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Abstract
We present a technical survey on the state of the art approaches in data reduction and the coreset framework. These include 
geometric decompositions, gradient methods, random sampling, sketching and random projections. We further outline their 
importance for the design of streaming algorithms and give a brief overview on lower bounding techniques.
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1 Introduction

More is more is one of the central tenets associated with Big 
Data. More data means more information from which we 
hope to gain a better understanding of an underlying truth. 
The artificial intelligence and machine learning communities 
have focused on modeling and learning increasingly elabo-
rate statistical models for obtaining new knowledge from the 
data. However, in the era of Big Data, scalability has become 
essential for any learning algorithm. In light of this, research 
has begun to focus on aggregation tools that provide trade-
offs between information and space requirement. Note, that 
these are also extremely valuable for practical applications. 
The design of a data aggregation can be decoupled from the 
design of the actual learning algorithm. This is commonly 
referred to as the sketch-and-solve paradigm. The main idea 
is to reduce the size of the data first, to have a sketch whose 
size has only little or even no dependency on the initial size1: 
“Big Data turns into tiny data!” Then a learning algorithm 
is applied to the little sketch only. Its complexity measures 
like running time, memory, and communication are thus 
significantly less dependent on the size of the initial data. In 
most cases, the learning algorithm remains unchanged. For 

a given data aggregation, the main challenge is to bound the 
trade-off between its size and its loss of information.

What constitutes relevant information is, of course, appli-
cation dependent. Coresets are an algorithmic framework 
towards quantifying such trade-offs for various objective 
functions of interest. Generally speaking, we are given a 
data set A, a set of candidate solutions C, and some optimi-
zation function f. Our aim is to find a significantly smaller 
data set S such that for all candidate solutions c ∈ C , f(S, c) 
approximates f(A, c).

Coresets turn out be extremely useful in the context of 
both, approximation and streaming algorithms. Given that 
a problem admits a coreset whose size is independent of the 
input, a polynomial time approximation scheme (PTAS) can 
often be derived via brute force enumeration. While such 
a PTAS will not necessarily be of practical relevance, this 
example illustrates how coresets can make computationally 
expensive algorithms more viable. In a streaming setting, 
we are given the further restriction that we do not have a 
random access to the data, but must process the data points 
one by one. It turns out that if a problem admits a coreset, 
there exists a black box reduction to streaming algorithms 
commonly referred to as the merge-and-reduce principle, cf. 
[49]. It is thus not necessary to develop a special streaming 
algorithm for that problem.

Coresets have been studied for several base problems 
that arise in many applications of artificial intelligence and 
machine learning. Some examples include clustering [4, 17, 
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42, 50, 75], classification [56, 59, 89], regression [34, 40, 41, 
54], and the smallest enclosing ball problem [6, 15, 16, 48]; 
we refer to [84] for a recent extensive literature overview. 
If one of these base problems arises in some application, a 
coreset construction can often be used in a black box manner 
to improve the performance of the learning algorithm. This 
survey, in contrast, is intended to give the reader an overview 
over existing methods to design and analyze new coreset 
constructions for individual learning tasks of interest. We 
believe such an methodological introduction to coresets, 
and their benefits in the design of fast approximation- and 
streaming algorithms can be very valuable to the artificial 
intelligence community.

This survey is now organized into the following parts. 
In Sect. 2, we describe some basic facts and notations and 
give a formal definition of the strong coreset guarantee. In 
Sect. 3, we provide an overview on the four most important 
techniques used in their construction:

– Geometric decompositions.
– Gradient descent.
– Random sampling.
– Sketching and projections.

For each technique we will consider an example problem 
and a coreset construction. We further give an overview on 
results in this line of research. In Sect. 4, we show how core-
sets may be used in the context of streaming algorithms. In 
Sect. 5, we discuss lower bounds on coreset sizes, and pro-
vide example problems for which coresets do not exist. We 
conclude with some open problems.

2  Preliminaries

We assume 0 < 𝜀, 𝛿 ≤
1

2
 for all approximation resp. failure 

parameters in this paper. We first give the definition of the 
strong coreset guarantee.

Definition 1 (Strong Coresets) Let A be a subset of points 
of some universe U and let C be a set of candidate solutions. 
Let f ∶ U × C → ℝ

≥0 be a non-negative measurable func-
tion. Then a set S ⊂ U is an �-coreset, if for all candidate 
solutions c ∈ C we have

This first paper to formalize the coreset framework is that 
of Agarwal et al. [4]. In many cases, the construction of a 
coreset is a randomized process. Here, we account for the 
probability of failure via the parameter � , which in turn influ-
ences the size of S. We are interested in coresets S whose 
size is significantly smaller than |A|. Specifically, we aim to 

|f (A, c) − f (S, c)| ≤ � ⋅ f (A, c).

find an S such that |S| ∈ polylog(|A|)2 or even such that |S| 
has no dependency on |A|. The size of |S| will almost always 
depend on � , and often on properties of the universe U (e.g. 
a dependency on d if the points lie d-dimensional Euclidean 
space) or on properties of f (e.g. a dependency on k, if when 
we are dealing with the k-means objective function). If there 
exists no constant c > 0 such that |S| ∈ o(|A|1−c) , we say that 
no coreset exists.

There exists another notion of coreset whose use is not as 
clear cut as the strong coreset. Roughly speaking, we only 
require that a solution computed on S is a (1 + �) approxima-
tion to the optimum solution of A. In this case, we say that 
S is a weak coreset, though we emphasize that there exist no 
unifying definition on the guarantees of a weak coreset and 
there are many variations encountered in literature.

We note that while S often is a subset of A, it does not 
necessarily have to be and we will see examples for this. In 
most cases the universe U is a Euclidean space, where the 
�2 norm for ℝd is defined as ‖x‖ ∶=

�∑d

i=1
�xi�2.

We will frequently use a standard result on ball-covers for 
Euclidean spaces. An �-ball-cover of the unit sphere is a set 
of points B, such that for any point p in the unit sphere the 
distance to any point of B is at most �.

Lemma 1 ([85]) Let  U be the unit sphere in d-dimensional 
Euclidean space. Then for every 0 < 𝜀 < 1 there exists an  
�-ball-cover  B of size 

(
1 +

2

�

)d

, i.e. for every point p ∈ U

We note that while this bound is sharp, there exists no 
known efficient method of constructing such a ball-cover. 
In most cases, we require only the existence of a small ball-
cover for the analysis. If an algorithm uses an actual ball-
cover, there are multiple options to construct one using �−O(d) 
points, see Chazelle for an extensive overview [26].

3  Construction Techniques

We have identified four main approaches used to obtain 
coresets. This is not meant to be an absolute classification 
of algorithms, but rather an overview of what techniques 
are currently available and an illustration of how we may 
apply them.

min
b∈B

‖p − b‖ ≤ �.

2 polylog(�A�) = ⋃
c>1 O(log

c �A�)
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3.1  Geometric Decompositions

Assume that we are given a point set A in Euclidean space. A 
simple way to reduce the size of A is to compute a discretiza-
tion S of the space, snap each point of A to its nearest neigh-
bor in S, and use the (weighted) set S to approximate the 
target function. Many of these decompositions are based on 
packing arguments and range spaces. We will illustrate one 
approach via the k-means problem, based on the papers by 
Har-Peled and Mazumdar [58] and Fichtenberger et al. [51].

Definition 2 (k-Means Clustering) Let A be set of n points 
in Euclidean space and let C be a set of points with |C| = k . 
The k-means objective asks for a set C minimizing

We first take a closer look at the objective function 
for Euclidean k-means. Let OPT be the value of the opti-
mum solution. We first compute a 10-approximation3 C′ 
to the k-means problem, which can be done in polynomial 
time [68].

Consider now a sequence of balls with exponentially 
increasing radius centered around each point of C′ , starting 
at radius 1

n
⋅ OPT and ending at 10 ⋅ OPT . Our discretization 

will consist of a suitably scaled �-ball-cover of each ball. To 
prove correctness, we require the following generalization 
of the triangle inequality.

Lemma 2 (Generalized Triangle Inequality  [71]) 
Let a, b, c be points in Euclidean space. Then for any   
� ∈ (0, 1) we have

We now show that the cost of using the discretization is 
bounded.

Lemma 3 Let A be a set of points, let Bi be the ball with 
radius  ri ∶=

2i

n
⋅
∑

x∈A ‖x‖2 centered at the origin and let  
Si  be the  �

3
-ball-cover of   Bi.  Denote by S =

⋃log 10n

i=0
Si .    

Then 
∑

x∈A min
s∈S

‖x − s‖2 ≤ �2 ⋅
∑

x∈A ‖x‖2.

