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1 Introduction

We present a constructive proof of the Peter-Weyl theorem on the representations
of compact groups. Unlike the original proof [7], or the one by Segal [8], we do
not use the spectral theory of compact operators. The proof is also different from
the one presented in [5], which uses a representation theorem for H*-algebras due to
Ambrose [1]. We use instead the Gelfand representation theorem for commutative
C*-algebras to give a new proof, which may be seen as a direct generalization of
Burnside’s algorithm [3] to compute the characters of a finite group. Our first proof
is not constructive. It uses a non-constructive variant of the least upper bound
principle (Theorem 3.10). However we show in section 4 how this can be avoided. We
thus obtain a constructive proof in the style of Bishop. In fact, the present theory of
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compact groups may be seen as a natural continuation in the line of Bishop’s work
on locally compact, but Abelian, groups [2].

The paper is organized as follows. We first outline the theory of finite groups
to motivate the way we organize our proof. Then we give a classical proof of the
Peter-Weyl theorem. Finally, we proceed to give a constructive proof.

2 Finite groups

In this section we outline how to compute the irreducible characters of finite groups;
see [3].

Let G be a finite group and let C1,...,C), be its conjugacy classes. We define as
usual the group algebra C[G] as the algebra of formal sums Yayg with product

> aggx> buh =Y agbpgh.

This algebra is isomorphic to the space C(G, C) of complex functions on G equipped
with the convolution product. Let Z(C|G]) be the center of this algebra. The center
consists of the formal sums ) a4g such that a;, = aj, whenever g and h are in the
same conjugacy class. The set G is a basis for the complex vector space C[G]. A
basis for Z(C[G]) is obtained by considering, for each conjugacy class C;, the sum
Si =3 4ec, 9- So, the complex vector space Z(C[G]) has dimension n, the number
of conjugacy classes.

Since the family S; forms a basis for Z(C[G]), there exist natural numbers c;ji
such that

(21) SiSj = Zcijksk.
k

We write M; for the matrix (c;jx) ;-

Irreducible characters are best seen as representations x : Z(C[G]) — C. This def-
inition coincides with a more traditional definition of ‘character’ which can be found
in section 3.6. A character x induces a function C[G] — C which is constant on con-
jugacy classes. So x is completely determined by a list of numbers x(S1),..., x(Sn).
We write x(i) := x(S;). We then obtain from equation 2.1 that

(22)  x()x() =Y x(k)ein.
k

Consequently, the characters are eigenvectors for each of the matrices M, := (¢;jk) jk,
which represents multiplication by ;. Conversely, each vector which is an eigenvector
for all multiplication matrices M; is a character, except for a scalar multiplication.

Given the multiplication table (2.1) for Z, we obtain Burnside’s algorithm: if we
simultaneously diagonalize all matrices M;, we obtain for M; a matrix with n numbers
on the diagonal and these numbers are x1(),. .., Xn (7).

Now, how do we know that we can simultaneously diagonalize all these matrices
M;? We note that C[G] and hence Z(C[G)) is a Hilbert space with inner product

23) (Y g0, 3 buh) = % S agby.

With respect to this inner product, each matrix M; is a normal matrix — that is, it
commutes with its adjoint. In fact, Z(C|G]) is a commutative C*-algebra of operators
2



on C[G]. The adjoint of S; is defined by S} := > g 7!, Finally, a commutative
algebra of normal matrices can be simultaneously diagonalized. Since the matrices
have integral coefficients, the diagonalization process can be carried out constructively
within the algebraic numbers, since these have a decidable equality.

3 Compact case

We present a proof of the Peter-Weyl theorem. Only in one place, Theorem 3.10, do
we use non-constructive reasoning. In section 4 we will show how this can be avoided.

When X is a locally compact space, then C'(X) denotes the space of test-functions,
that is, the space of functions with a compact support.

The present proof is similar to the finite case we have treated above. We apply
the Gelfand representation theorem for commutative C*-algebras to the center Z of
the group algebra and show that this is isomorphic to a sub-algebra of a space of
test-functions C'(X, C). Here X can be seen as the set of all morphisms from Z to C.
The compact variant of the group algebra is the convolution algebra, which is also
called the group algebra.

