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Why do we need certified exact arithmetic?

I There is a big gap between:
I Numerical algorithms in research papers.
I Actual implementations (Mathematica, MATLAB, . . . ).

I This gap makes the code difficult to maintain.

I Makes it difficult to trust the code of these implementations!
I Undesirable in proofs that rely on the execution of this code.

I Kepler conjecture.
I Existence of the Lorentz attractor.
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Why do we need certified exact real arithmetic?

(http://xkcd.com/217/)

I also hear that 92 + 192/22 = π4.

http://xkcd.com/217/


Strategy

I Exact real numbers instead of floating point numbers.

I Functional programming instead of imperative programming.

I Dependent type theory.

I A proof assistant (Coq) to verify the correctness proofs.

I Constructive analysis to tightly connect mathematics with
computations.



Real numbers

I Cannot be represented exactly in a computer.

I Approximation by rational numbers.

I Or any set that is dense in the rationals (e.g. the dyadics).

I No computable zero-test:
0,000

000000000000000000000000000000000001
Under Curry-Howard correspondence not:

x = 0 ∨ ¬x = 0

Do have: for every ε > 0

|x | ≤ ε ∨ |x | > 0
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O’Connor’s implementation in Coq

Refined Cauchy sequences:

I Based on metric spaces and the completion monad.

R := CQ := {f : Q+ → Q | f is regular}

Idea: f (ε) is an ε-approximation to the real number.

I To define a function R→ R: define a uniformly continuous
function f : Q→ R, and obtain f̌ : R→ R.
Monadic programming like in haskell.

I Efficient combination of proving and programming.



O’Connor’s implementation in Coq

Problem:

I A concrete representation of the rationals (Q) is used.

I Cannot swap implementations, e.g. use machine integers.

Solution:
Build theory and programs on top of abstract interfaces instead of
concrete implementations.

I Cleaner.

I Mathematically sound.

I Can swap implementations.
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Interfaces for mathematical structures

I Algebraic hierarchy (groups, rings, fields, . . . )

I Relations, orders, . . .

I Categories, functors, universal algebra, . . .

I Numbers: N, Z, Q, R, . . .

Need solid representations of these, providing:

I Structure inference.

I Multiple inheritance/sharing.

I Convenient algebraic manipulation (e.g. rewriting).

I Idiomatic use of names and notations.

S/and van der Weegen: use type classes



Type classes

I Useful for organizing interfaces of abstract structures.

I Similar to AXIOM’s so-called categories.

I Great success in Haskell and Isabelle.

I Added to Coq by Oury and Souzeau,
Based on already existing features (records, proof search,
implicit arguments).

Proof engineering
Comparison(?) to canonical structures, unification hints



Unbundled using type classes

Define operational type classes for operations and relations.

Class Equiv A := equiv: relation A.
Infix ”=” := equiv: type scope.
Class RingPlus A := ring plus: A → A → A.
Infix ”+” := ring plus.

Represent algebraic structures as predicate type classes.

Class SemiRing A {e plus mult zero one} : Prop := {
semiring mult monoid :> @CommutativeMonoid A e mult one ;
semiring plus monoid :> @CommutativeMonoid A e plus zero ;
semiring distr :> Distribute (.∗.) (+) ;
semiring left absorb :> LeftAbsorb (.∗.) 0 }.

Separate structure and property from category theory.



Naturals as Semiring

Instance nat equiv: Equiv nat := eq.
Instance nat plus: Plus nat := Peano.plus.
Instance nat 0: Zero nat := 0%nat.
Instance nat 1: One nat := 1%nat.
Instance nat mult: Mult nat := Peano.mult.

Instance: SemiRing nat.
Proof.

repeat (split; try apply ); repeat intro.
now apply plus assoc.

now apply plus 0 r.
now apply plus comm.

now apply mult assoc.
now apply mult 1 l.

now apply mult 1 r.
now apply mult comm.

now apply mult plus distr l.
Qed.



Number structures

S/van der Weegen specified:

I Naturals: initial semiring.

I Integers: initial ring.

I Rationals: field of fractions of Z.

Building on a library for basic cat th and universal algebra.

Slightly pedantic?



Number structures

S/van der Weegen specified:

I Naturals: initial semiring.

I Integers: initial ring.

I Rationals: field of fractions of Z.

Building on a library for basic cat th and universal algebra.

Slightly pedantic?



Speeding up

I Provide an abstract specification of the dense set.

I For which we provide an implementation using the dyadics:

n ∗ 2e for n, e ∈ Z

I Use Coq’s machine integers.

I Extend our algebraic hierarchy based on type classes

I Implement range reductions.
I Improve computation of power series:

I Keep auxiliary results small.
I Avoid evaluation of termination proofs.

Krebbers/S



Approximate rationals

Class AppDiv AQ := app div : AQ → AQ → Z → AQ.
Class AppApprox AQ := app approx : AQ → Z → AQ.