Proof Denote by Aclose the points with squared Euclidean 
norm at most 1

n
⋅
∑

x∈A ‖x‖2 and by Afar the remaining points. 
Since |Aclose| ≤ n ,  we have 

∑
x∈Aclose

min
s∈S0

‖x − s‖2 ≤

�Aclose� ⋅
1

n
⋅
∑

x∈A ‖x‖2 ⋅
�2

9
≤

�2

9
⋅
∑

x∈A ‖x‖2 . For the points 

f (A,C) ∶=
�

x∈A

min
c∈C

‖x − c‖2.

���‖a − c‖2 − ‖b − c‖2��� ≤
12

�
⋅ ‖a − b‖2 + 2� ⋅ ‖a − c‖2.

in Afar , consider any point x in Bi ⧵ Bi−1 for i ∈ {1,… ,

log 10n} . We have min
s∈Si

‖x − s‖2 ≤ �2

9
r2
i
≤

4�2

9
r2
i−1

≤
4�2

9
⋅‖x‖2. 

Summing up over all points, we have 
∑

x∈A min
s∈S

‖x − s‖2

≤
𝜀2

9
⋅
∑

x∈A ‖x‖2 +
4𝜀2

9
⋅
∑

x∈Afar
‖x‖2 < 𝜀2 ⋅

∑
x∈A ‖x‖2 .  

 □

We can reapply this analysis for each center of the 
10-approximation C′ . Observe that the cost of points Ac 
assigned to a center c ∈ C� is 

∑
x∈Ac

‖x − c‖2 , which is 
equal to 

∑
x∈A ‖x‖2 if we treat c as the origin. Combining 

this lemma with Lemma 2 and rescaling � shows that S is 
a coreset.

Theorem 1 For any set of n points A Euclidean space, 
there exists a coreset for k-means consisting of O(k�−d log n) 
points, where d is the (constant) dimension.

Proof For each of the k centers from the original 10-factor 
approximation we have a total of log 10n balls with varying 
radii. For each such ball of radius r, we compute an �

16
⋅ r 

ball-cover. For any point x ∈ A , let B(x) be the nearest point 
in the union of all ball-covers. By Lemma  3, we have 
∑

x∈A ‖x − B(x)‖2 ≤
�

�

16

�2

⋅ 10 ⋅ OPT . Now consider an 

arbitrary set of centers C. We have

where the first inequality follows from Lemma 2, the second 
inequality follows follows from Lemma 1, and the last ine-
quality follows from OPT ≤

∑
x∈A min

c∈C
‖x − c‖2 for any set 

of centers C.
Rescaling � by a factor of 1 / 4 gives the proof. The space 

bound now follows from Lemma 1 and the fact that we com-
pute a (�∕64)-ball-cover k ⋅ log(10n) times.   □

Bibliographic Remarks Algorithms based on a discretiza-
tion and then snapping points to the closest point of the 
discretization are particular common for extent approxi-
mation problems such as maintaining �-kernels, the direc-
tional width, the diameter, and the minimum enclosing ball 

�����

�

x∈A

min
c∈C

‖x − c‖2 −
�

x∈A

min
c∈C

‖B(x) − c‖2
�����

≤
12

𝜀

�

x∈A

‖x − B(x)‖2 + 2𝜀 ⋅
�

x∈A

min
c∈C

‖x − c‖2

≤
12

𝜀
(𝜀∕16)2 ⋅ 10 ⋅ OPT + 2𝜀 ⋅

�

x∈A

min
c∈C

‖x − c‖2

< 2𝜀 ⋅ OPT + 2𝜀 ⋅
�

x∈A

min
c∈C

‖x − c‖2

≤ 4𝜀 ⋅
�

x∈A

min
c∈C

‖x − c‖2,

3 Any constant factor would do. We only fix the constant for sake of 
exposition.
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problem. In fact, the notion behind coresets was introduced 
in the context of these problems in the seminal paper by 
Agarwal et al. [4]. Since then, a number of papers have pro-
gressively reduced the space bound required to maintain 
coresets [8, 23, 24, 99] with Arya and Chan giving an algo-
rithm that stores O(�−(d−1)∕2) points [14] in d-dimensional 
Euclidean space. We will briefly outline in Sect. 5 that this 
space bound is indeed optimal.

The geometric approach was also popular when coresets 
were introduced to k-median and k-means clustering and gen-
eralizations, see for instance [44, 51, 52, 57, 58]. Due to the 
exponential dependency inherent in all known constructions, 
the focus later shifted to sampling. Nevertheless, geometric 
arguments for correctness proofs are necessary for almost 
all algorithms, and are present in all the other examples pre-
sented in this survey. For an extensive and more complete 
overview of purely geometric algorithms for coreset con-
struction, we recommend the survey by Agarwal et al. [5]

3.2  Gradient Descent

A quite popular and often only implicitly used technique 
to build coresets is derived from convex optimization. We 
begin with an example where a simple application of the 
well-known sub-gradient method yields the desired coreset. 
Consider the problem of finding the smallest enclosing ball 
of a set of points, which is equivalent to the 1-center problem 
in Euclidean space.

Definition 3 Given P ⊂ ℝ
d , the smallest enclosing ball 

problem (SEB) consist in finding a center c∗ ∈ ℝ
d that mini-

mizes the cost function

A standard approach for minimizing the convex function 
f is to start at an arbitrary point c0 and to perform iterative 
updates of the form ci+1 = ci − s ⋅ g(ci) where s ∈ ℝ

>0 is an 
appropriately chosen step size and g(ci) ∈ �f (ci) is a sub-
gradient of f at the current point ci . We will refer to this as 
the sub-gradient method. This method has been formally 
developed by several mathematicians in the sixties. See [83, 
90, 92] for details and historical remarks. Now, consider the 
following theorem regarding the convergence behavior of 
the sub-gradient method.

Theorem 2 ([83]) Let f be convex and Lipschitz continuous 
with constant L and  ‖c0 − c∗‖ ≤ R. Let  f ∗ = f (c∗) be the 
optimal solution. Let   f ∗

l
= mini=1..l be the best solution 

among l iterations of the sub-gradient algorithm with step 
size s = R√

l+1
.  Then

f (P, c) = max
p∈P

‖c − p‖.

From Theorem 2 we learn, that if our function has a small 
Lipschitz constant and our initial starting point is not too far 
from the optimal solution, then the best center among a 
small number of iterations of the sub-gradient algorithm will 
have a radius that is close to the optimal radius of the small-
est enclosing ball. To assess the parameters more closely we 
begin with finding a sub-gradient at each step. It is easy to 
see that for any pmax ∈ argmaxp∈P ‖c − p‖ attaining the 
maximum distance g(c) = c−pmax

‖c−pmax‖
 is a sub-gradient of f at c, 

i.e. g(c) ∈ �f (c) . Also note that c − pmax ≠ 0 unless P is a 
singleton, in which case the problem is trivial since the only 
input point is the optimal center. Thus, in all interesting 
cases, g(c) is well-defined. Also note that g(c) is by defini-
tion a normalized vector, i.e., ‖g(c)‖ = 1 which implies that 
f is L-Lipschitz with L = 1 , since by definition of a sub-
gradient and applying the Cauchy-Schwarz inequality (CSI) 
we have

This leads to the following corollary.

Corollary 1 We can choose a starting point and an 
appropriate step size, such that  f ∗

l
,  the best solution 

among l = O(
1

�2
)  iterations of the sub-gradient method for 

the smallest enclosing ball problem satisfies

Proof Note that if we pick an arbitrary input point as our 
starting point c0 = p0 ∈ P and another point p1 ∈ P that 
maximizes the distance to p0 then we can deduce that 
‖p0 − c∗‖ ≤ f ∗ ≤ ‖p0 − p1‖ ∶= R ≤ 2f ∗ . So, in the light of 
Theorem 2, R is a good approximation for determining an 
appropriate step size, and at the same time acts as a good 
parameter for the upper bound on the error. Now plugging 
l =

4

�2
− 1 = O(

1

�2
) and s = R√

l+1
=

�

2
R into Theorem 2, we 

get

  □

Now we would like to argue that the set of points S, 
that the sub-gradient algorithm selects in each iteration 
as furthest point from the current center, forms a (weak) 
coreset for the smallest enclosing ball of P. We will need 
the following well-known fact for our further analysis.

f ∗
l
− f ∗ ≤

LR√
l + 1

.

f (c) − f (x) ≤ g(c)T (c − x)
CSI

≤ ‖g(c)‖‖c − x‖ ≤ 1 ⋅ ‖c − x‖.

f ∗
l
− f ∗ ≤ �f ∗.

f ∗
l
− f ∗ ≤

LR√
l + 1

≤
2f ∗

√
l + 1

≤ �f ∗.
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Lemma 4 ([17]) Let B(c, r) be the smallest enclosing ball 
of a point set  P ⊂ ℝ

d, then any closed halfspace that con-
tains c  must also contain at least one point from P that is 
at distance  r from c.