We recall the Gelfand representation theorem. A constructive version of this result
can be found in section 4.

Theorem 3.1. [Gelfand] Let A be a unital commutative C*-algebra. The spectrum
X of A — that is, set of C*-algebra morphisms from A to C — can be equipped with
a topology such that X is compact and the Gelfand transform *: A — C(X), defined
by a(x) == z(a), is a C*-isomorphism.

We will first develop a few facts about the group algebra and prove a Plancherel
theorem (3.5) from which a Peter-Weyl theorem follows.

3.1 Integrals with values in a Banach space

Recall that on any compact group G one can construct a translation-invariant integral
M, called the Haar integral, such that M (1) = 1. We will give a simple construction of
this integral in section A.1. We extend the Haar integral to the space of all continuous
functions on G with values in a Banach space E. This integral also has its values in
E.

Let f : G — FE be a continuous function. We recall that a partition of unity g
consists of a finite collection of nonnegative functions ¢; in C(G) and z; in G such
that g;(z;) = 1 and > g; = 1. We define for each partition g the Riemann sum
My(f) == M(g;)f(x;). We observe that for each € > 0, there exists a partition g
such that ||f — > f(x;)g:|| < e. So we can then define the Riemann integral M(f)
as the limit of these Riemann sums. This integral is a continuous linear map from
C(G,FE) to E.

Lemma 3.2. Let Ey be a Banach space, F': E — E; a bounded linear map and f in
C(G,E). Then [Ff=F [ f.



Proof. Note that for all partitions of unity g,
My(Ff) = Y M(g:)(Ff)(x:)
F(OY M(gi) f(x:))

= F(M,(f))-

The lemma now follows from the fact that I is bounded and M is continuous. O

3.2 Convolution product

Let G be a compact group. Define for x € G, the left-translation over x by (To, f)(y) :=
f(x=1ly) for all f € C(G). Define the convolution product on C(G) as the C(G)-valued
integral

(31) fxg= /f(y)Tygdy,

for all f,g € C(G). As usual, the identity

(F+9)@) = [ F)at

is proved by applying the evaluation h — h(z) from C(G) — C.

The space C(G, C) of complex continuous functions equipped with the convolution
product forms a complex algebra, called the group algebra. The map ~ defined by
f(z) := f(z=7) for all f € C(G,C) is an involution. With this involution the group
algebra C(G,C) is a *—algebra The space C(G, C) is also equipped with an inner
product defined by f, =[fg.

Since fxg= [ f(t) Ttg )dt, it follows that

H / FO(Tog)dells
/ FON(Tg) l2dt
= [ llglade = 1711l

By the Cauchy-Schwarz inequality and since the Haar measure of G equals 1, we have
that || f|l1 < || f]l2. Combining this with equation 3.2 we see that ||f*gll2 < ||f|l2]lg]l2-
Consequently, the map g — f * g defines a bounded operator on the pre-Hilbert space
C(G,0).

It is straightforward to show that the operator defined by (Pf)(z) := [ f(aza™')da
for all f € C(G,C) is the orthogonal projection on the center of the group algebra
Let f, g be central continuous functions. Then the equality

(3-2) 1S+ gll2

IN

(3.3) / F()(PThg)d

follows from Lemma 3.2 by taking F(u) = Pu.
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3.3 Group algebra

The group algebra is the algebra C(G) with * as multiplication. We define the linear
functional I(f) := f(e) on the group algebra and remark that fxg(e) = (f,g), where
J denotes the Haar integral. Let Z := Z(C(G),C) denote the center of the group
algebra. We define an order on the ring Z by f = 0 if and only if (f x g,g) > 0,
whenever ¢ is in C(G). If to each f in C(G) we associate an operator g +— f * g on
the Hilbert space Lo(G), then > is the usual order on C(G) when considered as an
algebra of operators.
We now collect some facts that are useful later.

