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Abstract11

We provide three detailed case studies of vulnerabilities in smart contracts, and show how property12

based testing would have found them: 1. the Dexter1 token exchange; 2. the iToken; 3. the ICO of13

Brave’s BAT token. The last example is, in fact, new, and was missed in the auditing process.14

We have implemented this testing in ConCert, a general executable model/specification of smart15

contract execution in the Coq proof assistant. ConCert contracts can be used to generate verified16

smart contracts in Tezos’ LIGO and Concordium’s rust language. We thus show the effectiveness of17

combining formal verification and property-based testing of smart contracts.18
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1 Introduction23

Blockchain-based technologies have seen rising interest in recent years. This can be attributed24

to their ability to sustain a public distributed ledger with a high degree of reliability, integrity,25

and transparency, without requiring a trusted third party. Smart contracts are distributed26

applications deployed on a blockchain. They are typically used for sensitive transactions, for27

example, carrying large amounts of money or other valuable assets, but in principle, they28

can perform any computation. Once a smart contract is deployed on the blockchain, it is29

impossible to change its source code. The blockchain ensures that contracts are executed30

correctly according to the execution model. However, it gives no guarantee that the smart31

contract’s code is correct. Like other programs, smart contracts are susceptible to bugs.32

Some attacks on smart contracts have resulted in substantial losses. For example, the33

“DAO attack” on Ethereum, where $50 million worth of cryptocurrency was stolen due34

to a re-entrancy vulnerability1. In April 2020, an attacker exploited a re-entrancy bug in35

the Lendf.me platform, resulting in a loss of about 99.5% of the platform’s funds (∼$2536

million). In 2021 cryptocurrency-related crimes including smart contract attacks resulted37

in losses of approximately $14 billion [6]. Hence, having a high assurance that a smart38

contract implementation is free of bugs is imperative. To address such issues, we are using39

the ConCert framework in the Coq proof assistant which facilitates formal verification and40

property-based testing of smart contracts.41

1 https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/
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Contributions.42

In this paper, we present the details of the property-based testing functionality of the ConCert43

framework [3, 2]. We present three case studies demonstrating how ConCert can be used to44

find real-world bugs in smart contracts.45

The first two case studies show how ConCert could have been used to find bugs that46

were found in smart contracts by auditors and attackers. The last case study shows how we47

used ConCert to find new bugs which could have led to upwards of $8 million being stolen or48

frozen.49

2 ConCert Overview50

In this section, we give a brief overview of the ConCert framework, focusing on the smart51

contract execution layer and property-based testing. ConCert is open-source, and available52

at https://github.com/AU-COBRA/ConCert/.53

2.1 Pipeline54

The pipeline overview is presented in Figure 1. We start by developing a smart contract55

as a function in Coq using the ConCert infrastructure. We then can write a specification56

and test the smart contact function semi-automatically against it, using the integration with57

QuickChick [8]. With more effort, we can also prove the properties of smart contracts using58

the ConCert infrastructure. Proofs and tests crucially use the execution layer to reason about59

interacting contracts (see more details in Section 2.2), which enables us to capture properties60

beyond the mere functional correctness of a single contract invocation (see Section 3).61

After testing and verification, one can obtain an executable implementation in one of62

the supported smart contract languages through code extraction. Our development uses63

the verified erasure procedure of MetaCoq [9] with verified optimisations and certifying64

pre-processing of ConCert. This gives us a code-generation procedure with strong correctness65

guarantees and a small trusted computing base of only MetaCoq and the pretty-printers into66

the target languages.67

https://github.com/AU-COBRA/ConCert/
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2.2 Smart Contract Execution Layer68

The execution layer provides a model which facilitates reasoning about contract execution69

traces. This makes it possible to state and prove temporal properties of interacting smart70

contracts. Smart contracts in ConCert are modelled by abstracting a number of blockchains.271

