S be a system
and G be a group acting on its components such that S and G form a three tier layout.
Furthermore, let A1, . . . ,An be the constraint automata corresponding to the components
in symmetry tier, where Qi and Ni are, respectively, the set of states and the set of data-
flow locations of Ai.In addition, we assume that, for any Ai and Aj that are symmetric,
fi,j : Ni → Nj is the bijective function that makes Ai and Aj identical (see Definition 6.2).

Then, H supports the action of G./1,...,n on A1 ./ . . . ./ An. Where, G./1,...,n is the result
of translation of G to the level of states of A1 ./ . . . ./ An (the tuples are restricted to the
states of components in the symmetry tier) and H =

〈
{σi,j | Ai ∈ ΘG(Aj)}, ◦, .−1

〉
such that

σ(i, j) : (
⋃n
i=1Ni)→ (

⋃n
i=1Ni) is the permutation that maps data-flow locations of Ai to the

data-flow locations of Aj which is defined as

σi,j(A) =

{
fi,j(A) if A ∈ Ni
A otherwise

�

Proof. Since S and G form a three tier symmetry, we know that A1, . . . ,An do not share
any data-flow locations. Thus, in A1 ./ . . . ./ An, any combination of transitions from
any of the components can fire simultaneously (if their respective source and target states
are satisfied). In other words, considering the conditions for producing transitions of the
product automaton in Definition 3.7, all preconditions are always satisfied if the joining
constraint automata don’t share any data-flow locations. Therefore, we can easily see the
constraints between two states of A1 ./ . . . ./ An, (q1, . . . , qn) and (q′1, . . . , q

′
n) for any set of

data-flow locations N ⊆ N is as follows:

CA1./..../An
(q1,...,qn),(q′1,...,q

′
n)(N) =

∨
∅⊂I⊆{1,...,n}

∧
i∈I

CAiqi,q′i
(N ∩Ni) (7.10)

In plain words, we can assume any subset of symmetric components, I, are making a tran-
sition and for a subset of components making a transition, the constraint of the composite
system is simply the conjunction of respective constraints (each with its set of active data-
flow locations – N ∩Ni). Please note that if for some i ∈ I the i-th component does not make
any transitions for NNi, its underlying constraints between qi and q′i would be flase, which
(because of the conjunction) makes the whole constraint between (q1, . . . , qn) and (q′1, . . . , q

′
n)

for I components, false – the set I of components do not make any transitions simultane-
ously.
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To show thatH supports the action of G./1,...,n onA1 ./ . . . ./ An, we simply consider an arbi-
trary pair of states (q1, . . . , qn) and (q′1, . . . , q

′
n) and an arbitrary permutation σ from G./1,...,n

and show that there exists a permutation σ′ in H such that:

∀N ⊆ N . CA1./..../An
(q1,...,qn),(q′1,...,q

′
n)(N) ≡ γσ′

(
CA1./..../An
σ((q1,...,qn)),σ((q′1,...,q

′
n))(δσ′(N))

)
(7.11)

Where, γσ and δσ are as in Definition 7.2.
Let’s assume, without loss of generality, that permutation σ swaps the state of compponets
Ai1 , . . . ,Aik with states of the components Aj1 , . . . ,Ajk , respectively, for some k ≤ n where,
for any 1 ≤ l ≤ k, we have Ail is symmetric Ajl . Then, we show that σ′ = σi1,j1 ◦ · · · ◦ σik,jk ◦
σj1,i1 ◦ · · · ◦ σjk,ik makes (7.11), above, hold.

To show this, on the other hand, according to (7.10), above, as γσ and δσ only alter data-flow
locations Nil for 1 ≤ l ≤ k, we only need to show that:

∀l ∈ {1, . . . , k} ∀N ⊆ N .
(
C
Ail
qil ,q

′
il

(N ∩Nil) ≡ γσ′
(
C
Ajl
qjl ,q

′
jl

(δσ′(N) ∩Njl)
))

(7.12)

On the other hand, we know that Ail and Ajl are identical and the function mapping data-
flow locations of the first to the second and data-flow locations of the second to the firs are
fil,jl and fjl,il respectively. In addition, we know that δσ′ maps the data-flow locations of
Ail to the data-flow locations of Ajl according to fil,jl and data-flow locations of Ajl to the
data-flow locations ofAil according to fjl,il , as we have σ′ = σi1,j1 ◦· · ·◦σik,jk ◦σj1,i1 ◦· · ·◦σjk,ik
(See the definition of H in theorem statement, above). Similarly, γσ′ maps the data data-
flow locations (dA for data-flow location A) of Ail to the data of data-flow locations of Ajl
according to fil,jl and data of data-flow locations of Ajl to data of the data-flow locations of
Ail according to fjl,il . In plain words, δσ′ and γσ′ simply reverse each others actions, which
results in (according to their identity):

∀l ∈ {1, . . . , k} ∀N ⊆ N .
(
C
Ail
qil ,q

′
il

(N ∩Nil) = γσ′
(
C
Ajl
qjl ,q

′
jl

(δσ′(N) ∩Njl)
))

Which, trivially, shows that (7.12) holds, which, in turn, shows that (7.11). On the other
hand, since we had chosen (q1, . . . , qn), (q′1, . . . , q

′
n) and σ arbitrarily in (7.11), we can simply

conclude the following, which is the literal condition for H supporting action of G./1,...,n on
A1 ./ . . . ./ An (see Definition 7.2):

∀σ ∈ G./1,...,n ∀(q1, . . . , qn), (q′1, . . . , q
′
n) ∈ (Q1×, . . . , Qn) ∀N ⊆ N .

CA1./..../An
(q1,...,qn),(q′1,...,q

′
n)(N) ≡ γσ′

(
CA1./..../An
σ((q1,...,qn)),σ((q′1,...,q

′
n))(δσ′(N))

)
Where, Qi is the set of states of Ai.

Hence, as a result of Theorem 7.8 and Theorem 7.7, we know that if the group H, as
defined in Theorem 7.8, DF-acts on the product of components in the glue tier, the symmetry
holds. As a result, to certify three tier symmetry, we only require to check the components
in the glue tier.

As we saw, certifying DF-action on a constraint automaton is CoNP-Complete. Yet, in
spite of this fact, checking glue tier for DF-action is going to be much more efficient than
checking the whole system for symmetry, which is also CoNP-Copmlete, as we would be
analyzing a small fragment of the system. Moreover, as symmetric components in different
symmetry orbits do not share any data-flow locations with components of other orbits or
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their glue part, the glue part of each of the orbits can be considered separately for certifica-
tion.

For the reduction of three tier symmetry, the only betterment is in the fact that only
parts of the system, i.e., the symmetric tier and glue tier, need to be reduced as well as
the fact that each symmetry orbit (of the component symmetry group) can be considered
separately, together with its glue part, for reduction. In particular, the fact remains that
any number of components that can be making a transition at the same time, which keeps
the exponential time required to do the reduction.

On the other hand, in practice, by increasing the number of symmetric components of
any orbit, usually – it depends on the design of the system – there is a slight increase in
the size of glue tier as it is only mediating data-flow to the rest of the system. Thus, system
designer should be careful to make the glue tier as thin as possible to make certification
(and also reduction) easier.
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8 Application

In this chapter, we are going to discuss how theories that we have developed in this thesis
can be used in practice. In particular, we are going to use the idea of three tier symmetry
presented in Chapter7. This approach has been implemented and integrated into Vereofy
model checking tool (Section 4.2). Reo circuits (Section 4.1), which are used in Vereofy, pro-
vide an excellent way to describe three tier symmetry. Glue tier and symmetric components
for each orbit (of the group acting on the components of the system) can be represented by
a Reo circuit.

In our approach, we are going to use CARML modules to express the symmetric com-
ponents and define a number of predefined symmetry scenario. Each symmetry scenario,
can have its own restrictions on the components that can be used in that scenario and
would provide a specific circuitry for the glue tier. In designing a system then, the designer
would simply describe the system specifying as a component of the system an instance of
some symmetry scenario with some specific component (CARML module) as the symmetric
component and the number of its copies in that specific instance of the scenario in question.