Lemma 3.3. [11, p.85-86] If V is a neighborhood of e, then there is a nonnegative
central function u concentrated on V. such that [u = 1.

Lemma 3.4. For all u in L1(G)", ||ual; = |Jul3.

Proof.

/|u*ﬂ| _ //u(zyfl)a(y)dydx
= [ [ wtey sty dy = [ ulsuto)dy = ul3

O

Lemma 3.5. Let f €
u = w*xw, then 0 < 4
I(u) > 1.

Proof. Let f € C(G). Let V be a neighborhood of e such that for all y € V,z €
G,

C(G) and € > 0. Then there exists a central w such that if
<1 |If = f*ull2 <e€and |I(f) — I(f *u)| < e Finally,

[fly™le) — f(z) < e
Lemma 3.3 supplies a nonnegative central test function w concentrated on W such
that W2 C V and ||w||; = 1. Define u := w * w. Then |lul; =1, so 0 < 4 < 1. Since
u is concentrated on V, for each = € G,

ux f(z) — flz)] < / ()1 (5 ) — F()ldy
%4
< 1-€

It follows that [|u* f — fllec <€, and thus |ux f— fl|3 = [|ux* f— f]* <€ - 1.
To prove that |I(f) — I(f * u)| < €, we observe that |f(e) — g(e)| < ||f — glloo for
all f,g € C(G). Consequently, |f(e) — f *u(e)] <e.

For the inequality I(u) > 1 one observes that I(u) = ||w||3 > [Jw|? = 1. O
Corollary 3.6. The linear functional I is positive on Z. That is, if f > 0, then
1(f) > 0.

Proof. If f = 0, then I(f *w*w) = (f *w,w) > 0 for all w in Z. The result
follows from the previous lemma. O

Lemma 3.7. For all h = 0, ||h||ec = I(h) = h(e).
5



Proof. We remind the reader of the usual argument (cf. for instance [11]). We
will use Dirac delta functions, the reader will have no problem finding a proof using
only continuous functions. We have I(h * u * @) > 0 for all u € C(G), and, since h
is positive, I(h * d,) = h(y~') = h(y) for all y. Taking u = ad, + bd, and observing
that &, * 6, = 04, we have h(e)aa@ + h(z)ab + h(z)ab + h(e)bb > 0. We see that the

matrix

h(e)  h(x)

h(z)  he)
is positive definite. Consequently, its determinant h(e)? — |h(x)|? is positive, which
was to be proved. O

3.4 Characters

Let R be the C*-algebra of operators on Lo(G) generated by Z and the identity. Let
X be the spectrum of R and let * denote the Gelfand transform. Define D(g) :=
{z € X : g(z) > 0} and ¥ := {J,c, D(g). We now prove that this set is actually
discrete and coincides with the space of characters. That is, we show that the *-
homomorphisms from Z to C correspond one-to-one with the characters. We need

some preparations first.
For all f,g € C(G) we have

(Tu(f * 9))(2) / F)gly e 2)dy

So, for all f,g € Z,
B4)  (Tuf)xg=Tu(fx9) = Tu(g* f) = (Teg) * [ = [ * Tog.
Lemma 3.8. Forg € Z and f € C(G), P(f xg) = g* P(f).
Proof. For all ¢ € C(G,C(G)) we have [¢(x) x gdz = ([ $) * g and Pf =
[ T, T fdz, where T* f(z) = f(zx). So
P(f+xg) = /TIT$f*gdx
= /(T$T“f) * gdx

= [@re g
= (Pf)*g,

where the second equality follows from Formula 3.4. (]

For the rest of this section we fix a point o in X, that is a *-algebra homomorphism
o:7 — C.
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Since o € %, there exists ¢ in Z such that o € D(g). We define Xf,(ac)~ =
o(PTyg)/o(g). We drop the subscript when no confusion is possible. Since P(f) =

—

P(f) for all f € C(G,C), we see that x = X.

We will show that x is a character — that is a central function such that x * f =
(f,x)x for all central f — and that D(x,) = {o}.