A contract consists of two functions:72

init : Chain → ContractCallContext → Setup → option State73

The initialisation function is called after the contract is deployed on the blockchain. The74

first parameter of type Chain gives access to data about the blockchain (e.g. current chain75

height). The ContractCallContext parameter provides data about the current call (e.g.76

caller address, amount sent to the contract). Setup represents initialisation parameters.77

receive : Chain → ContractCallContext → State → option Msg →78

option (State ∗ list ActionBody) This function represents the main functionality of the79

contract that is executed for each call to the contract. Chain and ContractCallContext are80

the same as for init. The parameter of type State is the current state of the contract; Msg81

is a user-defined type of messages that contract accepts (the entrypoints of the contract).82

The result of a successful execution is a new state and a list of actions represented with83

ActionBody. The actions can be transfers, calls to other contracts (including itself), and84

contract deployments.85

Both receive and init are ordinary Coq functions, making them convenient to reason86

about. However, reasoning about the contract functions in isolation is not sufficient, as87

many deployed contracts actually consist of a collection of interacting contracts, for example88

for the sake of modularity. One call to receive potentially emits more calls, which can89

create complex call graphs between deployed contracts. Therefore, it is necessary to consider90

execution traces to prove some safety properties of smart contracts. An execution trace91

ChainTrace is the reflexive, transitive closure of a proof-relevant ChainStep relation, which92

essentially captures the addition of a block to the blockchain. In this step, any actions (such93

as contract calls and transfers) coming from external users are executed.94

ChainTrace gives a relational operational semantics for the executions process. The95

semantics is non-deterministic since it allows for arbitrary execution order for the actions96

emitted by contract calls. Thus, ConCert provides two executable implementations: one97

follows depth-first and the other follows breadth-first order. It also provides proof that if98

running add_block succeeds, it results in a valid instance of ChainTrace. Having an executable99

implementation is crucial for property-based testing.100

2.3 Property-based Testing framework101

Property-based testing (henceforth abbreviated PBT ), also known as random-property testing,102

is a technique for testing where test data is generated pseudo-randomly and tested in large103

quantities against some decidable property. We integrate the PBT library QuickChick [8] with104

the execution framework to obtain a method for testing contract executions. In particular, we105

support testing the functional correctness of contracts but also testing (decidable) properties106

of entire execution traces. The overview of the testing framework is given in Figure 2.107

In brief, the PBT framework works by having the user provide generators for the Msg108

type of the contract(s) tested. In this context, generators are functions that produce pseudo-109

random values of the given type. These generators are used to populate randomly generated110

2 E.g. Concordium, Tezos, Dune, Æternity

CVIT 2016
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Figure 2 Property-based Testing in ConCert

execution traces with pseudo-random contract calls during testing with QuickChick. The111

user also configures the initial blockchain setup consisting of account balances and contracts112

that are currently available for interaction (deployed contracts). QuickChick also uses Show113

type class instances to print test results (e.g. counterexamples).114

For example, consider how to test a token contract whose Msg type is115

116
Inductive Msg :=117

transfer of (address ∗ address ∗ nat)118

| approve of (address ∗ address ∗ nat).119120

That is, it has two entrypoints: one for transferring tokens between the two given addresses121

and one for approving an address to spend a given number of tokens on behalf of another122

address. Generating pseudo-random values of Msg then amounts to either generating a123

transfer or an approve, and populating it with parameters by using the generators for124

address and nat. We can either implement this manually or have QuickChick automatically125

derive such a generator3. Note that we might prefer to implement this manually since126

we might want to ensure that the number of tokens to be transferred in transfer is never127

larger than the balance of the sender. We provide various combinators to make it easy and128

convenient to implement complex generators.129

Suppose we want to test that transfer updates the internal balances correctly. In ConCert,130

this functional correctness property is specified by using pre- and post-conditions. Testing131

such a property with QuickChick could look like132

133
QuickChick ({{msg_is_transfer}} Token.receive {{transfer_correct}}).134135

The code above states that if the incoming message is a transfer, then after executing the token136

