
Math. Log. Quart. 00 (2004) 0, 1 – 12

Mathematical Logic
Quarterly

c© WILEY-VCH Verlag Berlin GmbH 2001

A constructive proof of the Peter-Weyl theorem

Thierry Coquand and Bas Spitters

Thierry Coquand, Computing Science, Chalmers University of Technology, SE-412
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as a basis for a constructive proof in the style of Bishop. In fact, the present theory of com-
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1 Introduction

We present a constructive proof of the Peter-Weyl theorem on the representations
of compact groups. Unlike the original proof [7], or the one by Segal [8], we do
not use the spectral theory of compact operators. The proof is also different from
the one presented in [5], which uses a representation theorem for H*-algebras due to
Ambrose [1]. We use instead the Gelfand representation theorem for commutative
C*-algebras to give a new proof, which may be seen as a direct generalization of
Burnside’s algorithm [3] to compute the characters of a finite group. Our first proof
is not constructive. It uses a non-constructive variant of the least upper bound
principle (Theorem 3.10). However we show in section 4 how this can be avoided. We
thus obtain a constructive proof in the style of Bishop. In fact, the present theory of
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compact groups may be seen as a natural continuation in the line of Bishop’s work
on locally compact, but Abelian, groups [2].

The paper is organized as follows. We first outline the theory of finite groups
to motivate the way we organize our proof. Then we give a classical proof of the
Peter-Weyl theorem. Finally, we proceed to give a constructive proof.

2 Finite groups

In this section we outline how to compute the irreducible characters of finite groups;
see [3].

Let G be a finite group and let C1, . . . , Cn be its conjugacy classes. We define as
usual the group algebra C[G] as the algebra of formal sums Σagg with product∑

agg ∗
∑

bhh =
∑

agbhgh.

This algebra is isomorphic to the space C(G,C) of complex functions on G equipped
with the convolution product. Let Z(C[G]) be the center of this algebra. The center
consists of the formal sums

∑
agg such that ag = ah, whenever g and h are in the

same conjugacy class. The set G is a basis for the complex vector space C[G]. A
basis for Z(C[G]) is obtained by considering, for each conjugacy class Ci, the sum
Si =

∑
g∈Ci

g. So, the complex vector space Z(C[G]) has dimension n, the number
of conjugacy classes.

Since the family Si forms a basis for Z(C[G]), there exist natural numbers cijk

such that

(2.1) SiSj =
∑

k

cijkSk.

We write Mi for the matrix (cijk)jk.
Irreducible characters are best seen as representations χ : Z(C[G]) → C. This def-

inition coincides with a more traditional definition of ‘character’ which can be found
in section 3.6. A character χ induces a function C[G] → C which is constant on con-
jugacy classes. So χ is completely determined by a list of numbers χ(S1), . . . , χ(Sn).
We write χ(i) := χ(Si). We then obtain from equation 2.1 that

(2.2) χ(i)χ(j) =
∑

k

χ(k)cijk.

Consequently, the characters are eigenvectors for each of the matrices Mi := (cijk)jk,
which represents multiplication by Si. Conversely, each vector which is an eigenvector
for all multiplication matrices Mi is a character, except for a scalar multiplication.

Given the multiplication table (2.1) for Z, we obtain Burnside’s algorithm: if we
simultaneously diagonalize all matrices Mi, we obtain forMi a matrix with n numbers
on the diagonal and these numbers are χ1(i), . . . , χn(i).

Now, how do we know that we can simultaneously diagonalize all these matrices
Mi? We note that C[G] and hence Z(C[G]) is a Hilbert space with inner product

(2.3) (
∑

agg,
∑

bhh) =
1
n

∑
agbg.

With respect to this inner product, each matrix Mi is a normal matrix — that is, it
commutes with its adjoint. In fact, Z(C[G]) is a commutative C*-algebra of operators

2



on C[G]. The adjoint of Si is defined by S∗i :=
∑

x∈Si
x−1. Finally, a commutative

algebra of normal matrices can be simultaneously diagonalized. Since the matrices
have integral coefficients, the diagonalization process can be carried out constructively
within the algebraic numbers, since these have a decidable equality.