As an example, consider the symmetry scenario in which the CARML module that can
be used as the symmetric must have a single input and and a single output port. The
symmetry scenario then simply distributes the input it receives (on its single route source
node) to the input ports of the instance of the symmetric component and gathers their
outputs and sends them out (using its single replicate sink node). The system designer can
then simply specify that it needs an instance of this scenario having n copies of a channel
(e.g., FIFO channel).

Taking this approach, we only need to make sure that for each scenario, the circuitry
provided by that scenario (as the glue tier) is in such a way that preserves three tier sym-
metry – the group H, as defined in Theorem 7.8 DF-acts on it. Furthermore, based on the
specific circuitry of the each scenario and the restriction that it puts on the components that
can be used as symmetric components, we can use an approach tailored to that scenario to
do an efficient reduction.

In the implementation that was done as part of this thesis, we have considered four
exemplary and basic, yet practical, scenarios of symmetry. For each of these symmetry
scenario, we have provided a suitable reduction method which given an instance of that
symmetry scenario, produces a CARML module equivalent to the result of reduction of that
instance. In this chapter, we are going to discuss these scenarios and the method developed
for their reduction and present some statistics to show effectiveness of taking this approach
for Vereofy.

The approach of producing the the result of reduction on the textual level (producing
the CARML module of the reduced system in our approach) has been widely practiced and
together with the notion of generic representatives (the idea of counting the number of sym-
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metric components that are in each of the states of one of them to represent the state space
of the reduced system), have been shown (see [ET03]) to be more effective in case of sym-
bolic model checking (than the traditional approach of encoding and integrating orbits into
BDDS, see [CEFJ96] as an example). This more effectiveness has also been the motivating
reason here for taking this approach, as Vereofy internally uses symbolic model checking.
For further information on this approach and specifically on the idea of generic represen-
tatives and their other applications see [ET03, BDE+12, DMP07, EW03, MDC06, DM06,
KNP06].

Before delving into the specifics of these scenarios, we will first discuss flattening of
CARML modules (for the components provided as symmetric components) and discuss the
general approach to producing the reduced CARML module for these scenarios.

8.1 Flattening CARML modules
As we saw in Section 4.2, in CARML, the state space of the constraint automata is rep-
resented with a number of state variables each of which has an associated type which
specifies the values that variable can have. For the purpose of symmetry reduction, we are
going to use the approach discussed in Section 6.2, i.e., we are going to count the number of
symmetric component in each state. Therefore, we need to first come up with an approach
to directly enumerate different states, in order to be able to consider, for each state, the
number of components in that state.

Therefore, here, we present the approach called flattening which flattens the complex
structure of variables of a CARML module. During this process, if a CARML module has
n states, the states of the CARML module are translated to {0, . . . , n − 1}. Naturally, to
flatten states of a CARML module, its specification of atomic propositions and transitions
which are based on conditions stated over state variables. Here we will first describe the
process of flattening state variables and atomic propositions and then discuss how transi-
tions can be flattened. In each step of the way, we use parts of the CARML module fifo
from Subsection 4.2.1 as examples.

The flattening of CARML modules has been implemented in Vereofy on the level of
parse tree of the CARML module and supports the whole syntax of CARML (as specified in
[BKKa])1.

8.1.1 Flattening State Variables and Atomic Propositions
To flatten state variables, we follow an inductive approach. We define flattening for inte-
ger range and enumeration types and define flattening for structs and tagged unions by
assuming that their elements have already been flattened.

Flattening Integer Range For variables of integer range type, int(a,b), we consider
the flattened states 0, . . . , (b− a) where 0 corresponds to a and (b− a) corresponds to b.

Flattening Enumeration For variables of enumeration type, enum {id 1,...,id n},
we consider the flattened states 0, . . . , (n − 1) where 0 corresponds to id 1 and (n − 1) cor-
responds to id n.

1Except for function calls (see [BKKa] for more details) and transition labels (a feature not present in release
versions or Vereofy manual yet).
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Flattening Struct For variables of struct type,

struct {itype 1: id 1; ... type n: id n;}

we consider the flattened states 0, . . . , ((
∏i=n
i=1 ci) − 1), where, i-th element is flattened to

0, . . . , (ci − 1). In this encoding, the configuration where i-th element is in state 0 ≤ si ≤ ci,
is computed as:

n∑
i=1

siνi−2

where,

νi =

i∏
j=1

ci

And given a state 0 ≤ m ≤ ((
∏i=n
i=1 ci)− 1) of the struct, the state of the i− th element, si can

be computed as:
si = div(rem(m, νi−1), νi−2)

where, div and rem are integer quotient and remainder functions respectively.

Flattening tagged union For variables of tagged union type,

tagged union {itype 1: id 1; ... type n: id n;}

we consider the flattened states 0, . . . , ((
∑i=n
i=1 ci) − 1), where, i-th element is flattened to

0, . . . , (ci − 1). In this encoding, the configuration where the union has a value of the i-th
element which is in state 0 ≤ si ≤ ci, is computed as:

si + µi−2

where,

µi =

i∑
j=1

ci

And given a state 0 ≤ m ≤ ((
∑i=n
i=1 ci)−1) of the tagged union, the state of the i−th element,

si, can be computed as:
si = m− µi−2

In this case, if the computed si is ci ≤ si or si < 0, we know that m did not have a value of
i-th element to begin with.

Flattening State Space For the whole state space of the CARML module, on the other
hand, we simply treat it in the same fashion as a struct.

Initial States in Flattened CARML Modules The initial values for state variables
are handled similar to the case of conditions specified for atomic propositions in CARML
modules and therefore, to represent the set of initial states of the flattened CARML module,
we use a set of flattened states.

As an example consider the states of the CARML module fifo from Subsection 4.2.1,

var: int(0,1) X;
var: enum{empty, full} Y := empty;

69



flattened state X Y
0 0 empty
1 1 empty
2 0 full
3 1 full

Table 8.1: Flattened states of CARML module fifo.

The result of flattening the state space of fifo is illustrated in Table 8.1. Here the set of
initial flattened states is {0, 1}.

Flattening Atomic Propositions As flattening of atomic propositions, we consider a set
of flattened states to represent them, namely the set of states where the conditions of that
atomic proposition holds.

As an example, consider the atomic proposition EMPTY defined as follows:

ap: EMPTY <=> Y == empty;

For this atomic proposition, we will have the set {0, 1} of flattened atomic propositions (see
Table 8.1).

8.1.2 Flattening Transitions
For flattening transitions, we should consider their three parts, i.e., state guards, IO guards
and state assignments. For flattening of each transition, we should go over all flattened
states of the CARML module they belong to. For each flattened state, we should check if
the state and IO guards of that transition hold. If so, we should use state assignments to
update that state and get another flattened state (which would be the target of the flattened
transition). Therefore, since we are considering different flattened states and the fact val-
ues of data-flow locations can be used in state assignments, we can have multiple flattened
transitions for a single transition of a CARML module.

State Guards For state guards, assuming we are considering firing of that transition
from the flattened state st, we can simply extract the state variables mentioned in that
state guard from st and use them to evaluate expressions and check comparisons. If a state
guard holds for st, we simply go on and check the next one.

