
Synthetic topology in Homotopy Type Theory
for probabilistic programming

Florian Faissole1? and Bas Spitters2??

1 Inria, Université Paris-Saclay, F-91120 Palaiseau
LRI, CNRS & Université Paris-Sud, F-91405 Orsay

florian.faissole@lri.fr
2 Aarhus University spitters@cs.au.dk

Abstract. The ALEA Coq library formalizes discrete measure theory
using a variant of the Giry monad, as a submonad of the CPS monad:
(A → [0, 1]) → [0, 1]. This allows one to use Moggi’s monadic meta-
language to give an interpretation of a language, Rml, into type theory.
Rml is a functional language with a primitive for probabilistic choice.
This formalization was the semantical basis for the Certicrypt system for
verifying security protocols. The Easycrypt proof assistant is still based on
the same semantics. We improve on the formalization by using homotopy
type theory which provides e.g. quotients and functional extensionality.
Moreover, homotopy type theory allows us to use synthetic topology to
present a theory which also includes non-discrete (‘continuous’) data
types, like [0, 1]. Such data types are relevant, for instance, in machine
learning and differential privacy. Our axioms are justified by Kleene-
Vesley realizability, a standard model for computation with continuous
data types.

Keywords: Probabilistic computation, Synthetic topology, Homotopy type the-
ory, Coq

1 Introduction

In her fundamental work on categorical measure theory, Giry [18] proved that
the set of all measures M(X) on a measure space X is itself a measure space,
and that M is in fact a monad on the category of measure spaces. Jones and
Plotkin [25] showed how to use this as a semantics for probabilistic programming,
using Moggi’s monadic meta-language. The ALEA [3] Coq library formalizes
discrete measure theory using a variant of the Giry monad, as a submonad of
the CPS monad: (A→ [0, 1])→ [0, 1]. This allows one to use Moggi’s monadic
meta-language to give an interpretation of a language Rml into type theory. Rml
is a functional language with a primitive for probabilistic choice. To be precise,

? Two page abstracts of this work appeared at CoqPL’17 and PPS’17.
?? This research was partially supported by the Guarded homotopy type theory project,

funded by the Villum Foundation, project number 12386 and Digiteo.

the type of the monad of measures also requires monotonicity, summability
and linearity. However, Coq cannot prove this to be a monad, as the equality
on distributions is not the intensional equality of Coq. We solve this technical
issue by using homotopy type theory (HoTT). More importantly, this allows us
to use synthetic topology to present a theory which also includes non-discrete
(‘continuous’) datatypes like [0, 1].

Contributions We combine homotopy type theory and synthetic topology to
provide a new development of parts of measure theory. This is then used as
an axiomatic semantics for probabilistic computation using the monadic meta-
language. This semantics has features of both denotational and operational
(sampling) semantics, as we will explain. Our main insight is the extension of
the Giry monad from locales to synthetic topology. We provide a substantial
Coq development including synthetic topology, a theory of valuations and lower
integrals, and an interpretation of probabilistic programs via a shallow embedding.
This is based on the HoTT library [6] and the experimental induction-recursion
branch of Coq. The development of synthetic topology dependents on a dominance,
which we define by using the partiality monad. Finally, we show how to execute
partial functions in Coq using the tactic language. This gives us a, currently slow,
executable semantics.

Plan We assume the reader has basic familiarity with homotopy type theory [41].
Section 2 presents probability theory and synthetic topology. Section 3 introduces
homotopy type theory and the univalent foundations. Section 4 describes our
Coq development. Section 5 describes a small functional probabilistic language
and its monadic interpretation. Section 6 deals with our computable denotational
semantics and operational semantics. Section 7 contrasts our work with alternative
approaches. Section 8 concludes.

2 Probability theory and synthetic topology

The Giry monad [18] can be constructed on various categories, for instance on
the category of Polish spaces, on the category of measurable spaces, and on a
category of domains [25]. We could first formalize these categories in Coq and
then build the model on top of that. Such an approach is taken in Isabelle/HOL;
e.g. [21]. However, such categories are not cartesian closed, so they do not allow
function types; see subsection 7.2. We can solve this problem and stay closer to
the ALEA library by using synthetic topology.

Synthetic topology follows the philosophy of synthetic domain theory [24], a
successful tool in semantics. In synthetic topology, one uses a domain specific
language for topology, or more precisely, a category which is sufficiently like that
of topological spaces; see [14,7] for an overview. We use a topos with a special
object S which classifies the (enumerable) opens. I.e. open subsets are replaced
by maps to S. One may think of S as the Sierpinski space, since in the category
of topological spaces there is a bijective correspondence between open subsets

and the inverse image of a continuous map at 1 ∈ S. In synthetic computability,
one would take S to be the semi-decidable truth values. An abstract theory can
be developed based on the assumption that S is a dominance — a certain subset
of the set Ω of propositions. This axiom implies that monomorphisms classified
by S ⊂ Ω compose; e.g. [15, 2.6]. Topologically, S being a dominance implies that
open subsets of open subsets are open.

Our Coq development is not maximally abstract, in that we are working
with the specific dominance of semi-decidable propositions. This seems fitting
though, as measure theory deals with countable unions as opposed to general
ones. Moreover, most spaces we care about have a countable basis. We do,
however, abstract from standard realizability presentations of computations
with continuous datatypes, such as Kleene’s second algebra [26], also known as
TTE [43,5], or domain theory.