Class AppRationals AQ {e plus mult zero one inv} ‘{!Order AQ}
{AQtoQ : Coerce AQ Q as MetricSpace} ‘{!AppInverse AQtoQ}
{ZtoAQ : Coerce Z AQ} ‘{!AppDiv AQ} ‘{!AppApprox AQ}
‘{!Abs AQ} ‘{!Pow AQ N} ‘{!ShiftL AQ Z}
‘{∀ x y : AQ, Decision (x = y)} ‘{∀ x y : AQ, Decision (x ≤ y)} : Prop := {
aq ring :> @Ring AQ e plus mult zero one inv ;
aq order embed :> OrderEmbedding AQtoQ ;
aq ring morphism :> SemiRing Morphism AQtoQ ;
aq dense embedding :> DenseEmbedding AQtoQ ;
aq div : ∀ x y k, B2k (’app div x y k) (’x / ’y) ;
aq approx : ∀ x k, B2k (’app approx x k) (’x) ;
aq shift :> ShiftLSpec AQ Z (�) ;
aq nat pow :> NatPowSpec AQ N (ˆ) ;
aq ints mor :> SemiRing Morphism ZtoAQ }.



Instances of Approximate Rationals

Representation mant · 2expo:

Record Dyadic Z := dyadic { mant: Z; expo: Z }.

Instance dy mult: Mult Dyadic :=
λ x y, dyadic (mant x ∗ mant y) (expo x + expo y).

Instance : AppRationals (Dyadic bigZ).

Instance : AppRationals bigQ.

Instance : AppRationals Q.

Similar to floqc.



Approximate rationals
Compress

Class AppDiv AQ := app div : AQ → AQ → Z → AQ.
Class AppApprox AQ := app approx : AQ → Z → AQ.
Class AppRationals AQ . . . : Prop := {
. . .

aq div : ∀ x y k, B2k (’app div x y k) (’x / ’y) ;
aq approx : ∀ x k, B2k (’app approx x k) (’x) ;
. . . }

I app approx is used to to keep the size of the numbers “small”.

I Define compress := bind (λ ε, app approx x (Qdlog2 ε)) such that
compress x = x.

I Greatly improves the performance.



Efficient Reals

In CoRN, MetricSpace is a regular Record, not a type class.

Coq < Check Complete.
Complete : MetricSpace −> MetricSpace

Coq < Check Q as MetricSpace.
Q as MetricSpace : MetricSpace

Coq < Check AQ as MetricSpace.
AQ as MetricSpace :
∀ (AQ : Type) . . . , AppRationals AQ −> MetricSpace

Coq < Definition CR := Complete Q as MetricSpace.

Coq < Definition AR := Complete AQ as MetricSpace.

AR is an instance of Zero, Plus, Le, Field,
FullPseudoSemiRingOrder, etc., from the MathClasses library.



Power series

I Well suited for computation if:
I its coefficients are alternating,
I decreasing,
I and have limit 0.

I For example, for −1 ≤ x ≤ 0:

exp x =
∞∑
i=0

x i

i !

I To approximate exp x with error ε we find a k such that:

xk

k!
≤ ε



Power series

Problem: we do not have exact division.

I Parametrize InfiniteAlternatingSum with streams n and d
representing the numerators and denominators to postpone
divisions.

I Need to find both the length and precision of division.

n1
d1︸︷︷︸

ε
2k
error

+
n2
d2︸︷︷︸

ε
2k
error

+ . . .+
nk
dk︸︷︷︸

ε
2k
error

such that
nk
dk
≤ ε/2

I Thus, to approximate exp x with error ε we need a k such that:

B ε
2

(app div nk dk (log
ε

2k
) +

ε

2k
) 0.
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Power series

I Computing the length can be optimized using shifts.

I Our approach only requires to compute few extra terms.

I Approximate division keeps the auxiliary numbers “small”.

I We use a method to avoid evaluation of termination proofs.



What have we implemented?

Verified versions of:

I Basic field operations (+, ∗, -, /)

I Exponentiation by a natural.

I Computation of power series.

I exp, arctan, sin and cos.

I π := 176∗arctan 1
57+28∗arctan 1

239−48∗arctan 1
682+96∗arctan 1

12943 .

I Square root using Wolfram iteration.



Benchmarks

Compared to O’Connor

I Our Haskell prototype is ∼15 times faster.

I Our Coq implementation is ∼100 times faster.
I For example:

I 500 decimals of exp (π ∗
√

163) and sin (exp 1),
I 2000 decimals of exp 1000,

within 10 seconds in Coq!

I (Previously about 10 decimals)

I Type classes only yield a 3% performance loss.

I Coq is still too slow compared to unoptimized Haskell
(factor 30 for Wolfram iteration).
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Future work on real computation

I Newton iteration to compute the square root.

I native compute: evaluation by compilation to Ocaml.
gives Coq 10× boost.

I Flocq: more fine grained floating point algorithms.