IO Guards For IO guards, assuming we are considering firing of the transition to which
that IO guard belongs from the flattened state st, and assuming that checking of all state
guards for st was successful, we consider two cases, the case where the IO guard only
involves constant values, port activations and port values and the case where the IO guard
involves state variables of the CARML module. For those IO guards that only involve
constant values, port activations and port values, we simply add them to the IO guards of
the flattened transitions as they do not depend on the states of CARML module. On the
other hand, if an IO guard involves some state variables, before adding it to the IO guards
of the flattened transition, the value of those state variables should be replaced with their
value extracted from st which will now be considered as a constant value.
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State Assignments For state assignments, assuming we are considering firing of the
transition for a flattened state st, we consider the set S0 = {st}, then for i-th state assign-
ment we compute the set of flattened states Si that are the result of updating flattened
states in Si−1 with respect to the i-th state assignment. In other words, assuming the
transition has n state assignments, we start with S0 = {st} and after applying first state
assignment we get S1 and repeat this process until we have Sn by applying n-th state as-
signment to the set of flattened states Sn−1. The final result, i.e., the set of flattened states
that can be the results of applying state assignments of the transition to st, is the set Sn.

The reason for considering sets of flattened states is due to the fact that evaluating an
expression for assignment can result in multiple values. This would happen when we have
an expression that involves the value of a port. Since we do not know the value of that port
a priori, we should consider all different values that are possible for that port (all members
of data type Data). As an example, if we have an assignment like Y := #A in the first
transition of CARML module fifo from Subsection 4.2.1, we should consider two cases
(assuming Data is int(0,1)), the case where value of A is 0 and the case where value of A
is 1. For each case on the hand, we should add the IO guard that assures the value of A is
the one that we have chosen (0 or 1) to the IO guards of the flattened transition.

On the other hand, simple computation of new values according to state assignments is
not enough. This is due to the fact that there can be inconsistent state assignments. It can
happen by direct or indirect (in case a member of struct or tagged union is assigned a value
and subsequently the whole struct or tagged union is assigned a value) overwriting of some
value. Vereofy itself ignores overwriting of state variables by state assignments as long as
they are consistent. Therefore, after computing flattened transitions, we will consider their
state assignments as equalities (handling them as state of IO guards, which can again add
some IO guards to the flattened transitions) and make sure that the target states of the
flattened states are consistent with all state assignments (which in turn makes sure state
assignments are consistent).

As an example of transition flattening consider the transitions of CARML module fifo
from Subsection 4.2.1.

Y == empty -[{A}]-> Y := full & X := #A;
Y == full -[{B} & #B == X]-> Y := empty;

For the first transition, state guard ‘Y == empty’ is satisfied in flattened state 0. The IO
guard ‘{A}’, does not involve state variables and is thus simply added to the IO guards of
the flattened transitions. For state assignments, if we consider flattened state S0 = {0}
and update flattened states with respect to state assignment ‘Y := full’, we get the set
of flattened states S1 = {2}. Afterwards, considering state assignment ‘X := #A’, we get
the set of flattened states S2 = {2, 3} and we will have to add IO guard ‘#A == 0’ for the
flattened state 2 ∈ S2 and IO guard ‘#A == 1’ for the flattened state 3 ∈ S2. This process
results in two flattened transitions:

0 -[{A} & #A == 0]-> 2
0 -[{A} & #A == 1]-> 3

Yet, we have go through the state assignments once again and assuming there are equali-
ties confirm state assignments once more. This process, in case of the two flattened transi-
tions above, introduces new IO guards and results in:
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0 -[{A} & #A == 0 & #A == 0]-> 2
0 -[{A} & #A == 1 & #A == 1]-> 3

Doing the same process for all transitions of CARML module fifo, we will, altogether, get
the following transitions:

0 -[{A} & #A == 0 & #A == 0]-> 2
0 -[{A} & #A == 1 & #A == 1]-> 3
1 -[{A} & #A == 0 & #A == 0]-> 2
1 -[{A} & #A == 1 & #A == 1]-> 3
2 -[{B} & #B == 0]-> 0
3 -[{B} & #B == 1]-> 1

Please note that the second phase of checking state assignments for the second transition
does not introduce any auxiliary IO guards, as the single assignment there does not involve
port values.

As it is evident in the example, the process of flattening of transitions might introduce
repetitive IO guards or might introduce inconsistent IO guards (it did not happen in our
example). Therefore, we have added a few levels of syntactic simplification of IO guards
as well as satisfiability checking for them to make sure no inconsistent transitions are
produced. After going through simplification and satisfiability checking procedures, the
flattened transitions of the CARML module fifo are as follows:

0 -[{A} & #A == 0]-> 2
0 -[{A} & #A == 1]-> 3
1 -[{A} & #A == 0]-> 2
1 -[{A} & #A == 1]-> 3
2 -[{B} & #B == 0]-> 0
3 -[{B} & #B == 1]-> 1

8.2 Reduction
As we explained earlier, we are going to use Reo circuits to isolate the glue tier around
each set of symmetric components (each orbit of the group acting on the components) and
use different scenarios as template for the glue tier. Here, we are going to have a general
discussion of reduction of such symmetry scenarios (glue and symmetric components). In
particular, we are going to discuss how the state space of the reduced system looks like
and how atomic propositions of the reduced system and its transitions are represented in
the CARML module of reduced system. We assume that the ports of the reduced system
(according to the circuitry of the glue tier of the scenario) has been taken care of.

8.2.1 State Variables and Atomic Propositions of the Result of Re-
duction

State Variables Here, we assume that the state space of the glue tier has been taken
care of and focus on the state space of symmetric components. Assuming we have k copies
of a component for which the flattened CARML module has n states, 0 . . . (n − 1), we will
consider n variables var 0, . . . , var (n− 1) each with the type int(0,k). Basically, we
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are counting the number of symmetric components in each of the n states. For each of the
n states, there can be between 0 (no component is in that state) to k (all components are
in that state). We can easily see that this is an overstatement and there are many states
represented this way that are not valid states, e.g., a state where all components are in
state i and they are also all in state j for 0 ≤ i < j ≤ (n− 1).

We solve this problem by specifying the initial state of the CARML module in such a
way that it is a valid state, i.e., some of the components in different states is exactly k, and
taking transitions in such a way that when firing in a valid state, always lead to another
valid state. Taking this approach results in having all invalid states unreachable and thus
neutral to the behavior of the constraint automaton underlying the CARML module of the
result of the reduction.

On the other hand, in specifying initial states of the reduced system, we have to consider
a restriction on the CARML module being considered as the symmetric component. This is
due to the fact that in specification of CARML modules each state variable must either be
initialized to a single value or it must be left open (it can have any initial value). If the sym-
metric component has more that one initial state, however, say states 0 ≤ t0 < t1 ≤ (n− 1),
the initial state of the result of reduction – apart from the specification of initial states of
the glue tier–, should be in any way that we have the condition var t0 + var t1 == k satis-
fied and we have for any i such that we have i 6= t0 and i 6= t1, var i == 0. Unfortunately,
this is not expressible using the current approach for specifying CARML modules – as a
state variable either should have a single initial state or be entirely open.

Therefore, in the implementation of symmetry reduction for this thesis, we have put the
restriction that CARML modules used as symmetric components should have a single initial
state. Yet, the flattening system correctly detects initial states of the provided CARML
module and simply generates an error if there are more that one of them. In case facility
is provided for specification of initial states as conditions – similar to the approach used for
atomic propositions – CARML modules with more than one initial states can be considered
as symmetric components with minimal effort.

As an example consider a variation of the CARML module fifo where the state vari-
able X also has an initial state 0. Assume that we have to reduce a system with k copies
of such CARML module as symmetric component. Then, the state variables of the result-
ing reduced system (only the state variables corresponding to the symmetric components)
would be as follows:

var: int(0,k) var 0 := k;
var: int(0,k) var 1 := 0;
var: int(0,k) var 2 := 0;
var: int(0,k) var 3 := 0;

Atomic Propositions For the case of the atomic propositions of the result of reduction,
as we discussed in Section 6.2, we are going to represent them by counting the number
of components that have those atomic propositions. Therefore, if there are k copies of the
symmetric components, for each atomic proposition aprop, we are going to consider k + 1
atomic properties, to represent k + 1 cases where there are i symmetric components that
have atomic proposition aprop (atomic proposition aprop cnt i) for 0 ≤ i ≤ k.