3 Homotopy type theory and univalent foundations

Coq’s type theory lacks quotients and functional extensionality. To address
this ALEA uses so-called setoids, a type together with an equivalence relation.
However, they are not used consistently. For instance, the carrier of a distribution
is a bare type. This works for the discrete types, but for continuous types, such as
[0, 1], or the type of valuations on the booleans, an equivalence relation should be
taken into account. Setoids make the library quite heavy since one needs to prove
that all functions actually preserve this relation. Even though better support
has been developed [38], there is now a more principled solution. Homotopy type
theory [41] provides a consistent way of adding such features while preserving the
good computational properties [12]. Although details of a full integration of these
ideas in the Coq proof assistant need to be worked out, the HoTT library [6] adds
these features axiomatically. This is done in such a way that terms in quotients
types will reduce as expected. Many Coq users have a naive view of Coq’s types
as some kind of sets. HoTT makes this precise, the so-called hSets behave much
like structural sets. To be precise, they form a ΠW-pretopos [33]. The universe
is an example of a type that is not an hSet. Voevodsky’s univalence axiom is an
extensionality axiom for the universe: all maps out of the universe should respect
equivalence of types.

On top of HoTT, we add the axioms for synthetic topology. More precisely,
we add them only for the hSets, based on the fact that they form a ΠW-pretopos.
NuPrl [31] provides an extensional type theory in which the axioms for synthetic
topology are provable. However, we prefer Coq, as it is a more mature system
and we also get some benefits from homotopy type theory, as discussed below.

The sheaf topos models for synthetic topology can naturally be extended to
higher toposes, and hence to models of homotopy type theory [37]. There are
some technical issues connected to so-called weak Tarski universes, however they
do not concern us here, as even for (the implementation of) Coq itself there does
not seem to be a definitive treatment about the distinction between Russell and
Tarski style universes. Similarly, one may extend realizability models to homotopy

type theory, for instance by interpreting the constructive cubical model of HoTT
in the extensional type theory of a realizability topos, or by considering cubical
assemblies3. In fact, the realizabilty models embed into topological models [4].
We acknowledge that the definitive treaty on the semantics of HoTT still needs
to be written, but following e.g. Shulman [36] we here investigate whether such
models are useful. We avoid the axiom of countable choice which is not available
in HoTT, although it does hold in the realizability models we are interested in.

In comparison with extensional type theory, as e.g. in NuPrl, HoTT (with
univalence and higher inductive types) gives us a few benefits. For instance, the
univalence axiom is well-suited for algebraic and categorical reasoning [41]; see
e.g. subsection 4.2. Moreover, it facilitates the formalization of free (algebraic)
structures. For instance, the partiality monad [1] is the free ω-cpo completion, a
quotient inductive inductive type (QIIT). This is a type-theoretic encoding of the
‘flat domain’ in domain theory. For any type A, A⊥ is defined with constructors,
η,⊥,

⋃
and a relation ⊆ (and its expected properties [1]):

A⊥ : hSet ⊆A⊥ : A⊥ → A⊥ → hProp.
η : A→ A⊥ ⊥ : A⊥⋃

:
∏

f :N→A⊥

(
∏
n:N

f(n) ⊆A⊥ f(n+ 1))→ A⊥

When termination is decidable, A⊥ = A+⊥. In general, elements of A⊥ can
be viewed as semi-decidable subsingleton subsets of A.

Gilbert [17] defined the partiality monad in Coq on top of the HoTT library [6]
by simulating QIITs based on the experimental induction-recursion branch4 of
Coq. One then defines the semi-decidable propositions as S := 1⊥, where 1 is
the unit type. This is a distibutive lattice. We will show that it is in fact a the
dominance. This seems like the natural way to present the Rosolini dominance
in HoTT, a context where countable choice is not present. Gilbert [17] also
formalized the Cauchy and Dedekind reals in HoTT based on an adaptation of
the MathClasses library [27,39]. MathClasses provides an abstract approach to
continuous computation, using type classes. It contains, for instance, the algebraic
and order-theoretic properties of the exact real numbers. Dedekind reals are pairs
of predicates of type Q→ S with the expected properties. In our development,
we will reuse this approach to define their lower semi-continuous counterpart: the
lower reals.

4 Implementation in HoTT

This section presents the layers of our underlying development of synthetic
topology. In Section 4.1, we connect the partiality monad with our adaptation of
ALEAs theory of ω-cpos and check that partiality is the free ω-cpo completion.
We also check that S is a dominance in Section 4.2 and provide techniques to
compute with partial types in Section 4.3. Section 4.4 presents our formalization

3 E.g. www.mat.uc.pt/~ct2017/slides/frey_j.pdf
4 github.com/mattam82/coq/commits/IR

www.mat.uc.pt/~ct2017/slides/frey_j.pdf
github.com/mattam82/coq/commits/IR

of the space of lower reals. Section 4.5 defines a bijection between valuations and
lower integrals.

4.1 Partiality and free ω-cpos

Altenkirch, Danielsson and Krauss [1] define A⊥ to be the free ω-cpo on A. That
is, given any ω-cpo C and a map f : A → C, there is a (unique) map of type
f⊥ : A⊥ → C such that f⊥ ◦ η = f . This connects (our adaptation of) ALEAs
theory with the partiality monad.

4.2 The Sierpiski space is a dominance

The notion of dominance is central in synthetic topology. A dominance is a suitable
subset of the hpropositions. In our Coq development, we define a dominance S
together with the coercion IsTop(s) := (s = >S) from S to hProp.

Definition 1 A type S endowed with a map to hProp is a dominance iff > ∈ S
and: ∀u : hProp,∀s : S, (IsTop(s)⇒

∃z ∈ S, IsTop(z) = u)⇒ ∃m ∈ S, IsTop(m) = u ∧ IsTop(s).

This can also be formulated [15], as a predicate d(x) := ∃z ∈ S.x = z such that
dominant types are propositions, d(>) and∏

P :U Q:P→U

d(P)→
∏
p:P

d(Q(p))→ d(
∑
p:P

Q(p)).

