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Bishop's numerical language and type theory

Bishop: constructive mathematics as a language for numerical
computations

State of the art: type theory based proof assistants

Big library (corn/math-classes) for verified exact analysis in Coq:
Reals, metric spaces, simple ODE solver which actually compute in
type theory (with O'Connor, then ForMath)

Want better support/semantics for:

(co)inductive definitions, quotients, transport of structures, ...
GCTT is also a step in that direction

Also: need better algorithms (MAP16)

Verifying huge computational proofs in type theory is feasible
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Introduction

Two motivations for guarded cubical type theory:

» Path equality for guarded dependent types
application in computer science
» Add guarded recursion to cubical type theory.
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Univalent type theory

New foundation for (constructive) maths based on homotopy types
Extends set theoretic foundation

Analogy between setoids (=Bishop sets) and O-types

Type of points and at most one proof that they are equal
Richman's families of Bishop sets

Families of setoids correspond to maps A/ = — SET/ = in the
Hofmann Streicher groupoid model

HS has univalence (isomorphic types may be identified)

Adding more universes leads to co-groupoids (=homotopy types)
These can be modeled by simplicial sets

sSet model of univalent type theory Voevodsky
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Univalent type theory

sSet model is classical, no computation
Coquand: constructive cubical model of univalent type theory
Cubical type theory and type checker
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Cubical type theory

Idea: equalities are paths, maps from abstract interval to the type
Abstract interval I is modeled by a DeMorgan algebra
distributive lattice with involution sat DeMorgan laws

Involution: (1 — r) Paths between paths are squares, etc
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Cubical type theory

rA = ()| MNx:A Contexts
t,u,AJB = x| Ax:At|tu|(x:A)—B MN-types
| (t,u)|tl]|t2]|(x:A)xB Y -types
| 0| st] natrectu| N Naturals
| U Universe

Interval T (context, not a type)
r,s = 0|1]|i|l=r|ras]|rvs.

NA == - |Ii: L
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Path types

N A N-t: A N-u:A

N PathAtu
M= A Mi:I—t:A —t:PathAus MN=r:1
I+ iyt :Path A t[0/i] t[1/i] M=tr:A

Figure: Typing rules for path types.
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Funext for Path

Proof term for functional extensionality:

funext f g 2Ap. (D Ax.pxi :
((x: A) — Path B (f x) (g x)) — Path (A— B) f g.
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Face lattice

Free distributive lattice on the symbols (i = 0) and (i = 1) for all
names /, quotiented by the relation (i = 0) A (i = 1) = Op.

o, u=0p |[1p [ (i=0) | (i=1)[ent |V
Restriction of a context to a face:
MA == - | T,p.
For example, I', o - 91 = 9o : IF is equivalent to

FEpnpr=pny: F
I~ t:A[lp+— u] abbreviates T t:Aand N p+-t=u:A
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Composition

N=¢:F
Mi:THA M, i:IT-u:A I+ ao: A[0/i][¢ — u[0/i]]

[ comp’ A [ — u] ao : A[1/i][¢ — u[1/i]]

Transport operation for Path types
transp’ Aa = comp’ A [0p — []] a : A[1/i].

where a has type A[0/i].
Example of the use of systems is a proof that Path is transitive;
given p : PathA a band g : Path A b ¢ we can define

trans pq = (iYcomp) A[(i =0)— a,(i=1)+— qj](pi) : PathAac

This builds a path between the appropriate endpoints because:
comp/ A [1p — a] (p0) = a
comp/ A [1p — qj] (p1) = g1 = c.



Cubical type theory

Also: Glue, universe, ...

CTT is an extension of MLTT with functional extensionality and
univalence.

(Precise: For strict J one uses a modified equality /d (Swan))
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Guarded recursion

A way of defining infinite objects using self-reference
E.g. streams

New type former = (‘later’, data available tomorrow)
Strgy = A x =Stry

fix : (=A — A) — A for solving domain equations
Also used to model program logics (concurrency, ...)
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Semantics of >

Guarded recursion (GDTT) modeled in @ (topos of trees).

(=X)(n) = {;} =0

(m) ifn=m+1
GDTT is an extensional type theory.
Want computation, so intensional variant.
Need a computational interpretation for the proof
that bisimular streams are equal. More generally:
>IdAtu— Id(=A) (nextt) (next u)
Compare: funext
(x:A) > IdB(fx)(gx) > Id(A— B)fg
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Later

M HET—T7 MN-t:=£A
el — - Fé[x<—t]:T =T x:A

Figure: Formation rules for delayed substitutions.

