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Dyck Reachability at a Glance

� A graph reachability problem

� Widely used model for static analyses

� Graphs as program models

� A few variants

� Need to solve fast

� . . .how fast?
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Computing Dyck Reachability for Alias Analysis

class ATree {

ATree L;

ATree R;

}

void main(){

ATree c,d,e;

ATree f,g,h;

g.L=e;

d=f.L;

h.L=f;

f.L=c;

c.R=g;

e=f.L

h=d.R;

}

after insert(d,h,R)
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Bidirected Dyck Reachability



Bidirected graphs
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� CFL-models of alias/pointer analysis

� Used to handle mutable heap data

� Quick overapproximation of CFL-reachability
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Overview

Key Observation

Dyck reachability on bidirected graphs is an equivalence relation.
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� Compute Dyck-Strongly Connected Components (DSCC)
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Offline Algorithm

Theorem

All DSCCs of a graph with n nodes and m edges takes O(m + n · α(n) time.

� α(n) is the inverse Ackermann function.

6



On The Fly Analysis

� As source code is developed, the graph changes

� Maintain analysis on the fly

� Fully-dynamic reachability

� insert(u, v , i), delete(u, v , i)

� How fast?

� Running the offline algorithm after each modification takes O(m + n · α(n))
� o(n) guarantees are tricky
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This Paper

Theorem

On-the-fly bidirected CFL analysis on a dynamically-changing graph of n nodes

and m ≤ edges takes O(n · α(n)) time per update (insertion/deletion)

+ a practical improvement that updates (seemingly) in constant time
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Inserting Edges is Easy
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Deleting Edges is Tricky
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Primary DSCCs

Our result, in two steps

� Maintaining PDCSSs in O(n · α(n)) time

� Recomputing from the PDSCC graph in O(n · α(n)) time
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Efficient Dynamic Dyck Reachability

Consider given graph,

DSCCs :

{a}, {b}, {g}, {h}, {c,d,e}, {f}
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Efficient Dynamic Dyck Reachability

insert d
R̄−→ h

� Since edge insertion can only

cause merging of components,

� Update Worklist Q, call

fixpoint() computation

� O(n.α(n)) for each insert

update operation (Chatergee

et. al 2018)
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Efficient Dynamic Dyck Reachability

delete f
L̄−→ d

� recompute from scratch?

� No of edges processed by

fixpoint() function = O(n2)

� Perform forward search from

DSCC(d) and find affected

DSCCs

� Breakdown DSCCs to Primary

Components (PDSCCs)

� No of edges processed by

fixpoint() function = O(n)

� O(n.α(n)) for each delete

update operation
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Primary components (PDSCCs) and Primal Graphs

For Bidirected graph G = (V,E), The primal

graph H = (V,L) is an unlabelled, undirected

graph, such that

L = {(x , y) : ∃u ∈ V . ∃α ∈ ΣC . u
α−→ x , u

α−→ y ∈ E}

� Primary DSCC (PDSCCs) of graph G is a

(maximal) connected component of primal

graph H

� PDSCC is a refinement of its DSCC

partitioning

� We use Undirected Graph Reachability

Data Structure to represent PDSCC

u v

x y z w

q r s t

α α α β β

γ γ γ γ

u v

x y z w

q r s t

(a) A Bidirected Graph G (Top) and

its corresponding primal graph H

(Bottom)
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Sparsification to maintain PDSCCs efficiently

PDSCCs of Gi across edge inser-

tions and deletions, corresponding

primal graphs Hi .

� Inserting/deleting an edge

in G, may lead to

addition/removal of 0 to

n-1 undirected edges in

primal graph

� either one of xy or xz edge

is added in H2

� xy and yz edge is deleted,

xz edge is added

insert(u, x , α)

G1 u

x y z

α α

H1 u

x y z

delete(u, y , α)

G2 u

x y z

α α α

H2 u

x y z

G3 u

x y z

α α

H3 u

x y z
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InPrimary

Maintainance of the sets InPrimary

� The first edge insertion u
α−→ x leads

to u ∈ InPrimary [x][α].

� u
α−→ y and u

α−→ z do not modify

InPrimary , as x , y and z belong to

the same PDSCC

� On delete u
α−→ x , we move u to

InPrimary [y ][α], thus u can still be

retrieved as a α-neighbor of the

PDSCC {y , z}

insert(u, x , α)

G1 u

x y z

insert(u, y , α) insert(u, z , α)

G2 u

x y z

α
α

delete(u, x , α)

G3 u

x y z

α α α
α

G4 u

x y z

α αα
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Experiments – Benchmarks

Context-Sensitive Data Dependence Analysis [Tang et al. 2015]

@Aniket: Put here a very short snippet of code, and the graph it is modeled as

Field-Sensitive Alias Analysis for Java [Yan et al. 2011; Zhang et al.

2013]

@Aniket: Put here a very short snippet of code, and the graph it is modeled as
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Field-Sensitive Alias Analysis for Java

Class Node{

Node f;

Node g;

};

a.g = b;

b.f = e;

c = a.g;

h = c.f;

d = a.f;

a

b c d

e h

g

f

g

f

f

Figure 6: Field-Sensitive Inter-procedural Symbolic Points to graph [Yan et al. 2011;

Zhang et al. 2013]
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Context-Sensitive Data Dependence Analysis

f(x1) {

y1 = x1 + 1;

return y1;

}

x = 4;

y = f(x);

x x1

y1

y ret

{

}

Figure 7: Context-sensitive Data-Dependence graph [Tang et al. 2015]
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Experiments – Algorithms

Compared 3 algorithms

� Offline

� Invoked after each update

� Dynamic DataLog

� Each update modifes a DataLog program that expresses reachability

� Dispatched to a Dynamic DataLog solver

� Our Dynamic Algorithm

� As sketched so far
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Experimentation - Formulating update sequence

For each benchmark graph G, we generate a sequence of update (edge insert/delete) operations

SG as follows:

� Incremental setting - S inc
G is a sequence of edge insertions from a random permutation of

90% of edges of G

� Decremental setting - Sdec
G is a sequence of edge deletions from a random permutation of

90% of edges of G

� Mixed setting - Randomly split G into sets E+ and E− with proportion 10% and 90%

� Initial graph - E−

� sequence Smix
G - Created by repeated stochastic sampling of E+ and randomly

selecting that edge as insert/delete operation

20



Experimental Results
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Thank You!

Questions?
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Appendix



Declarative DataLog Approach

Dispatching to a DataLog solver:

� Reaches(u,u)

� Close(x,u,i) :- Edge(x,u,i)

� Close(x,u,i) :- Edge(y,u,i), Reaches(x,y)

� Reaches(u,v) :- Close(x,u,i), Close(x,v,i)

� Reaches(u,v) :- Reaches(u,v), Reaches(x,v)
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