Lemma 1 S is a dominance.

Proof. As S is 1⊥, we proceed by induction. The cases u = > and u = ⊥ are
trivial. When u is the supremum of an increasing sequence un in S we need to
pick a sequence of witnesses mn. A priori, defining such a sequence would require
countable choice. However, each mn is uniquely determined by un, so we use
unique choice property from the HoTT library, a constructive counterpart of the
Hilbert’s iota axiom. ut

Alternatively, we could use the monad axioms to prove the equivalent characteri-
zation [15] of dominance: d(U)⇒ (U → d(V))⇒ d(U × V).

Dominance and univalence We now show explain how dominances and univalent
type theory interact naturally. We have not formalized this part. Escardó and
Knapp [15] provide a general construction of a lifting defined by a dominance.
We present it here, specialized to S. Consider the unique map ! : X → 1 and its
lifting !⊥ : X⊥ → 1⊥ = S. Given y : X⊥, !⊥y is called the extent of y and the map
val :!⊥y → X, defined by S-induction, is called the value of y. The extent and
the value together give a partial map 1 ⇀ X, a partial element. The lifting LX
is the collection of partial elements Σσ:Sσ → X. They ask whether X⊥ → LX is
an equivalence. We give a positive answer:

Proposition 1 The map F : X⊥ → LX is an equivalence.

To prove this we use the observation that on an ω-cpo Y we have a restriction
operation y|σ for σ : S.

Proof. We consider the statement P (σ) :=
∏
f :σ→X ∃!y : X⊥.F (y) = (σ; f). We

prove this statement by induction. For this, it is important that the existential is
a proposition. The base cases are trivial. For the induction case, let σ = supσn.
Then each f |σn defines an element yn : X⊥ by unqiue choice. The sequence yn
is increasing, because f |σn is increasing. So, sup yn has the desired properties.
To prove uniqueness, consider z satisfying the specification. Then z|σn = yn and
hence z = supn z|σn = sup yn = y. ut

In fact, ext y is the pullback of y : 1 → X⊥ and η : X → X⊥, with the unique
map ! : exty → 1 and val y as projections. The equivalence above shows that for
any map σ → X, ! : σ → 1 fits in a pullback square with an element z : 1→ X⊥.
This generalizes to show that X⊥ is the classifier for partial maps with open
domain. Such a partial map A→ X consists of an open embedding D� A and a
map D → X. By considering fibers we see that any such pair of maps determines
a map A → X⊥ such that D is the pullback along η : X → X⊥. Partial map
classifiers for the dominance hProp are fundamental in topos theory.

A dominance allows one to define a category of monomorphisms. In synthetic
topology, it is the class of open inclusions, which we may identify with open
subsets, by univalence. By a minor generalization of [33, Thm 3.31], we have
that any mere property P of types classifies the collection of P -fibred maps.
Being modal [41] is such an mere property. Examples include the truncations
and the identity. This gives for instance the object classifier and the subobject
classifier. Moreover, this also includes the mere predicate d. This gives us for
each type A an equivalence between dominantly-fibered families and maps into
S. More concretely, this formalizes the categorical practice of identifying (open)
subsets with equivalence classes of (open) maps. As a practical example, consider
the coercion (an embedding) of [0, 1] into R. Then we are used to identify the
embeddings (0, 1)[0,1]� R and (0, 1)R� R. The classification theorem tells us
these maps are equal, as families over R, in type theory.

4.3 Computing with Partial values

All functions in Coq are terminating. This is a very strong guarantee and facilitates
the semantics. However, occasionally one wants to write a non-terminating
function, so there has been a quest to add them safely to type theory. Here we
combine two ideas. First, one uses the partiality monad [1] to obtain an ω-cpo
enriched Kleisli category. Second, based on the partiality monad, we have the
lower real numbers which allow us to develop computable domain theory, which
in turn allows us to interpret general fixpoints in the probabilistic semantics.
Since the valuations on an hSet A form an ω-cpo, as we will show below, we
have a unique embedding from A⊥. This shows that partiality is a special case
of probabilistic partiality.

Our semantics below will be semi-decidable; see section 6. One may wonder
how to actually evaluate such propositions. Unfortunately, there is no way to
implement a non-constant function from S to a discrete type, such as bool,
since this would allow us to decide all semi-decidable propositions. However,
we consider two other options. First we could treat such functions by using
Coq’s extraction mechanism to obtain a program in a general programming
language, like ocaml, haskell or scheme, and run the program there. We have no
guarantee that the program terminates, but if it does we have a formal guarantee
that the result is correct. We have used a second method: we have defined a
tactic which tries to prove that a concrete semi-decidable truth value is true.
It takes a concrete natural number m as fuel. Our tactic S compute m applies
to goals of the form IsTop(s): if s is > then it trivially proves the goal; if s

= sup(λn.(f(n)), it tries to prove f(m). If it fails, it rewrites sup(λn.(f(n)) =
sup(λn.(f(n + m)) and finishes by a reflexivity proof. We are thus simulating
possibly non-terminating functions by computing approximations. This may be
compared to the reflection of decidable types into the booleans, which is so
characteristic for ssreflect [19]. Here we reflect into semi-decidable propositions.
A simular tactic, but without the reflection into S, has been used effectively to
semi-decide real number inequalities [29, 5.5].

4.4 Lower Reals

Starting from S we define the lower reals Rl. These are lower open cuts in the
rational numbers, i.e. maps Q→ S. These are called the lower reals because maps
X → Rl correspond to lower semi-continuous functions in synthetic topology.
Similarly, we can define the upper reals. A consistent pair of an upper and a
lower real defines a Dedekind real. Defining the various real number structures
using S helps to keep the universe levels down, as S is at the lowest level. We
thus obtain a predicative definition of real numbers. We construct both the lower
reals and the upper reals as instances of a general theory of rounded cuts in a
full pseudo order. Hence we define Rl as the instance of the rounded cuts RC with
A = Q and Rlt = ≤Q.