Using this lemma we can argue that any (1 + �)-approxi-
mate center must be within 

√
�f ∗ distance to the optimal 

center.

Lemma 5 Let B(c, r) be the smallest enclosing ball of a 
point set  P ⊂ ℝ

d. Let c̃ be a center such that for all p ∈ P we 
have ‖c − p‖ ≤ (1 + �)r. Then  ‖c̃ − c‖ ≤

√
3𝜀r.

Proof Let c̃ − c be normal to the hyperplane H pass-
ing through c and let H− be the halfspace whose bor-
der is H containing c but not containing c̃ . By Lemma 
4 we know that there must be some p ∈ P ∩ H− 
such that ‖c − p‖ = r . By the law of cosines we have 
‖c̃ − c‖2 = ‖c̃ − p‖2 − ‖p − c‖2 + 2‖c̃ − c‖‖c − p‖ cos 𝛼  , 
where � is the angle between c̃ − c and p − c . We 
further know that cos � ≤ 0 since p ∈ H− . Thus, 
‖c̃ − c‖2 ≤ (1 + 𝜀)2r2 − r2 = (2𝜀 + 𝜀2)r2 ≤ 3𝜀r2 . Taking the 
square root yields the claim.   □

Now we are ready to prove the main result, namely that 
running O( 1

�4
) iterations, S is indeed a weak �-coreset for 

the smallest enclosing ball of P.

Theorem 3 Let S be the set of points that the sub-gradient 
method chooses as furthest points from the current center 
in each of  O( 1

�4
) iterations. Then S is an  �-coreset for the 

smallest enclosing ball of P.

Proof Note, that starting with the same point c0 , the deci-
sions made by the algorithm on input S is the same as on 
input P. Therefore Corollary 1 applies to both of the sets S 
and P. (Ties in furthest point queries are assumed to  
be resolved lexicographically.) Now consider the optimal 
center c∗ for P and the optimal center cS for S as well as the 
best solution c̃ found by the sub-gradient method. We can 
run the gradient algorithm for a number of l = O(

1

�4
) itera-

tions to get a center c̃ which is a (1 + �2)-approximation  
for both sets. By Lemma 5 we have that ‖c∗ − c̃‖ ≤

√
3𝜀f ∗ 

and ‖cS − c̃‖ ≤
√
3𝜀f ∗ . So, by the triangle inequality 

‖c∗ − cS‖ ≤ ‖cS − c̃‖ + ‖c∗ − c̃‖ ≤ 2
√
3𝜀f ∗ . Rescaling � by 

a factor of 1

2
√
3
 and again leveraging the triangle inequality 

y i e l d s  ∀p ∈ P ∶ ‖cS − p‖ ≤ ‖cS − c∗‖ + ‖c∗ − p‖ ≤

(1 + �)f ∗   □

Bibliographic Remarks The presented result is rather 
weak compared to the optimal coreset size of ⌈ 1

�
⌉ , cf. [16]. 

However, we chose to present the method in this way since it 

shows that the gradient method in its basic form can already 
yield constant size coresets that do neither depend on the 
number of input points nor on their dimension. Therefore 
we see this as a generic method for dimensionality reduc-
tion and the design of coresets for computational problems. 
Putting more effort into geometrically analyzing every single 
step of the gradient algorithm, i.e., leveraging more problem 
specific structure in the proof of Nesterov’s theorem (Thm. 
2, cf. [83]), can lead to even better results which we want 
to survey here. Badoiu and Clarkson present in their short 
and elegant seminal work [15] that their gradient algorithm 
converges to within �f ∗ error in O( 1

�2
) iterations similar to 

Corollary 1. Their analysis is stronger in the sense that it 
implicitly shows that the points selected by the algorithm 
form an �-coreset of size O( 1

�2
) . Such a result was obtained 

before in [17] by picking a point in each iteration which is 
far enough away from the center of the smallest enclosing 
ball of the current coreset. Taking the furthest point instead, 
yields the near-optimal bound of 2

�
 from [15]. The complex-

ity was settled with matching upper and lower bounds of ⌈ 1

�
⌉ 

in [16]. The smallest enclosing ball problem is by far not the 
only one for which looking at gradient methods can help. For 
instance Har-Peled et al. [60] have used similar construction 
methods to derive coresets for support vector machine train-
ing. Clarkson [29] has generalized the method by unifying 
and strengthening the aforementioned results (among oth-
ers) into one framework for coresets, sparse approximation 
and convex optimization. A probabilistic sampling argument 
was already used in [17] as a dimensionality reduction tech-
nique for the 1-median problem which led to the first linear 
time approximation algorithms for the k-median problem 
in Euclidean and more general metric spaces [3, 69]. The 
method itself is closely related to stochastic sub-gradient 
methods where uniform sub-sampling is used for obtaining 
an unbiased estimator for the actual sub-gradient in each 
step [92]. Similar approaches are currently under study to 
reduce the exponential dependency on the dimension for the 
probabilistic smallest enclosing ball problem [48].

3.3  Random Sampling

The arguably most straightforward way to reduce the size 
of dataset is to simply pick as many points as permis-
sible uniformly at random. Though it is rare for an algo-
rithm to produce a coreset in this straightforward fash-
ion, we will see that for outlier-resistant problems this 
approach can already provide reasonable results. In the 
following we will examine the geometric median, which 
is one of the few problems for which uniform sampling 
gives any form of guarantee. Thereafter, we will show how 
to obtain strong coresets using more involved sampling 
distributions.
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Definition 4 (Geometric Median) Let A be a set of points 
in ℝd . The geometric median m(A) minimizes

We will show that uniform sampling is sufficient to 
obtain a weak-coreset guarantee, The exposition for 
uniform sampling follows Thorup  [94] and Ackerman 
et al. [3].

Lemma 6 Let  A  be a set of points in  ℝd   and 
let  S  be a uniform sample of  A.  Then for any 
point b with 

∑
x∈A ‖x − b‖ ≥ (1 +

4�

5
)
∑

x∈A ‖x − m(A)‖, we 
have

Proof We have 
∑

x∈A (‖x − b‖ − ‖x − m(A)‖) > 4𝜀

5

∑
x∈A

‖x − m(A)‖ and 
∑

x∈A (‖x − b‖ − ‖x − m(A)‖) > 4𝜀

5
∕(1 +

4𝜀

5
)

∑
x∈A ‖x − b‖ . Then

Now consider  the  random var iable  X =
∑

x∈S
‖x−b‖−‖x−m(A)‖+‖m(A)−b‖

2⋅

�
‖m(A)−b‖+ �

5�A�
∑

x∈A ‖x−m(A)‖
�  .  Note that 

∑
x∈S ‖x − b‖ ≤

∑
x∈S ‖x − m(A)‖ + ��S�

5�A�
∑

x∈A ‖x − b‖ ⇔ �X� ≤ �S�∕2 . Due 

to the triangle inequality, each summand is in between 0 and 
1. Furthermore, �[X] = �S�

�A�
∑

x∈A
‖x−b‖−‖x−m(A)‖+‖m(A)−b‖

2⋅
�
‖m(A)−b‖+ �

5�A�
∑

x∈A ‖x−m(A)‖
� . 

Using Eq. 1, we have

f (A,m) ∶=
�

x∈A

‖x − m(A)‖.

ℙ

�
�

x∈S

‖x − b‖ <
�

x∈S

‖x − m(A)‖ + 𝜀�S�
5�A�

�

x∈A

‖x − m(A)‖
�

≤ exp

�
−
𝜀2�S�
144

�
.

