# **On-The-Fly Static Analysis via Dynamic Bidirected Dyck Reachability**

S. Krishna, Aniket Lal, Andreas Pavlogiannis, Omkar Tuppe





- A graph reachability problem
- Widely used model for static analyses
  - Graphs as program models

- A graph reachability problem
- Widely used model for static analyses
  - Graphs as program models
- A few variants
- Need to solve fast

- A graph reachability problem
- Widely used model for static analyses
  - Graphs as program models
- A few variants
- Need to solve fast
- ... how fast?

# Dyck Reachability Graph



# Dyck Reachability Graph



# Computing Dyck Reachability for Alias Analysis

```
class ATree {
  ATree L;
  ATree R;
}
void main(){
  ATree c,d,e;
  ATree f,g,h;
  g.L=e;
  d=f.L;
  h.L=f;
  f.L=c;
  c.R=g;
  e=f.L
```



# Computing Dyck Reachability for Alias Analysis

```
class ATree {
  ATree L;
  ATree R;
}
void main(){
  ATree c,d,e;
  ATree f,g,h;
  g.L=e;
  d=f.L;
  h.L=f;
  f.L=c;
  c.R=g;
  e=f.L
  h=d.R;
```



# Computing Dyck Reachability for Alias Analysis

```
class ATree {
  ATree L;
  ATree R;
}
void main(){
  ATree c,d,e;
  ATree f,g,h;
  g.L=e;
  -d=f.L;-
  h.L=f;
  f.L=c;
  c.R=g;
  e=f.L
  h=d.R;
```



# **Bidirected Dyck Reachability**

# **Bidirected graphs**





- CFL-models of alias/pointer analysis
- Used to handle mutable heap data
- Quick overapproximation of CFL-reachability

### **Key Observation**

Dyck reachability on bidirected graphs is an equivalence relation.

### **Key Observation**

Dyck reachability on bidirected graphs is an equivalence relation.

$$\otimes$$

#### **Key Observation**

Dyck reachability on bidirected graphs is an equivalence relation.

 $\bigotimes_{\mathbf{v}} \underbrace{(i)}_{i} \underbrace{(i)}_{i}$ 

#### **Key Observation**

Dyck reachability on bidirected graphs is an equivalence relation.

$$\bigotimes_{i} \underbrace{\bigcirc}_{i} \underbrace{\bigcirc}$$

#### **Key Observation**

Dyck reachability on bidirected graphs is an equivalence relation.





#### **Key Observation**

Dyck reachability on bidirected graphs is an equivalence relation.





#### **Key Observation**

Dyck reachability on bidirected graphs is an equivalence relation.





#### **Key Observation**

Dyck reachability on bidirected graphs is an equivalence relation.







#### **Key Observation**

Dyck reachability on bidirected graphs is an **equivalence relation**.







#### **Key Observation**

Dyck reachability on bidirected graphs is an equivalence relation.







#### **Key Observation**

Dyck reachability on bidirected graphs is an equivalence relation.



• Compute Dyck-Strongly Connected Components (DSCC)





**Unification style!** 

#### Theorem

All DSCCs of a graph with n nodes and m edges takes  $O(m + n \cdot \alpha(n)$  time.

•  $\alpha(n)$  is the inverse Ackermann function.

- As source code is developed, the graph changes
- Maintain analysis on the fly
- Fully-dynamic reachability
  - insert(u, v, i), delete(u, v, i)
- How fast?