Definition QPred := Q → Sier.
Variable elt : QPred.

Class IsRlow : Type := {
is inhab : hexists (fun q ⇒ elt q);
is rounded : forall q, elt q ↔

hexists (fun r ⇒ q < r ∧ elt r) }.
We obtain a fully-constructive formalization of the lower reals. The algebraic

manipulations are slightly more difficult than in the classical axiomatized reals of
the Coq standard library, or the unit interval in ALEA, as both contain axioms
that break the computational interpretation. One main difficulty was an engineer-
ing issue. Rational numbers, being decidable, have the same theory classically
and constructively. However, we could not use the standard library rationals,

since Coq’s Prop is inconsistent with univalence; see [6] for details. Fortunately,
the rationals from the math-classes library had already been ported [17]. A tactic
for dealing with ring equalities is also available. However, more automation would
be welcome.

The development is substantial (about 1.800 lines of Coq) and we provide
various operations on lower reals, such as addition, multiplication by a positive
rational number, a cast from rational numbers to lower reals and so on, together
with proofs of expected properties and theorem proving machinery for lower
reals. We focus on positive lower reals R+

l (lower reals containing every negative
rational number) and formally prove the following result.

Lemma 2 R+
l is a distributive lattice ordered semi-group and an ω-cpo with

⊥ = 0R+
l

.

In fact, it is a semi-ring. However, so far we have only defined (and needed)
multiplication by a rational scalar.

4.5 Integrals and Valuations

We define open subsets and positive lower real valued functions on a set A. Then
we define lower integrals and valuations, respectively defined on open subsets
and on functions of A.

Layers of the formalization We define open subsets of A : hSet (hSet cor-
responds to homotopy 0-type) as the maps of type OS(A) := A → S and the
positive real functions from A as the maps of type mf(A) := A → R+

l . The
notation refers to ALEA’s measurable functions. We prove that the space of
opens is a distributive lattice and an ω-cpo, and that the space of functions is a
semi-group for the operation +, and is an ω-cpo too.

From these we can define valuations and integrals on A : hSet. Valuations
are maps from the open subsets to the positive lower reals:

Definition 2 A (probability) valuation on A : hSet is a map µ : OS(A)→ R+
l

such that:

• Definiteness: µ(∅) = 0;
• Modularity: ∀U, V ∈ OS(A), µ(U) + µ(V) = µ(U ∪ V) + µ(U ∩ V);
• Monotonicity: ∀U, V ∈ OS(A), U ⊆ V ⇒ µ(U) ≤ µ(V);
• Sub-probability: µ(A) ≤ 1;
• Continuity: ∀f : N→ OS(A),∀n, fn ≤ fn+1 ⇒ µ(sup(λn.f(n)) ≤ sup(λn.µ(f(n))).

For locales, Vickers [42] uses lower integrals, which map to the lower reals.
We generalize this construction to hSets.

Definition 3 A (probability) positive lower integral on A is a map I :
mf(A)→ R+

l such that:

• Definiteness: I(0mf(A)) = 0;

• Additivity: ∀f, g ∈ mf(A), I(f) + I(g) = I(f + g);
• Monotonicity: ∀f, g ∈ mf(A), f ≤ g ⇒ I(f) ≤ I(g);
• Sub-probability: I(1mf(A)) ≤ 1;
• Continuity: ∀f : N→ mf(A),∀n, fn ≤ fn+1 ⇒ µ(sup(λn.f(n)) ≤ sup(λn.µ(f(n))).

As in ALEA, both intergrals and valuations carry an ω-cpo structure. This
allows us to interpret recursive probabilistic programs (see Section 5.2). The
equality on valuations (or on integrals) are hpropositions, due to functional
extensionality.

Riesz Theorem Coquand and Spitters provide a constructive Riesz’ Theo-
rem [13]: a bijection between integrals and valuations for compact regular locales.
These integrals are more informative, as they map to the positive Dedekind reals
R+
D; see [13]. This will allow us to develop a good constructive probability theory

for spaces including [0, 1]. However, to obtain a monad on all hSets, we need
to consider lower integrals Int+l (A) = (A → R+

l) → R+
l . Vickers [42] proves

another variant of Riesz’s Theorem: a homeomorphism between lower integrals
and valuations, for all locales. We carry out a similar construction in synthetic
topology. Actually, we provide a formal proof of one direction of Riesz’ Theorem.
From any lower integral I, we build a valuation µI . Thus we prove that this
construction verifies the properties of an integral. Symmetrically, we provide
machinery to build an integral Iµ from a measure.

From integral to valuation

Definition 4 The valuation µI is defined as µI(U) := I(1U).

In our context, the construction of the map 1U of type mf(A) from U : OS(A)
comprises several steps. We build (inductively) an embedding of S into R+

l . This
also motivates our choice to use S to encode lower reals. For U : A → S, we
obtain 1U : A→ R+

l by composition. We prove modularity of this embedding.

Lemma 3 Let U : OS(A). The map 1U verifies the following properties:

• (1) ∀U, V ∈ OS(A),1U∩V = 1U ∩ 1V ;
• (2) ∀U, V ∈ OS(A),1U∪V = 1U ∪ 1V ;
• (3) ∀U, V ∈ OS(A),1U∪V + 1U∩V = 1U + 1V

Properties (1) and (2) are proved by showing the cast of S into R+
l preserves

joins and meets, which is proved using properties of S as the distributivity of
meets and joins over supremums. Property (3) is derived from (1) and (2). A
characterization lemma follows:

Lemma 4 Suppose U ∈ OS(A), x ∈ A. Then: 1U (x) = 1R+
l
⇔ U(x) = >.

