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Pointfree integration theory

Problem 1
Gian-Carlo Rota
(‘Twelve problems in probability no one likes to bring up’)
Number 1: ‘The algebra of probability’
About the pointwise definition of probability:
‘The beginning definitions in any field of mathematics are always
misleading, and the basic definitions of probability are perhaps the
most misleading of all.’
Problem: develop ‘pointless probability’ following Caratheory and von
Neumann.
von Neumann - towards Quantum Probability



Pointfree integration theory

Pointwise probability:
Measure space (X ,B, µ)
X set, B ⊂ P(X ) σ-algebra of sets, µ : B → R
The event that a sequence of coin tosses starts with a head is
modeled by

{α ∈ 2N : α(0) = 1} ∈ B

The measure of this set is 1
2 .

Problem: Why sets?

In pointfree probability this event is modeled by a basic event ‘1’ in an
abstract Boolean algebra.
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Constructive mathematics
Two important interpretations:

1 Computational: type theory, realizability, ...
2 Geometrical: topoi (sheafs)

Research in constructive maths (analysis) mainly focuses on 1
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Richman’s challenge

Problem 2
Develop constructive maths without (countable) choice

Richman
‘Measure theory and the spectral theorem are major challenges for a
choiceless development of constructive mathematics and I expect a
choiceless development of this theory to be accompanied by some
surprising insights and a gain of clarity.’

We will address both of these problems simultaneously.
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Choice

In computational interpretations of constructive maths:
intensional choice/ countable AC are taken for granted.
∀x ∈ N∃yφ(x , y) → ∃f∀xφ(x , f (x))

In geometrical interpretations (topoi):
CAC does not always hold
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Choice

Several proposals to avoid (countable) choice in constructive
mathematics. (Sheaf models, abstract data types)
Our motivation: The results are more uniform
E.g. Richman’s proof of the fundamental theorem of algebra:
Without DC one can not construct a root of a polynomial
Solution: construct multiset of all zeroes



Point Free Topology

Choice is used to construct
ideal points (real numbers, max. ideals).
Avoiding points one can avoid
choice and non-constructive reasoning (Mulvey?)
Even: explicit constructions in lattices (Coquand?)
(Also: elimination of choice sequences,
elimination of dependent choice)

Point free approaches to topology:

Pointfree (formal) topology aka locale theory (formal opens)
commutative C*-algebras (formal continuous functions)

These formal objects model basic observations
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Pointfree topology

Topology: distributive lattice of sets closed under finite intersection
and arbitrary union
Pointfree topology: distributive lattice closed under finite meets and
arbitrary joins
(Adjunction between Top and Loc)

pointfree topology=complete Heyting algebra
Recall a Heyting algebra is a model of propositional intuitionistic logic

Classical logic
Boolean algebra

=
Intuitionistic logic
Heyting algebra

Soundness and completeness
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Pointfree topology

Pointfree topologies were isolated as a framework for topology in
Grothendieck’s algebraic geometry.
Independently discovered by Martin-Löf to develop Brouwer’s
spreads in the context of recursive topology.
Later developed by Sambin and Martin-Löf (and others...) following
Fourman and Grayson
Both fields seem to be converging. (locales, sites)



Constructive integration theory



Riemann

Riemann considered partions of the domain

∫
f = lim

∑
f (xi)|xi+1 − xi |



Lebesgue

Lebesgue considered partitions of the range

Need measure on the domain:∫
f = lim

∑
siµ(si ≤ f < si+1)



Opens need not be measurable

Constructive problem: opens may not be measurable.
However, all continuous functions on [0,1] are integrable.
Also all intervals (basic opens) are measurable.
Suggests two approaches: using basic opens/using functions

Similar problems in C*-algebras (cf. effect algebras)



Daniell

Consider integrals on algebras of functions.
Classical Daniell theory.
integration for positive linear functionals on space of continuous
functions on a topological space
Prime example: Lebesgue integral

∫
Linear:

∫
af + bg = a

∫
f + b

∫
g

Positive: If f (x) ≥ 0 for all x , then
∫

f ≥ 0.

Other example: Dirac measure δt(f ) := f (t).
Can be extended to a quite general class of underlying topological
spaces
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Bishop’s integration theory

Bishop follows Daniell’s functional analytic approach to integration
theory

Complete C(X ) wrt the norm
∫
|f |

Lebesgue-integral is the completion of the Riemann integral.
One obtains L1 as the completion of C(X ).

C(X ) → L1

↘

↓
L1

L1: concrete functions
L1: L1 module equal almost everywhere
Work with L1 because functions ‘are easy’.
Secretly we work with L1.
Do this overtly with an abstract space of functions, see later.
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Integral on Riesz space

We generalize several approaches:
Integral on Riesz space

Definition
A Riesz space (vector lattice) is a vector space with ‘compatible’
lattice operations ∨,∧.
E.g. f ∨ g + f ∧ g = f + g.