Atomic propositions of the flattened CARML modules, similar to the case of initial states,
are simply sets of flattened states. Yet, to specify atomic propositions, we can – and should
– use conditions over state variables of the CARML module and therefore, we do not have
the aforementioned problem that we had with the case of initial states. Hence, assuming
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there are k copies of the CARML module fifo considered symmetric, the atomic proposi-
tion EMPTY will be represented by the following atomic propositions in the CARML module
of the result of reduction.

ap: EMPTY cnt 0 <=> var 0 + var 1 == 0;
ap: EMPTY cnt 1 <=> var 0 + var 1 == 1;

...
ap: EMPTY cnt k <=> var 0 + var 1 == k;

8.2.2 Transitions of the Result of Reduction
Transitions of the reduced system, should be constructed in such a way that is compatible
with the states of the reduced system. Here, we are going to discuss the way the transitions
of the flattened CARML module considered as the symmetric component adapted to state
variables of the CARML module of the result of reduction, explained earlier. Similar to the
case of state variables of the result of reduction, here, we assume that the transitions of the
glue tier are taken care of.

In case a number of (one or more) transitions (of the glue tier or of the flattened CARML
module of the symmetric component) have to be firing simultaneously, it is done in the usual
way, i.e., their state guards, IO guards and state assignments are simply combined. Please
note that in specification of CARML modules activations of ports (data-flow locations) are
part of the IO guards and therefore, we do not need to consider that the activation of data-
flow locations of transitions firing simultaneously are compatible – if they are not compati-
ble the IO guard of the result will simply be unsatisfiable and hence neglected. Therefore,
here, we simply ignore IO guards and focus on dealing with state guards and IO guards of
the transitions resulting from simultaneous firing of a number of (one or more) transitions
of the flattened CARML module considered as symmetric component.

Here, we assume there are l transitions from a flattened CARML module with flatten
states {0, . . . , n} of the form ‘st i 1 -[ ]-> st i 2’, for 0 ≤ i ≤ (l−1) that should be firing
at the same time. To construct the state guards and state assignments for this transition,
we compute two values consumedj and producedj for each 0 ≤ j ≤ n. For j-th flattened
state, consumedj and producedj are, respectively, the number of times j-th flattened state
have been mentioned as the source state and the number of times j-th flattened state have
been mentioned as a target flattened state in these l transitions being considered to be
firing at the same time.

Based on these two values (consumedj and producedj) for each flattened states, we can
simply compute the state guards and state assignments. For each j for which we have
consumedj 6= 0, we add a state guard

‘var j >= consumedj ’

and for each j for which we have producedj − consumedj 6= 0, we add the state assignment

‘var j := var j + (producedj − consumedj)’

A simple consideration of the way these state guards and state assignments have been
chosen, one can simply see, that the sum

∑n
i=0 var i before and after transitions formed as

described above is always the same. Hence, if the constraint automaton corresponding to
CARML module of the result of reduction is in a valid state before firing of such a transition
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is in a valid state, it will also be in a valid (the sum of var i state variables is the same as
the number of copies of the symmetric component) state after its firing as well. Hence, we
discussed above, we only need to have the initial state be a valid state. This would cause
all invalid states be unreachable and therefore, ineffective in the behavior of the constraint
automaton corresponding to the CARML module of the result of reduction.

As an example, consider the following three transitions (IO guards are eliminated):

1. 0 -[ ]-> 1;
2. 1 -[ ]-> 0;
3. 0 -[ ]-> 0;

Different combinations of these transitions are as follows:

1: var 0 >= 1 -[ ]-> var 1 := var 1+1;
2: var 1 >= 1 -[ ]-> var 0 := var 0+1;
3: var 0 >= 1 -[ ]-> ;
1,2: var 0 >= 1 & var 1 >= 1 -[ ]-> ;
1,3: var 0 >= 2 -[ ]-> var 0 := var 0-1 & var 1 := var 1+1;
2,3: var 0 >= 1 & var 1 >= 1 -[ ]->

var 0 := var 0+1 & var 1 := var 1-1;
1,2,3: var 0 >= 2 & var 1 >= 1 -[ ]-> ;

8.3 Symmetry Scenarios
Symmetry scenarios, as discussed earlier, are specific conditions on the component that can
be considered symmetric and a template circuitry that describes the layout of glue tier for
that scenario. Here, we are going to consider four exemplary symmetry scenarios to show
how the technique of symmetry reduction developed in this thesis can be effectively used
in practice. For each scenario, we describe the restrictions on the components that can be
considered symmetric and present the relevant circuitry, discuss the reduction approach for
them and finally show some statistics and comparisons between the original system and the
result of reduction.

The RSL and CARML code used to provide the circuitry of these scenarios is collected in
a library called ‘symmetry’ library, which can be used to describe symmetries. The code
of this library is available in Appendix A. There each scenario is a Reo circuit named
sym scenario i<k,T> where i is the number of symmetry scenario, k is the number of
copies of symmetric component T.

In the version of the Vereofy where the symmetry reduction technique has been imple-
mented, specifying the key --process-symmetries="filename", results in the Vereofy
looking for Reo circuits of the type sym scenario i<k,T> in the whole system and to write
the result of their reduction as a CARML module with the name sym scen i red k T to the
file specified by filename.

As we discussed earlier, Vereofy uses a symbolic approach to model checking. It, in
particular, uses BDDs (Binary Decision Diagrams) to represent model and do model check-
ing. The size of BDDs heavily depends on the order binary variables are considered and
in some cases there can be an exponential difference between different representations of
the same binary function with different ordering of binary variables. On the other hand,
finding an ordering that minimizes the size of representation of the function in terms of
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BDDs is CoNP-Complete ([Bry86]). Therefore, vereofy always takes a fixed predetermined
approach to ordering binary variables. Yet, it provides the facility for the user to ask for
a dynamic reordering which randomly reorders the variables through construction of the
BDD representing the constraint automaton to get a smaller BDD. Therefore, here, in the
experimental results, we have recorded the BDD size of the model with Vereofy’s predefined
ordering as well as the size of BDD when it is asked to reorder the variables.

We have experimented with these four scenarios and have presented their results. In
order to have a comparison, we have recorded the size of BDD with and without dynamic
reordering, number of reachable states in the model and the time it takes for the model,
before and after reduction. In addition, we provide the recorded time and number of classes
for each bisimulation test (between the result of the reduction and the original system).

8.3.1 Scenario 1
In this symmetry scenario, there are two restrictions on the CARML module that can be
considered as symmetric component. First, it should have at least one port (in or out) and
second, it may not have any epsilon transitions, i.e., transitions where there are no ports
active.

8.3.1.1 Circuitry

The Reo circuit of this scenario is depicted in Figure 8.1. This figure represents the circuitry
of symmetry scenarios 1 and 3, where there are k copies of the symmetric component which
has l source nodes and m sink nodes. In this figure, T1 . . . , Tk are the k copies of symmetric
component and AC1 . . . , ACk are circuits of type

ACTIVITY CHECKER<c[i].sources + c[i].sinks>

The circuit ACTIVITY CHECKER<k> is a circuit with k source nodes and a single sink node
and for it, there is an activity (with a non-deterministically chosen value) on the sink node if
there is at least one source node active. The Reader INF is a builtin component of Vereofy’s
builtin library. It has a single source node through which, at each transition reads a value
(there is no restriction on the value read).

In this figure, the small solid circles (not to be mistaken with replicate nodes which are
bigger) represent channel ends and the lines that connect them to nodes (with arrows that
should not be mistaken with the solid triangle of the synchronous channels) mean that
those channel ends are parts of these nodes. If the arrow goes from the channel end to
the node, that channel end is a sink channel end and if the arrow goes from the node to
the channel end, that channel end is a source channel end. In practice, all these channel
ends are combined in the respective nodes they are connected to via arrows, yet represent-
ing them all with a single node (a solid circle) would render the figure rather difficult to
understand.