By Lemma 3.2 and Formula 3.3

o(f)olg) = o(f +g) = / F(Oxe (B)o(g)dt,
SO G(f) = f f(t)Xa(t)dt = (fa )20) = (fv Xa)'

The first equation in the following lemma is called the character formula.

Lemma 3.9. x(z)x(y) = [ x(atyt—")dt = (PT.x)(y)-

Proof. It follows from Lemma 3.8 and Formula 3.4 that:
PT,g* PT,g=P(Tyg* PT,q) = P(g*T,PT,q) =g+ PT,PT,g.
We have PT, PT,g = [ PTy,-19dt, so

o(PT,PT,g)/o(g) = / Xo(tyt™V)dt = PTyx0(3):

On the other hand, o(PT,g * PT,g)/0(9)* = Xo ()Xo (y)- O
Put in other words, the lemma states that PT,x = x(z)x. It follows that x is a

central function, since
X = x(e)x = PT.x = Px.
Also

(35)  (fxx)= /f(t)(PTtx)dt = /f(t)x(t)xdt= (f;)x = (f, 0)x-

Consequently, ps := Xo/(Xos Xo) 18 a projection, that is a self-adjoint idempotent.

We claim that D(x,) = {o}. Indeed, by Formula 3.5 D(x,) contains only one
point and since X, (0) = 0(Xxs) = (X, Xo) > 0, this point is equal to 0. We see that
> is discrete. We observe that

I(XG) = Xa(e) = O—(o?(?;;g) =1

Conversely, if y is a character then o(f) := (f, x) is a *-algebra homomorphism
Z — C. Indeed,

a(f)=(f:x)=(£,0)" = (£,x)" =a(f)
for all f € Z, and

o(fxg)=(f*g,x)= (9, f*x) = (£,x)"(9:x) = (f,x)(9:x) = o(g9)a(f)
for all f,g € Z.



3.5 Plancherel and Peter-Weyl

In the following theorem, and the rest of the section, we use non-constructive reason-
ing. A constructive version of this result will be given in section 4.
We recall that ¥ is discrete. Define for each o in 3, a, := f(0)/||xo /3. Then

f(a) = ao'XAo(U)'
Theorem 3.10. For all f € Z such that f >0, I(f)=> a, and f = > asXo-

Proof. The functional I is positive (Corollary 3.6), so I(f) > I(g), whenever
0 < § < f. Consequently, for each finite U C ¥, we have I(f) = Y pcv aol(xo) =
Yoy Gos since f =3 1y asXo. It follows that ) a, converges. Note that classical
reasoning is used here, and that it is used only for this point. By Lemma 3.7, ||x|lcc =
I(x) = 1, for all characters x. Consequently, > a,X, converges uniformly in C(G),
to g say. Now for all o, m(a) =0,s0 f=gand I(f) =>_ a,. |

Let e, := Xo/|IXoll2 and by (f) := (f, e5). Then |les||]2 =1 and b, = f(0) /]I X0 ||2-

Corollary 3.11. [Plancherel] For all f in Z, I(f * f) = 3. |bs|? and e, is an or-
thonormal basis for the pre-Hilbert space Z.

Proof. We apply the previous theorem to f * f . Then

tge = ORI Ty

Ixo 113 X113

It is straightforward to show that the system e, is orthonormal. For each finite
UCE, |f =Y cv(freo)es3 equals Y |by|* where the last sum ranges over ¥ — U.
Consequently, f =Y b,e, and the system e, forms a basis. O

We now obtain the main theorem in the Peter-Weyl theory.

Theorem 3.12. [Peter-Weyl] For each f € C(G), Y eo* f, where o € 3, converges
to f in Lo.

Proof. For every such f in C(G), Lemma 3.5 supplies a central u such that
0<a<1and|f*u— f|2is small. We apply the Plancherel theorem to u to obtain
the theorem. (]

3.6 An alternative definition of character

Traditionally, given a finite dimensional representation m, one defines its character
as x — Tr(n(z)). The following theorem and Lemma 3.9 show that our definition
coincides with the traditional one.