(1)

�

x∈A

(‖x − b‖ − ‖x − m(A)‖)

>

�
3 −

4𝜀

5

�
𝜀

5

�

x∈A

‖x − m(A)‖ + 𝜀

5

�

x∈A

‖x − b‖

≥

�
2 −

4𝜀

5

�
𝜀

5

�

x∈A

‖x − m(A)‖ + 𝜀

5

�

x∈A

‖p − m(A)‖

≥
𝜀

5

�

x∈A

‖x − m(A)‖ + 𝜀

5

�
�

x∈A

�
‖p − m(A)‖ + 𝜀

5
‖x − m(A)‖

��

�[X] =
�S�
2

⋅
1

�A�
�

x∈A

‖x − b‖ − ‖x − m(A)‖ + ‖m(A) − b‖
‖m(A) − b‖ + �

5�A�
∑

x∈A ‖x − m(A)‖

≥
�S�
2

⋅
1

�A�
�

x∈A

�
1 +

�

5

�
⋅

�
‖m(A) − b‖ + �

5�A�
∑

x∈A ‖x − m(A)‖
�

‖m(A) − b‖ + �

5�A�
∑

x∈A ‖x − m(A)‖

=
�S�
2

⋅

�
1 +

�

5

�

Applying the Chernoff bound, we have

  □

We wish to use Lemma 6 to apply a union bound on all 
candidate points. In a finite metric consisting of n points, 
we can set |S| ≥ 144�−2 log n and are done. In the continu-
ous setting, this is not as straightforward. We will use a 
suitably scaled ball-cover and argue that this already suf-
fices to prove the claim for all points.

Theorem 4 Let A be a set of n points in ℝd and let S be 
a uniform sample of  A  with   |S| ∈ �(d�−2 log

d

�
) . Let 

m(A) and m(S) be the geometric medians of A and S, respec-
tively. Then with constant probability, we have

Proof Denote by OPT ∶=
∑

x∈A ‖x − m(A)‖ . By Markov’s 
inequality and a union bound over S, all points in S will be 
contained in the ball B of radius 4|S|OPT

n
 centered around 

m(A) with probability at least 1 / 4. Obviously, this means 
that the optimal median m(S) of |S| will be contained in B. 
Let C be a �

5

OPT

n
-ball-cover of B. Setting |S| ≥ k ⋅ d�−2 log

d

�
 

for a sufficiently large absolute constant k ensures that 
Lemma 6 holds for all points in C with probability at least 
1 / 4.

Now let c ∈ C be the closest point in the ball-cover to 
m(S). We have

By Lemma  6 we have 
∑

x∈A ‖x − c‖ ≤ (1 +
4�

5
) ⋅

∑
x∈A

‖x − m(A)‖ . Applying the triangle inequality, then yields ∑
x∈A ‖x − m(S)‖ ≤

∑
x∈A ‖x − c‖ + n ⋅ ‖c − m(S)‖ ≤ (1+

4�

5
+

�

5
)
∑

x∈A ‖x − m(A)‖ .   □

Obviously, the uniform sampling approach can not yield 
a strong coreset even for the geometric median problem. 
The reason is that the cost can rely on a small constant 
number of input points even in one dimension. Given 
any input P of size n − 2 , we can place two additional 
points pmin < minP and pmax > maxP arbitrarily far from 

ℙ[X ≤ |S|∕2] ≤ℙ
[
X ≤

(
1 −

�

6

)
⋅ E[X]

]

≤ exp

(
−
�2 ⋅ 𝔼[X]

72

)
≤ exp

(
−
�2 ⋅ |S|
144

)
.

�

x∈A

‖x − m(S)‖ ≤ (1 + �) ⋅
�

x∈A

‖x − m(A)‖.

�

x∈S

‖x − c‖ ≤
�

x∈S

‖x − m(S)‖ + ��S�
5�A�

�

x∈A

‖x − m(A)‖

≤
�

x∈S

‖x − m(A)‖ + ��S�
5�A�

�

x∈A

‖x − m(A)‖
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the points of P without affecting the median. Clearly, any 
strong coreset must contain these points to preserve the 
cost for all possible centers, but the probability of sam-
pling one of them is only 2

n
 . This implies that a strong 

coreset based on uniform sampling must have linear size. 
To overcome this limitation, Langberg and Schulman [71] 
introduced the notion of sensitivity for families of func-
tions. For simplicity of presentation, we consider only the 
special case of the geometric median problem. For a much 
more general view on sensitivity sampling for numerous 
other functions the reader is referred to the original litera-
ture [45, 71]

Definition 5 (Sensitivity) We define the sensitivity of a 
point x ∈ P as

We define the total sensitivity as S(P) =
∑

x∈P s(x).

Informally, the sensitivity of a point measures how impor-
tant it is for preserving the cost over all possible solutions. 
Note, that from the definition

follows for all x ∈ P and all centers c ∈ ℝ
d . The total sensi-

tivity will turn out to be a crucial measure for the complexity 
of sampling from the distribution given by the sensitivities 
of the input points. We begin with describing the sampling 
scheme. The following importance or weighted sampling 
approach yields an unbiased estimator for the cost of any 
fixed center f (P, c) =

∑
x∈P ‖x − c‖ . We sample a point 

x ∈ P from the distribution q(x) = s(x)

S(P)
 and set T =

‖x−c‖
q(x)

 . A 

straightforward calculation of its expected value 
�[T] =

∑ ‖x−c‖
q(x)

⋅ q(x) =
∑
x∈P

‖x − c‖ shows that  T  i s 

unbiased.
Next we bound its variance which is a crucial parameter 

in deriving concentration results for our sampling procedure.

Lemma 7 � [T] ≤ (S(P) − 1)�[T]2

Proof Let S = S(P) . Now 1

�[T]2
� [T] equals

s(x) = sup
c∈ℝd

‖x − c‖
∑
p∈P

‖p − c‖
.

(2)‖x − c‖ ≤ s(x)
�

p∈P

‖p − c‖

The inequality follows from Eq. (2).   □

In our next lemma we will see why the total sensitiv-
ity plays such an important role for the random sampling 
proportional to the sensitivities.

Lemma 8 Let  𝜀 > 0.  Let  R  be a random sample of 
size m ≥

3S

�2
ln(

2�

�
) drawn i.i.d. from P proportional to the 

distribution q. Then for any fixed set of centers C ⊂ ℝ
d of 

size |C| ≤ � we have

Proof Fix any center c ∈ ℝ
d . Let Ti =

‖x−c‖
q(x)

=
‖x−c‖S
s(x)

 with 

probability q(x) and let T =
∑m

i=1
Ti be their sum. By linear-

ity we have �[T] = m�[Ti] = m
∑

x∈P ‖x − c‖ . By independ-
ence of the individual samples and Lemma 7 we have 
� [T] = m� [Ti] ≤ m(S − 1)�[Ti]

2 . Note that by Eq. (2) it 
holds that 0 ≤ Ti =

‖x−c‖S
s(x)

≤ S
∑

x∈P ‖x − c‖ = S�[Ti] and 

therefore |Ti − �[Ti]| ≤ M ∶= S�[Ti] is a bound that holds 
almost surely for each i. Now, by an application of Bern-
s t e i n ’ s  i n e q u a l i t y  [ 2 0 ]  w e  h a v e 

ℙ[|T − 𝔼[T]| > 𝜀𝔼[T]] ≤ 2 exp

(
−

𝜀2𝔼[T]2

2𝕍 [T]+
2M

3
𝜀𝔼[T]

)
. We bound 

the exponent by

It follows that ℙ[|T − 𝔼[T]| > 𝜀𝔼[T]] ≤
𝛿

𝜅
 which implies 

our claim by taking a union bound over the set C of size 
|C| ≤ � .   □

Lemma 8 shows that the number of samples that we 
need, depends linearly on the total sensitivity as well as 
logarithmically on the number of centers for which we need 

1

�[T]2

�

x∈P

�
‖x − c‖
q(x)

− �[T]

�2

⋅ q(x)

=
1

�[T]2

�

x∈P

�
‖x − c‖ ⋅ S

s(x)
− �[T]

�2

⋅
s(x)

S

=
1

�[T]2

�

x∈P

�
‖x − c‖2 ⋅ S

s(x)
− 2�[T]‖x − c‖ + s(x)�[T]2

S

�

=

�
1

�[T]2

�

x∈P

‖x − c‖2 ⋅ S
s(x)

�
−

�
2

�[T]

�

x∈P

‖x − c‖
�

+

�
�

x∈P

s(x)

S

�

=

�
1

�[T]2

�

x∈P

‖x − c‖2 ⋅ S
s(x)

�
− 2 + 1 ≤

S

�[T]

�

x∈P

‖x − c‖ − 1 = S − 1 .

ℙ

�
∃c ∈ C ∶

�����
1

m

�

x∈R

‖x − c‖
q(x)

−
�

x∈P

‖x − c‖
�����
≥ �

�

x∈P

‖x − c‖
�
≤ �.