This lemma is used to prove a first part of the Riesz Theorem:

Theorem 1 Let I an integral. Then µI is a valuation.

Proof. • Definiteness: by definition of 1, µI(∅) = I(1∅) = I(0mf(A)).
Hence, as I is an integral, µI(∅) = 0;

• Monotonicity: suppose U ⊆ V . We know µI(U) = I(1U) and µI(V) =
I(1V).
We prove that U ⊆ V ⇒ 1U ≤ 1V .
Thus by monotonicity of I, I(1U) ≤ I(1V) i.e. µI(U) ≤ µI(V);

• Modularity: µI(U ∩ V) + µI(U ∪ V) =
I(1U∩V) + I(1U∪V) = I(1U∩V + 1U∪V) (as I additive).
Hence, by Lemma 3, µI(U ∩ V) + µI(U ∪ V) = I(1U + 1V)
Then, as I is additive, µI(U ∩ V) + µI(U ∪ V) = µI(U) + µI(V);

• Probability: as I is an integral, µI(A) = I(1A) ≤ I(1mf(A)) ≤ 1;

• Continuity: Let f : N→ mf(A) in increasing sequence.
By definition, µI(sup(λn.f(n))) = I(1sup(λn.f(n))).
We prove that: 1sup(λn.f(n))) = sup(λn.1f(n)) and by continuity of I:
I(sup(λn.1f(n))) ≤ sup(λn.I(λn.1f(n))) = sup(λn.µI(f(n))).

From valuation to integral Lower integrals directly generalize valuations. This
allows us to define probabilistic programs as lower integrals and to derive valu-
ations from these integrals, which is possible by Theorem 1. To construct the
multiplication of the monad, one usually defines an integral Iµ from a valuation µ.
In classical integration theory, this corresponds to the construction of Lebesgue’s
integral using simple functions. We formalize some basic constructions in the
Riesz’s Theorem, following [13] we define:

Definition 5 Let f ∈ mf(A), q ∈ Q+. We define the open subset D(f, q) ∈
OS(A) as:

D(f, q) := λx.(q < f(x)).

To complete a formal proof of Riesz theorem, we would then define Iµ(f)
using a rational subdivision of the codomain:

Iµ(f) = sup
n∈N

(
1

n

n∑
i=0

µ

(
D(f,

i

n
)

))
.

This sequence is directed, by least common multiple, but not increasing.

One can prove the following bijection both for lower reals and for Dedekind
reals, using the aforementioned references as template.

(∀J , IµJ = J) ∧ (∀ν, µIν = ν) .

However, we have taken a slightly different route and formalized the Giry monad
as a (haskell-style) Kleisli triple, where instead of the using valuations we take
the (more general) lower integrals. This connects neatly with the interpretation
of a probabilistic programming language:

5 A probabilistic language

In this section, we describe how we export some features of the ALEA library to
our constructive formalism, by providing a similar monadic construction.

5.1 Formalization of a Giry monad on integrals

From Riesz’ Theorem, one obtains a monad on the category hSet:

• unit: ηx(u) := δx(u)

• bind:

µϕ(u) :=

∫
s∈M(X)

s(u) dϕ(s).

The Dirac δ-function reduces to δx(u) := u(x), since u : A → S. Interestingly,
we prove the monad axioms directly for integrals without the need to go via
valuations. More precisely, valuations are the restriction of integrals to the
functions A→ S. Hence, we get a construction which is very similar to the one
in the ALEA library [3]:

Definition 6 We define the following probability Kleisli triple (M, unit, bind):

• M(A : hSet) := IntPos(A) ;

• unit(A : hSet) : A→ IntPosA := λ x : A. λ f : mf(A) ⇒ f(x) ;

• bind(A : hSet)(B : hSet) : IntPos(A)→ (A→ IntPosB)→ IntPosB :=
λ I ⇒ λ F ⇒ (λ f : mf(A) ⇒ I(λ x : A ⇒ (F(x))(f))).

5.2 Interpretation of a probabilistic language

Like in ALEA, we can now use the monad to interpret Rml using Moggi’s compu-
tational λ-calculus, because hSet is Cartesian closed, by functional extensionality.
This is in contrast with the semantics in, e.g., the category of Polish spaces which
is not Cartesian closed. Moreover, since the Kleisli category is ω-cpo enriched,
as we use subprobability valuations, we can interpret fixed points and recursive
functions. Like ALEA, we use a shallow embedding of a programming language
in Coq: it includes conditional (if), local binding and application of functions:

• v unit(v);

• let x = a in b bind [[a]] (λ x.[[b]]);

• f(e1, . . . ,en) bind [[e1]] (λ x1 . . . bind [[en]] (λ xn.[[f]](x1, . . . ,xn));

• if b then c1 else c2 bind [[b]] (λ x : bool . if x then [[c1]] else [[c2]]);

• let rec f(x) = e fix (λ [[f]] ⇒ λ x ⇒ [[e]]).

5.3 Probabilistic programming

As illustration, we have defined a few programs from the ALEA library such as
the coin flip, the random walk and the random number generator.

Coin flip We define the coin flip program as a lower integral on bool, which is
proved to be an hSet in the HoTT library.

Definition flip : IntPos bool.
exists (fun f : mf bool ⇒ (1/2) ∗ (f true) + (1/2) ∗ (f false)).
(* proof that it is actually a lower integral *) Defined.