3 Due to limitations of QuickChick, the Derive command fails for some parameterised inductive types,
e.g. Msg type in implicitly parameterised with some blockchain configuration. We have reported this
issue: https://github.com/QuickChick/QuickChick/issues/286

https://github.com/QuickChick/QuickChick/issues/286
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contract’s receive function, its state should be consistent with a predicate transfer_correct.137

By default, QuickChick will generate 10.000 inputs and test that the property is satisfied138

in all of them, or otherwise report a counterexample. The counterexamples reported are139

automatically minimized by the PBT framework to produce smaller counterexamples that140

are easy to understand. From our experience, these tests typically take less than a minute141

(see Section 7).142

One can also test whether some state is reachable from the given state. For example, the143

following test144

145
QuickChick (token_cb ∼∼> (person_has_tokens person_3 42)).146147

shows that from the state token_cb with three addresses participating in the token there is a148

state where person_3 has 42 tokens. The corresponding trace is reported to the user.149

3 Dexter decentralized exchange150

In this section, we consider a bug in (an earlier version of) Dexter, a decentralized token151

exchange contract on the Tezos blockchain. The bug would have allowed an attacker to152

manipulate exchange rates to obtain unintended profit through a simple attack. The contract153

had previously been formally verified for functional correctness4. However, this bug can only154

be discovered when considering execution traces - that is, sequences of contract calls. We155

demonstrate how this bug can be found by testing a natural specification on traces. So, we156

argue that this bug would likely have been discovered when using ConCert as part of the157

specification process.158

The Dexter exchange smart contract is used for exchanging tokens and tez (the on-chain159

currency of Tezos), it implements a so-called constant-product market, which means that the160

total value of the contract never decreases. A property of such markets is that the exchange161

rate cannot be significantly manipulated unless a party owns most of the market’s assets [1].162

The rate at which tokens and tez can be exchanged is calculated dynamically at each trade163

according to the function164

getInputPrice(Ts, Tsreserve, T ezreserve) = Ts · 997 · Tezreserve

Tsreserve · 1000 + Ts · 997165
166

where Ts are the tokens being exchanged, Tsreserve is the reserve of tokens held by the167

Dexter contract, and Tezreserve is the contracts tez reserve.168

One key property of constant-product markets, that cannot be verified from functional169

correctness alone, is that splitting trades is never profitable. Specifically, suppose a user170

trades N tokens for Z tez. Suppose this trade is split into k > 1 trades, totalling N tokens171

for a total of Z ′ tez. Then it should be the case that Z ′ ≤ Z.172

In ConCert, we can state this property by asserting that for each block added to generated173

traces, the total amount of tez gained from trades does not exceed what the user would have174

gained from trading the same amount of tokens in a single exchange. The full Coq definition175

can be found in examples/dexter/DexterTests.v176

With this test, our PBT framework automatically finds a counterexample that violates177

the property. The counterexample show two consecutive exchanges; first trading 14 tokens178

for 5 tez, then 16 tokens for an additional 5 tez. However, the payout for a single trade of179

4 https://research-development.nomadic-labs.com/dexter-decentralized-exchange-for-tezos-formal-
verification-work-by-nomadic-labs.html
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30 tokens would have been 9 tez, netting the user an extra one tez from splitting the trade.180

The vulnerability is due to a combination of Tezos’ breadth-first execution model5 and the181

way the contract tracks its asset reserves. Concretely the problem is that in breadth-first182

both trades are executed before the actions emitted by the trades are executed, meaning183

that the second trade will start before the tez and tokens from the first trade have finished184

being transferred. The contract accounts for this by manually tracking the number of tokens,185

but fails to do the same for the tez reserve. Thus when the second trade starts the contract186

uses the wrong tez reserve for calculating the exchange rate. A strength of ConCert is that187

it allows testing in both depth-first and breadth-first execution order, running the same test188

with depth-first shows no vulnerability.189

The bug was fixed prior to the deployment of Dexter.190

4 iToken191

In this section, we show how the bZx iToken smart contract was compromised and how192

