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Abstract—When handling large datasets that exceed the
capacity of the main memory, movement of data between main
memory and external memory (disk), rather than actual (CPU)
computation time, is often the bottleneck in the computation.
Since data is moved between disk and main memory in large
contiguous blocks, this has led to the development of a large
number of I/O-efficient algorithms that minimize the number of
such block movements. However, actually implementing these
algorithms can be somewhat of a challenge since operating
systems do not give complete control over movement of blocks
and management of main memory.

TPIE is one of two major libraries that have been developed
to support I/O-efficient algorithm implementations. It relies
heavily on the fact that most I/O-efficient algorithms are
naturally composed of components that stream through one
or more lists of data items, while producing one or more
such output lists, or components that sort such lists. Thus
TPIE provides an interface where list stream processing and
sorting can be implemented in a simple and modular way
without having to worry about memory management or block
movement. However, if care is not taken, such streaming-based
implementations can lead to practically inefficient algorithms
since lists of data items are typically written to (and read from)
disk between components.

In this paper we present a major extension of the TPIE
library that includes a pipelining framework that allows for
practically efficient streaming-based implementations while
minimizing I/O-overhead between streaming components. The
framework pipelines streaming components to avoid I/Os
between components, that is, it processes several components
simultaneously while passing output from one component
directly to the input of the next component in main memory.
TPIE automatically determines which components to pipeline
and performs the required main memory management, and the
extension also includes support for parallelization of internal
memory computation and progress tracking across an entire
application. Thus TPIE supports efficient streaming-based im-
plementations of I/O-efficient algorithms in a simple, modular
and maintainable way. The extended library has already been
used to evaluate I/O-efficient algorithms in the research liter-
ature, and is heavily used in I/O-efficient commercial terrain
processing applications by the Danish startup SCALGO.

Keywords-I/O-efficient algorithms; C++; software frame-
work.
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I. INTRODUCTION

When handling large datasets that exceed the capacity of
the main memory, movement of data between main memory
and external memory (disk), rather than actual (CPU) com-
putation time, is often the bottleneck in the computation. The
reason for this is that disk access is orders of magnitude
slower than internal memory access. Thus, since data is
moved between disk and main memory in large contiguous
blocks, it is often more important to design algorithms
that minimize block movement than computation time when
handling massive data. This has led to the development of
a large number of I/O-efficient algorithms in the I/O-model
by Aggarwal and Vitter [1]. In this model, the computer
is equipped with a two-level memory hierarchy consisting
of an internal memory capable of holding M data items,
and an external memory of conceptually unlimited size. All
computation has to happen on data in internal memory, and
data is transferred between internal and external memory in
blocks of B consecutive data items. Such a transfer is called
an I/O-operation or I/O, and the cost of an algorithm is the
number of I/Os it performs. The number of I/Os required to
read or write N items from disk is Scan(N) = dN/Be,
while the number of I/Os required to sort N items is
Θ(Sort(N)) = Θ((N/B) logM/B(N/B)) [1].

While many I/O-efficient algorithms have been developed
in the I/O-model of computation, actually implementing
these algorithms can be somewhat of a challenge since oper-
ating systems do not give complete control over movement
of blocks and management of main memory. However, two
major libraries TPIE [13] and STXXL [10] have been de-
veloped to support I/O-efficient algorithm implementations.
It turns out that most I/O-efficient algorithms are naturally
composed of components that stream through one or more
lists of data items, while producing one or more such output
lists, or components that sort such lists. TPIE in particular
uses this to provide an interface where list stream processing
and sorting can be implemented in a simple and modular
way, without having to worry about memory management
or block movement. However, if care is not taken, such
a streaming-based implementation can lead to practically
inefficient algorithms since lists of data items are typically



written to (and read from) disk between components. In
implementations consisting of many small (but I/O-efficient)
components, the I/Os incurred when writing and reading
such lists can easily comprise more than half of the to-
tal number of I/Os. While this may not be a problem
when considering asymptotic theoretical performance, it is
unacceptable in practice when the total execution time is
measured in hours or days.

In this paper we present a major extension of the TPIE
library that includes a pipelining framework that allows for
practically efficient streaming-based implementations while
minimizing I/O-overhead between streaming components.
The framework pipelines streaming components to avoid
I/Os between components, that is, it processes several
components simultaneously while passing output from one
component directly to the input of the next component in
main memory. TPIE automatically determines which com-
ponents to pipeline and performs the required main memory
management, and the extension also includes support for
parallelization of internal memory computation and progress
tracking across an entire application. Thus TPIE supports
efficient streaming-based implementations of I/O-efficient
algorithms, and TPIE applications are naturally implemented
as reusable components, thereby reducing programming time
and code duplication.