In the circuitry represented in Figure 8.1, all source and sink nodes of each instance
of symmetric component are connected to a unique instance of ACTIVITY CHECKER circuit.
Which means, the sink node of the ACTIVITY CHECKER instance corresponding to each
instance of the symmetric component will be active if at least one of the source and sink
nodes of that instance of symmetric component is active. All sink nodes of all instances of
ACTIVITY CHECKER are in turn connected to a single node. This node, in turn is connected
to the source node of the READER INF. This means, at each transition of the whole system,
there is exactly one instance of the symmetric component making a non-epsilon transition.
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Figure 8.1: The Reo circuit corresponding to symmetry scenarios 1 and 3. For more details
see 8.3.1.1.
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MODULE myfifo1 {
in: A;
out: B;

var: int(0,1) X := 0;
var: enum{empty, full} Y := empty;

Y == empty -[{A}]-> Y := full & X := #A;
Y == full -[{B} & #B == X]-> Y := empty;

}

Figure 8.2: The CARML code used for experimental purposes pertaining to symmetry sce-
narios 1 and 2.

Copies BDD nodes Dynamic Reorder Reachable States Build Time
2 78 61 16 0.006s
4 267 189 256 0.006s

10 1536 626 1.04858e+6 0.019s
20 4971 1913 1.09951e+12 0.179s
30 13306 1583 1.15292e+18 0.492s
50 36676 2659 1.26765e+30 2.407s
100 145851 5358 1.60694e+60 20s
150 327526 – 2.03704e+90 418s
500 – – – –

2000 – – – –

Table 8.2: Experimental Results of Symmetry Scenario 1, Before Reduction.

This is due to the structure of the glue tier, as it does not have any transition that does not
involve data-flow through symmetric components.

On the other hand, we had the restriction that only those components can be considered
as symmetric components of this scenario that have no epsilon transitions. Therefore, in
practice, in this scenario, in any transition, there is exactly one instance of the symmetric
component making a transition.

Furthermore, a moment’s thought on the simple structure of the glue tier of this sce-
nario, one can see that it does indeed satisfy the conditions for three tier symmetry. In
other words, in any transition of the glue tier, any value that is accepted on the data-flow
locations shared with symmetric components is symmetric with respect to the order of in-
stances of the symmetric component.

8.3.1.2 Reduction

The reduction procedure for this scenario is pretty straightforward, as there is exactly one
instance of the symmetric component making a transition at a time. On the other hand, the
glue tier has a single state (each of its components have a single state) so we do not need
to explicitly represent it. The ports of the CARML module of the reduction can be simply
represented with the ports of the symmetric components, as they are each represented by
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Copies Reduction Time BDD nodes Dynamic Reorder Reachable States Build Time
2 0.002s 530 97 10 0.004s
4 0.001s 2187 180 35 0.005s
10 0.001s 4218 448 286 0.007s
20 0.001s 4093 479 1771 0.006s
30 0.001s 5202 411 5456 0.005s
50 0.001s 6186 617 23426 0.005s

100 0.001s 6061 3679 17851 0.006s
150 0.002s 8154 1079 585276 0.006s
500 0.002s 8029 1887 2.10843e+7 0.007s

2000 0.007s 9445 10386 1.33734e+9 0.010s

Table 8.3: Experimental Results of Symmetry Scenario 1, After Reduction.

Copies Time Number of Classes
2 0.005s 6
4 0.02s 15

10 0.776s 66
20 40s 231
30 783s 496
50 – –
150 – –
500 – –

2000 – –

Table 8.4: Experimental Results of Symmetry Scenario 1, Bisimulation.
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a source or sink node in the circuit of the scenario. Therefore, in the CARML module of the
result of reduction, we simply need to put ports of the symmetric components and consider
its flattened states, its atomic propositions and for transitions of the CARML module of the
result of reduction, consider cases where there is exactly one of its transitions being fired.

For experimentation with this symmetry scenario, we have used different number of
copies of the CARML module presented in Figure 8.2. Tables 8.2, Tables 8.3 and Ta-
bles 8.4, illustrate statistics pertaining to before, after and bisimulation statistics for dif-
ferent copies, respectively. For further discussions on statistics presented for this scenario,
as well as other scenarios, refer to Section 8.4.

8.3.2 Scenario 2
Symmetry scenario 2, restricts the CARML modules that can be used with this scenario
as the symmetric component the same way as scenario 1. Namely, such a CARML module
should have at least one port (in or out) and it should not have any epsilon transitions,
i.e., transitions where there are no ports active.

8.3.2.1 Circuitry

The circuitry of this scenario, depicted in Figure 8.3, is very similar to that of scenario one,
explained in 8.3.1.1. In this circuitry, instead of connecting all source and sink nodes of
each symmetric component to an instance of ACTIVITY CHECKER, there are two instance
of ACTIVITY CHECKER for each instance of symmetric component. For each instance of
symmetric component, its source nodes are connected to a unique instance of ACTIVITY
CHECKER while its sinks are connected to another unique instance of ACTIVITY CHECKER.
All instances of ACTIVITY CHECKER that gather source nodes of symmetric components
have their single sink node connected to a unique node which in turn is connected to the
source node of an instance of READER INF. All instances of ACTIVITY CHECKER that gather
sink nodes of symmetric components have their single sink node treated similarly, i.e., they
are connected to a unique node that is connected to a READER INF.

Therefore, in practice, there can be at most one instance of symmetric component mak-
ing a transition that involves its source nodes and at most one instance that making a
transition that involves its sink nodes – it can be the case that these two are the same
instance making a transition involving both its source nodes and sink nodes.

On the other hand, we have that the CARML module considered as symmetric com-
ponent must have no epsilon transitions. As a result, in practice, in any transition of the
system, there can be one instance of symmetric component making a transition or there can
be two of them, one making a transition involving its source nodes and the other making a
transition involving its sink channel ends.

In addition, we can easily see, that the glue tier considered for this scenario satisfies the
conditions for a glue that supports three tier symmetry.

8.3.2.2 Reduction

For the reduction technique for this symmetry scenario, similarly to scenario one, we have
to consider ports of the CARML module considered as symmetric component as the ports of
the CARML module of the result of reduction. Furthermore, we have to consider states and
atomic propositions as explained in Sub-section 8.2.1. For the case of transitions, we have
to consider all transitions of the CARML module considered as symmetric component, as in
scenario 1.
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Figure 8.3: The Reo circuit corresponding to symmetry scenarios 2 and 4. For more details
see 8.3.2.1.
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Moreover, we have to consider cases where there are two of them running in parallel.
Yet, we have to take care of the IO guards of such transitions. To do so, we will rename the
names of ports in IO guards of the two transitions being considered as running in paral-
lel. Then, assume that in one of them the ports corresponding to renaming of in ports are
inactive (by adding IO guards specifying such inactivities) and assume that the ports corre-
sponding to the result of renaming of out ports in the other transition are inactive. Then,
make sure that such a transition as the result of running these two transitions in parallel
would have a satisfiable IO guard (by conjoining IO guards and checking its satisfiability).
In case the result is satisfiable (these two transitions can indeed run in parallel), the ports
that where assumed to be inactive in both transitions are hidden from the conjunction (the
same process as used in hiding data-flow locations of the constraint automata). The result-
ing IO guard, then, after having its ports renamed back to the original names is considered
as the IO guard of having those two transitions run in parallel.