3 Compact case

We present a proof of the Peter-Weyl theorem. Only in one place, Theorem 3.10, do
we use non-constructive reasoning. In section 4 we will show how this can be avoided.

WhenX is a locally compact space, then C(X) denotes the space of test-functions,
that is, the space of functions with a compact support.

The present proof is similar to the finite case we have treated above. We apply
the Gelfand representation theorem for commutative C*-algebras to the center Z of
the group algebra and show that this is isomorphic to a sub-algebra of a space of
test-functions C(X,C). Here X can be seen as the set of all morphisms from Z to C.
The compact variant of the group algebra is the convolution algebra, which is also
called the group algebra.

We recall the Gelfand representation theorem. A constructive version of this result
can be found in section 4.

Theorem 3.1. [Gelfand] Let A be a unital commutative C*-algebra. The spectrum
X of A — that is, set of C*-algebra morphisms from A to C — can be equipped with
a topology such that X is compact and the Gelfand transform ·̂ : A → C(X), defined
by â(x) := x(a), is a C*-isomorphism.

We will first develop a few facts about the group algebra and prove a Plancherel
theorem (3.5) from which a Peter-Weyl theorem follows.

3.1 Integrals with values in a Banach space

Recall that on any compact group G one can construct a translation-invariant integral
M , called the Haar integral, such thatM(1) = 1. We will give a simple construction of
this integral in section A.1. We extend the Haar integral to the space of all continuous
functions on G with values in a Banach space E. This integral also has its values in
E.

Let f : G → E be a continuous function. We recall that a partition of unity g
consists of a finite collection of nonnegative functions gi in C(G) and xi in G such
that gi(xi) = 1 and

∑
gi = 1. We define for each partition g the Riemann sum

Mg(f) :=
∑
M(gi)f(xi). We observe that for each ε > 0, there exists a partition g

such that ‖f −
∑
f(xi)gi‖ ≤ ε. So we can then define the Riemann integral M(f)

as the limit of these Riemann sums. This integral is a continuous linear map from
C(G,E) to E.

Lemma 3.2. Let E1 be a Banach space, F : E → E1 a bounded linear map and f in
C(G,E). Then

∫
Ff = F

∫
f.
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P r o o f. Note that for all partitions of unity g,

Mg(Ff) =
∑

M(gi)(Ff)(xi)

= F (
∑

M(gi)f(xi))

= F (Mg(f)).

The lemma now follows from the fact that F is bounded and M is continuous. �

3.2 Convolution product

LetG be a compact group. Define for x ∈ G, the left-translation over x by (Txf)(y) :=
f(x−1y) for all f ∈ C(G). Define the convolution product on C(G) as the C(G)-valued
integral

(3.1) f ∗ g =
∫
f(y)Tygdy,

for all f, g ∈ C(G). As usual, the identity

(f ∗ g)(x) =
∫
f(y)g(y−1x)dy

is proved by applying the evaluation h 7→ h(x) from C(G) → C.
The space C(G,C) of complex continuous functions equipped with the convolution

product forms a complex algebra, called the group algebra. The map ·̃ defined by
f̃(x) := f(x−1) for all f ∈ C(G,C) is an involution. With this involution the group
algebra C(G,C) is a *-algebra. The space C(G,C) is also equipped with an inner
product defined by (f, g) :=

∫
fḡ.

Since f ∗ g =
∫
f(t)(Ttg)dt, it follows that

‖f ∗ g‖2 = ‖
∫
f(t)(Ttg)dt‖2(3.2)

≤
∫
|f(t)|‖(Ttg)‖2dt

=
∫
|f(t)|‖g‖2dt = ‖f‖1‖g‖2.

By the Cauchy-Schwarz inequality and since the Haar measure of G equals 1, we have
that ‖f‖1 ≤ ‖f‖2. Combining this with equation 3.2 we see that ‖f ∗g‖2 ≤ ‖f‖2‖g‖2.
Consequently, the map g 7→ f ∗g defines a bounded operator on the pre-Hilbert space
C(G,C).