A. Previous Work

As mentioned, two major software libraries support I/O-
efficient algorithm implementations for big data analysis,
namely TPIE [13] and STXXL [10]. They are both C++

software libraries, and as opposed to many of the frame-
works that have emerged for supporting big data analysis
in the last decade, such as e.g. MapReduce [9], Spark [15],
and Flink [3], they mainly support single-host implementa-
tions. One reason for this is that the libraries, in particular
TPIE, are designed to support implementations on standard
commodity hardware. Another reason is that no efficient
distributed algorithms are known for many of the problems
for which I/O-efficient algorithms have been studied and
implemented; we refer to surveys [4], [14] and descrip-
tions of implementations (e.g. [2], [5], [6], [11], [12]) for
references. Thus in this paper we also focus on single-
host implementations. However, is should be mentioned that
in the context of distributed programming, pipelining has
recently been studied with the Thrill framework [8].

Although both are libraries for implementation of I/O-
efficient algorithms, the overall philosophies of TPIE and
STXXL are somewhat different. The philosophy of TPIE
(the Templated Portable I/O Environment) is to provide
a high-level interface that allows for easy translation of
abstract I/O-efficient algorithm descriptions into code that
is portable across computational platforms and not unnec-
essarily complex. Thus building on the fact that most I/O-
efficient algorithms are composed of streaming components,

TPIE provides a generic stream interface that hides how
blocked I/O is performed and instead provides methods for
processing one data item at a time. TPIE also provides in-
ternal memory management, where memory allocations are
automatically counted towards an application-wide memory
limit, and where an application can at any point determine
the currently available main memory. Thus applications do
not have to explicitly keep track of available memory, which
often simplifies implementations considerably. For example,
in the TPIE built-in streaming-based implementation of the
I/O-optimal O(Sort(N)) external multi-way merge-sort, the
number of sorted streams that can be merged I/O-efficiently
(without being swapped out by the operating system) de-
pends on the available main memory, where care has to be
taken to ensure that the memory used to hold blocks of
items for each used stream is counted towards the amount
of available memory; the TPIE memory management allows
for determining the number of streams to merge without
explicitly keeping track of available memory and memory
used for blocked I/O. Overall, TPIE is designed to remove
focus from the tedious details of creating I/O-efficient ap-
plications and allows for implementations that are efficient
on all hardware platforms with minimal configuration.

The philosophy of STXXL (Standard Template library for
XXL data sets) on the other hand is to achieve maximum
I/O-throughput by reducing I/O-overhead as much as pos-
sible, e.g. by exposing the characteristics of the hardware
to the application programmer. Thus, to avoid any overhead
induced by the operating system, STXXL allows the user
to configure separate disks for use with applications outside
of the file system of the operating system. In fact, STXXL
project programmers recommend that a separate disk is set
aside for STXXL applications. STXXL also explicitly sup-
ports parallel disks. Like TPIE, STXXL supports streaming-
based implementations and includes various basic streaming
components such as sorting, but unlike TPIE it actually
contains support for pipelining of streaming components.
However, STXXL expects the application programmer to
explicitly define which components to pipeline and explicitly
manage main memory. Thus, the programmer e.g. has to
specify how much memory each streaming component in a
pipelined application should use. A separate (not officially
released) branch of STXXL contains support for utiliz-
ing multi-core processors for the internal-memory work of
pipelined applications [7]. Overall, STXXL is designed such
that an application can be tailored to the available hardware,
and with the proper configuration an STXXL application
can achieve close to full utilization of the available I/O
bandwidth.

B. Our Results

In this paper we present a major extension of the TPIE
library that includes a pipelining framework that allows for
practically efficient streaming-based implementations while



minimizing I/O-overhead between streaming components.
The extension also includes support for progress tracking
across an entire application, and for parallelization of inter-
nal memory computation.

Like STXXL, the TPIE pipelining framework saves I/Os
by passing intermediate results between streaming compo-
nents directly in main memory. However, TPIE pipelining
is the first framework to provide automatic pipeline and
memory management, and thus combining the best of the
TPIE and STXXL streaming philosophies. The framework
is component-centric in that the memory requirement of each
streaming component is specified locally by the component
developer. The automatic pipeline and memory management
then means that at runtime TPIE will automatically deter-
mine which components to pipeline, and distribute memory
among multiple components of a large application in a way
that automatically uses all the main memory available to the
application. Thus, unlike in STXXL, a TPIE programmer
e.g. does not have to consider how the memory use of
the individual components has to be adjusted when they
are combined into an application. While such adjustments
along with adjustments of the grouping of components into
pipelines can be done manually for small projects, it can
be very cumbersome for large-scale professional software
projects involving many programmers, where modification
of a component to use more memory can very easily lead
to memory over-usage problems (if the memory use of
other components are not adjusted accordingly). Thus the
TPIE component-centric approach simplifies the application
development process, promotes modularity and supports
maintainability.

Since I/O-efficient applications are typically long-running
processes that take hours or days to complete, it is important
that an application is able to provide a progress bar that
gives a precise estimate of the progress of its execution. To
be able to do so in a simple way, the TPIE extension also
takes a component-centric approach. Like for memory use,
a component developer can in a simple way include support
for information about the progress of the component, and
TPIE automatically combines information from all compo-
nents and thus supports a single progress bar that advances
from 0% to 100% at a constant pace. Thus, again the use
of a component-centric approach promotes modularity.