Do notation, applicative functor

rLr=A FET — T rr—A:u & — T
M- (A N-=£A:U

L=t A HET =T
N nexté t:=>€A

Figure: Typing rules for later types.
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Fé[x—t]:T =T x:B rLr-A
M- ot [x — t] A= (A

Fé[x—ty<—ul&:T =T x:Byy:C[T"
rrec rr,x:B,y:CI"-A
Nesé[x —t,y —u]& A==€y « u,x — t]€ A

FET — 1T rMx:BrA rrr—t:B
[ =& [x <« next{. t] A = =E.Alt/x]

Figure: Type equality rules for later types
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Fé[x<—t]:T—=T"x:B Nreu:A
I next{[x < t].u=nextl. u: =LA

Féxe—tye—ule T x:By:Cr" rr'-c rr',x:By:Cr"rv:A
M-nexté[x —t,y —ul& . v=nextéy —ux—t]¢ . v:ist[x —ty—ul&.A

T =T M’ x:Bru:A rr'e-t:B
I next& [x < next&.t].u = next&. u[t/x] : =E.Alt/x]

MN=t: €A
MFnexté[x —t].x=t:=(A

Figure: Term equality rules for later types.

Birkedal, Bizjak, Clouston Grathwohl, Spitters and Vezzosi Guarded Cubical Type Theory



Example

Similar to funext, we now have in GCTT

ApLiynexté[p' < pl.p'i :
(=¢.Path Atu) — Path (=€.A) (next&. t) (nexté. u).

This improves on the equality reflection that was needed before.
Cor: bisimilar streams are equal
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Fixpoints

In GDTT: fixx.t = t[nextfixx.t/x]

(breaks decidable type checking).

Instead, we have a delay fixed point (dfix).

A path from the fixed point (dfix°) to its unfolding (dfix!).

M=r:1 NMx: ARt A
I dfix" x.t : =>A

NMx:=ARt: A
[ dfix! x.t = next t[dfix’ x.t/x] : =A

Proposition (Unique guarded fixed points)
Any guarded fixed-point of f : =A — A is path equal to fix x.f x.
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Examples

» If f: A— A — B is commutative, then
zipWith f : Strg — Strg — Strg is commutative.

> Let
Recy = fixx.(=[x" < x].x") —> A
A = Ax.f(next[x" < x].((unfoldx")x)) : =Recy — A
Y = A.A(nextfold A) L (BA—A) > A

where fold and unfold are the transports along the path
between Recy and =Recy — A.
Y is a guarded fixed-point combinator.
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Semantics of GCTT

Intuitively, cubical model in the topos of trees.

(iterated forcing)
Existing theory does not directly work due to strictness and
universes. A more concrete construction.
Semantics in [] x w.
[ is the opposite of the Kleisli category of the free De Morgan
algebra monad on finite sets. (=Lawvere theory of De Morgan
algebras).
More concretely, given a countably infinite set of names i, j, k, ...,
C has as objects finite sets of names /, J. A morphism | — JeC
is a function J — DM (/), where DM (/) is the free De Morgan
algebra with generators /.
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Semantics of GCTT

Theorem

A presheaf topos with a non-trivial (0 # 1) internal DeMorgan
algebra with the disjunction property (av b=1+a=1v b=1)
models CTT (without universe and gluing).

In particular, C x C for any category C models CTT.

Hence m models CTT.

> can be defined explicitly.

(%} if n=0

@%MXLM{XUnﬂ ifn=m+1

Key observation: = preserves fibrancy.
Conclusion: [ x w models GCTT.
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Glue and universe

If the presheaf topos also has a fibrant universe and V¥ : FI — TF,
then we can model the full CTT.

In particular, C x C for any category C with an initial object can
be used to give semantics to the entire cubical type theory.
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Implementation

Prototype build on top of cubical
Hope to integrate into agda
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Conclusions

» New type theory GCTT with a model in Cxw
Path equality for guarded dependent type theory
(Application of HoTT to CS)

» Adding guarded recursion to cubical type theory
» Axiomatic treatment of the cubical model using the internal

logic. ‘new’ class of models.

TODO:
canonicity of GCTT(from CTT)
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