How Hard is Weak Memory Testing?

S. Chakraborty, S. Krishna, U. Mathur and Andreas Pavlogiannis

Concurrency is Everywhere

Concurrency is a ubiquitous computing paradigm

Concurrency is Everywhere

Concurrency is a ubiquitous computing paradigm

Verification:

- Is my program correct in a given concurrent setting?
- What behaviors are possible in a concurrent environment?

Concurrency is Everywhere

Concurrency is a ubiquitous computing paradigm

Verification:

- Is my program correct in a given concurrent setting?
- What behaviors are possible in a concurrent environment?

Not all concurrency is the same

Store Buffer x = 0, y = 0 w(y, 1); a := r(x, 0) w(x, 1); b := r(y, 0)

Not sequentially consistent

 Store Buffer

 x = 0, y = 0

 w(y, 1);

 a := r(x, 0)

 w(x, 1);

 b := r(y, 0)

 Store Buffer

 x = 0, y = 0

 w(y, 1);

 a := r(x, 0)

 $w(x, 1); \leftarrow$

 b := r(y, 0)

 Store Buffer

 x = 0, y = 0

 w(y, 1);

 a := r(x, 0)

 $b := r(y, 0) \leftarrow$

 Store Buffer

 x = 0, y = 0

 w(y, 1);

 a := r(x, 0)

 ||

 w(x, 1);

 b := r(y, 0)

• Behavior possible under x86-TSO

- Formal models of concurrency
- Specifications of all possible communication patterns
 - \circ Buffers/caching
 - \circ Out-of-order execution
 - \circ Speculation
 - Cache coherence protocols
 - Compiler optimizations
 - Message delays
 - o ...
- In all cases: weak data consistency

SC	Standard Sequential Consistency		
TSO	x86-Total Store Order		
PSO	Sparc-Partial Store Order		
RA	The release-acquire semantics of C11		
Relaxed	The relaxed fragment of C11		
Relaxed-Acyclic	$Relaxed + (po \cup rf)-acyclicity$		
CC	Causal consistency		
CCv	Causal convergence		
CM	Causal memory		

Program executions are represented as execution graphs

Executions on Weak Memory

An **execution** is a tuple X = (E, po, rf, mo), where:

- *E* is a set of events
- po is the program order over E, total on each thread
- rf is a reads-from relation on $W \times R$

 \circ (w,r) \in rf means r reads the value written by w

mo_x is a total modification order over all writes w(x)
 mo = ∪_x mo_x

Consistent Executions

A memory model ${\mathcal M}$ defines a set of axioms that every execution must satisfy

Consistency

If an execution X = (E, po, rf, mo) satisfies all axioms of \mathcal{M} , we say that X is **consistent** in \mathcal{M} , written as $X \vDash \mathcal{M}$.

Consistent Executions

A memory model ${\mathcal M}$ defines a set of axioms that every execution must satisfy

Consistency

If an execution X = (E, po, rf, mo) satisfies all axioms of \mathcal{M} , we say that X is **consistent** in \mathcal{M} , written as $X \models \mathcal{M}$.

Memory models may be ordered in terms of the behaviors they allow, i.e., the executions they admit

Weak(er) Memory Models

Given two memory models \mathcal{M}_1 , \mathcal{M}_2 , we say that \mathcal{M}_2 is weaker than \mathcal{M}_1 , written $\mathcal{M}_1 \sqsubseteq \mathcal{M}_2$, if for every execution X, we have

 $X\vDash \mathcal{M}_1 \Rightarrow X\vDash \mathcal{M}_2$

 $\mathsf{Eg},\,\mathsf{SC}\sqsubseteq\mathsf{TSO}\sqsubseteq\mathsf{RA}\sqsubseteq\{\mathsf{CC},\mathsf{Relaxed}\}$

(a) Total Store Order (TSO)

(a) Total Store Order (TSO) (b) Causal Convergence (CCv)

(a) Total Store Order (TSO) (b) Causal Convergence (CCv)

(c) Release/Acquire (RA)

(a) Total Store Order (TSO) (b) Causal Convergence (CCv)

(d) Causal Memory (CM)

(a) Total Store Order (TSO) (b) Causal Convergence (CCv)

(d) Causal Memory (CM) (e) Causal Consistency (CC)

 $\begin{array}{c} w(x) & r(y) \\ \downarrow & \downarrow \\ w(x) & \star \\ \downarrow & \downarrow \\ \psi(y) & r(x) \end{array}$

(f) Relaxed (Relaxed)

• Aligning a model to an implementation is hard, litmus tests

Is my implementation correct?

• Aligning a model to an implementation is hard, litmus tests

• Aligning a model to an implementation is hard, litmus tests

• Also, model checking, dynamic analyses

• Aligning a model to an implementation is hard, litmus tests

- Also, model checking, dynamic analyses
- Is the observed behavior of the program in alignment with the model?
- Observed behavior is thread-local
 - $\circ~$ No rf, no mo

Weak Memory Testing, Formally

The Testing Problem

Given an abstract execution $\overline{X} = (E, po)$ and a memory model \mathcal{M} is there a reads from relation rf and a modification order **mo** such that $X = (E, po, rf, mo) \vDash \mathcal{M}$?