It is straightforward to show that the operator defined by (Pf)(x) :=
∫
f(axa−1)da

for all f ∈ C(G,C) is the orthogonal projection on the center of the group algebra.
Let f, g be central continuous functions. Then the equality

f ∗ g =
∫
f(t)(PTtg)dt(3.3)

follows from Lemma 3.2 by taking F (u) = Pu.
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3.3 Group algebra

The group algebra is the algebra C(G) with ∗ as multiplication. We define the linear
functional I(f) := f(e) on the group algebra and remark that f ∗ g(e) = (f, g̃), where∫

denotes the Haar integral. Let Z := Z(C(G),C) denote the center of the group
algebra. We define an order on the ring Z by f � 0 if and only if (f ∗ g, g) ≥ 0,
whenever g is in C(G). If to each f in C(G) we associate an operator g 7→ f ∗ g on
the Hilbert space L2(G), then � is the usual order on C(G) when considered as an
algebra of operators.

We now collect some facts that are useful later.

Lemma 3.3. [11, p.85-86] If V is a neighborhood of e, then there is a nonnegative
central function u concentrated on V such that

∫
u = 1.

Lemma 3.4. For all u in L1(G)+, ‖u ∗ ũ‖1 = ‖u‖2
1.

P r o o f.∫
|u ∗ ũ| =

∫∫
u(xy−1)ũ(y)dydx

=
∫∫

u(xy−1)dxu(y−1)dy =
∫
‖u‖1u(y)dy = ‖u‖2

1.

�

Lemma 3.5. Let f ∈ C(G) and ε > 0. Then there exists a central w such that if
u := w ∗ w̃, then 0 ≤ û ≤ 1, ‖f − f ∗ u‖2 ≤ ε and |I(f) − I(f ∗ u)| ≤ ε. Finally,
I(u) ≥ 1.

P r o o f. Let f ∈ C(G). Let V be a neighborhood of e such that for all y ∈ V, x ∈
G,

|f(y−1x)− f(x)| < ε.

Lemma 3.3 supplies a nonnegative central test function w concentrated on W such
that W 2 ⊂ V and ‖w‖1 = 1. Define u := w ∗ w̃. Then ‖u‖1 = 1, so 0 ≤ û ≤ 1. Since
u is concentrated on V , for each x ∈ G,

|u ∗ f(x)− f(x)| ≤
∫

V

|u(y)||f(y−1x)− f(x)|dy

≤ 1 · ε
It follows that ‖u ∗ f − f‖∞ ≤ ε, and thus ‖u ∗ f − f‖2

2 =
∫
|u ∗ f − f |2 ≤ ε2 · 1.

To prove that |I(f)− I(f ∗ u)| ≤ ε, we observe that |f(e)− g(e)| ≤ ‖f − g‖∞ for
all f, g ∈ C(G). Consequently, |f(e)− f ∗ u(e)| ≤ ε.

For the inequality I(u) ≥ 1 one observes that I(u) = ‖w‖2
2 ≥ ‖w‖2

1 = 1. �

Corollary 3.6. The linear functional I is positive on Z. That is, if f � 0, then
I(f) ≥ 0.

P r o o f. If f � 0, then I(f ∗ w ∗ w̃) = (f ∗ w,w) ≥ 0 for all w in Z. The result
follows from the previous lemma. �

Lemma 3.7. For all h � 0, ‖h‖∞ = I(h) = h(e).
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P r o o f. We remind the reader of the usual argument (cf. for instance [11]). We
will use Dirac delta functions, the reader will have no problem finding a proof using
only continuous functions. We have I(h ∗ u ∗ ũ) ≥ 0 for all u ∈ C(G), and, since h
is positive, I(h ∗ δy) = h(y−1) = h(y) for all y. Taking u = aδe + bδx and observing
that δx ∗ δy = δxy, we have h(e)aa + h(x)ab + h(x)āb + h(e)bb̄ ≥ 0. We see that the
matrix (

h(e) h(x)
h(x) h(e)

)
is positive definite. Consequently, its determinant h(e)2 − |h(x)|2 is positive, which
was to be proved. �

3.4 Characters

Let R be the C*-algebra of operators on L2(G) generated by Z and the identity. Let
X be the spectrum of R and let ·̂ denote the Gelfand transform. Define D(g) :=
{x ∈ X : ĝ(x) > 0} and Σ :=

⋃
g∈Z D(g). We now prove that this set is actually

discrete and coincides with the space of characters. That is, we show that the *-
homomorphisms from Z to C correspond one-to-one with the characters. We need
some preparations first.