Theorem 3.13. [6, p.197] Let 1 be a complex continuous function on G. Then ¢
is the normalized”) character of an irreducible unitary representation if and only if

Y # 0 and P(2)Y(y) = [Y(atyt=t)dt for all z,y in G.

It is not difficult to obtain a representation from a character (as defined in the
present paper).

DThat is 9(e) = 1.



Theorem 3.14. For each character x, the function x — T, extends to an irreducible
representation of the group G on the finite dimensional space span{T,x : x € G}.

Proof. The set {T,x : « € G} is invariant under the projection Ty f := x * f,
since x * Tpx = Tu(x * x) = Txx. The projection is compact, so its range is finite
dimensional.

Suppose that M is a translation invariant closed subspace of span{T,x : = € G}
and f a nonzero element in M. Then P(f % f) is a central element in M, which is
nonzero since

P(f+f)(e) = /(f* Htet™1)dt = f = f(e) = || f]3 > 0.

The range of the projection T}, on Z is one-dimensional, so P f is a nonzero multiple of
X. Therefore M contains x and hence {T,x : = € G}. It follows that {T,x : = € G}
is irreducible. 0

4 Constructive proof

In this section we obtain a constructive Peter-Weyl theorem.
Bishop [2] has the following variant of Gelfand’s theorem.

Theorem 4.1. [Gelfand] Let A be a unital commutative C*-algebra of operators on
a separable Hilbert space. The spectrum X of A — that is, the set of C*-algebra
morphisms from A to C — can be equipped with a metric such that X is a compact
metric space and the Gelfand transform *: A — C(X), defined by a(x) := x(a), is a
C*-isomorphism.

It is implicit in the statement of the previous theorem that the norms of all the
elements in the C*-algebra are computable. Fortunately, this holds for the present
application, as we shall prove shortly.

Define for each f € C(G) the operator T¢(g) := f * g for all g € L.

Theorem 4.2. The operators Ty (f € C(G)) are compact and hence normable, (this
is, the operator norm can be computed).

Proof. Let B:={g € Ly : |lg|l2 < 1}. We need to prove that the image of B
under Ty is totally bounded. To do this we use the the Ascoli-Arzela theorem [2,
p.100]. Since (f * g)(z) = (T, f, g), we have for all z,y € G and g € B,

[(f*g)(@) = (Fxa)W)| < [(Tof —Tyf.9)l
< NTef =Ty fle-
We see that {f g : g € B} is equicontinuous. If z1,...,z, € G, then the set
{(f*xg(x1),...,f*xg(xy)) : g € B}

is totally bounded, since we can find a finite set C' of linear independent vectors close
to {Ty, fy..., Ty, f} and the set

{((Tey fr0)y... (T, f,c)) : c € spanC, |c]|2 < 1}
is totally bounded. O



We note that the compactness of the operators T is used only to prove that Z
generates a C*-algebra. However, the spectral theorem for compact operators is not
needed.

To obtain a constructive Plancherel theorem, we give a constructive proof of The-
orem 3.10. The notation is as before.

Theorem 4.3. For all f € Z such that f > 0, I(f) =>as and f =5 asX.

Proof. The functional I is positive, so I(f) > I(g), whenever 0 < § < f. Conse-
quently, for each finite U C ¥, we have I(f) > > iy asI(Xs). We know that

I fllx = sup [2(f)] > sup [o(f)]-
rzeX ceY

Moreover, if |z(f)| > 0, then « € X. It follows that sup,c x |2(f)| = sup,ex |o(f)]. Let
€ > 0. Lemma 3.5 supplies a central w such that for u := wxw, 0 < I(f)—I(fxu) <e.
Let d > 0 be such that dI(u) < e. We construct a finite set K C ¥ such that for
allg € ¥ — K, f (o) < d. This set K is build recursively, we start with the empty
set. Then we decide whether || f|| < d or ||f]| > d/2. In the former case, we are done.
In the latter case we pick o in ¥ such that f(o) > d/2 and add it to K. We then

consider f — f/*;, recursively.
Define g := > i Xo * f*u. Then g <3 1 Xof < f,since f*u = f. So