Weak Memory Testing, Formally

The Testing Problem

Given an abstract execution $\overline{X} = (E, po)$ and a memory model \mathcal{M} is there a reads from relation rf and a modification order mo such that $X = (E, po, rf, mo) \vDash \mathcal{M}$?

Input \overline{X}

Weak Memory Testing, Formally

The Testing Problem

Given an abstract execution $\overline{X} = (E, po)$ and a memory model \mathcal{M} is there a reads from relation rf and a modification order mo such that $X = (E, po, rf, mo) \vDash \mathcal{M}$?

Output X

Input \overline{X}

n events, k threads, d memory locations

n events, k threads, d memory locations

n events, k threads, d memory locations

The Hardness of Weak Memory Testing

Theorem (Hardness of bounded testing)

Testing is NP-hard for any memory model among

- CCv
- RA
- CM
- CC
- Relaxed-Acyclic

even for abstract executions with bounded

- threads
- memory locations
- values read/written

The Hardness of Weak Memory Testing

Theorem (Hardness of bounded testing)

Testing is NP-hard for any memory model among

- CCv
- RA
- CM
- CC
- Relaxed-Acyclic

even for abstract executions with bounded

- threads
- memory locations
- values read/written

Non parameterizable!

Reduction from monotone 1-in-3 SAT $\phi = C_1 \wedge C_2 \wedge \cdots \wedge C_m$

- No negations: $C_i = x_i^1 \lor x_i^2 \lor x_i^3$
- For each clause, exactly one variable must be true

Reduction from monotone 1-in-3 SAT $\phi = C_1 \land C_2 \land \cdots \land C_m$

- No negations: $C_i = x_i^1 \lor x_i^2 \lor x_i^3$
- For each clause, exactly one variable must be true

A Copy Gadget:

How General is this Hardness?

- Hardness proofs are difficult
- Do they generalize?

How General is this Hardness?

- Hardness proofs are difficult
- Do they generalize?

Theorem

For any memory model \mathcal{M} with

- $\mathsf{CCv} \sqsubseteq \mathcal{M} \sqsubseteq \mathsf{CC}$, or
- $\mathsf{CM} \sqsubseteq \mathcal{M} \sqsubseteq \mathsf{CC}$

testing bounded executions is NP-hard.

How General is this Hardness?

- Hardness proofs are difficult
- Do they generalize?

Theorem

For any memory model \mathcal{M} with

- $\mathsf{CCv} \sqsubseteq \mathcal{M} \sqsubseteq \mathsf{CC}$, or
- $\mathsf{CM} \sqsubseteq \mathcal{M} \sqsubseteq \mathsf{CC}$

testing bounded executions is NP-hard.

However! Bounded testing is in P for some weak memory

How Hard is Weak Memory Testing? Very Hard

How Hard is Weak Memory Testing? Very Hard

Thank you! Questions?

Why Should this be Hard?

Why Should this be Hard?

RF-Testing

Given an abstract execution $\overline{X} = (E, po, rf)$ and a memory model \mathcal{M} is there a modification order **mo** such that $X = (E, po, rf, mo) \vDash \mathcal{M}$?

RF-Testing

Given an abstract execution $\overline{X} = (E, po, rf)$ and a memory model \mathcal{M} is there a modification order **mo** such that $X = (E, po, rf, mo) \models \mathcal{M}$?

RF-Testing

Given an abstract execution $\overline{X} = (E, po, rf)$ and a memory model \mathcal{M} is there a modification order **mo** such that $X = (E, po, rf, mo) \models \mathcal{M}$?

How Hard is RF-Testing?

	RF-Testing	Testing
SC	NP-complete	P for $k, d = O(1)$
TSO	NP-complete	P for $k, d = O(1)$
PSO	NP-complete	P for $k, d = O(1)$
RA	$O(n \cdot k)$	NP-complete for $k, d = O(1)$
CC	$O(n \cdot k)$	NP-complete for $k, d = O(1)$
CCv	$O(n \cdot k)$	NP-complete for $k, d = O(1)$
CM	$O(n \cdot k)$	NP-complete for $k, d = O(1)$
Relaxed-Acyclic	<i>O</i> (<i>n</i>)	NP-complete for $k, d = O(1)$

How Hard is RF-Testing?

	RF-Testing	Testing
SC	NP-complete	P for $k, d = O(1)$
TSO	NP-complete	P for $k, d = O(1)$
PSO	NP-complete	P for $k, d = O(1)$
RA	$O(n \cdot k)$	NP-complete for $k, d = O(1)$
CC	$O(n \cdot k)$	NP-complete for $k, d = O(1)$
CCv	$O(n \cdot k)$	NP-complete for $k, d = O(1)$
CM	$O(n \cdot k)$	NP-complete for $k, d = O(1)$
Relaxed-Acyclic	<i>O</i> (<i>n</i>)	NP-complete for $k, d = O(1)$

Multi-copy atomicity?