Especially after minimizing I/O, the use of multi-core
parallelization can often help to bring down the running
time of massive data applications. Thus the TPIE extension
includes easy support for such parallelization by allowing
the application programmer to wrap a part of a pipeline in a
parallelization directive that will trivially parallelize it across
all CPU cores. For instance, when forming sorted runs in
multi-way merge sort, the internal memory sorting algorithm
in TPIE automatically uses all the available CPU cores.

Overall, the major TPIE library extension presented in this
paper supports efficient streaming-based implementations of
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Figure 1. Pipelined components in a real TPIE application developed by
SCALGO. Dashed lines represent phase ordering dependencies resulting
from blocking edges in the flow graph.

I/O-efficient algorithm in a simple, modular and maintain-
able way, and I/O-efficient algorithms can thus be composed
and adapted in commercial and research applications while
dealing systematically with important aspects, such as mem-
ory management and progress tracking, that are not intrinsic
to the algorithmically optimal solution. The extended library
has already been used to evaluate I/O-efficient algorithms in
the research literature (e.g. [5], [6]) and is heavily used in
I/O-efficient commercial terrain processing applications by
the Danish startup SCALGO1. The extension is integrated
into the official TPIE project that is available on GitHub as
free and open-source software2.

The rest of the paper is structured as follows. In Section II,
we motivate pipelining with a concrete algorithm based on
scanning and sorting. After this motivation, we in Section III
present in full generality how to use the TPIE extension and
briefly discuss its implementation.

II. AN EXAMPLE PROBLEM

In this section we present an example of a typical sub-
problem in an I/O-efficient application. We show that the

1SCALGO: Scalable Algorithmics. https://scalgo.com
2TPIE: Templated Portable I/O Environment. http://madalgo.au.dk/tpie



problem benefits from a pipelined implementation; by im-
plementing every sub-problem in a bigger data processing
application (such as the real-world example in Figure 1)
using pipelining, more than half of the I/Os can be saved.

A. The Raster Transformation Problem

In geographic information systems (GIS), a terrain is often
represented as a raster of heights with each cell indicating
the height of the terrain in a certain point. Since the Earth
is spherical and a raster is flat, it is not possible to map the
entire surface of the Earth continuously to a raster. However,
if only a particular region, country or continent needs to be
represented, it is possible to project the chosen region to a
plane in a way that roughly maintains the geodesic distances
and areas. When several rasters must be processed together
they must be in the same projection.

We call the problem of transforming a raster from one
projection to another the raster transformation problem.
Essentially, the problem consists of projecting each cell of
the raster from the source projection plane to the unit sphere,
and from the unit sphere to the target projection plane. These
two steps can be represented by a function f : Z2 → Z2

that maps each cell of the target raster projection to the
corresponding cell of the source raster projection. Thus, in
the raster transformation problem we are given an input
raster A of size W×H (that is a W by H matrix of numbers)
stored in row-major order, and we want to produce an output
raster B of size W ′ ×H ′ in row-major order, such that the
value of a cell (x, y) in B is copied from the value of a
cell (x′, y′) = f(x, y) in A. Below we for convenience let
N = WH = W ′H ′ be the number of cells in both the input
and output raster.

The raster transformation problem can easily be solved in
optimal O(N) time simply by for each cell (x, y) in B read-
ing the corresponding input value at f(x, y) in A. However,
this solution might be very I/O-inefficient. For example, if f
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Figure 2. Raster transformation algorithm. (a) The algorithm without
pipelining, requiring 7N reads and writes (assuming use of merge-sort
using just one merge step). (b) The algorithm with pipelining, requiring
just 3N reads and writes.

represents matrix transposition where f(x, y) = (y, x), then
each access to A requires a new block to be read (assuming
W,H ≥ M

B ), and thus the solution performs Θ(N) I/Os in
the worst case. For matrix transposition in particular, only
Θ(Sort(N)) I/Os are required [1]. In fact, in general the
raster transformation problem can be solved in O(Sort(N))
I/Os using a simple five step streaming algorithm (refer
to Figure 2a): First a stream S1 is constructed containing
for each cell (x, y) of B an item consisting of a pair
(f(x, y), (x, y)). Next S1 is sorted such that f(x, y) appear
in the same row-major order used to store A. In the third
step, A and S1 are then scanned simultaneously to construct
a stream S2 containing an item (x, y, v) for each pair
(f(x, y), (x, y)) in S1 where v is the value of A at position
f(x, y). Then S2 is sorted into the row-major order used to
store B. In the fifth and final step, S2 is scanned and for
each entry (x, y, v) the value v is output to B[x, y]. Since
the algorithm performs a constant number of scanning and
sorting steps it uses O(Sort(N)) I/Os and can easily be
implemented using the streaming support of either TPIE or
STXXL. Refer to GitHub3 for a TPIE code example.