As an example, consider the first and second transitions of CARML module myfifo1
depicted in Figure 8.2. We will first rename the IO guards of these transitions accordingly,
which would result in them to be, respectively, as follows:

{A1}
{B2} & #B2 == X

In this renaming, in the IO guard of the first transition, we have A is renamed to A1 and B
is renamed to B1 and in the IO guard of the second transition, we have A is renamed to A2
and B is renamed to B2. In this case, before continuing, we have to expand the port activity
constraints, which would result in:

A1 & !B1
B2 & #B2 == X & B1

Next, we will make B1 in the first one and A2 in the second one in active. Which results in:

A1 & !B1 & !B1
B2 & #B2 == X & !A2 & !A2

Then, we check if their conjunction,

A1 & !B1 & !B1 & B2 & #B2 == X & !A2 & !A2

is satisfiable. In this case it is, but, had we chosen to make A1 inactive in the first one and
B2 in the second one, their conjunction (and even individually), unsatisfiable. Afterwards,
we hide B1 and A2 from the conjunction which results in:

A1 & B2 & #B2 == X

Afterwards, we rename the ports back and we will have:

A & B & #B == X

For experimentation with this symmetry scenario, we have used different number of
copies of the CARML module presented in Figure 8.2. Tables 8.5, Tables 8.6 and Ta-
bles 8.7, illustrate statistics pertaining to before, after and bisimulation statistics for dif-
ferent copies, respectively. For further discussions on statistics presented for this scenario,
as well as other scenarios, refer to Section 8.4.
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Copies BDD nodes Dynamic Reorder Reachable States Build Time
2 168 111 16 0.005s
4 855 445 256 0.008s

10 10083 1155 1.04858e+6 0.024s
20 75223 2413 1.09951e+12 0.336s
30 249363 2740 1.15292e+18 1.569s
50 1140643 4674 1.26765e+30 16s
100 – – – –
150 – – – –
500 – – – –

2000 – – – –

Table 8.5: Experimental Results of Symmetry Scenario 2, Before Reduction.

Copies Reduction Time BDD nodes Dynamic Reorder Reachable States Build Time
2 0.002s 950 144 10 0.006s
4 0.002s 4185 271 35 0.008s
10 0.002s 10030 434 286 0.007s
20 0.002s 8250 593 1771 0.010s
30 0.002s 12186 663 5456 0.010s
50 0.002s 14342 798 23426 0.009s

100 0.003s 12562 951 176851 0.013s
150 0.009s 18654 1866 585276 0.09s
500 0.003s 16874 1399 2.10843e+07 0.010s

2000 0.002s 19602 1658 1.33734e+09 0.014s

Table 8.6: Experimental Results of Symmetry Scenario 2, After Reduction.

Copies Time Number of Classes
2 0.003s 6
4 0.03s 15

10 1.727s 66
20 153s 231
30 4134s 496
50 – –
100 – –
150 – –
500 – –

2000 – –

Table 8.7: Experimental Results of Symmetry Scenario 2, Bisimulation.
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MODULE myfifo2 {
in: A;
out: B;

var: int(0,1) X := 0;
var: enum{empty, full} Y := empty;

Y == empty -[{A}]-> Y := full & X := #A;
Y == full -[{B} & #B == X]-> Y := empty;
Y == full -[ epsilon ]-> Y := empty;

}

Figure 8.4: The CARML code used for experimental purposes pertaining to symmetry sce-
narios 3 and 4.

Copies BDD nodes Dynamic Reorder Reachable States Build Time
2 85 75 16 0.005s
4 272 217 256 0.005s

10 1433 589 1.04858e+06 0.028s
20 5368 1449 1.09951e+12 0.028s
30 11803 1556 1.15292e+18 0.58s

Table 8.8: Experimental Results of Symmetry Scenario 3, Before Reduction.

8.3.3 Scenario 3
This scenario, is very similar to the first scenario, Section 8.3.1. The scenarios circuitry is
exactly the same as scenario 1 and the only difference is in the fact that the CARML module
of the symmetric component may have epsilon transitions.

For reduction technique used for this scenario, we simply follow the technique used
for scenario 1. Afterwards, for each transition, we assume that there are at most k − 1
other epsilon transitions running in parallel with it, where k is the number of copies of the
symmetric component. As a result, we will have an exponential blow up in the size of the
CARML module of the result of reduction.

For experimentation with this symmetry scenario, we have used different number of
copies of the CARML module presented in Figure 8.4. Tables 8.8, Tables 8.9 and Ta-
bles 8.10, illustrate statistics pertaining to before, after and bisimulation statistics for dif-
ferent copies, respectively. For further discussions on statistics presented for this scenario,
as well as other scenarios, refer to Section 8.4.

8.3.4 Scenario 4
This scenario, is very similar to the second scenario, Section 8.3.2. The scenarios circuitry
is exactly the same as scenario 2 and the only difference is in the fact that the CARML
module of the symmetric component may have epsilon transitions.

For reduction technique used for this scenario, we simply follow the technique used for
scenario 2. Afterwards, for each transition produced there, we assume that there are at
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Copies Red Time File Size BDD nodes Dyn Reorder Reach St Build Time
2 0.001s 2KB 1024 156 10 0.008s
4 0.002s 7KB 7492 738 35 0.008s
10 0.005s 46KB 27820 2041 35 3.310s
20 0.022s 187KB 47383 12727 1771 1.139s
30 0.052s 426KB 46899 16904 5456 3.489s

Table 8.9: Experimental Results of Symmetry Scenario 3, After Reduction.

Copies Time Number of Classes
2 0.008s 6
4 0.054s 15

10 2.767s 66
20 250s 231
30 – –

Table 8.10: Experimental Results of Symmetry Scenario 3, Bisimulation.

most k − 1 (in case the transition in question is from a single instance of symmetric compo-
nents) or k − 2 (in case the transition in question is from the result of two transitions each
from an instance of symmetric components running in parallel) other epsilon transitions
running in parallel with it, where k is the number of copies of the symmetric component.
As a result, we will have an exponential blow up in the size of the CARML module of the
result of reduction.

For experimentation with this symmetry scenario, we have used different number of
copies of the CARML module presented in Figure 8.4. Tables 8.11, Tables 8.12 and Ta-
bles 8.13, illustrate statistics pertaining to before, after and bisimulation statistics for dif-
ferent copies, respectively. For further discussions on statistics presented for this scenario,
as well as other scenarios, refer to Section 8.4.

8.4 Discussion

Before going into details of comparison and contrast of the experimental results, we should
mention that all these results were obtained on author’s personal computer, which is a
MacBook Pro with 2.8 GHz intel Core i7 CPU and 4 GB of DDR3 ram running Mac OS X

Copies BDD nodes Dynamic Reorder Reachable States Build Time
2 183 114 16 0.005s
4 833 368 256 0.006s

10 9157 1003 1.04858e+06 0.006s
20 66337 2584 1.09951e+12 0.835s

Table 8.11: Experimental Results of Symmetry Scenario 4, Before Reduction.
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Copies Red Time File Size BDD nodes Dyn Reorder Reach St Build Time
2 0.001s 4KB 1350 170 10 0.008s
4 0.004s 21KB 10562 755 35 0.091s
10 0.031s 176KB 38898 2454 286 0.091s
20 0.090s 783KB – – – –

Table 8.12: Experimental Results of Symmetry Scenario 4, After Reduction.

Copies Time Number of Classes
2 0.004s 6
4 0.062s 15

10 5.667s 66
20 – –

Table 8.13: Experimental Results of Symmetry Scenario 4, Bisimulation.

10.8.3. Furthermore, the results were obtained using the release2 mode compilation of the
experimental version of Vereofy model checking tool.

The columns that are missing in experimental results are due to the fact that we were
unable to perform them as they took longer than they could be waited for. Computations are
interrupted after they took more than about half an hour to an hour and had not yielded any
results. Furthermore, please note that times specified here are build times of the system
and other operations, e.g., computing the number of reachable states, usually took longer
than building.

In addition, in case of scenarios 3 and 4, since, as it is noticeable in tables, produced files
containing result of reduction grew exponentially, we were not able to go beyond 20 or 30
copies as Vereofy’s parser would take considerably long time to parse the files. This is an
intrinsic shortcoming of the parser module of Vereofy which takes exponentially long time
to parse a file proportional to its size. There is size limit at about 300 to 400 KB, where
parsing itself takes more between half an hour to an hour and after that it is much longer
– we have not been able to get it to parse files of size 600 KB or larger.