�2�[T]2

2� [T] +
2M

3
��[T]

≥
�2m2

�[Ti]
2

2m(S − 1)�[Ti]
2 +

2

3
�mS�[Ti]

2

≥
�2m

2(S − 1) +
2

3
�S

≥
�2m

3S
≥ ln

(
2�

�

)
.
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a guarantee. First we want to bound the total sensitivity for 
the geometric median problem. If for every input point, there 
is some center such that the points’ contribution to the cost 
is large, say bounded below by a constant, then we are lost 
since in that case the total sensitivity sums up to �(n) . The 
next lemma shows that this cannot happen. Actually it turns 
out that the total sensitivity can be bounded by a constant.

Lemma 9 S(P) =
∑

x∈P s(x) ≤ 6.

Proof Let  c∗ be  the  opt imal  center  and let 
𝛥 =

∑
x∈P ‖x − c∗‖ > 0 denote the optimal cost. Let c ∈ ℝ

d 
be any center, let � =

∑
x∈P ‖x − c‖ ≥ � denote its cost 

and let � = ‖c − c∗‖ be its distance to the optimal center. 
Now consider a ball B centered at c∗ with radius 2�

n
 . By 

the Markov inequality we have that the number of points 
inside the ball is at least |P ∩ B| ≥ n

2
 . Therefore we have 

� ≥
n

2
max(0, � −

2�

n
) . Combining both lower bounds we 

have � ≥
1

2
[
n

2
max(0, � −

2�

n
) + �] . Now,

G, restricted to � ≥
2�

n
 is clearly monotonously decreasing 

in � and is thus maximized at G( 2�
n
) =

4

n
+

2‖x−c∗‖
�

 . We  
can conclude that S(P) is bounded by 

∑
x∈P s(x) ≤

∑
x∈P�

4

n
+

2‖x−c∗‖
�

�
= 4 + 2

∑
x∈P ‖x−c∗‖

�
= 6.   □

Now we know that the total sensitivity contributes 
only a constant factor to our sampling complexity. Before 
we move to the main result of this section, we will need 
another technical lemma. It is not immediately clear that 
we can use the triangle inequality for our samples, due to 
reweighting. We will therefore establish a relaxation of 
the triangle inequality for the entire weighted subsample.

Lemma 10 Let  𝜀 > 0.  Let  R  be a random sample of 
size m ≥

18

�2
ln(

2

�
) drawn i.i.d. from  P proportional to the 

distribution q and reweighted by  w(x) = 1

mq(x)
. Then with 

probability at least 1 − �   for any choice of two cent-
ers c, c� ∈ ℝ

d we have

1. cost(R, c) ≤ cost(R, c�) + (1 + �)n‖c − c�‖
2. cost(R, c) ≥ (1 − �)n‖c − c�‖ − cost(R, c�).

s(x) = sup
c∈ℝd

‖x − c‖
∑

x∈P ‖x − c‖
≤ sup

c∈ℝd

� + ‖x − c∗‖
1

2
[
n

2
max(0, � −

2�

n
) + �]

=sup
�≥0

� + ‖x − c∗‖
1

2
[
n

2
max(0, � −

2�

n
) + �]

= sup
�≥

2�

n

� + ‖x − c∗‖
1

2
[
n

2
(� −

2�

n
) + �]

=sup
�≥

2�

n

4� + 4‖x − c∗‖
n�

= sup
�≥

2�

n

4

n
+

4‖x − c∗‖
n�

∶= sup
�≥

2�

n

G(�).

Proof The tricky part is to bound the total weight of the 
sample 1

m

∑
x∈R

1

q(x)
 . In the light of Lemmas 7 and 8, we 

define the random variables Ti =
1

q(x)
 . Their expectation is 

�[Ti] =
∑

x∈P
1

q(x)
⋅ q(x) = n . To bound their variance, we 

first need an upper bound on 1

s(x)
 . To this end, consider a ball 

B ⊃ P containing all input points, centered at the optimal 
center c∗ . Let � be the diameter of B and let b ∈ B be the 
closest point to c located on the surface of B. Note that 
∀p ∈ P ∶ ‖p − b‖ ≤ � . Then

Now, � [Ti] ≤ (S − 1)�[Ti] follows via very similar calcula-
tions as in Lemma 7. Inequality (2) is simply replaced by 
Inequality (3) in the derivation.

Following the arguments from Lemma 8 closely, we can 
conclude that with high probability � 1

m

∑
x∈R

1

q(x)
− n� ≤ �n 

holds.
Back to the main claims, the standard triangle inequality 

yields

The  second  c l a im fo l lows  s imi la r ly  us ing 
‖x − c‖ ≥ ‖c − c�‖ − ‖x − c�‖ in the numerator.   □

It remains to bound the number of centers for which we 
will need a guarantee. This seems impossible at first glance, 
since the strong coreset property asks to hold for every 
center c ∈ ℝ

d which has infinite cardinality. In the follow-
ing we will see, that again, it is sufficient to consider a ball of 
appropriate radius centered at the optimum and decompose 
it by an �-ball-cover. Lemma 8 is applied to these points 
only. Now, for every center inside the ball, there is a point 
of the cover close to it for which the coreset guarantee holds. 
For the other centers we can argue that they are so far from 
the optimum center that their distance dominates the cost for 
both, the original point set as well as for the coreset. This 
will establish the coreset property for every possible center.

Theorem 5 Let 𝜀 > 0 , c ∈ ℝ
d. Let R be a random sample 

of P of size m ≥ �(
d

�2
ln

1

��
) drawn i.i.d. proportional to the 

(3)

1

s(x)
= inf
c∈ℝd

∑
p∈P ‖p − c‖
‖x − c‖ ≤ inf

c∉B

∑
p∈P ‖p − b‖ + ‖b − c‖

‖b − c‖

≤inf
c∉B

�
1 +

�

‖b − c‖

�
n = n.

1

m

�

x∈R

‖x − c‖
q(x)

≤
1

m

�

x∈R

‖x − c�‖ + ‖c − c�‖
q(x)

≤
1

m

�

x∈R

‖x − c�‖
q(x)

+ (1 + �)n‖c − c�‖.



45KI - Künstliche Intelligenz (2018) 32:37–53 

1 3

distribution q and reweighted by  w(x) = 1

mq(x)
. Then R is a 

strong coreset for the geometric median of P with probability 
at least 1 − �.

Proof Let c∗ be the optimal center for P and let 
OPT = cost(P, c∗) denote the optimal cost. Consider the 
closed ball B of radius r = OPT

�n
 centered at c∗ . Let C be the 

set of center points of a �OPT

n
-ball-cover of B. For technical 

reasons we add c∗ to C. Recall from Lemma 1 that 
|C| ≤ � ≤

(
1 +

2

�2

)d

+ 1 =
(

1

�

)O(d)

. We apply Lemma 8 to 

C with m =
18

�2
ln(

2�

�
) = �(

d

�2
ln

1

��
) . Thus we can assume that 

with probability 1 − � for all c̃ ∈ C simultaneously and in 
particular for c∗ we have |cost(R, c̃) − cost(P, c̃)| ≤ 𝜀 cost(P, c̃) . 
Also we have that the two triangle inequalities from Lemma 
10 hold with probability 1 − �.

Now let c ∈ ℝ
d be any center. We distinguish between the 

cases c ∈ B and c ∉ B . In the former case let c̃ ∈ C be the 
closest center to c in our cover, i.e., ‖c − c̃‖ ≤ 𝜀

OPT

n
 . Using 

Lemma 10 we have

The lower bound of (1 − 4�) cost(P, c) can be derived 
similarly and is omitted for brevity of presentation. 
We are left to deal with the case c ∉ B . The inequal-
ity to keep in mind is ‖c − c∗‖ >

OPT

𝜀n
 or, equivalently 

cost(P, c∗) = OPT < 𝜀n‖c − c∗‖ . From

and

it follows that cost(R,c)
cost(P,c)

≤
1+3�

1−�
≤ 1 + 8�.

cost(R, c) ≤cost(R, c̃) + (1 + 𝜀)n ⋅ ‖c − c̃‖
≤(1 + 𝜀) cost(P, c̃) + (1 + 𝜀)n ⋅ ‖c − c̃‖
≤(1 + 𝜀) (cost(P, c) + n ⋅ ‖c − c̃‖) + (1 + 𝜀)n ⋅ ‖c − c̃‖
≤(1 + 𝜀) cost(P, c) + 2(1 + 𝜀)n ⋅ ‖c − c̃‖
≤(1 + 𝜀) cost(P, c) + 3𝜀OPT

≤(1 + 4𝜀) cost(P, c).

cost(R, c) ≤cost(R, c∗) + (1 + �)n‖c − c∗‖
≤(1 + �) (cost(P, c∗) + n‖c − c∗‖)
≤(1 + �)(�n‖c − c∗‖ + n‖c − c∗‖)
≤(1 + 3�)n‖c − c∗‖

cost(P, c) ≥n‖c − c∗‖ − cost(P, c∗)

≥n‖c − c∗‖ − �n‖c − c∗‖
≥(1 − �)n‖c − c∗‖

The lower bound of 1 − 3� can be verified very similarly 
and is again omitted from the presentation. Rescaling � and 
� by absolute constants concludes the proof.   □

Bibliographic Remarks The arguably first paper to 
use random sampling for coreset construction is due to 
Chen [27]. Like the result on k-means described in Sect. 3.1, 
he considered balls of exponential increasing radii. Instead 
of using a ball-cover, he showed that a uniform random sam-
ple suffices to approximate the cost and thereby gave the first 
coresets for k-means and k-median with polynomial depend-
ency on k, d, � , and log n . The sensitivity sampling approach 
was introduced by Langberg and Schulman [71] and further 
improved by Feldman and Langberg [45] and Braverman, 
Feldman and Lang [22].