As discussed in the introduction, streaming-based imple-
mentations of even simple I/O-efficient algorithms, as the
raster transformation algorithm above, might not be prac-
tically efficient because items are written to disk between
steps. To illustrate this, we will analyze the exact number of
items read and written by the above algorithm. For simplic-
ity, we assume that N elements can be sorted using 2N reads
and 2N writes, which is a practically realistic assumption if
external merge-sort is used. Recall that external merge-sort
works by first scanning through the N input elements and
sorting M elements at a time in internal memory to produce
N
M sorted runs. This requires N reads and N writes. Next
the sorted runs are merged together M

B at a time (using a
block of internal memory for each run) to produce N

M /M
B

longer sorted runs, again using N reads and N writes. The
merging process is repeated until a single sorted output is
obtained. However, in practice (where N , M and M

B are on
the order of 1012, 109 and 103, respectively) N

M /M
B < 1 so

only a single merging step is required. Using this, we can
easily realize that the above raster transformation algorithm
requires 7N reads and 7N writes without pipelining (refer
again to Figure 2a): Generating the stream S1 in the first step
requires N writes, and sorting it in the second step requires
2N reads and 2N writes. Reading A and S1 simultaneously
in the third step to produce S2 requires 2N reads and N
writes. Again, sorting S2 in the fourth step requires 2N
reads and writes, and finally, reading S2 and writing B
in the fifth step requires N reads and writes. However,
by modifying the five steps of the algorithm so that the
intermediate result of one step is immediately used by the

3https://github.com/Mortal/pipelining/blob/8996e5c87d/tpie_imperative/
transform_paper.cpp#L60-L104



next step (if possible) without storing the intermediate result
on disk, that is, by using pipelining, we can reduce the
number of reads and writes to 3N each. More precisely, we
can save N writes and N reads of S1 between step one and
two by immediately producing the initial sorted runs of step
two while performing step one. Similarly, we can save the
N writes and N reads of S1 between step two and three by
performing step three (scanning S1 and A) simultaneously
with merging the sorted runs. Note that apart from the write
and read between the run formation and merging in step
two, we in this way avoid writing S1 altogether. In a similar
way, we can avoid writing S2 and save N reads and N
writes by also producing the initial sorted run of step four
while performing step 3, as well as N reads and N writes
by performing step five simultaneously with merging of the
sorted runs in step 4. Altogether, we save 4N reads and 4N
writes, that is, over half of the I/Os. Although this does not
change the asymptotic I/O-complexity of the algorithm, it
translates into a running time reduction of 22 hours if we
assume an input size N of 1 TB and a disk read/write speed
of 100 MB/s.

Note that the pipelining process described above con-
ceptually transforms the five-step algorithm into a three-
phase algorithm as indicated in Figure 2b, where e.g. the
second phase consists of the merging part of the step two
sorting, step three, and the run formation part of the step
four sorting. One could of course implement the algorithm
by implementing these three phases directly, that is, by
implementing several special versions of external merge-
sort (or rather, special run formation, merging, and merging-
run formation implementations). However, this would not
only be cumbersome, but also unacceptable from a soft-
ware engineering point of view. Instead, direct support of
pipelining where the five-step algorithm is automatically
pipelined would be desirable. However, such a pipelining
would require system support for identification of phases
and careful memory management. For example, the merge
and run formation parts of phase two of the three-phase algo-
rithm would normally both require all of the main memory,
so the memory somehow needs to be divided between the
two parts. As described below, this is handled somewhat
differently in STXXL and the new TPIE extension.

B. STXXL Implementation

When implementing the raster transformation algorithm
with pipelining using the STXXL streaming layer, the
five steps of the algorithm are implemented individually
as is natural from a software engineering point of
view; we call each such individual part of a pipeline
a component. However, since STXXL does not handle
memory management, the implementation that combines
the components then has to identify the three phases of
the algorithm explicitly and compute how much memory
is allocated to each of the components of a phase. Refer

to Figure 3 for STXXL code that implements this, that
is, the main code that implements the five step algorithm
in three phases (excluding the code for the individual
components). The code illustrates how three phases are
explicitly identified and memory allocated. For example,
in phase two the memory available for the two sorting
components (merging of step two and run formation of step
four) is computed by setting aside a buffer of size B of the
available main memory for reading the input, and then share
the remaining memory between the two sorting components.
Concretely, the computation is performed with the statement:
sort_memory = (memory_available − block_size) / 2. While
identifying phases and allocating memory in this way is
easy in our simple example algorithm, it is more difficult in
larger applications such as the example given in Figure 1.
Especially if more than one programmer is working on
the application it is difficult and error-prone to distribute
memory correctly.