ConCert could have discovered this vulnerability. The iToken smart contract is an interest193

accumulating ERC20 token used as part of the bZx decentralized finance platform. In Septem-194

ber 2020 an attacker stole $8 million worth of cryptocurrency by exploiting a vulnerability195

in the iToken contract caused by a misplaced line of code6. This vulnerability was missed by196

two audits of the platform. The vulnerability was in the tokens transferFrom, which is used197

to transfer tokens between users. The transfer logic was implemented in the following way:198

199
uint256 balanceFrom = balances[from];200

uint256 balanceTo = balances[to];201

balances[from] = balanceFrom.sub(amount);202

balances[to] = balanceTo.add(amount);203204

This logic would have been safe had lines 2 and 3 been swapped. To see where this goes205

wrong, consider the case where from = to. In this case, the transferred amount would be206

subtracted from the sender’s balance in line 3. However, in line 4 the original balance of the207

sender is used to add the transferred amount to the sender’s balance, resulting in the sender208

ending gaining tokens through the self-transfer.209

This bug could be found using the PBT framework by writing a test checking that the210

balance remains the same after a self-transfer. However, such a test would require knowledge211

of the possibility of a bug in this edge case. Instead, we formulate the property that the212

sum of all balances should remain unchanged after a call, with the exception of minting and213

burning calls. In ConCert testing such a property looks like:214

215
Definition msg_is_not_mint_or_burn state msg :=216

match msg with217

| mint _ | burn _ ⇒ false218

| _ ⇒ true219

end.220

Definition sum_balances_unchanged chain cctx (old_state : State) (msg : Msg)221

(result : option (State ∗ list ActionBody)) : bool :=222

let balances_sum state := sum s.(balances) in223

match result with224

| Some (new_state, _) ⇒ balances_sum old_state =? balances_sum new_state225

| None ⇒ true (* Return true in the case that nothing changed *)226

end.227

228

5 Tezos moved to depth-first execution order after Dexter was developed
6 https://bzx.network/blog/incident

https://bzx.network/blog/incident
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QuickChick ({{msg_is_not_mint_or_burn}} iTokenContract {{sum_balances_unchanged}})229230

examples/iTokenBuggy/iTokenBuggyTests.v:sum_balances_unchanged

By running the test, we indeed obtain a minimal counterexample showing that self-transfers231

violate the property.232

5 Basic Attention Token233

In this section, we show how ConCert was used to find new bugs, that were missed by several234

audits, in the Basic Attention Token (BAT) smart contract. BAT is an Ethereum initial coin235

offering smart contract developed by Brave. It is a combination of an ERC-20 token and a236

crowdsale contract, where users can fund ether to Braves’ project in return for BAT tokens.237

The crowdsale runs for a fixed amount of blocks, after which the funding either succeeds or238

fails. If funding succeeds, Brave receives all the ether raised. If it fails, all users can claim239

a refund of their ether by burning their tokens. As the contract owners, Brave get a fixed240

amount of free tokens to spend.241

We test functional correctness using a similar Hoare triple test as shown in Section 2.3.242

In addition, we formulated five key safety properties.243

1. Funding is final: Once the contract enters its funded state it cannot leave it again.244

2. Funding possible: If there is enough ETH in the blockchain to reach the funding goal,245

then it should be possible to reach a state in which the funding succeded.246

3. No refunding for owners: The free tokens given to the owners should not be refundable.247

4. Refund guarantee: There should always be enough ETH in the contract balance to248

refund all funded tokens. Unless funding succeded.249

5. No frozen funds: It should always be possible to completely drain the contract balance,250

so no ETH gets permanently frozen.251

Through testing, we found that only the first property holds. Most of the bugs occur from252

combining token and crowdsale functionality and both parts behave safely on their own. This253

highlights that composing contracts is nontrivial and can easily introduce subtle bugs.254