I Parametricity combined with type classes?
Cohen, Dénès, Mortberg



Picard-Lindelöf Theorem

Consider the initial value problem

y ′(x) = v(x , y(x)), y(x0) = y0

where

I v : [x0 − a, x0 + a]× [y0 − K , y0 + K ]→ R

I v is continuous

I v is Lipschitz continuous in y :
|v(x , y)− v(x , y ′)| ≤ L|y − y ′|
for some L > 0

I |v(x , y)| ≤ M

I aL < 1

I aM ≤ K

Such problem has a unique solution on [x0 − a, x0 + a].

x

y

x0x0 − a x0 + a

y0

y0 −K

y0 +K



Proof Idea

y ′(x) = v(x , y(x)), y(x0) = y0

is equivalent to

y(x) = y(x0) +

∫ x

x0

v(t, y(t)) dt

Define

(Tf )(x) = y0 +

∫ x

x0

F (t, f (t)) dt

f0(x) = y0

fn+1 = Tfn

Under the assumptions, T is a contraction on the metric space

C ([x0 − a, x0 + a], [y0 − K , y0 + K ]).

By the Banach fixpoint theorem, T has a fixpoint f and fn → f .



Metric Spaces

Let (X , d) where d : X → X → R be a metric space.

Let Brxy denote d(x , y) ≤ r .

A function f : Q+ → X is called regular if
∀ε1 ε2 : Q+, B(ε1 + ε2)(f ε1)(f ε2).

The completion CX of X is the set of regular functions.

Let X and Y be metric spaces. A function f : X → Y is called
uniformly continuous with modulus µ if
∀ε : Q+ ∀x1 x2 : X , B(µε)x1x2 → Bε(fx1)(fx2).

If x1, x2 : CX , let BCX εx1x2 := ∀ε1ε2 : Q+, BX (ε1 + ε+ ε2)(x1ε1)(x2ε2).

Metric spaces with uniformly continuous functions form a category.

Completion forms a monad in the category of metric spaces and
uniformly continuous functions.



Completion as a Monad

unit : X → CX := λxλε, x

join : CCX → CX := λxλε, x(ε/2)(ε/2)

map : (X → Y )→ (CX → CY ) := λf λx , f ◦ x ◦ µf
bind : (X → CY )→ (CX → CY ) := join ◦map

Define functions Q→ CQ; lift to CQ→ CQ.



Integral

Following Bridger, Real Analysis: A Constructive Approach.
Class Integral (f: Q −> CR) :=

integrate: forall (from: Q) (w: QnonNeg), CR.

Notation ”
∫

” := integrate.

Class Integrable ‘{!Integral f}: Prop := {
integral additive:

forall (a: Q) b c,
∫

f a b +
∫

f (a + b) c ==
∫

f a (b + c);

integral bounded prim: forall (from: Q) (width: Qpos) (mid: Q) (r: Qpos),
(forall x, from <= x <= from + width −> ball r (f x) mid) −>
ball (width ∗ r)

∫
( f from width) (width ∗ mid);

integral wd :>
Proper (Qeq =⇒ QnonNeg.eq =⇒ @st eq CRasCSetoid)

∫
( f)

}.Earlier (abstract, but slower) implementation of integral by O’Connor/S.
Implemented in Coq: Makarov/S.



Complexity

Rectangle rule:∣∣∣∣∫ b

a
f (x) dx − f (a)(b − a)

∣∣∣∣ ≤ (b − a)3

24
M

where |f ′′(x)| ≤ M for a ≤ x ≤ b.

Number of intervals to have the error ≤ ε: ≥
√

(b − a)3M

24ε

Simpson’s rule:∣∣∣∣∫ b

a
f (x) dx − b − a

6

(
f (a) + 4f

(
a + b

2

)
+ f (b)

)∣∣∣∣ ≤ (b − a)5

2880
M

where |f (4)(x)| ≤ M for a ≤ x ≤ b.

Coquand/S. A constructive proof of Simpson’s Rule, replacing
differentiation with integration.
The number of points grows exponentially with the number of
significant digits.



Future Work

Change the development from CR to AR based on dyadic rationals.

Implement Simpson’s integration and prove its error bounds.

Compute forward instead of backward? (RRAM)?



Conclusions

I Greatly improved the performance of the reals.

I Abstract interfaces allow to swap implementations and share
theory and proofs.

I Type classes yield no apparent performance penalty.

I Nice notations with unicode symbols.

Issues:

I Type classes are quite fragile.

I Instance resolution is too slow.

I Need to adapt definitions to avoid evaluation in Prop.
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Challenges of current Coq

For discrete mathematics the ssreflect machinery works very well!
The extension to infinitary mathematics is challenging.
No quotients, functional extensionality, subsets, ...
Univalence axiom provides a uniform solution.

Univalence and analysis?
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Homotopy type theory

New foundation for mathematics, developed by group of
researchers at Princeton.
New type theory: funext, subsets, quotients, unique choice, proof
irrelevance (hprop), K-axiom (hsets), ...

Prototype implementation (Coquand et al).
Axiomatic prototypes in Coq/agda.



Use for the reals

Ssreflect Boolean reflection does not directly extend to the reals.

With univalence, we can start to do this: S reflection.
Sierpinski space S, 1⊥, a quotient, classifies the
opens/semidecidable propositions.

Structure Invariance Principle (SIP):
Isomorphic structures may be identified: unary and binary
numbers, integers, rationals, . . .
They may be identified, as types, semirings, . . .

Parametricity: have two representations:
for computing: Cauchy
one for proving: the quotient.
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