Apart from the complexity that the need for phase
identification and memory allocation adds to pipelined
STXXL code, there are also some C++ syntax issues
that add to the code complexity. More precisely, the C++

syntax used is quite verbose, since for technical reasons
names of the components often need to be repeated. The
reason is that STXXL combines pipelining components
using a C++ feature known as template instantiation that
allows for the compiler to inline function calls between
different components of the pipeline. For performance
reasons, this is necessary when many small components
are pipelined. However, the template instantiation
syntax is not well-suited for use in large pipelined
applications. As an example, consider the C++ statement
typedef TransformPoints<GenerateOutputPoints> Transform-
OutputPoints; in the STXXL implementation of the
raster transformation algorithm. In this statement, the
C++ language typedef statement is used to declare
TransformOutputPoints to be a type alias for the
TransformPoints component instantiated with the
GenerateOutputPoints component. Such a type alias is
needed for each component of the pipeline, and only
when all the type aliases have been defined the individual
component objects can be declared and constructed. In this
way, the pipeline has to be defined both in terms of type
aliases nested within each other and as actual component
objects combined together.

C. TPIE Implementation Using Pipelining

As in the case of pipelined STXXL, in the implementation
of the five step raster transformation algorithm using the
extended TPIE library with pipelining, the components of
the pipeline are implemented individually. However unlike in
the STXXL implementation, the combination of the compo-
nents becomes very simple, since TPIE is component-centric
and automatically identifies phases and performs memory



1 void transform(raster_input & input, raster_output & output, size_t memory_available) {
2  // In phase 1, the single sorter can use all the available memory.
3  const size_t phase1_sort_memory = memory_available;
4  // In phase 2, the two sorters receive each half the available memory,
5  // excluding the memory used to store a single block from the input.
6  const size_t phase2_sort_memory = (memory_available − input.buffer_size()) / 2;
7  // In phase 3, there is a single sorter and an output buffer.
8  const size_t phase3_sort_memory = memory_available − output.buffer_size();
9  GenerateOutputPoints output_points(output.dimensions());

10  typedef TransformPoints<GenerateOutputPoints> TransformOutputPoints;
11  TransformOutputPoints point_pairs(std::move(output_points), input.dimensions());
12  typedef stxxl::stream::runs_creator<TransformOutputPoints, input_yorder> rc_type;
13  rc_type rc(std::move(point_pairs), input_yorder(), phase1_sort_memory);
14  typedef stxxl::stream::runs_merger<rc_type::sorted_runs_type, input_yorder> rm_type;
15  // The following call to rc.result() executes the first phase.
16  rm_type rm(rc.result(), input_yorder(), phase2_sort_memory);
17  RasterReader input_raster_reader(input);
18  typedef PointFiller<rm_type, RasterReader> FillOutputPoints;
19  FillOutputPoints filler(std::move(rm), std::move(input_raster_reader));
20  typedef stxxl::stream::runs_creator<FillOutputPoints, point::yorder> rc2_type;
21  rc2_type rc2(std::move(filler), point::yorder(), phase2_sort_memory);
22  typedef stxxl::stream::runs_merger<rc2_type::sorted_runs_type, point::yorder> rm2_type;
23  // The following call to rc2.result() executes the second phase.
24  rm2_type rm2(rc2.result(), point::yorder(), phase3_sort_memory);
25  // The following call to write_raster() executes the third phase.
26  write_raster(std::move(rm2), output);
27 }

Figure 3. Raster transformation using the STXXL streaming layer.

management. To illustrate this, a diagram showing the eight
components used to implement the five steps is given in
Figure 4a along with the pipelining code in Figure 4b. Note
how the code in Figure 4b lines 3-12 naturally corresponds
to the pipeline in Figure 4a. Note that the reading and writing
of rasters are handled by two special components to separate
the handling of specific raster formats from the algorithm,
and how the two sorting components are implemented using
two different built-in TPIE sorting components defined in
lines 3 and 4 on Figure 4b. The reason two different
sorter implementations are used (and that the pipeline is
defined in two statements defining p1 and p2, respectively)
is that the output from the component sorting S1 has to
be read by the component constructing S2 simultaneously
with the output from the component reading the input raster
A. Thus, the component constructing S2 has to control
when data is received from the sorting component which
is done through pull-based streaming. This functionality is
implemented with a TPIE so-called passive sorter with an
input and an output part defined in line 3. On the other hand,
the component sorting S2 is a more traditional pipelined
component that uses push-based streaming, where input data
is received from preceding component (in this case the
component constructing S2) when ready, and output data
in turn pushed to the subsequent component. It is defined
with an ordinary TPIE sorter in line 4. As an example of
a component implementation, the code implementing the

component generate_output_points is given in Figure 5. The
component contains a method propagate() that is called by
TPIE when setting up the pipeline, and a method go() that
is called by TPIE to execute the actual component. The
component also uses push-based streaming, and it pushes
each produced element to the next component by calling
the push() method of that component. The details of how
the push and pull mechanisms work will be discussed in
Section III, where the full TPIE pipelining framework and
its implementation is described. Below we highlight some
of the other framework features that are used in the raster
transformation example.

Memory management. As mentioned, TPIE automati-
cally manages memory and divides available memory among
components in a pipeline. Thus in the pipeline definition in
Figure 4b there is no code at all dealing with memory distri-
bution. Often many components use only a small amount of
static memory, whereas components such as sorting require
dynamically allocated memory depending on the amount of
available memory. In the latter case the component has to
specify its minimum and maximum memory requirements
in its implementation. In the example component shown
in Figure 5 no requirement is specified since only static
memory is used.