The coin flip program is defined as the convex combination of two point
masses. We prove that the convex combination of two integrals is an integral
(if I and J are two integrals, and p, q ∈ Q+ such that p+ q ≤ 1 then pI+ qJ
is an integral). We verify some properties of flip in order to check that the
definition is correct.

Random number Similarly, we define the random sampling of a natural number
between 0 and a given positive number N . It is the uniform distribution on
[0, N] presented as a lower integral on nat.

Random walk As we have recursive functions, we can build a random walk
program for flip coin as in the ALEA library [3]:

let rec walk x = if flip() then x else walk (S x)

5.4 Towards continuous measures

Perhaps the easiest way to obtain the uniform valuation on the unit interval is
via Riesz’ theorem and the Riemann integral on the Dedekind valued continuous
functions. The latter has been formalized in Coq before HoTT [30,28]. This
can be connected to the current development when all functions X → RD are
uniformly continuous. This is not directly provable from our axioms for synthetic
topology, as the unit interval is not compact in Kleene’s first realizability model.
This makes recursive measure theory counter intuitive, for instance, there is a
cover of the unit interval which has size less than 1

2 ; see [11]. However, in our
intended models such as Kleene’s second realizability model, the unit interval is
compact. So we can add this as an axiom (this is a consequence of Brouwer’s
‘fan theorem’). This has not been formalized in Coq.

5.5 Discussion about the formalization

Our development profited from the organization of the HoTT-library [6]. For
instance, the rigorous development’s rules and naming conventions were quite
useful. However, there is room for improvement of support for HoTT in Coq, as
already discussed in [6]. For instance, HoTT cannot reuse very basic parts of the
Coq standard library such as automation for rational numbers, including field
equalities and linear inequalities. Since these parts are decidable this is a proof
engineering issue, not a mathematical one.

6 Computability

Implementing probabilistic programs in a host functional programming language,
like in ALEA, has a long history, e.g. [32], and has recently shown that it can
be as efficient as special purpose implementations [35]. Since Coq is evolving
towards an efficient dependently typed programming language [10,2], it is an
interesting choice of host language. Currently, speed is not our main aim though.

For probabilistic languages there are two types of semantics, a denotational one
based on classical measure theory and an operational one based on the monadic
meta-language embedded in a functional host language. Our formalization has
both features, as we will now explain.

6.1 Denotational semantics

We provide a computable semantics based on computable valuations using realiz-
ability, which we present through the internal language.

Not only have we developed the new semantics in the internal language, but
also formalized large parts of it in Coq. To do so, we have used axioms from both
synthetic topology and homotopy type theory. This means that we no longer
have a guarantee that our evaluation terminates in Coq. However, there are
implementations of these axioms in NuPrl [31] and cubical [12], respectively.
Moreover, it is reasonable to expect that these features can be combined. One
approach5 implements the cubical model in NuPrl. An alternative would be to
add the theory of names and effects from NuPrl to the cubical proof assistant in
a way similar to the addition of guarded recursion to cubical [9]. So, we improve
on ALEA which uses an axiomatized unit interval with both suprema and an
inverse (1−) operation without an (obvious) constructive model. This brings
us to the next semantics.

6.2 Operational sampling semantics

At the same time, our work is similar to the work on embedded DSLs in functional
languages.

If a program p contains randomness from only a type T , then the semantics
is a valuation on T . Hence, we obtain a program which can semi-decide questions
of the form [[p]](f) > r, when f : T → Rl, where r is a rational number. Based
on this we can provide a simple sampling semantics for probabilistic programs;
not unlike the one in e.g. [35]. A sampler for a distribution on a type T takes a
seed and returns an element of type T , usually using a pseudorandom generator
in the process. For a discrete type, an element induces an open: f : T → S which
we can use as input for the semantics.

For non-discrete types, we can randomly sample a (basic) open. For example,
for the unit interval, these would be rational intervals. This would allow us to
use a similar method as in the discrete case.

5 http://www.math.ias.edu/vladimir/files/Bickford_Slides.pdf

http://www.math.ias.edu/vladimir/files/Bickford_Slides.pdf

Generally, the valuations on continuous datatypes will only give lower reals as
outputs. That this is the best possible can be seen by considering point masses. If
we could compute the Dirac measure, δx, on the unit interval, we would be able
to decide whether an open set contains x, i.e. we would be able to decide equality
on the unit interval. This is impossible. In case we limit recursion to obtain
terminating functions and restrict to a class of ‘compact regular’ spaces/types
one may expect a stronger result when integrating a (continuous) function with
respect to the measure [[p]], since in that case, the value of an integral is a
Dedekind real, not just a lower real.

It is clear that this operational semantics, based on Coq’s operational seman-
tics and the partiality monad, is far from being practical. However, it is already
an improvement over ALEA, which only provides an axiomatic semantics.

7 Discussion

7.1 Non-measurable functions

Adding classical logic (Σ = 2) a valuation on [0, 1] assigns a measure to all its
subsets. The Vitali set shows that this contradicts the axiom of choice. Fortunately,
continuously, the elements of [0, 1]→ Σ are precisely the opens, hence we can
model the Lebesgue valuation — the uniform distribution on [0, 1].

On the other hand, valuations on, for instance, compact Hausdorff spaces,
are in bijective correspondence with regular measures; see e.g. [25]. Hence, we
capture one of the standard categories of spaces for the Giry monad. This puts
our work in the structural approach to probability theory. We have a very good
category of probability spaces, including the unit interval, while avoiding set
theoretic anomalies.

7.2 Presheaves

There is an interesting analogy with the semantics for higher order probabilistic
programming in [40,20]. They first consider a fairly standard model for first-order
probabilistic computation, say, the Giry monad on standard Borel spaces. This
category is not Cartesian closed, so to model function types, they use a variant
of the Yoneda embedding.