For all f, g ∈ C(G) we have

(Tx(f ∗ g))(z) =
∫
f(y)g(y−1x−1z)dy

w:=xy
=

∫
f(x−1w)g(w−1z)dw

= (Txf ∗ g)(z).

So, for all f, g ∈ Z,

(3.4) (Txf) ∗ g = Tx(f ∗ g) = Tx(g ∗ f) = (Txg) ∗ f = f ∗ Txg.

Lemma 3.8. For g ∈ Z and f ∈ C(G), P (f ∗ g) = g ∗ P (f).

P r o o f. For all φ ∈ C(G,C(G)) we have
∫
φ(x) ∗ gdx = (

∫
φ) ∗ g and Pf =∫

TxT
xfdx, where T xf(z) = f(zx). So

P (f ∗ g) =
∫
TxT

xf ∗ gdx

=
∫

(TxT
xf) ∗ gdx

=
∫

(TxT
xf)dx ∗ g

= (Pf) ∗ g,

where the second equality follows from Formula 3.4. �

For the rest of this section we fix a point σ in Σ, that is a *-algebra homomorphism
σ : Z → C.
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Since σ ∈ Σ, there exists g in Z such that σ ∈ D(g). We define χσ(x) :=
σ(PTxg)/σ(g). We drop the subscript when no confusion is possible. Since P (f̃) =
P̃ (f) for all f ∈ C(G,C), we see that χ = χ̃.

We will show that χ is a character — that is a central function such that χ ∗ f =
(f, χ)χ for all central f — and that D(χσ) = {σ}.

By Lemma 3.2 and Formula 3.3

σ(f)σ(g) = σ(f ∗ g) =
∫
f(t)χσ(t)σ(g)dt,

so σ(f) =
∫
f(t)χσ(t)dt = (f, χ̃σ) = (f, χσ).

The first equation in the following lemma is called the character formula.

Lemma 3.9. χ(x)χ(y) =
∫
χ(xtyt−1)dt = (PTxχ)(y).

P r o o f. It follows from Lemma 3.8 and Formula 3.4 that:

PTxg ∗ PTyg = P (Txg ∗ PTyg) = P (g ∗ TxPTyg) = g ∗ PTxPTyg.

We have PTxPTyg =
∫
PTxtyt−1gdt, so

σ(PTxPTyg)/σ(g) =
∫
χσ(xtyt−1)dt = PTxχσ(y).

On the other hand, σ(PTxg ∗ PTyg)/σ(g)2 = χσ(x)χσ(y). �

Put in other words, the lemma states that PTxχ = χ(x)χ. It follows that χ is a
central function, since

χ = χ(e)χ = PTeχ = Pχ.

Also

(3.5) (f ∗ χ) =
∫
f(t)(PTtχ)dt =

∫
f(t)χ(t)χdt = (f, χ̃)χ = (f, χ)χ.

Consequently, pσ := χσ/(χσ, χσ) is a projection, that is a self-adjoint idempotent.
We claim that D(χσ) = {σ}. Indeed, by Formula 3.5 D(χσ) contains only one

point and since χ̂σ(σ) = σ(χσ) = (χσ, χσ) > 0, this point is equal to σ. We see that
Σ is discrete. We observe that

I(χσ) = χσ(e) =
σ(PTeg)
σ(g)

= 1.

Conversely, if χ is a character then σ(f) := (f, χ) is a *-algebra homomorphism
Z → C. Indeed,

σ(f̃) = (f̃ , χ) = (f, χ̃)∗ = (f, χ)∗ = σ(f)∗

for all f ∈ Z, and

σ(f ∗ g) = (f ∗ g, χ) = (g, f̃ ∗ χ) = (f̃ , χ)∗(g, χ) = (f, χ)(g, χ) = σ(g)σ(f)

for all f, g ∈ Z.
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3.5 Plancherel and Peter-Weyl

In the following theorem, and the rest of the section, we use non-constructive reason-
ing. A constructive version of this result will be given in section 4.