Metadata. Often many components in a pipeline need
some sort of metadata about the items that are being
streamed between components. In the example, certain com-
ponents need to use the dimensions of the input and output
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1 void transform(raster_input & A, raster_output & B,
2 tpie::progress_indicator_base & pi) {
3  auto sort_S1 = tpie::pipelining::passive_sorter<projected_point>();
4  auto sort_S2 = tpie::pipelining::sort(point::yorder());
5  tpie::pipelining::pipeline p1 = generate_output_points()
6   | tpie::pipelining::parallel(compute_transformation())
7   | sort_S1.input();
8  tpie::pipelining::pipeline p2 = read_raster(A)
9   | construct_S2(sort_S1.output())

10   | sort_S2
11   | construct_output()
12   | write_raster(B);
13  p1.forward("inputsize", A.dimensions());
14  p1.forward("outputsize", B.dimensions());
15  uint64_t n = A.cell_count() + B.cell_count();
16  p1(n, pi, TPIE_FSI);  // Execute the pipeline
17 }

(b)

Figure 4. Raster transformation algorithm. (a) Pipeline illustrated as components. (b) TPIE code implementing the pipeline.

1 template <typename dest_t>
2 struct GenerateOutputPoints : public tpie::pipelining::node {
3  GenerateOutputPoints(dest_t d): dest(std::move(d)) {}
4  virtual void propagate() override {
5   dimensions = fetch<rastersize_t>("outputsize");
6   set_steps(dimensions.width ∗ dimensions.height);
7  }
8  virtual void go() override {
9   for (int y = 0; y < dimensions.height; y++)

10    for (int x = 0; x < dimensions.width; x++)
11     { step(); dest.push(point(x, y)); }
12  }
13  rastersize_t dimensions; dest_t dest;
14 };
15 typedef tp::pipe_begin<tp::factory<GenerateOutputPoints>>

16  generate_output_points;

Figure 5. generate_output_points component used in the TPIE raster
transformation algorithm.

rasters. While such metadata can of course be passed as
parameters to the individual components in the pipeline
definition, doing so makes the definition needlessly clut-
tered. Instead, TPIE provides a general facility for passing
metadata between pipeline components. Thus, in Figure 4b
lines 13-14, the pipeline definition uses forward() to pass the
dimensions of the input and output rasters to the components
that need them. The individual components can then obtain
the metadata using fetch(), such as when the component
generate_output_points in Figure 5 line 5 retrieves the di-
mensions of the output raster.

Progress reporting. In the example, the TPIE support
for progress reporting (e.g. as a progress bar) is also
used. As with memory requirements, the code required
to supply progress information is not part of the code in
Figure 4b where the pipeline is defined, but rather part of
the implementation of the individual component. Thus, the

component in Figure 5 provides the needed information by
using set_steps() in line 6 in the propagate() method to define
how many items it will produce, and then calling a progress
stepping function in line 11 in the go() method for each item
that it produces. When executing the pipeline in line 16
of Figure 4b the argument pi is a reference to a progress
indicator object that tells TPIE how to display progress. To
provide accurate progress estimations, TPIE actually uses
statistical information about progress of previous runs of
the code. To store information about runs, the problem’s
instance size n, computed in line 15, as well as a symbol
TPIE_FSI used to identify the application being executed,
are also passed to the TPIE framework when executing the
pipeline in line 16.

Parallelism. The example takes advantage of TPIE sup-
port for multi-core CPU parallelism in two ways. First, in
the TPIE built-in implementation of multi-way merge-sort,
the initial run-formation phase is automatically parallelized.
Second, by wrapping the component compute_transformation
in the directive tpie::pipelining::parallel(. . . ) in line 6, TPIE
automatically distributes this part of the computation among
all available CPU cores.

III. TPIE PIPELINING

In this section we describe the TPIE pipelining framework
in more detail. First in Section III-A we describe how to use
the framework, and then in Section III-B we discuss some
aspects of the implementation of the framework.

A. Pipelining Use

In this section we first describe how a TPIE pipeline
consisting of a number of components can be modeled using
a so-called flow graph, and how this graph can be used to
identify pipeline phases. Then we describe how components



are implemented. Finally, we describe how a TPIE pipeline
is constructed and executed.

Flow graph and phase identification. As described in
Section II-C, a TPIE pipeline consists of a number of com-
ponents that push data to or pull data from other components.
We distinguish between two types of components, namely
regular components that produce output as the input is
processed, and blocking components that have to process
all input before producing any output. Blocking compo-
nents consist of two sub-components, namely an input and
an output sub-component, where the input sub-component
processes all input before the output sub-component is
invoked to produce the output; the input sub-component
might store intermediate results on disk. Merge-sorting is an
example of a blocking component; the input sub-component
naturally corresponds to the initial run formation step and
the output sub-component to the merging step. Blocking
components introduce the need for pipeline phases that are
executed independently, since the input and output sub-
components cannot be executed simultaneously. In the raster
transformation algorithm in Section II, the three phases are
exactly needed due to the two blocking sorting components.