Prime (‘only’) example:
vector space of real functions with pointwise ∨,∧.
Also: the simple functions.

We assume that Riesz space R has a strong unit 1: ∀f∃n.f ≤ n · 1.
An integral on a Riesz space is a positive linear functional I
[Abstract Daniell integral]
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Integrals on Riesz space

Most of Bishop’s results generalize to Riesz spaces!
However, we first need to show how to handle multiplication.
[Bishop’s approach uses choice.]
Once we know how to do this we can treat:

1 integrable, measurable functions, Lp-spaces
2 Riemann-Stieltjes
3 Dominated convergence
4 Radon-Nikodym
5 Spectral theorem
6 Valuations



Stone representation

Stone-Yosida representation theorem:
‘Every Riesz space can be embedded in an algebra of continuous
functions’
Used:

Towards spectral theorem
To define multiplication

Theorem (Classical Stone-Yosida)

Let R be a Riesz space. Let Max(R) be the space of representations.
The space Max(R) is compact Hausdorff and there is a Riesz
embedding ·̂ : R → C(Max(R)). The uniform norm of â equals the
norm of a.
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Entailment

Pointfree definition of a space using entailment relation `
Used to represent distributive lattices
Write A ` B iff ∧A ≤

∨
B

Conversely, given an entailment relation define a lattice:
Lindenbaum algebra

Topology is a distributive lattice
order: covering relation
Topology = theory of observations (Smyth, Vickers, Abramsky...),
geometric logic!
Stone’s duality :
Boolean algebras and Stone spaces
distributive lattices and coherent T0 spaces
Points are models
space is theory, open is formula
model theory → proof theory
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Formal space Max(R)

Think: D(a) = {φ ∈ Max(R) : â(φ) > 0}. a ∈ R, â(φ) = φ(a)

1 D(a) ∧ D(−a) = 0;
(D(a), D(−a) ` ⊥)

2 D(a) = 0 if a ≤ 0;
3 D(a + b) ≤ D(a) ∨ D(b);
4 D(1) = 1;
5 D(a ∨ b) = D(a) ∨ D(b)

6 D(a) =
∨

r>0 D(a− r).

Max(R) is compact completely regular (cpt Hausdorff)
Following Coquand’s proof (inspired by Banaschewski/Mulvey) that
the frame with generators D(a) is a pointfree description of the space
of representations Max(R) we proved a constructive Stone-Yosida
theorem
‘Every Riesz space is a Riesz space of functions’



Retract

Every compact regular space is retract (conservative extension) of a
coherent space.
Strategy: first define a finitary cover, then add the infintary part and
prove that it is a conservative extension. (Coquand, Mulvey)
This was used above: adding axiom 6 was proved to be a
conservative extension.
Can be used to give an entirely finitary proof



Spectral theorem

Pointfree Stone-Yosida implies Bishop’s version of the Gelfand
representation theorem (Coquand/S:2005).
Three settings:

Classical mathematics with AC Spectrum has enough points, i.e. is
an ordinary topological space

Bishop Using DC, normability and separability we can show
that Max(R) is totally bounded metric space.
In general not enough points (only the recursive ones)

Constructive mathematics without CAC Naturally generalizes the two
above: Max(R) is a compact completely regular
pointfree space.

Recall: AC + PEM `compact completely regular pointfree space has
enough points.
Our proof is smoother and more general than Bishop’s.



Stone-Yosida

We have proved the Stone-Yosida representation theorem:

Theorem
Every Riesz space can be embedded in a formal space of continuous
functions on its spectrum.

Any integral can be extended to all the continuous functions. Thus we
are in a formal Daniell setting!
We can now develop much of Bishop’s integration theory in this
abstract setting.
[The constructions are geometric!]
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Quantum theory

This is precisely what we need for a Bohrian interpretation of
quantum theory (ala Isham)
Also relativity?

See my talk on Saturday

Bas Spitters Observational Integration Theory
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Another application

An almost f-algebra (G. Birkhoff) is a Riesz space with multiplication
such that f ∧ g = 0 → fg = 0.

Theorem
Every almost f-algebra is commutative.

Several proofs using AC.
‘Constructive’ (i.e. no AC) proof by Buskens and van Rooij.
Mechanical translation to a simpler constructive proof (no PEM, AC)
which is entirely internal to the theory of Riesz spaces.

Bas Spitters Observational Integration Theory



Summary

Observational mathematics
Topology
Measure theory

Integration on Riesz spaces (towards Richman’s challenge).
‘functions’ instead of ‘opens’
Most of Bishop’s results can be generalized to this setting!

New (easier) proof of Bishop’s spectral theorems using
Coquand’s Stone representation theorem (pointfree topology)



References

Constructive algebraic integration theory without choice
Formal Topology and Constructive Mathematics: the Gelfand and
Stone-Yosida Representation Theorems (with Coquand)
Located and overt locales (with Coquand)
Integrals and valuations (with Coquand)
A topos for algebraic quantum theory (with Heunen)
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