Results of First and Second Scenarios The results of these two scenarios follow al-
most the same trends. In all cases, the number of reachable states, as expected, is consid-
erably smaller than that of the original states. This is so much that for the case with 2000
copies, we have a difference of the order of 1021. Similarly, in cases large enough, more than
50 copies, we see a huge difference between the time it takes for the original system’s BDD
to be built and the time it takes for the reduced system. It is so much that for the cases
with more than 150 copies in case of the first scenario (even in this case reordering took too
long) and cases with more than 50 copies in case of the second scenario was not feasible,
as they took too long. Yet, for the reduced version, even with 2000 copies we have 0.010
seconds and 0.014 seconds for first and second scenarios, respectively.

For the case of the size of BDDs on the other hand, we see that for the cases with very
few copies, two copies and four copies here, the result of reduction, in fact, has a worse size.

2Release mode compilations of program codes, are usually noticeably faster (about twice as fast in this case)
than debug mode compilations.
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But, moving to cases with more copies, we see that the result of reduction, specially after
reordering does a much better job compared to the original system.

Results of Third and Fourth Scenarios As in these scenarios, we have allowed ex-
istence of epsilon transitions for the symmetric components, we have that the number of
possible transitions in the system and thus the size of file where the result of reduction is
written to grows exponentially in the number of copies. This, unfortunately accompanied
with inefficiency of Vereofy’s parser, prevents us from experimenting with large numbers of
copies.

Although, one can notice that the growth in the size of BDDs and build times in these
two scenarios are not as fast as they are for the original system. Thus, it is expected that
the statistics for the result of reduction would take over the ones for original systems and
be better for larger copies of the symmetric component. Yet, unfortunately, this can not be
experimentally observed at the moment.

Overall Comparison It should be noted that these scenarios correspond to two, almost
extreme cases. On the one hand, scenarios one and two only consider cases where only
one or two of the symmetric components are making simultaneous transitions, and on the
other hand, scenario three and four allow for any number of symmetric components make
transitions (due to epsilon transitions) independently of one another. Therefore, depending
on the circuitry and restrictions a symmetry scenario puts, one should expect a result in
between these two extremes, in most cases.
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9 Conclusion

To conclude this thesis, in this chapter, we present an overview of contributions and results
of this thesis, discuss how this line of research may be continued and finally discuss a few
points that can help make Vereofy better suited for symmetry reduction.

9.1 Contributions and Results

We started by defining the well known notion of symmetry for constraint automata and
showed that the result of reduction with respect to such symmetries is bisimilar to the
original system, if only those atomic propositions are considered that are preserved under
symmetry. Furthermore, we showed that certifying an instance of symmetry for constraint
automata is CoNP-Complete.

Secondly, we took advantage of the fact that constraint automata are in practice used
to realize component based systems and hence lifted the notion of symmetry to the level of
components. There, we restricted symmetric components such that two components can be
symmetric if they only differ in the name of their data-flow locations. This way, symmetry
could easily be witnessed in the high-level design of the system and be provided by the
system designer. In addition, we discussed that certification and reduction of symmetry
specified on the level of components of the system can be carried out without having to
build the whole system. Yet, the CoNP-Completeness of the certification problem persists,
as the certification of component symmetry was done through examining the states of the
composite system and its transitions.

To make certification and reduction of symmetry easier, in a further step, we divided
the components in the system into three tiers. Tier of symmetric components, tier of non-
symmetric components and a tier in between called glue which mediates communications
between these two tiers and specified a number of restrictions on data-flow locations shared
among components both within individual tiers and between them. Moreover, we discussed
that this isolation of the components that provide mediation of data-flow between symmet-
ric components and non-symmetric components, allowed for much more efficient certifica-
tion of symmetry. This was done through checking a form of symmetry over the data-flow
locations of the glue tier components that are shared with symmetric components. Even
though, certifying the symmetry of data-flow locations is CoNP-Complete as well, this time
it is only done for a small fragment of the system. On the other hand, it also helped in re-
duction, as it would allow for considering only reduction of the symmetric components and
the glue tier components.

Later, we discussed how these notions can be used in practice. To this end, we con-
sidered that for a number of components that are symmetric, they are contained in a Reo
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circuit with their glue tier. There, we introduced symmetry scenarios. Each symmetry sce-
nario described a specific circuitry to be used as glue tier and put specific restrictions on
the components that can be considered as symmetric components. In practice, the circuitry
of the glue tier for each scenario can be certified as preserving three tier symmetry just
once. Hence, we could be sure that putting any component in the circuitry of that scenario
would result in a symmetric system, as long as that component is compliant with the re-
striction that that scenario puts on the components which can be considered as symmetric
components for that scenario. On the other hand given the properties of the circuitry and
restrictions of a symmetry scenario, we could have a tailor-made technique for reduction of
symmetries following that scenario.

Finally, we presented four exemplary symmetry scenarios and discussed how one can
go around reducing symmetries expressed using each scenario. Later, we presented some
experimental results of using those symmetry scenarios and discussed their results.

There, we saw how restrictions on the symmetric components and glue tier circuitry can
affect effectiveness of symmetry reduction. We saw that symmetry reduction can be very
effective in the case that the number of components that can make simultaneous transitions
is limited. On the other hand, we saw that allowing for symmetric components to make
epsilon transitions which in turn would result in arbitrary number of components to be
able to make a transition in parallel, makes the result of symmetry reduction be even
worse than the original system. This was evident in the size of BDDs and build time of the
model compared to that of the original system, at least for smaller number of copies, as we
were unable to experiment with large number of copies due to exponential growth in the
size of the result of reduction and inefficiency of Vereofy’s parser module. Although, even
those cases, we can see that the growth in BDD size of the model and build time are slower
compared to that of the original system, for those small number of copies that we were able
to test for. Hence, we expect, but could not experimentally confirm, that for larger numbers
of copies, the result would be better for the reduced system compared to the original one.

9.2 Further Research

There can be many ways to continue the line of research for applying symmetry reduc-
tion to constraint automata. The most straightforward one being looking for more useful
symmetry scenarios and discuss their applicability. On the other hand, the condition we
put on the glue tier in three tier symmetric is that its data-flow locations that are shared
with symmetric components should be perfectly symmetrical with respect to swapping of
data-flow locations shared with each symmetric component. This, of course, is a very tight
restriction. As an example, consider the case where a glue tier distributes inputs over sym-
metric components based on the values of input. Such a system would still show symmetry.
A closer inspection of such glue tiers can also be interesting.

On the other hand, one can see if the approach presented in [SG04] can be adopted
and used in the context of symmetry for constraint automata. The approach, presented
in [SG04], annotates the transitions of the reduced system with information on how the
reduced system can be unwound to get the original system. This way, we would be able to
use symmetry reduced system to check properties that are not preserved under symmetry.

Furthermore, it would be of interest to see if the approach presented in [DM05] can be
adapted to the context of symmetry reduction for constraint automata. In [DM05], authors
discuss how using a channel based model of communication we can automatically detect
symmetries in a system. This is of importance, particularly for constraint automata as we
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have Reo circuits and channels which provide a channel based communication framework
which can be taken advantage of for such automatic analysis.

Finally, as advised by [Pel09], it would be of interest to see how symmetry reduction can
be combined with other methods of attacking state space explosion problem. Here, we have
integrated symmetry reduction into Vereofy, which uses symbolic model checking. Another
useful combination can be adding slicing techniques to it. In slicing, only parts of the model
that are relevant are considered for model checking. In particular, it is of interest when
dealing with models that are obtained from program codes. Yet, here, we have CARML
language which is a variation of guarded command language. The structure of CARML
modules, and in particular the way state space is described there can benefit a lot from
such an approach. On the other hand, there can be systems that are in general symmetric
but once some parts of them is eliminated, e.g., as a result of slicing, symmetry can appear
which could be made use of for further reduction of the system.

9.3 Vereofy and Symmetry Reduction
Here, we are going to discuss how Vereofy and the symmetry reduction approach imple-
mented in it can be improved for better symmetry reduction.