A pipeline can conveniently be represented by a directed
acyclic flow graph, with regular nodes corresponding to
regular components and input nodes and output nodes cor-
responding to the sub-components of blocking components.
Regular nodes are connected with other regular nodes and
input and output nodes by edges directed along the streaming
direction and labeled as push edges or pull edges in a natural
way; note that a node cannot have both an outgoing push
and an outgoing pull edge. Each input node is also connected
with a directed blocking edge to the corresponding output
node. To be able to automatically determine the phases of a
pipeline, TPIE requires that the flow graph corresponding
to the pipeline has two particular properties: First, if all
blocking edges are removed, then no input and output nodes
corresponding to the same blocking component should be
in the same connected component. Second, if all push and
pull edges are contracted, then the graph should be acyclic.
The first property means that the connected components
directly identify the pipeline phases that need to be executed
independently. When each such connected component is
contracted, each directed edge (u, v) in the resulting graph
indicates that the phase corresponding to u needs to be
executed before the phase corresponding to v. Thus the
second property ensures that there exists a valid (topological)
order in which to execute the components.

While the second flow graph property above has to be
fulfilled for any pipelined program to be valid, the first prop-
erty only has to be fulfilled if we require that the program
is constructed such that all but blocking components can
be pipelined, that is, that streaming items are only written
to disk by blocking components. For example, consider
the small pipeline shown on the right, where component

u pushes to both a sorter and to a component w, which
in turn pulls output from the sorter. In this case, u, w and

u

sort

w

push

pull

push

the input and output nodes of the sorter
are all in the same connected component
in the phase graph without blocking edges.
However, it is obviously not possible to
pipeline all the components in one phase.
In particular, it is not possible to pipeline
u and w, since the output from the sorter
used in w is not available at the same
time as the output from u also used in w. To remedy
this problem, and make the flow graph fulfill the sec-
ond property, a simple blocking component that delays
the stream of items from u to w, by writing them tem-
porarily to disk, can be inserted between u and w in
the pipeline (such that the example has two phases). To
support this, TPIE not only contains a built-in sorting
blocking component, but also blocking components that
delay and reverse a stream. Each of these components
come in an active and a passive variant. In the active
variant both the input and output sub-components use push-
based streaming, and in the passive variant the input sub-
component is push-based and the output sub-component
pull-based.

Component implementation. The interface of each com-
ponent in a TPIE pipeline must have certain methods; sub-
components are essentially like regular components, so when
we refer to components below we mean regular components
and sub-components.

Methods push(), pull(), and can_pull() are used to stream
data items between components. Consider a component
corresponding to a node u in the flow graph that produces
data that is processed by a component corresponding to a
node v in the graph, that is, where there is an edge (u, v).
With a slight abuse of notation, we use u and v to refer to
the two components. If the edge is a push edge we say that
v is a destination of u, and then v must implement a push()
method and u must push each item in the stream to v by
calling the method v.push(). If on the other hand the edge is
a pull edge we say that u is a source of v, and then u must
implement a pull() method and v must pull each item from
u by calling the method u.pull(); u must also implement the
method can_pull() to return true if there is more data to pull
and false otherwise.

A component u that is neither the destination or the source
of any other component must implement a go() method that
repeatedly pushes or pulls data until there is no more data to
process. This is because data is neither pushed to or pulled
from u by other components calling u.push() or u.pull().
Thus the go() method is used to start the execution of a
phase.

Each component u must implement (possibly empty)
begin() and end() methods that are called before and after the
stream processing of the phase containing u, respectively.



These methods can for example be used to allocate and
deallocate memory used by u, or set up data structures
needed by u. Component u is also allowed to push items
to its destinations and pull items from its sources in begin()
and end(). This is e.g. useful when buffers need to be filled
up at the beginning or emptied at the end of a phase.

Each component u must also implement a (possibly
empty) propagate() method that is also called before any
stream processing in the phase containing u and used to
pass metadata between components. Inside the propagate()
method u may use the forward function to pass key-value
pairs to components v that can be reached from u in the
flow graph. It may use the fetch function to retrieve named
metadata from other components. Often metadata includes
information about input and output data size, and if TPIE
should provide progress reporting, at least one component u
in each phase should provide progress information by calling
the function set_steps(n) inside the propagate() method to
indicate the number of items n that it will process, and then
call the step() function once for each item that is processed.
Often u is a node with no incoming push or pull edges in
the flow graph, that is, the node that creates streaming data.

Finally, a component u that requires dynamically allo-
cated memory to perform its stream processing needs to
indicate this to TPIE by calling the functions set_minimum_
memory(au) and set_maximum_memory(bu) in its class con-
structor to request between au and bu bytes of memory,
where bu = ∞ is used to indicate that the component
requests as much memory as possible. After TPIE has
distributed memory, u can then obtain information about
how much memory it was assigned between au and bu by
calling the function get_available_memory() in the begin()
method.