I(fxu—g)=Tux(f—f*> xo) <I(wd<e

ceK
Here we used that since u = w * w,

[I(h*u)| = |(h*w,w)| < dl|lwl3

for all |h| < d, a result that follows immediately from the definition of the order on
operators. We see that I(g) is within 2e of I(f), as required. O

The proofs of the Plancherel Theorem and the Peter-Weyl theorem above are
constructive.
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Appendix A Compact groups
A.1 Haar measure

We give a constructive adaptation of a proof by von Neumann [10] for the existence
of Haar measure on a compact group.

Let G be a compact group. We define for all x € G, the left-translation over z
by (T f)(y) :== f(z~1y) for all f € C(G). Then T, T, = Ty, and T,-1 = T, . Define
Sy :={T,f : v € G}. Let e be the unit in G. Let coA denote the convex hull of the
set A and let €0A denote the closure of coA.

Proposition A.1. Let G be a compact group and f € C(G). There is a constant
function a such that for eache > 0, there are xq, ...,y in G such that |2 37" | Ty, f—
al| <e.

Proof. The set Sy is the uniformly continuous image of G and hence it is totally
bounded. It follows that coSy is totally bounded, and hence so is B := {supg: g €
coSy}. We claim that the constant function with value inf B is in €0Sf.

Let € > 0. Choose, x1, ..., %, in G and a neighborhood V of e such that x;V covers
G and |f(z) — f(y)| < € for all z,y € x;V. Define the average A(g) :== 2 >" T, g
for all ¢ € C(G). The operator A maps coSy to coSy, so sup Ag < supg. Choose
g € coSy such that sup g — inf B < ¢/n. In particular, sup g — sup Ag < ¢/n. Hence
for some = € G, supg — (Ag)z < &/n. So supg — g(z; 'x) < ¢ for all i < n. If x and
y are in V, then |g(z) — g(y)| < € for all g € Sy. Consequently, sup g — g(y) < 2¢ for
all y € G, 50 [|lg — inf Bljos < 2¢. O

We obtain a similar result for Sf := {T°f : s € G}, here T® denotes right-
translation over s, that is T° f(z) = f(xs) for all s € G.

Lemma A.2. The constant function in Proposition A.1 is unique. We denote this
unique constant by M(f).
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Proof. Let € > 0. Choose x1,...,2, and y1,...,Yn in G and a and b in R such
that a —e < Af <a+cecand b—e < Bf <b+e, where A := (1/n) > | T,, and
B:=(1/m)> /L, T¥% . Thena—e < T*Af < ateforall s € G,s0a—e < BAf < a+te.
Similarly, it follows that b—e < ABf < b+e. So |a—b| < 2¢, because AB = BA. O

Theorem A.3. [Haar] There exists a unique positive linear functional M on C(G)
such that M(1) =1 and M(f) = M(T,f) for allxz € G.

Proof. We define the Haar measure on G as the map f — M(f). It is clear that
M(f) > 0, whenever f > 0. Moreover, for all f € C(G) and « € G, the constant
functions with values M (T, f) and M(f) are in €65, hence M (T, f) = M(f). We
claim that M is linear. Indeed, let f and g be in C(G) and let € > 0. Choose 1, . .., z,
and y1, ..., Ym in G such that [|[Af—M(f)|le < € and ||B(Ag)—M (Ag)||s < €, where
A=215" T, and B:= L3> T, Then M(Ag) = M(g) and B(M(f)) = M(f).
Consequently || B(Af) — M (f)|lco < &, and hence | BA(f+g)— M (f) —M(g)]|co < 2e.
We see that M (f)+M(g) € €6Sf14. So M(f)+M(g) = M(f+g). We conclude that
M is an invariant positive linear functional on C(G).

To prove the uniqueness of this invariant measure, we observe that if p is any
invariant probability measure on G, then for all f € C(G), p is constant on €65y and

hence pu(f) = p(M(f)) = M(f). 0
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