5.1 Test Setup255

In Sections 3 and 4 we showed that ConCert could find known bugs. For those, it was not so256

important whether the generators would cover the entire input space. However, when testing257

a complex contract with the purpose of finding potentially unknown bugs, it is crucial to258

have good generators. A good quality generator should be able to cover the entire input259

space of the smart contract and have a good balance between generating calls that succeed260

and calls that fail. Using automatically derived generators will often result in too many261

failing calls for complex smart contracts. For testing BAT we take the approach of combining262

manually written generators designed to only produce valid calls with generators that are263

likely to produce invalid calls. That is, for each entrypoint, we define two generators. This264

is illustrated in Figure 3. The finalize entrypoint is an entrypoint that transitions the265

contract from funding to the funded state. It can only be called by the owner after funding266

succeeds. The first generator gFinalize only produces calls that we expect to succeed, while267

the gFinalizeinvalid generator will generate calls with an arbitrary sender, which is unlikely268

to be valid. The generators for potentially invalid calls can be automatically derived using269

QuickChick. All the generators are combined into a single call generator.270

This approach gives us a generator that can cover the entire input space while still271

allowing us to tune the distribution of valid and invalid calls to different entrypoints. Using272

CVIT 2016
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Definition gFinalize env contract_state : G (option (Address ∗ Msg)) :=
if (isFullyFunded env contract_state) (* Check if funding succeded *)
then returnGen (Some (fund_addr, finalize)) (* Call finalize from owner address *)
else returnGen None. (* Don’t return call if not funded *)

Definition gFinalizeInvalid env contract_state : G (Address ∗ Msg) :=
sender ← gAddress ;; (* Generate arbitrary address *)
returnGen (sender, finalize).

examples/bat/BATGens.v:gFinalize

Figure 3 Generators for the finalize entrypoint

the PBT framework we can measure statistics about the generator and use that to tune the273

distribution.274

5.2 Finding Vulnerabilities275

We test each of the five safety properties for the BAT contract defined in Section 5. Here we276

detail a few of the tests.277

A key property is that the contract doesn’t deadlock, i.e. with enough user support it278

should always be possible to reach the funded state. Since ConCert can test reachability279

of states we can easily state this property by combining the reachability checker with a280

deployment configuration generator. The following test states that for any BAT deployment281

configuration there should exist a trace from the state where BAT is deployed with that282

configuration to a state where the contract is funded.283

284
QuickChick (forAll gBATSetup (build_init_cb (fun cb ⇒ cb ~~> is_finalized))).285286

examples/bat/BATTests.v

Here gBATSetup is the configuration generator, build_init_cb builds an inital state with the287

contract deployed, and is_finalized checks for a given blockchain state if the contract is288

funded. By running the test, we obtain counterexamples showing four classes of configurations289

where the contract cannot be fully funded. One of them is the case where the funding period290

is empty or already over at the time of deployment. Ideally, the contract should have included291

a check at deployment preventing such configurations.292

A crucial safety property is that any user who donated should be guaranteed their money
back in case of failed funding. By testing the functional correctness of entrypoints, we
already know that the contract will always refund the correct amount and will always succeed,
given that the contract has enough funds. Therefore, testing refund guarantee reduces to
checking that there is always enough funds to refund all tokens held by "real" users. Here we
distinguish between real users of the contract and the owner, because the owner’s free tokens
should not be counted. That is, we want to test that the following is always true.

contractBalance ≥ totalTokenSupply − ownersTokens

tokenExchangeRate

In ConCert a test of this looks like:293

294
Definition contract_balance_lower_bound (cs : ChainState) :=295

let contract_balance := env_account_balances cs contract_base_addr in296

(* Get BAT contract state *)297

match get_contract_state State cs contract_base_addr with298

| Some cstate ⇒299

(* Get token balance of owner *)300

https://github.com/AU-COBRA/ConCert/blob/fmbc2022/examples/bat/BATGens.v#L82
https://github.com/AU-COBRA/ConCert/blob/fmbc2022/examples/bat/BATTests.v#L1118
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let bat_fund_balance := with_default 0 (FMap.find batFund (balances cstate)) in301