Most important of all, there is no way in CAEML modules to specify multiple initial
states other than leaving the value of a variable free. Therefore, as we discussed in 8.2.1,
we are not able to use symmetry reduction for the case of symmetric components with more
than one initial state. Should there be a way to express initial states with conditions on the
state variables, e.g., similar to the way atomic propositions are expressed in CARML, we
can use it to facilitate reduction of components with more than one initial state.

Moreover, as we discussed in the reduction of second symmetry scenario, 8.3.2.2, we are
doing a syntactic manipulation of IO guards to get the IO guards of a transition that is
the combination of two transitions running in parallel. To this end, to achieve further sim-
plification, and for a more efficient satisfiability checking for IO guards, we can use BDDs
which already exist in Vereofy. We did not get involved in this in our brief experimental
implementation.

Furthermore, if there was some facility for specifying which transitions can run in par-
allel, we could simply consider transitions where there are only one symmetric component
making a transition and specify those comprising of more than one symmetric components
making simultaneous transitions as combinations of them. Should there be such a mecha-
nism, we would not have the exponential blow up in the size of CARML modules represent-
ing results of symmetry reduction. In addition, there might even be more efficient ways to
construct the BDD of the reduced system; perhaps alleviating the huge BDD sizes for the
reduced system of instances of symmetry scenarios three and four.
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A The Code of
Symmetry Library

#include "builtin"

MODULE ACTIVITY_CHECKER_2{
in: A;
in: B;

out: C;

-[ IF(A | B) & C]->;
}

CIRCUIT ACTIVITY_CHECKER<k>{

if(k==1){
sync = new SYNC(source[0];sink[0]);

}

if(k>1){
AC[0] = new ACTIVITY_CHECKER_2(source[0],source[1];N[0]);

for(i=2; i < k; i=i+1){
AC[i-1] = new ACTIVITY_CHECKER_2(N[i-2],source[i];N[i-1]);

}
sink[0] = N[k-2];

}
}

CIRCUIT sym_scenario_1<k,T> {
excluder = new READER_INF(EXNODE);

if(k==0){
ERROR_k0 = new SYNC;

}
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for (i=0;i<k;i=i+1) {
c[i]=new T;

if(c[i].sources + c[i].sinks < 1 ){
if(i==0){

ERROR = new SYNC;
}

}
else{
if(i==0){

for(j=0;j<c[i].sources;j=j+1){
source[j] = ROUTE_NODE;

}
for(j=0;j<c[i].sinks;j=j+1){

sink[j] = NODE;
}

}

ac[i] = new ACTIVITY_CHECKER<c[i].sources + c[i].sinks>;
join(EXNODE,ac[i].sink);

if(c[i].sources > 0){
for(j=0;j<c[i].sources;j=j+1){

inMEDNODE[i*c[i].sources+j] =
join(c[i].source[j],ac[i].source[j]);

insyncs[i*c[i].sources+j] =
new SYNC(source[j];inMEDNODE[i*c[i].sources+j]);

}
}
if(c[i].sinks > 0){

for(j=0;j<c[i].sinks;j=j+1){
outMEDNODE[i*c[i].sinks+j] =

join(c[i].sink[j],ac[i].source[(c[i].sources) + j]);
outsyncs[i*c[i].sinks+j] =

new SYNC(outMEDNODE[i*c[i].sinks+j];sink[j]);
}

}
}
}

}

CIRCUIT sym_scenario_2<k,T> {
inexcluder = new READER_INF(INEXNODE);
outexcluder = new READER_INF(OUTEXNODE);

if(k==0){
ERROR_k0 = new SYNC;

}
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for (i=0;i<k;i=i+1) {
c[i]=new T;

if(c[i].sources + c[i].sinks < 1 ){
if(i==0){

ERROR = new SYNC;
}

}
else{
if(i==0){

for(j=0;j<c[i].sources;j=j+1){
source[j] = ROUTE_NODE;

}
for(j=0;j<c[i].sinks;j=j+1){

sink[j] = NODE;
}

}

if(c[i].sources > 0){
inac[i] = new ACTIVITY_CHECKER<c[i].sources>;
join(INEXNODE,inac[i].sink);
for(j=0;j<c[i].sources;j=j+1){

inMEDNODE[i*c[i].sources+j] =
join(c[i].source[j],inac[i].source[j]);

insyncs[i*c[i].sources+j] =
new SYNC(source[j];inMEDNODE[i*c[i].sources+j]);

}
}
if(c[i].sinks > 0){

outac[i] = new ACTIVITY_CHECKER<c[i].sinks>;
join(OUTEXNODE,outac[i].sink);
for(j=0;j<c[i].sinks;j=j+1){

outMEDNODE[i*c[i].sinks+j] =
join(c[i].sink[j],outac[i].source[j]);

outsyncs[i*c[i].sinks+j] =
new SYNC(outMEDNODE[i*c[i].sinks+j];sink[j]);

}
}

}
}

}

CIRCUIT sym_scenario_3<k,T> {
excluder = new READER_INF(EXNODE);

if(k==0){
ERROR_k0 = new SYNC;

}
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for (i=0;i<k;i=i+1) {
c[i]=new T;

if(c[i].sources + c[i].sinks < 1 ){
if(i==0){

ERROR = new SYNC;
}

}
else{
if(i==0){

for(j=0;j<c[i].sources;j=j+1){
source[j] = ROUTE_NODE;

}
for(j=0;j<c[i].sinks;j=j+1){

sink[j] = NODE;
}

}

ac[i] = new ACTIVITY_CHECKER<c[i].sources + c[i].sinks>;
join(EXNODE,ac[i].sink);

if(c[i].sources > 0){
for(j=0;j<c[i].sources;j=j+1){

inMEDNODE[i*c[i].sources+j] =
join(c[i].source[j],ac[i].source[j]);

insyncs[i*c[i].sources+j] =
new SYNC(source[j];inMEDNODE[i*c[i].sources+j]);

}
}
if(c[i].sinks > 0){

for(j=0;j<c[i].sinks;j=j+1){
outMEDNODE[i*c[i].sinks+j] =

join(c[i].sink[j],ac[i].source[(c[i].sources) + j]);
outsyncs[i*c[i].sinks+j] =

new SYNC(outMEDNODE[i*c[i].sinks+j];sink[j]);
}

}
}
}

}

CIRCUIT sym_scenario_4<k,T> {
inexcluder = new READER_INF(INEXNODE);
outexcluder = new READER_INF(OUTEXNODE);

if(k==0){
ERROR_k0 = new SYNC;

}
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for (i=0;i<k;i=i+1) {
c[i]=new T;

if(c[i].sources + c[i].sinks < 1 ){
if(i==0){

ERROR = new SYNC;
}

}
else{
if(i==0){

for(j=0;j<c[i].sources;j=j+1){
source[j] = ROUTE_NODE;

}
for(j=0;j<c[i].sinks;j=j+1){

sink[j] = NODE;
}

}

if(c[i].sources > 0){
inac[i] = new ACTIVITY_CHECKER<c[i].sources>;
join(INEXNODE,inac[i].sink);
for(j=0;j<c[i].sources;j=j+1){

inMEDNODE[i*c[i].sources+j] =
join(c[i].source[j],inac[i].source[j]);

insyncs[i*c[i].sources+j] =
new SYNC(source[j];inMEDNODE[i*c[i].sources+j]);

}
}
if(c[i].sinks > 0){

outac[i] = new ACTIVITY_CHECKER<c[i].sinks>;
join(OUTEXNODE,outac[i].sink);
for(j=0;j<c[i].sinks;j=j+1){

outMEDNODE[i*c[i].sinks+j] =
join(c[i].sink[j],outac[i].source[j]);

outsyncs[i*c[i].sinks+j] =
new SYNC(outMEDNODE[i*c[i].sinks+j];sink[j]);

}
}

}
}

}
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