We recall that Σ is discrete. Define for each σ in Σ, aσ := f̂(σ)/‖χσ‖2
2. Then

f̂(σ) = aσχ̂σ(σ).

Theorem 3.10. For all f ∈ Z such that f̂ ≥ 0, I(f) =
∑
aσ and f =

∑
aσχσ.

P r o o f. The functional I is positive (Corollary 3.6), so I(f) ≥ I(g), whenever
0 ≤ ĝ ≤ f̂ . Consequently, for each finite U ⊂ Σ, we have I(f) ≥

∑
σ∈U aσI(χσ) =∑

σ∈U aσ, since f �
∑

σ∈U aσχσ. It follows that
∑
aσ converges. Note that classical

reasoning is used here, and that it is used only for this point. By Lemma 3.7, ‖χ‖∞ =
I(χ) = 1, for all characters χ. Consequently,

∑
aσχσ converges uniformly in C(G),

to g say. Now for all σ, f̂ − g(σ) = 0, so f = g and I(f) =
∑
aσ. �

Let eσ := χσ/‖χσ‖2 and bσ(f) := (f, eσ). Then ‖eσ‖2 = 1 and bσ = f̂(σ)/‖χσ‖2.

Corollary 3.11. [Plancherel] For all f in Z, I(f ∗ f̃) =
∑
|bσ|2 and eσ is an or-

thonormal basis for the pre-Hilbert space Z.

P r o o f. We apply the previous theorem to f ∗ f̃ . Then

I(f ∗ f̃) =
∑
|σ(f ∗ f̃)|
‖χσ‖2

2

=
∑
|σ(f)|2

‖χσ‖2
2

=
∑

|bσ|2.

It is straightforward to show that the system eσ is orthonormal. For each finite
U ⊂ Σ, ‖f −

∑
σ∈U (f, eσ)eσ‖2

2 equals
∑
|bσ|2 where the last sum ranges over Σ− U.

Consequently, f =
∑
bσeσ and the system eσ forms a basis. �

We now obtain the main theorem in the Peter-Weyl theory.

Theorem 3.12. [Peter-Weyl] For each f ∈ C(G),
∑

σ eσ ∗f, where σ ∈ Σ, converges
to f in L2.

P r o o f. For every such f in C(G), Lemma 3.5 supplies a central u such that
0 ≤ û ≤ 1 and ‖f ∗ u− f‖2 is small. We apply the Plancherel theorem to u to obtain
the theorem. �

3.6 An alternative definition of character

Traditionally, given a finite dimensional representation π, one defines its character
as x 7→ Tr(π(x)). The following theorem and Lemma 3.9 show that our definition
coincides with the traditional one.

Theorem 3.13. [6, p.197] Let ψ be a complex continuous function on G. Then ψ

is the normalized1) character of an irreducible unitary representation if and only if
ψ 6= 0 and ψ(x)ψ(y) =

∫
ψ(xtyt−1)dt for all x, y in G.

It is not difficult to obtain a representation from a character (as defined in the
present paper).

1)That is ψ(e) = 1.
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Theorem 3.14. For each character χ, the function x 7→ Txχ extends to an irreducible
representation of the group G on the finite dimensional space span{Txχ : x ∈ G}.

P r o o f. The set {Txχ : x ∈ G} is invariant under the projection Tχf := χ ∗ f,
since χ ∗ Txχ = Tx(χ ∗ χ) = Txχ. The projection is compact, so its range is finite
dimensional.

Suppose that M is a translation invariant closed subspace of span{Txχ : x ∈ G}
and f a nonzero element in M. Then P (f ∗ f̃) is a central element in M , which is
nonzero since

P (f ∗ f̃)(e) =
∫

(f ∗ f̃)(tet−1)dt = f ∗ f̃(e) = ‖f‖2
2 > 0.