if cstate.(isFinalized)302

then checker true (* Case where refunds are not permitted *)303

(* Assert that there is enough ETH to refund all tokens held by "real" users *)304

else checker (Z.geb contract_balance305

(Z.of_N (((total_supply cstate) − bat_fund_balance) / cstate.(tokenExchangeRate))))306

| None ⇒ checker true (* Case where contract isn’t deployed *)307

end.308

QuickChick (forAllChainState contract_balance_lower_bound)309310

examples/bat/BATTests.v:contract_balance_lower_bound

Running the test we get the following minimized counterexample from the testing framework.311

312
Chain{|313

Block 1 [Action{act_from: 10, act_body: (act_deploy 0, Setup{...})}];314

Block 2 [Action{act_from: 17, act_body: (act_call 128, 0, transfer 16 14)}]315

|}316317

This counterexample shows a trace where the BAT contract is deployed in the first block,318

after which the owner (address 17) immediately transfers some of its free tokens to another319

user. This is possible because the contract combines crowdsale and token contract behaviour.320

This violates two of the safety properties because nothing is preventing the second user from321

refunding the transferred tokens. Thus it is possible for the free tokens given to the owner322

to be refunded by first transferring them. This also breaks the property that all real users323

should be guaranteed a refund because if the owner refunds some of the free tokens then324

there is no longer enough ETH to refund all tokens held by real users.325

The remaining safety properties were tested using similar methods.326

6 Related Work327

Various testing approaches have been applied to smart contracts. Tools like Truffle7 for328

Ethereum or SmartPy8 for Tezos mostly cover conventional unit testing that can be insufficient.329

The testing framework for LIGO9 supports unit testing and mutation testing. However,330

none of the conventional testing frameworks offers a possibility for generating random331

traces and testing properties of interacting contracts. We will now focus on works using332

fuzzing/property-based testing techniques.333

The closest to our work is the property-based testing framework for the Tezos’ Michelson334

language. The framework utilises QCheck, a QuickCheck-inspired property-based testing335

framework for OCaml. QCheck was extended by Nomadic Labs with the ability to generate336

arbitrary sequences of Liquidity Baking contract calls. The contract is manually reimplemen-337

ted in OCaml and serves as a model for the original contract. The model implementation338

is then validated against the original contract through the actual Tezos execution model.339

The development is tailored to the Liquidity Baking contract and is not connected to the340

Michelson formalisation in Coq Mi-Cho-Coq [4]. We are currently collaborating with the341

Mi-Cho-Coq team on integrating ConCert with the formalisation of Michelson.342

For the Ethereum blockchain, several works are using randomised testing techniques.343

Echidna [7] and Brownie10 use fuzzing-like techniques for testing smart contracts. The344

common challenge for this approach is that randomly generated transaction data might345

7 https://trufflesuite.com/
8 https://smartpy.io/docs/scenarios/testing/
9 https://ligolang.org/docs/advanced/testing
10Property-based testing framework for EVM: https://github.com/eth-brownie/brownie

CVIT 2016
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not be enough to ensure good coverage. This is especially problematic in the case of smart346

contract interactions, since the whole sequence (trace) of actions must be generated. Echidna347

uses coverage-driven feedback to automatically tune the testing parameters. Brownie uses348

unit-test like tests with user-defined generators for randomising inputs to contract calls in349

the tests. Brownie does not generate calls or execution traces, which limits the types of bugs350

that it can find. In our approach, instead of tuning pre-defined parameters, we allow users351

to define generators that produce random data with fewer discarded tests. For simple cases,352

data generators can be derived automatically using the QuickChick infrastructure.353