The technique is now one of the crown jewels of core-
set construction, giving the best currently available param-
eters for a wide range of problems including �p regression, 
k-means and k-median clustering, and low rank subspace 
approximation. It has defined a unified framework for several 
importance sampling approaches from the early literature 
of sampling based sublinear approximation algorithms and 
coresets. One of the first such works is due to Clarkson [28] 
on �1 regression. After a series of studies on sampling based 
randomized linear algebra [36–38], the approach could also 
be adapted for �2 regression [40, 41] and was later general-
ized in [34] to �p regression for p ∈ [1,∞) . In accordance 
with the statistical meaning of the sampling weights, they 
were later called (statistical) leverage scores. It was an open 
problem proposed in [40] to even approximate the �2 lever-
age scores in less time than needed to solve the regression 
problem exactly. This problem was resolved in [39] via the 
oblivious random projection approach we are going to detail 
in the next section. Low rank subspace approximation was 
often treated implicitly using the same approaches leading 
to weak coresets, cf. [91] for a technical review. The first 
strong coresets of polynomial size for �p subspace approxi-
mation are due to Feldman et al. [47] again achieved via 
weighted sampling techniques related to the notion of sen-
sitivity. More recently, the sampling based methods from 
randomized linear algebra [41] were leveraged to develop 
coresets in [79] for dependency networks [61] and Poisson 
dependency networks [55].

3.4  Sketches and Projections

It is often useful to view a dataset as a matrix, where the 
ith row corresponds to the ith point. In the following, let us 
assume that we have n points in d-dimensional Euclidean 
space, i.e. we are given a matrix A ∈ ℝ

n×d.
A sketch of A is a linear projection obtained by multiply-

ing A with a sketching matrix S ∈ ℝ
m×n for some m ≪ n . 

Our goal is to design a sketching matrix such that SA retains 
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the key properties of A. Many of the previous coreset con-
structions can also be viewed in terms of sketching matrices. 
For instance, a sampling algorithm can be viewed as choos-
ing a diagonal matrix S ∈ ℝ

n×n where the diagonal entries 
are 1 (or some weight) if the point was picked and 0 other-
wise in which case the row can as well be deleted.

We are more interested in oblivious sketching matrices, 
that is the sketching matrix S can be constructed ahead of 
time without viewing the data. Though it might seem sur-
prising that this yields any results, sketching is now regarded 
as one of the central tools for streaming. We will illustrate 
the power of oblivious sketching in the context of subspace 
embedding and then show how it may be applied to linear 
regression.

Definition 6 Let U ∈ ℝ
n×d be a matrix with orthogonal 

unit columns and let 𝜀 > 0 . An �-subspace embedding of U 
is a matrix SU ∈ ℝ

m×d for m ≪ n such that for any vector 
x ∈ ℝ

d , we have

The central ingredient is based around the seminal John-
son-Lindenstrauss lemma [64].

Lemma 11 (Distributional Johnson-Lindenstrauss 
Lemma) There exists a distribution D over m × n matrices 
with m ∈ O(�−2 log(1∕�)) such that for a matrix �  drawn 
from D and any fixed vector x ∈ ℝ

n we have

The classic variant of the distributional Johnson-Linden-
strauss Lemma further states that an adequate distribution 
independently draws each entry of the matrix as a Gaussian 
with mean 0 and variance 1. Any distribution with mean 
0 and variance 1 may be used, and nowadays, it is more 
common to draw entries from the Rademacher distribution, 
where each entry is with probability 1 / 2 either 1 or −1 . We 
will briefly discuss advantages of various sketching matrices 
at the end of this section.

Lemma 11 now gives us a powerful dimension reduc-
tion tool for Euclidean spaces. Consider, for instance, the 
case where we are given � points in an arbitrary number of 
dimensions. Each distance between two points can be rep-
resented by a vector and there are at most �2 such vectors. 
Using Lemma 11, we can achieve an (1 ± �)-approximate 
embedding into O(�−2 log �) dimensions with probability at 
least 2 / 3 by setting m ≥ c ⋅ �−2 log(�2) , where c is some 
absolute constant.

For subspaces, the application of the union bound is not 
as straightforward as there are infinitely many vectors, 
even in a 1-dimensional subspace. We first observe that 

�‖SUx‖2 − ‖Ux‖2� ≤ � ⋅ ‖x‖2.

ℙ[(1 − �)‖x‖ ≤
1√
m
‖�x‖ ≤ (1 + �)‖x‖] ≥ 1 − �.

any vector x may be rewritten as ‖x‖ ⋅ x

‖x‖ and hence it is 

sufficient to consider vectors with unit norm. This solves 
the subspace approximation problem in a single dimen-
sion, but even in 2 dimensions we have infinitely  
many unitary vectors. Instead, we show that applying  
the union bound on ball-covers is sufficient. Recall that 
there exists an �-ball-cover of size (1 + 2∕�)d  (c.f. 
Lemma  1). Applying the union bound now gives us 
m ≥

c log(1+2∕�)d

�2
= O(d�−2 log �−1) . A slightly more detailed 

analysis will allow us to remove the log �−1 factor. The 
main argument is that we can write every vector as linear 
combination of the vectors of a 1 / 2-cover. To see this, 
consider a 1 / 2-cover {x0,… x5d} and an arbitrary unit vec-
tor y. There exists some xi such that ‖y − xi‖ ≤ 1∕2 .  
We then consider the vector ‖y − xi‖xj closest to (y − xi) . 
S i n c e  ‖ 1

‖y−xi‖
(y − xi) − xj‖ ≤ 1∕2  ,  we  t h e n  h ave 

‖(y − xi) − ‖y − xi‖xj‖ ≤ 1∕4. In each subsequent step, we 
halve the length of the next vector added and by iterating 
this sequence into infinity, the length of the remaining 
vector lim y −

∑
�ixi is 0.

Hence, there exists a subspace approximation of size 
O(d∕�2) . Now let us consider linear regression, where we 
aim to minimize ‖Ax − b‖ with A ∈ ℝ

n×d and b ∈ ℝ
n . Since 

all possible vectors Ax − b lie in a (d + 1)-dimensional sub-
space spanned by the columns of A and b, an oblivious sub-
space embedding is a coreset for linear regression.

Theorem 6 Let A ∈ ℝ
n×d and b ∈ ℝ

n. Choose  S ∈ ℝ
m×n to 

be a Rademacher matrix, where m ∈ O(d�−2). Then with 
constant probability, for all x ∈ ℝ

d, we have

Bibliographic Remarks Oblivious subspace embeddings 
were first introduced by Sarlos [91] both as a means for 
solving regression and as means for computing low rank 
approximations. The upper bound of O(d∕�2) on the target 
dimension for oblivious sketches was (implicitly) given in 
the work by Clarkson and Woodruff [31], and this bound 
was later proved to be optimal by Nelson and Nguyen [82], 
though even smaller bounds are possible if the sketch is not 
oblivious, see for instance [33, 49]. It is worth noting that if 
we are only interested in approximating the optimum using 
the sketch for linear regression, somewhat akin to a weak 
coreset guarantee, a target dimension of O(d∕�) is sufficient 
and necessary [31].

Projections and sketches also play an important role for 
coresets in Euclidean k-means [33, 49]. Cohen et al. [33] 
showed that an oblivious sketch of target dimension O(k∕�2) 
is cost-preserving. As a corollary, this implies that for any 
coreset construction, the dependency on d may be replaced 
by a dependency on k∕�2.