- As source code is developed, the graph changes
- Maintain analysis on the fly
- Fully-dynamic reachability
  - insert(u, v, i), delete(u, v, i)
- How fast?
- Running the offline algorithm after each modification takes  $O(m + n \cdot \alpha(n))$

- As source code is developed, the graph changes
- Maintain analysis on the fly
- Fully-dynamic reachability
  - insert(u, v, i), delete(u, v, i)
- How fast?
- Running the offline algorithm after each modification takes  $O(m + n \cdot \alpha(n))$
- o(n) guarantees are tricky



- As source code is developed, the graph changes
- Maintain analysis on the fly
- Fully-dynamic reachability
  - insert(u, v, i), delete(u, v, i)
- How fast?
- Running the offline algorithm after each modification takes  $O(m + n \cdot \alpha(n))$
- o(n) guarantees are tricky



- As source code is developed, the graph changes
- Maintain analysis on the fly
- Fully-dynamic reachability
  - insert(u, v, i), delete(u, v, i)
- How fast?
- Running the offline algorithm after each modification takes  $O(m + n \cdot \alpha(n))$
- o(n) guarantees are tricky



#### Theorem

On-the-fly bidirected CFL analysis on a dynamically-changing graph of n nodes and  $m \leq$  edges takes  $O(n \cdot \alpha(n))$  time per update (insertion/deletion)

#### Theorem

On-the-fly bidirected CFL analysis on a dynamically-changing graph of n nodes and  $m \leq$  edges takes  $O(n \cdot \alpha(n))$  time per update (insertion/deletion)

 $+\ a$  practical improvement that updates (seemingly) in constant time

# Inserting Edges is Easy

# **Deleting Edges is Tricky**

# Primary DSCCs

# Primary DSCCs

Our result, in two steps

- Maintaining PDCSSs in  $O(n \cdot \alpha(n))$  time
- Recomputing from the PDSCC graph in  $O(n \cdot \alpha(n))$  time

Consider given graph, DSCCs : {a}, {b}, {g}, {h}, {c,d,e}, {f}



insert  $d \xrightarrow{\bar{R}} h$ 

- Since edge insertion can only cause merging of components,
- Update Worklist Q, call fixpoint() computation



insert  $d \xrightarrow{\bar{R}} h$ 

- Since edge insertion can only cause merging of components,
- Update Worklist Q, call fixpoint() computation
- O(n.α(n)) for each insert update operation (Chatergee et. al 2018)





delete  $f \xrightarrow{\overline{L}} d$ 

• recompute from scratch?



- recompute from scratch?
- No of edges processed by fixpoint() function =  $O(n^2)$



delete  $f \xrightarrow{\overline{L}} d$ 

 Perform forward search from DSCC(d) and find affected DSCCs



- Perform forward search from DSCC(d) and find affected DSCCs
- Breakdown DSCCs to Primary Components (PDSCCs)



- Perform forward search from DSCC(d) and find affected DSCCs
- Breakdown DSCCs to Primary Components (PDSCCs)
- No of edges processed by fixpoint() function = O(n)



- Perform forward search from DSCC(d) and find affected DSCCs
- Breakdown DSCCs to Primary Components (PDSCCs)
- No of edges processed by fixpoint() function = O(n)
- O(n.a(n)) for each delete update operation



#### Primary components (PDSCCs) and Primal Graphs

For Bidirected graph G=(V,E), The primal graph H=(V,L) is an unlabelled, undirected graph, such that

$$L = \{ (x, y) \colon \exists u \in V. \ \exists \overline{\alpha} \in \Sigma^{C}. \ u \xrightarrow{\overline{\alpha}} x, u \xrightarrow{\overline{\alpha}} y \in E \}$$

- Primary DSCC (PDSCCs) of graph G is a (maximal) connected component of primal graph H
- PDSCC is a refinement of its DSCC partitioning
- We use Undirected Graph Reachability Data Structure to represent PDSCC







(q)\_\_\_\_(r) (s) (t)

(a) A Bidirected Graph G (Top) and its corresponding primal graph H (Bottom)

#### Sparsification to maintain PDSCCs efficiently

PDSCCs of  $G_i$  across edge insertions and deletions, corresponding primal graphs  $H_i$ .

- Inserting/deleting an edge in G, may lead to addition/removal of 0 to n-1 undirected edges in primal graph
- either one of xy or xz edge is added in *H*<sub>2</sub>
- xy and yz edge is deleted, xz edge is added



#### Sparsification to maintain PDSCCs efficiently

PDSCCs of  $G_i$  across edge insertions and deletions, corresponding primal graphs  $H_i$ .