Pipeline construction and execution. After defining
the pipelining components, a pipeline is constructed by
stringing together components using the so-called pipe op-
erator as in the expression p = generate_output_points() |
compute_transformation() | sort_S1.input().memory(2) where
three components, generate_output_points(), compute_trans-
formation() and the input sub-component of sort_S1 are
pipelined. For each component, as for the sort_S1.input()
component in the example, one can set a memory prior-
ity using memory() to indicate to TPIE how important it
is to allocate memory to the component; by default the
priority is one, and a priority of k means that if several
components all request as much memory as possible using
set_maximum_memory(∞) then a component with priority k
will receive k times the amount of memory as one with
priority one.

To execute the pipeline one simply calls the object p. TPIE
then builds the flow graph and computes connected compo-
nents to identify phases, and then contracts the components
and topologically sorts the graph to find the order in which
to execute the phases. After this TPIE executes each phase

in turn. To execute a phase, TPIE first distributes memory to
each component in the phase based on the memory requests
and priorities, and then it calls the methods propagate(),
begin(), go() and end() on the components in a specific
order based on the flow graph. First, propagate() is called on
the components in the phase in topological order to allow
each component to call forward(), fetch() and set_steps(). The
topological order is used since a component u has to be able
to pass metadata to components reachable from u in the flow
graph. Next begin() is called on all components in the order
obtained by topologically sorting the flow graph where all
push edges have been reversed; this topological order exists
as the graph is acyclic, since a node in the flow graph cannot
have both an outgoing push and an outgoing pull edge. This
particular topological order is used since for a push edge
(u, v), u should be able to push to v in u.begin(), so u.begin()
should be called after v.begin(); similarly, if (u, v) is a pull
edge, then v.begin() must be called after u.begin() is called.
After this initialization, the main streaming part of the phase
is executed by calling the go() method on the appropriate
component. Finally, at the end of the phase end() is called
on the components in reverse order of the begin() order, that
is, in reverse topological order.

B. Pipelining Implementation

Above we have already discussed how TPIE identifies
and executes phases of a pipeline, and due to space con-
straints we cannot describe the entire implementation of
TPIE pipelining in detail. In this section we therefore briefly
discuss a few aspects of the implementation not described
above. The interested reader is also referred to the technical
documentation of TPIE .

Memory management. As mentioned, TPIE distributes
memory to components in a phase based on the minimum
au and maximum bu memory requirements, along with the
memory priority cu of each component u in the phase. Com-
ponent u is assigned Mu(λ) = max{au,min{bu, λcu}}
bytes of memory, for a value of λ such that the total assigned
memory M(λ) =

∑
uMu(λ) is smaller than the available

memory. This way memory is distributed proportionally to
the memory priorities unless this gives an amount of memory
outside the [au, bu] interval. Since M(λ) is a non-decreasing
function of λ, TPIE can use binary search to find λ. Refer
to Figure 6 for an example.

Progress reporting. TPIE also supports progress report-
ing for a pipeline. To ensure that a progress bar shown to
the user progresses from 0% to 100% at a constant pace,
TPIE maintains an execution time database with information
about how large a fraction of the execution time was spent
in each phase in the execution of the pipeline that processed
the largest instance size. In order to distinguish between
different pipelines in the execution time database, each
pipeline execution carries the preprocessor macro TPIE_FSI
as an argument, which is expanded by the compiler into



Node Minimum Maximum Priority Assigned
v av bv cv Mv(λ)
A 4 12 5 10
B 1 7 3 6
C 8 ∞ 3 8
D 7 12 7 12

0 1 2 3
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D
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M

Figure 6. Memory assignment for four nodes where λ = 2, M(λ) = 36.
Nodes A and B are assigned λ times their priority, whereas nodes C and
D are assigned their minimum and maximum memory, respectively.

a string that uniquely identifies the location in the code
where the pipeline is defined. In this way, TPIE can store
information about multiple pipelines in the execution time
database.

Automatic parallelization. Automatic multi-core
CPU parallelism is supported in TPIE by applying the
tpie::pipelining::parallel(. . . ) directive to a push-based
pipeline component. In this case, the processing of the
component is distributed among the available CPU cores
by instantiating a copy of the component for each core
and passing items to these components in a round-robin
fashion as they arrive. To amortize the overhead of thread
synchronization, items are passed to components in batches
of 2048 items at a time.

Function inlining. To minimize the computational over-
head of the many push() and pull() function calls required
when executing a pipeline, TPIE is designed to allow the
compiler to inline the processing of several consecutive
pipelining components into one function. As in STXXL, this
is achieved using template instantiations in C++. Thus, if u
pushes to v in the pipeline, then when u is compiled the
type of v is known to the compiler so the implementation
of v.push() can be inlined into u. However unlike STXXL,
TPIE is designed to hide the resulting complex type def-
initions from the pipeline definition, and instead of using
recursive template instantiations the pipe operator can be
used to define a TPIE pipeline. This is very convenient when
building large pipelined applications.
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