(1 − �)‖Ax − b‖ ≤ ‖S(Ax − b)‖ ≤ (1 + �)‖Ax − b‖.
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The computation time for all sketching approaches can be 
generally regarded as acceptable. The smallest target dimen-
sion is achievable by computing the SVD or a sufficiently 
good low rank approximation [33, 49]. While this can be 
done in polynomial time, it is more expensive than the obliv-
ious sketching methods we describe in the following. Con-
ceptually, there are two basic approaches to multiply sketch-
ing matrices faster. The first one is to improve the sketching 
dimension. This, however, is known to be impossible for 
various regimes, see [12, 63, 65, 72] and very recently for 
any embedding method by Larsen and Nelson [73]. The 
other direction is to make the sketching matrix sparse.

Sparse matrices tend to distort sparse vectors. Clearly, the 
Johnson-Lindenstrauss guarantee cannot hold in such cases. 
To remedy this problem, Ailon and Chazelle [9] proposed to 
first increase the density of the input vectors by preforming 
a randomized Fourier Transform before multiplying with 
a very sparse embedding matrix. This approach, called the 
Fast Johnson Lindenstrauss Transform, was later improved 
and refined, see for instance [10, 11, 21, 95] and references 
therein.

The second approach for sparse Johnson Lindenstrauss 
transforms is based around sophisticated ways of combining 
Count Sketch estimators. The Count Sketch estimator [25] 
originally proposed for finding heavy hitters is essentially 
a single row of a Rademacher matrix. Instead of naively 
repeating the Count Sketch and averaging the results as in a 
standard Rademacher matrix, we aim to partition the entries 
of the vectors that are to be embedded, apply a Count Sketch 
for each partition and thereafter aggregate the results. The 
degree of sparsity that may be achieved using various parti-
tioning schemes have been studied in [2, 32, 35, 66, 81]. We 
want to highlight the work by Clarkson and Woodruff [32] 
who can achieve an embedding in essentially input sparsity 
time, however at the cost of slightly larger target dimension 
d2

�2
 . The squared dependency on d was also shown to be nec-

essary by Nelson and Nguyen [80].
Another related direction is generalizing to �p subspace 

embeddings. A first step was done by Woodruff and Sohler 
[93] who designed the first subspace embedding for �1 via 
Cauchy random variables. The method is in principle gener-
alizable to using p-stable distributions and was improved in 
[30, 77]. The idea is that the sum of such random variables 
forms again a random variable from the same type of distri-
bution leading to concentration results for the �p norm under 
study. At the same time it is inherently limited to 1 ≤ p ≤ 2 
as in [77], since no such distributions exist for p > 2 , cf. 
[96]. The first attempts to generalize to p > 2 [30] had nearly 
linear size, namely n∕poly(d) , which clearly was not satisfy-
ing. A remedy came with a manuscript of Andoni [13], who 
discovered the max stability of inverse exponential random 
variables as a means to embed �p, p > 2 with little distortion 
into �∞ . Combining this with the work on �2 embeddings 

of Clarkson and Woodruff [32] culminated in oblivious 
subspace embeddings for all p (into �2 resp. �∞ ) and only 
poly(d) distortion [96]. Note, that the embedding dimen-
sion for p > 2 is n1−2∕ppoly(d) which improved upon the 
previous n∕poly(d) and is close to optimal given the lower 
bound of �(n1−2∕p) [86]. The desirable (1 ± �) distortion can 
be achieved using the embeddings for preconditioning and 
sampling proportional to the �p leverage scores [30, 34, 96].

Current research has moved beyond strict algorithmic and 
optimization related characteristics to the study of statistical 
properties [76, 88]. In particular, not only maximum like-
lihood estimators are approximated under random projec-
tions. Geppert et al. [54] showed that in important classes 
of Bayesian regression models, the whole structure of the 
posterior distribution is preserved. This yields much faster 
algorithms for the widely applicable and flexible, but at the 
same time computationally demanding Bayesian machinery.

Recently a series of optimization software based on ran-
dom projections and sketches have appeared. A parallel least 
squares regression solver LSRN was developed in [78, 97]. 
An implementation of some of the presented sketching tech-
niques named RaProR was made available for the statistics 
programming language R [53, 54, 87].

4  Streaming

Streaming algorithms process the data point by point (or 
entry by entry) and aim to (approximately) answer queries to 
the data using as little space as possible. Though we describe 
the coreset constructions in the last chapters with no stream-
ing implementation in mind, it turns out that if we can find 
a strong coreset for a problem, there also exists a streaming 
algorithm with little overhead in terms of space require-
ment. Once a coreset construction is known for a problem, 
it is often not necessary to develop a specific streaming 
algorithm, since one can rely on the following black box 
reduction:

For most functions4, coresets have the very useful prop-
erty of being closed under union, that is, for two point sets, 
the union of coresets for both point sets is a coreset for the 
entire point set. To get an idea of how the reduction works, 
assume that we partition the input sequence into n∕ log n 
batches of size log n . These batches form the leaves of a 
binary tree of height h ≤ log n . Whenever we process an 
entire batch, we compute a coreset. Whenever we have com-
puted a coreset for two children of a node, we aggregate 
them by recomputing a coreset of the union of the children 

4 Any function such that for any two disjoint point sets A and B and 
any candidate solution c we have f (A, c) + f (B, c) ≤ f (A ∪ B, c) . All 
problems mentioned in this survey have this property.
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and storing it in the parent node. The children can be deleted 
at this point. Thus, we only have to store at most two coresets 
at each level bounding the number of coresets in memory 
to O(log n).

So, this framework comes not for free, but its blow up 
remains bounded. If we apply the merging step as a black 
box, the coreset contained at the root node, i.e. the final 
output of the algorithm will have an approximation guaran-
tee of (1 + �)log n . Rescaling � by 2 log n , we have the desired (
1 +

�

2 log n

)log n

≤ exp
(

�

2

)
≤ (1 + �) approximation ratio. 

Finally, many known constructions require randomization 
and have some adjustable failure probability � . To limit the 
overall failure probability when processing a stream, � is 
rescaled by the number of coreset constructions. Since the 
space dependency on � is typically log 1

�
 , we incur another 

factor of O(log n) . In total, the space dependency on log n is 
increased by a factor of logc+p n , where c is the exponent of 
� in the offline coreset construction and p = 1 if the construc-
tion is deterministic and p = 2 if it is randomized.

Heinrich et al. have extended this streaming construction 
of coresets to an asymptotic error guarantee of � → 0 as 
n → ∞ while the memory remains bounded by polylog(n) . 
This has led to the notion of asymptotically exact streaming 
algorithms [62].

The framework, called merge and reduce, was originally 
introduced by Bentley and Saxe [19] and first applied to 
streaming by Agarwal, Har-Peled and Varadarajan in their 
seminal paper  [4]. Nowadays, many papers have given 
more efficient streaming implementations for their coresets. 
For extent approximation algorithms and k-center cluster-
ing, we now have constructions with no dependency on 
n, see  [8, 23, 24, 99], with the currently best algorithms 
storing O(�−(d−1)∕2) points [14] for �-kernels and O(k�−d) 
points for k-center [98]. The dependency on the dimension 
d is exponential for all these algorithms and Agarwal and 
Sharathkumar [7] showed that no algorithm with polyno-
mial dependency on d can exist, see also Sect. 5, unless 
one is willing to drop the (1 + �) guarantee for a weaker 
fixed constant.

k-median and k-means clustering thus far are more reli-
ant on the merge and reduce technique. Certain geometric 
decompositions avoid this, see [51, 52], but have a much 
larger offline space dependency compared to other construc-
tions. See Table 1 for an overview.

The oblivious sketching algorithms avoid the merge 
and reduce framework entirely and immediately translate 
to the streaming algorithm. In fact, they can operate even 
when processing deletions and entry-wise modifications to 
an input matrix. Li, Nelson and Woodruff [74] showed that 
that essentially any such streaming algorithm may be refor-
mulated in terms of linear sketches.

5  Lower Bounds

Lower bounds for coresets come in two flavors: (1) space 
complexity in terms of points or bits and (2) impossibility 
results. We will sketch examples for both. First, let us con-
sider the extent approximation problem.

Definition 7 Let A be a set of points in ℝd and let 𝜀 > 0 . 
An extent approximation is a subset S of A such that for any 
unit vector w, we have

Arya and Chan gave an algorithm storing O(�−(d−1)∕2) 
points. We will briefly outline why this is indeed opti-
mal (see Agarwal et al. [5] for details). Consider the unit 
sphere and the spherical cap with angular radius 

√
� . The 

height of this cap is 1 − cos(
√
�) ≤

�

2
 . Thus, the extent 

approximation must contain at least one point from every 
cap. The radius of each such cap is sin(

√
�) = �(

√
�) . 