- Inserting/deleting an edge in G, may lead to addition/removal of 0 to n-1 undirected edges in primal graph
- either one of xy or xz edge is added in *H*<sub>2</sub>
- xy and yz edge is deleted, xz edge is added



#### Sparsification to maintain PDSCCs efficiently

PDSCCs of  $G_i$  across edge insertions and deletions, corresponding primal graphs  $H_i$ .

- Inserting/deleting an edge in G, may lead to addition/removal of 0 to n-1 undirected edges in primal graph
- either one of xy or xz edge is added in *H*<sub>2</sub>
- xy and yz edge is deleted, xz edge is added



#### Maintainance of the sets InPrimary

- The first edge insertion u → x leads to u ∈ InPrimary[x][α].
- $u \xrightarrow{\overline{\alpha}} y$  and  $u \xrightarrow{\overline{\alpha}} z$  do not modify InPrimary, as x, y and z belong to the same PDSCC
- On delete u <sup>α</sup>→ x, we move u to InPrimary[y][α], thus u can still be retrieved as a α-neighbor of the PDSCC {y, z}



#### Maintainance of the sets InPrimary

- The first edge insertion u → x leads to u ∈ InPrimary[x][α].
- $u \xrightarrow{\overline{\alpha}} y$  and  $u \xrightarrow{\overline{\alpha}} z$  do not modify InPrimary, as x, y and z belong to the same PDSCC
- On delete u <sup>a</sup>→ x, we move u to InPrimary[y][a], thus u can still be retrieved as a a-neighbor of the PDSCC {y, z}



#### Maintainance of the sets InPrimary

- The first edge insertion u → x leads to u ∈ InPrimary[x][α].
- $u \xrightarrow{\overline{\alpha}} y$  and  $u \xrightarrow{\overline{\alpha}} z$  do not modify InPrimary, as x, y and z belong to the same PDSCC
- On delete u → x, we move u to *InPrimary*[y][α], thus u can still be retrieved as a α-neighbor of the PDSCC {y, z}



Context-Sensitive Data Dependence Analysis [Tang et al. 2015] @Aniket: Put here a very short snippet of code, and the graph it is modeled as

Field-Sensitive Alias Analysis for Java [Yan et al. 2011; Zhang et al. 2013] @Aniket: Put here a very short snippet of code, and the graph it is modeled as



**Figure 6:** Field-Sensitive Inter-procedural Symbolic Points to graph [Yan et al. 2011; Zhang et al. 2013]



Figure 7: Context-sensitive Data-Dependence graph [Tang et al. 2015]

Compared 3 algorithms

- Offline
  - Invoked after each update
- Dynamic DataLog
  - Each update modifes a DataLog program that expresses reachability
  - Dispatched to a Dynamic DataLog solver
- Our Dynamic Algorithm
  - As sketched so far

For each benchmark graph G, we generate a sequence of update (edge insert/delete) operations  $S_G$  as follows:

- Incremental setting  $S_{G}^{\rm inc}$  is a sequence of edge insertions from a random permutation of 90% of edges of G
- Decremental setting  $S_{G}^{dec}$  is a sequence of edge deletions from a random permutation of 90% of edges of G
- Mixed setting Randomly split G into sets  $E^+$  and  $E^-$  with proportion 10% and 90%
  - Initial graph E<sup>-</sup>
  - sequence  $S_G^{mix}$  Created by repeated stochastic sampling of  $E^+$  and randomly selecting that edge as insert/delete operation

#### **Experimental Results**



#### 21

Thank You! Questions?

# Appendix

Dispatching to a DataLog solver:

- Reaches(u,u)
- Close(x,u,i) :- Edge(x,u,i)
- Close(x,u,i) :- Edge(y,u,i), Reaches(x,y)
- Reaches(u,v) :- Close(x,u,i), Close(x,v,i)
- Reaches(u,v) :- Reaches(u,v), Reaches(x,v)