A similar problem exists in synthetic topology, the category Top is not
Cartesian closed. A common solution is to consider a convenient super-category.
Escardó [14, Ch10] presents a number of subcategories of presheaves over Top
for this purpose. In our case, it is more natural to consider the sheaves for the
open cover topology and, in fact, we could take a ”big topos” on a topological
site [16]. In this light, one could consider our construction as first completing with
(dependent) function types and then defining the monad on the bigger category.

8 Conclusions and future work

We have combined homotopy type theory and synthetic topology to provide a
new axiomatic semantics for probabilistic computation. This simplifies the ALEA
library by the use of quotients and functional extensionality from HoTT and
allows the addition of continuous data types. Our main insight is the extension
of the Giry monad from locales to synthetic topology. We have formalized most
of the constructions6. Presently, we have more than 5.500 LOC consisting of the
main constructions and definitions. For instance, we have a theory of the lower
reals, of integrals and valuations, and their ω-cpo structure. On top of this we
interpret some probabilistic programs. The discrete parts of the ALEA library,
e.g. binomial coefficients, can be ported to the HoTT library in the same way it
has been done for other discrete mathematics.

The ALEA library forms the basis for the Certicrypt system [8] to verify
security protocols. Easycrypt proof assistant, its successor, is still based on the
same ideas. Sato [34] extends the semantics of easycrypt’s apWhile language with
continuous data types, using a classical meta-theory. Since we have extended
ALEA, which underlies easycrypt, with continuous data types, we conjecture that
our work can be used as a framework for the formalization of such semantics.

We have followed ALEA’s axiomatic semantics for Rml. It would also be
interesting to deeply embed Rml into Coq. This would make it possible to
formally connect an operational and the denotational semantics. Huang and
Morrisett [23] use computable distributions as the semantics of the probabilistic
programming language AugurV2. Discussion between Huang and Spitters shows
that their semantics is in fact connected to ours by realizability [22, sec 4.8]. This
opens the way to use our work for verification of parts of their compiler.

Acknowledgements. The questions in this paper originated from discussions with
Christine Paulin in 2014, when Spitters held a Digiteo chair at LRI, Inria. We
also benefited from Faissole’s internship with Paulin about lower reals in Coq.
We are grateful for both.

References

1. Thorsten Altenkirch, Nils Anders Danielsson, and Nicolai Kraus. Partiality, revisited
- the partiality monad as a quotient inductive-inductive type. In FOSSACS 2017,
pages 534–549, 2017. doi:10.1007/978-3-662-54458-7_31.

2. Abhishek Anand, Andrew W Appel, Greg Morrisett, Zoe Paraskevopoulou, Randy
Pollack, Olivier Savary Bélanger, Matthieu Sozeau, and Matthew Weaver. Certicoq:
A verified compiler for coq. In CoqPL’17, 2017.

3. Philippe Audebaud and Christine Paulin-Mohring. Proofs of randomized algorithms
in Coq. In MPC, 2006.

4. Steven Awodey and Andrej Bauer. Sheaf toposes for realizability. Archive for
Mathematical Logic, 47(5):465–478, 2008. doi:10.1007/s00153-008-0090-6.

6 https://github.com/FFaissole/Valuations/

http://dx.doi.org/10.1007/978-3-662-54458-7_31
http://dx.doi.org/10.1007/s00153-008-0090-6
https://github.com/FFaissole/Valuations/

5. Andrej Bauer. Realizability as the connection between computable and constructive
mathematics. In Proceedings of CCA, 2005.

6. Andrej Bauer, Jason Gross, Peter LeFanu Lumsdaine, Michael Shulman, Matthieu
Sozeau, and Bas Spitters. The hott library: A formalization of homotopy type
theory in coq. In Proceedings of the 6th ACM SIGPLAN Conference on Certified
Programs and Proofs, CPP 2017, pages 164–172. ACM, 2017. URL: http://doi.
acm.org/10.1145/3018610.3018615, doi:10.1145/3018610.3018615.

7. Andrej Bauer and Davorin Lesnik. Metric spaces in synthetic topology. Ann. Pure
Appl. Logic, 163:87–100, 2012.

8. Santiago Zanella Béguelin. Formal certification of game-based cryptographic proofs.
PhD thesis, 2010.

9. Lars Birkedal, Aleš Bizjak, Ranald Clouston, Hans Bugge Grathwohl, Bas Spitters,
and Andrea Vezzosi. Guarded Cubical Type Theory. ArXiv:1611.09263, 2016.

10. Mathieu Boespflug, Maxime Dénès, and Benjamin Grégoire. Full reduction at
full throttle. In Certified Programs and Proofs. Springer, Springer, 2011. URL:
http://hal.inria.fr/hal-00650940, doi:10.1007/978-3-642-25379-9_26.

11. Douglas Bridges and Fred Richman. Varieties of constructive mathematics, vol-
ume 97. Cambridge University Press, 1987.

12. Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical type
theory: a constructive interpretation of the univalence axiom. Proc. Types for
Proofs and Programs (TYPES 2015), 2016.

13. Thierry Coquand and Bas Spitters. Integrals and valuations. Journal of Logic and
Analysis, 1(3):1–22, 2009. doi:10.4115/jla.2009.1.3.

14. Mart́ın Escardó. Synthetic topology: of data types and classical spaces. ENTCS,
87:21–156, 2004.

15. Mart́ın Escardó and Cory Knapp. Partial elements and recursion via dominances
in univalent type theory. 2017. URL: http://www.cs.bham.ac.uk/~mhe/papers/
partial-elements-and-recursion.pdf.