We know that the bound of Lemma 1 is asymptotically 
tight, i.e., we require �(

√
�
−d
) space for a 

√
�-ball-cover 

in d-dimensional space. Combining this with the fact that 
the unit sphere is a d − 1-dimensional space, we know that 
�(

√
�
−(d−1)

) = �(�−(d−1)∕2) points are necessary.
We now present an impossibility result for logistic 

regression.

Definition 8 (Logistic Regression) Let A be a set of points 
in ℝd . Then logistic regression objective aims to find a vec-
tor w minimizing

||||
min
x∈A

wTx − max
x∈A

wTx
||||
≤ (1 + �) ⋅

||||
min
x∈S

wTx − max
x∈S

wTx
||||

Table 1  Comparison of memory demands, where lower order factors 
are suppressed and the memory to store a d-dimensional point is not 
specified. The constructions for high dimensions do not treat d as a 
constant and succeed with constant probability

[46] produces a weak coreset from which an (1 + �)-approximation 
can be recovered. Any dependency on d may be replaced by k�−2 via 
Theorem 12 of Cohen et al. [33]

Algorithm Offline memory Streaming memory

Low dimensions
 [58] O(k�−d log n) O(k�−(d+1) log2d+2 n)

 [57] O(k3�−(d+1)) O(k3�−(d+1) logd+2 n)

 [52] O(k�−d log n) O(k�−(d+2) log4 n)

 [51] O(k�−(d+2) log n) O(k�−(d+2) log n)

High dimensions
 [27] O(d2k2�−2 log5 n) O(d2k2�−2 log9 n)

 [46] O(k2�−5) O(k2�−5 log7 n)

 [71] O(d2k3�−2) O(d2k3�−2 log4 n)

 [45] O(dk�−4) O(dk�−4 log6 n)
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Note, that we assume that the label yi ∈ {−1, 1} of point 
xi is already folded into xi.

Let us first recall the reduction of streaming algorithms 
to the construction of strong coresets from the last section. 
Taking it the opposite direction, a lower bound for stream-
ing algorithms gives us a lower bound for strong coresets. 
Thus, a wide variety of tools from communication com-
plexity becomes available to us. A complete review of all 
techniques is well out of scope, for further reading we refer 
to the book by Kushilevitz and Nisan [70]. We will focus 
on the following communication problem.

The indexing problem is a two party communica-
tion game, where the first player Alice has a binary bit 
string x ∈ {0, 1}n and the second player Bob has an index 
k ∈ {1,… , n} . Alice is allowed to send one message to Bob, 
whereupon Bob has to output the kth bit. The number of 
bits of the transmitted message required by any randomized 
protocol succeeding with probability at least 2 / 3 over the 
random choices of the players is in �(n) , see [1].

We will use the indexing problem to show that no strong 
coresets for logistic regression exist.

We first show a reduction to the convex hull membership 
problem. Here, the stream consist of sequence of points A 
and at any given time we want to be able to answer whether 
a given point x lies in the convex hull C(A) or not.

Lemma 12 Let P be a set of n points in ℝ2. Let A be a 
subset of P arriving one after the other in a stream. Then 
any single pass randomized algorithm deciding with prob-
ability 2 / 3 whether some point b ∈ P lies in C(A) requires 
at least �(n) space.

Proof Let x ∈ {0, 1}n be Alice’s bit string and let k be 
Bob’s index. For each i ∈ {1,… , n} , define the point 
pi = (sin(i∕n), cos(i∕n)) . By construction, all points lie on 
the unit sphere and therefore pk is in the convex hull of any 
point set 

⋃
i∈I pi with I ⊆ {1,… , n} if and only if k ∈ I  . 

For each entry xi = 1 , Alice constructs pi . She then runs a 
streaming algorithm on all generated points and sends the 
memory of the streaming algorithm to Bob. Bob then checks 
whether pk is in the convex hull generated by Alice. Since 
this solves the indexing problem, the communication com-
plexity of indexing is a lower bound to the space complexity 
of convex hull membership.   □

Corollary 2 Let A and B be two sets of a total n points 
in 2-dimensional space arriving in a data stream. Then 
any single pass randomized algorithm deciding with 

∑

xi∈A

ln
(
1 + exp(−wTxi)

)
.

probability 2 / 3 whether A and B are linearly separable 
requires at least �(n) space.

We now return to logistic regression. We have the fol-
lowing theorem.

Theorem 7 For any 𝛿 > 0 and any integer n there exists 
a set of n  points C = A ∪ B, such that any strong �-coreset 
of  C for logistic regression must consist of �(n1−�) points.

Proof Let A and B be linearly separable, we have at least one 
misclassified point. The cost of this point is lower bounded 
by ln(1 + exp(0)) = ln(2) . Otherwise, let w be a separating 
hyperplane. Then lim‖w‖→∞

∑
xi∈A

ln(1 + exp(−wTxi)) = 0 . 
Given a single pass randomized algorithm for logistic 
regression we can distinguish between these two cases. 
Corollary 2 implies that the space complexity must there-
fore be �(n) . Since the merge and reduce framework 
incurs a polylog(n) blowup, this implies a lower bound of 
𝛺(n∕polylog(n)) ⊂ 𝛺(n1−𝛿) for the space complexity of 
strong coresets for logistic regression.   □

A very similar impossibility result was derived recently 
for Poisson regression by reduction from communication 
complexity problems [79]. The paper discusses and demon-
strates how coresets can be useful in practice anyway, going 
beyond the worst-case perspective.

6  Conclusion and Open Problems

We have outlined techniques and limitations of coreset con-
struction methods. To summarize their benefits in a short 
statement: Coresets are arguably the state of the art tech-
nique to turn5 “Big Data into tiny data!” Their design and 
analysis should be considered whenever a new statistical 
model or learning task is designed. They make the algorith-
mic assessment more efficient saving time, space, commu-
nication, and energy, to tackle the most common resource 
restrictions associated with Big Data.

There are further lines of research employing coresets, 
concerning topics like privacy issues [43] or distributed 
computation [18, 67, 97], that we have not covered here, 
but encourage the interested reader to investigate. In the fol-
lowing, we would like to conclude with three important open 
problems.

Problem 1 Let A be a set of n points in d-dimensional 
Euclidean space. Is it possible to deterministically compute 

5 using the words of [49]
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a coreset S for the k-median or k-means objective in polyno-
mial time, such that |S| ∈ poly(k, �−1, d, log n)?

All known coreset constructions for k-median and 
k-means clustering with polynomial dependency on k, �−1, d, 
and log n are randomized. The best known deterministic con-
structions are either exponential in d, or exponential in k and 
�−1 . Since we know that small coresets exist, it is possible to 
compute them by brute force enumeration, which is deter-
ministic but also clearly infeasible.

Problem 2 Let A be a set of n points in d-dimensional 
Euclidean space. Is it possible to compute a coreset S for 
the geometric median objective such that |S| is independent 
of d and n?

It is a simple exercise to show that coresets with no 
dependency on n, d, or for that matter � exist for the cen-
troid or mean of a point set. Indeed, there exist coresets 
for the more general Euclidean k-means problem of size 
poly(k∕�) [33, 49]. The algorithms and proofs are heavily 
reliant on connections to linear algebra and in particular the 
fact that Euclidean k-means is a constrained form of low-
rank approximation with respect to the Frobenius norm. The 
unconstrained low-rank approximation of a matrix can be 
determined via singular value decomposition (SVD). Com-
putational and mathematical aspects of the SVD are well 
understood. In contrast, far less is known by the k-median 
analogue of a low-rank approximation and its computation is 
invariably harder than the SVD. Currently, we neither know 
of a lower bound stating that a dependency of d is required 
for a geometric median coreset, nor of a coreset construction 
consisting of even exp(�−1) many points. It is known that 
for the minimum enclosing ball (i.e. 1-center clustering), an 
exponential dependency on d is necessary.

Problem  3 Let A be a subset of points of some uni-
verse U and let C be a set of candidate solutions. Let 
f ∶ U × C → ℝ

≥0 be a non-negative measurable function. 
Let S be the smallest possible �-coreset with respect to A and 
f. Is it possible to always compute a �-coreset S′ , such that 
|S′| ≤ � ⋅ |S| for some approximation factor �?

Though we have algorithms that are optimal in the worst 
case for some problems, the worst case complexity may 
nevertheless be unappealing, such as is the case for extent 
problems. It would be nice to have algorithms with instance 
optimal running times and output sizes. To be more specific, 
consider the minimum enclosing ball problem. Is it possible 
to compute a coreset S′ in time O(|A| + � ⋅ |S|) such that 
|S′| ≤ � ⋅ |S| , where S is the optimal coreset and � a small 
(ideally constant) factor?
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