The EthPloit project [10] generates possible exploits using fuzzing techniques. The354

exploits are split into three categories. For each of these categories, a special exploit detector355

oracle is used to report an exploit. For example, the Balance Increment oracle compares356

the overall initial balance of attackers’ accounts with the current balance after a series of357

transfers and reports, if the balance of the attackers’ accounts increases. EthPloit utilises358

static analysis to focus attention on particular variables and functions. The input for selected359

functions is generated randomly, or chosen using a seed set. The seed sets are used to provide360

runtime feedback. This improves the fuzzing efficiency by exploiting the results of previous361

runs. In our approach, the users specify the properties to test, instead of searching for362

particular categories of exploits. Violation of such properties is reported as a counterexample,363

which points to vulnerabilities. The pure/functional nature of our smart contracts avoids364

many pitfalls and simplifies reasoning about smart contracts. When compared to effectfull365

languages, such as Solidity, static analysis is less urgent.366

Finally, the cooked-validators library11 for the Plutus smart contract language [5]367

facilitates property-based testing with arbitrary transaction sequences. Note, however, that368

the execution model for Plutus does not involve on-chain inter-contract communication.369

7 Evaluation370

We evaluate our framework in terms of usability, specifically regarding bug-finding capabilities.371

We demonstrated the testing framework on three concrete examples in the previous section,372

showing that it can find different types of real-world bugs. The vulnerabilities had a wide373

range of causes: the execution order, complex contract-to-contract interactions and the374

evolution of the contract state. Such bugs would not have been detected in other tools375

considering only functional correctness. This highlights ConCert’s unique capability of376

modelling and testing complex contract interactions. We have tested various other smart377

contracts, such as a reference implementation of the ERC-20 Token12, and re-discovered378

known bugs, thus supporting the claim that our framework is effective at finding bugs.379

Since we have the full power of Coq at our disposal, we can effectively test any decidable380

property on the Chain type. Hence, there are few limitations in terms of expressiveness.381

We also emphasise that once contracts are implemented (in ConCert) and the executable382

specifications are written (i.e. the decidable properties to be proven or tested), the only383

prerequisite for automatically testing the specifications is to implement the action generators384

and show instances, as discussed in Subsection 2.3. Implementing these requires only some385

expertise with Coq and QuickChick, and can in some cases be derived automatically. Hence,386

the setup is relatively simple, only requiring little extra effort compared to writing traditional387

tests.388

11 https://iohk.io/en/blog/posts/2022/01/27/simple-property-based-tests-for-plutus-validators/
12 https://github.com/AU-COBRA/ConCert/tree/master/examples/eip20

https://iohk.io/en/blog/posts/2022/01/27/simple-property-based-tests-for-plutus-validators/
https://github.com/AU-COBRA/ConCert/tree/master/examples/eip20
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Additionally, the feedback loop from executing tests is fast, making it easy to use389

during the contract development process. In our experience, QuickChick will usually report390

counterexamples, if they exist, within 1-2 seconds and otherwise report that all inputs (by391

default 10.000) passed — usually in than 5-10 seconds (for traces of 14 calls). Of course, the392

time depends on many factors, most importantly, the length of traces and the complexity of393

generators and contracts.394

8 Conclusions395

We have presented the ConCert Coq framework for testing, verifying and extracting smart396

contracts. We have demonstrated the framework for property-based testing on three smart397

contracts using it to discover vulnerabilities used in previous attacks and new bugs that398

could have led to millions of dollars stolen or frozen. As stated in the previous section, the399

vulnerabilities had a wide range of causes covering the most common causes of flaws in smart400

contracts.401

We have re-discovered several bugs in real-world contracts (not presented in this paper),402

such as the $50 million “DAO attack” on Ethereum, and tested reference implementations of403

ERC-20 and FA2 Token Standards, common standards for tokens used in several blockchains13.404

Hence, our approach to testing smart contracts scales to real-world contracts and is405

capable of finding significant bugs. Contracts in ConCert are extractable to Concordium’s406

Rust framework, Liquidity, and CameLIGO. Thus in total, we have a toolchain for producing407

executable code for smart contracts that are tested and verified. The importance of combined408

auditing, testing and verification is also starting to be recognized by the industry.14409
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