The range of the projection Tχ on Z is one-dimensional, so Pf is a nonzero multiple of
χ. Therefore M contains χ and hence {Txχ : x ∈ G}. It follows that {Txχ : x ∈ G}
is irreducible. �

4 Constructive proof

In this section we obtain a constructive Peter-Weyl theorem.
Bishop [2] has the following variant of Gelfand’s theorem.

Theorem 4.1. [Gelfand] Let A be a unital commutative C*-algebra of operators on
a separable Hilbert space. The spectrum X of A — that is, the set of C*-algebra
morphisms from A to C — can be equipped with a metric such that X is a compact
metric space and the Gelfand transform ·̂ : A → C(X), defined by â(x) := x(a), is a
C*-isomorphism.

It is implicit in the statement of the previous theorem that the norms of all the
elements in the C*-algebra are computable. Fortunately, this holds for the present
application, as we shall prove shortly.

Define for each f ∈ C(G) the operator Tf (g) := f ∗ g for all g ∈ L2.

Theorem 4.2. The operators Tf (f ∈ C(G)) are compact and hence normable, (this
is, the operator norm can be computed).

P r o o f. Let B := {g ∈ L2 : ‖g‖2 ≤ 1}. We need to prove that the image of B
under Tf is totally bounded. To do this we use the the Ascoli-Arzelà theorem [2,
p.100]. Since (f ∗ g)(x) = (Txf, g̃), we have for all x, y ∈ G and g ∈ B,

|(f ∗ g)(x)− (f ∗ g)(y)| ≤ |(Txf − Tyf, g̃)|
≤ ‖Txf − Tyf‖2.

We see that {f ∗ g : g ∈ B} is equicontinuous. If x1, . . . , xn ∈ G, then the set

{(f ∗ g(x1), . . . , f ∗ g(xn)) : g ∈ B}

is totally bounded, since we can find a finite set C of linear independent vectors close
to {Tx1f, . . . , Txnf} and the set

{((Tx1f, c), . . . (Txnf, c)) : c ∈ spanC, ‖c‖2 ≤ 1}

is totally bounded. �
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We note that the compactness of the operators Tf is used only to prove that Z
generates a C*-algebra. However, the spectral theorem for compact operators is not
needed.

To obtain a constructive Plancherel theorem, we give a constructive proof of The-
orem 3.10. The notation is as before.

Theorem 4.3. For all f ∈ Z such that f̂ ≥ 0, I(f) =
∑
aσ and f =

∑
aσχ.

P r o o f. The functional I is positive, so I(f) ≥ I(g), whenever 0 ≤ ĝ ≤ f̂ . Conse-
quently, for each finite U ⊂ Σ, we have I(f) ≥

∑
σ∈U aσI(χσ). We know that

‖f̂‖X = sup
x∈X

|x(f)| ≥ sup
σ∈Σ

|σ(f)|.

Moreover, if |x(f)| > 0, then x ∈ Σ. It follows that supx∈X |x(f)| = supσ∈Σ |σ(f)|. Let
ε > 0. Lemma 3.5 supplies a central w such that for u := w∗w̃, 0 ≤ I(f)−I(f ∗u) ≤ ε.
Let d > 0 be such that dI(u) ≤ ε. We construct a finite set K ⊂ Σ such that for
all σ ∈ Σ − K, f̂(σ) < d. This set K is build recursively, we start with the empty
set. Then we decide whether ‖f̂‖ < d or ‖f̂‖ > d/2. In the former case, we are done.
In the latter case we pick σ in Σ such that f̂(σ) > d/2 and add it to K. We then
consider f̂ − f̂ ∗ χσ recursively.

Define g :=
∑

σ∈K χσ ∗ f ∗ u. Then ĝ ≤
∑

σ∈K χ̂σ f̂ ≤ f̂ , since f ∗ u � f. So

I(f ∗ u− g) = I(u ∗ (f − f ∗
∑
σ∈K

χσ)) ≤ I(u)d ≤ ε.

Here we used that since u = w ∗ w̃,
|I(h ∗ u)| = |(h ∗ w,w)| ≤ d‖w‖2

2

for all |ĥ| ≤ d, a result that follows immediately from the definition of the order on
operators. We see that I(g) is within 2ε of I(f), as required. �

The proofs of the Plancherel Theorem and the Peter-Weyl theorem above are
constructive.
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Appendix A Compact groups

A.1 Haar measure

We give a constructive adaptation of a proof by von Neumann [10] for the existence
of Haar measure on a compact group.