16. Michael Fourman. Continuous truth II: Reflections. In WoLLIC, 2013.
17. Geätan Gilbert. Formalising real numbers in homotopy type theory. CPP’17, 2016.
18. Michele Giry. A categorical approach to probability theory. In Categorical aspects

of topology and analysis, pages 68–85. 1982.
19. Georges Gonthier and Assia Mahboubi. An introduction to small scale reflection in

Coq. Journal of Formalized Reasoning, 3(2):95–152, 2010.
20. Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. A convenient

category for higher-order probability theory. CoRR, abs/1701.02547, 2017.
21. Johannes Hölzl, Andreas Lochbihler, and Dmitriy Traytel. A formalized hierarchy

of probabilistic system types - proof pearl. In Christian Urban and Xingyuan Zhang,
editors, ITP, volume 9236 of LNCS, pages 203–220. Springer, 2015.

22. Daniel Huang. On Programming Languages for Probabilistic Modeling. PhD thesis,
Harvard, 2017.

23. Daniel Huang and Greg Morrisett. An application of computable distributions to
the semantics of probabilistic programming languages. In European Symposium on
Programming Languages and Systems, pages 337–363. Springer, 2016.

24. Martin Hyland. First steps in synthetic domain theory. In Category Theory, pages
131–156. Springer, 1991.

25. Claire Jones and Gordon Plotkin. A probabilistic powerdomain of evaluations. In
LICS, 1989.

26. Stephen Kleene and Richard Vesley. The foundations of intuitionistic mathematics,
volume 1. North-Holland, 1965.

http://doi.acm.org/10.1145/3018610.3018615
http://doi.acm.org/10.1145/3018610.3018615
http://dx.doi.org/10.1145/3018610.3018615
http://hal.inria.fr/hal-00650940
http://dx.doi.org/10.1007/978-3-642-25379-9_26
http://dx.doi.org/10.4115/jla.2009.1.3
http://www.cs.bham.ac.uk/~mhe/papers/partial-elements-and-recursion.pdf
http://www.cs.bham.ac.uk/~mhe/papers/partial-elements-and-recursion.pdf

27. Robbert Krebbers and Bas Spitters. Type classes for efficient exact real arithmetic
in Coq. LMCS, 9(1:1):1–27, 2013. doi:10.2168/LMCS-9(1:01)2013.

28. Evgeny Makarov and Bas Spitters. The Picard algorithm for ordinary differential
equations in Coq. In Blazy, Paulin-Mohring, and Picardie, editors, Interactive
Theorem Proving (ITP2013), pages 463–468. Springer, 2013.

29. Russell O’Connor. Certified Exact Transcendental Real Number Computation in
Coq, pages 246–261. Springer, 2008. doi:10.1007/978-3-540-71067-7_21.

30. Russell O’Connor and Bas Spitters. A computer verified, monadic, functional
implementation of the integral. TCS, 411(37):3386–3402, 2010. doi:10.1016/j.

tcs.2010.05.031.
31. Vincent Rahli and Mark Bickford. A nominal exploration of intuitionism. In CPP,

2016.
32. Norman Ramsey and Avi Pfeffer. Stochastic lambda calculus and monads of

probability distributions. In ACM SIGPLAN Notices, volume 37, pages 154–165.
ACM, 2002.

33. Egbert Rijke and Bas Spitters. Sets in homotopy type theory. In MSCS, special
issue: From type theory and homotopy theory to univalent foundations, 2014. arXiv:
1305.3835.

34. Tetsuya Sato. Approximate relational hoare logic for continuous random samplings.
ENTCS, 325:277–298, 2016.

35. Adam Ścibior, Zoubin Ghahramani, and Andrew Gordon. Practical probabilistic
programming with monads. In ACM SIGPLAN Notices, volume 50, pages 165–176.
ACM, 2015.

36. Michael Shulman. Brouwer’s fixed-point theorem in real-cohesive homotopy type
theory. arXiv:1509.07584, 2015.

37. Michael Shulman. Homotopy type theory: the logic of space. In Gabriel Catren and
Mathieu Anel, editors, New spaces for mathematics and physics. 2016. To appear.

38. Matthieu Sozeau. A new look at generalized rewriting in type theory. Journal of
Formalized Reasoning, 2(1):41–62, 2010.

39. Bas Spitters and Eelis van der Weegen. Type classes for mathematics in type
theory. MSCS, special issue on ‘Interactive theorem proving and the formalization
of mathematics’, 21:1–31, 2011. doi:10.1017/S0960129511000119.

40. Sam Staton, Hongseok Yang, Chris Heunen, Ohad Kammar, and Frank Wood.
Semantics for probabilistic programming: higher-order functions, continuous distri-
butions, and soft constraints. CoRR, abs/1601.04943, 2016.

41. The Univalent Foundations Program. Homotopy Type Theory: Univalent Foun-
dations for Mathematics. http://homotopytypetheory.org/book, Institute for
Advanced Study, 2013.

42. Steven Vickers. A monad of valuation locales. 2011. URL: http://www.cs.bham.
ac.uk/~sjv/Riesz.pdf.

43. Klaus Weihrauch. Computable analysis: an introduction. 2012.

http://dx.doi.org/10.2168/LMCS-9(1:01)2013
http://dx.doi.org/10.1007/978-3-540-71067-7_21
http://dx.doi.org/10.1016/j.tcs.2010.05.031
http://dx.doi.org/10.1016/j.tcs.2010.05.031
http://arxiv.org/abs/1305.3835
http://arxiv.org/abs/1305.3835
http://dx.doi.org/10.1017/S0960129511000119
http://homotopytypetheory.org/book
http://www.cs.bham.ac.uk/~sjv/Riesz.pdf
http://www.cs.bham.ac.uk/~sjv/Riesz.pdf

	Synthetic topology in Homotopy Type Theory for probabilistic programming