Let G be a compact group. We define for all x ∈ G, the left-translation over x
by (Txf)(y) := f(x−1y) for all f ∈ C(G). Then TxTy = Txy and Tx−1 = T−1

x . Define
Sf := {Txf : x ∈ G}. Let e be the unit in G. Let coA denote the convex hull of the
set A and let coA denote the closure of coA.

Proposition A.1. Let G be a compact group and f ∈ C(G). There is a constant
function a such that for each ε > 0, there are x1, . . . , xn in G such that ‖ 1

n

∑n
i=1 Txif−

a‖ ≤ ε.

P r o o f. The set Sf is the uniformly continuous image of G and hence it is totally
bounded. It follows that coSf is totally bounded, and hence so is B := {sup g : g ∈
coSf}. We claim that the constant function with value inf B is in coSf .

Let ε > 0. Choose, x1, . . . , xn in G and a neighborhood V of e such that xiV covers
G and |f(x) − f(y)| ≤ ε for all x, y ∈ xiV . Define the average A(g) := 1

n

∑n
i=1 Txig

for all g ∈ C(G). The operator A maps coSf to coSf , so supAg ≤ sup g. Choose
g ∈ coSf such that sup g − inf B < ε/n. In particular, sup g − supAg < ε/n. Hence
for some x ∈ G, sup g − (Ag)x < ε/n. So sup g − g(x−1

i x) ≤ ε for all i ≤ n. If x and
y are in V, then |g(x)− g(y)| < ε for all g ∈ Sf . Consequently, sup g − g(y) ≤ 2ε for
all y ∈ G, so ‖g − inf B‖∞ ≤ 2ε. �

We obtain a similar result for Sf := {T sf : s ∈ G}, here T s denotes right-
translation over s, that is T sf(x) = f(xs) for all s ∈ G.

Lemma A.2. The constant function in Proposition A.1 is unique. We denote this
unique constant by M(f).
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P r o o f. Let ε > 0. Choose x1, . . . , xn and y1, . . . , ym in G and a and b in R such
that a − ε ≤ Af ≤ a + ε and b − ε ≤ Bf ≤ b + ε, where A := (1/n)

∑n
i=1 Txi and

B := (1/m)
∑m

j=1 T
yj . Then a−ε ≤ T sAf ≤ a+ε for all s ∈ G, so a−ε ≤ BAf ≤ a+ε.

Similarly, it follows that b−ε ≤ ABf ≤ b+ε. So |a− b| ≤ 2ε, because AB = BA. �

Theorem A.3. [Haar] There exists a unique positive linear functional M on C(G)
such that M(1) = 1 and M(f) = M(Txf) for all x ∈ G.

P r o o f. We define the Haar measure on G as the map f 7→M(f). It is clear that
M(f) ≥ 0, whenever f ≥ 0. Moreover, for all f ∈ C(G) and x ∈ G, the constant
functions with values M(Txf) and M(f) are in coSf , hence M(Txf) = M(f). We
claim thatM is linear. Indeed, let f and g be in C(G) and let ε > 0. Choose x1, . . . , xn

and y1, . . . , ym in G such that ‖Af−M(f)‖∞ < ε and ‖B(Ag)−M(Ag)‖∞ < ε, where
A := 1

n

∑n
i=1 Txi and B := 1

m

∑m
i=1 Tyi . Then M(Ag) = M(g) and B(M(f)) = M(f).

Consequently ‖B(Af)−M(f)‖∞ < ε, and hence ‖BA(f+g)−M(f)−M(g)‖∞ < 2ε.
We see that M(f)+M(g) ∈ coSf+g. So M(f)+M(g) = M(f +g). We conclude that
M is an invariant positive linear functional on C(G).

To prove the uniqueness of this invariant measure, we observe that if µ is any
invariant probability measure on G, then for all f ∈ C(G), µ is constant on coSf and
hence µ(f) = µ(M(f)) = M(f). �
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