On-The-Fly Static Analysis via Dynamic Bidirected
Dyck Reachability

S. Krishna, Aniket Lal, Andreas Pavlogiannis, Omkar Tuppe

/v

AARHUS UNIVERSITY

Dyck Reachability at a Glance

e A graph reachability problem
e Widely used model for static analyses

e Graphs as program models

Dyck Reachability at a Glance

A graph reachability problem

Widely used model for static analyses

e Graphs as program models

A few variants

Need to solve fast

Dyck Reachability at a Glance

A graph reachability problem

Widely used model for static analyses

e Graphs as program models

A few variants

Need to solve fast

e ... how fast?

Dyck Reachability Graph

Dyck Reachability Graph

Computing Dyck Reachability for Alias Analysis

class ATree {
ATree L;
ATree R;

}

void main(){

ATree c,d,e;
ATree f,g,h;
g.L=e;
d=f.L;
h.L=f;
f.L=c;
c.R=g;
e=f.L

Computing Dyck Reachability for Alias Analysis

class ATree {
ATree L;
ATree R;

}

void main(){
ATree c,d,e;
ATree f,g,h;
g.L=e;
d=f.L;
h.L=f;
f.L=c;
c.R=g;
e=f.L
h=d.R;

Computing Dyck Reachability for Alias Analysis

class ATree {
ATree L;
ATree R;

}

void main(){
ATree c,d,e;
ATree f,g,h;
g.L=e;
—d=f L
h.L=f;
f.L=c;
c.R=g;
e=f.L
h=d.R;

Bidirected Dyck Reachability

Bidirected graphs

Bidirected graphs

e CFL-models of alias/pointer analysis
e Used to handle mutable heap data

e Quick overapproximation of CFL-reachability

Overview

Key Observation
Dyck reachability on bidirected graphs is an equivalence relation.

Overview

Key Observation
Dyck reachability on bidirected graphs is an equivalence relation.

Overview

Key Observation
Dyck reachability on bidirected graphs is an equivalence relation.

Overview

Key Observation
Dyck reachability on bidirected graphs is an equivalence relation.

e Compute Dyck-Strongly Connected Components (DSCC)

Overview

Key Observation
Dyck reachability on bidirected graphs is an equivalence relation.

- (l e)i e
Oy, ‘—O’)&O’ ST *—O’fO’ ST ()

Overview

Key Observation
Dyck reachability on bidirected graphs is an equivalence relation.

- (l e)i -
Oy, ‘—O’)&O’ ST *—O’fO’ ST ()

e Compute Dyck-Strongly Connected Components (DSCC)

Overview

Key Observation
Dyck reachability on bidirected graphs is an equivalence relation.

- (l e)i -
Oy, ‘—O’)&O’ ST *—O’fO’ ST ()

e Compute Dyck-Strongly Connected Components (DSCC)

)2)3
g :: §e:) O O—@
)i @< " A
"O5-0570

Overview

Key Observation

Dyck reachability on bidirected graphs is an equivalence relation.

- (l e)i e
Oy, ‘—O’)&O’ ST *—O’fO’ ST ()

Overview

Key Observation
Dyck reachability on bidirected graphs is an equivalence relation.

- (l e)i -
Oy, ‘—O’)&O’ ST *—O’fO’ ST ()

e Compute Dyck-Strongly Connected Components (DSCC)

)a
)1| 1_;@1’—\
L])2 L])

Overview

Key Observation

Dyck reachability on bidirected graphs is an equivalence relation.

:)
1) — (D)) !
1 __,) l@,) 1 ’

Overview

Key Observation
Dyck reachability on bidirected graphs is an equivalence relation.

- (l e)i e
Oy, ‘—O’)&O’ ST *—O’fO’ ST ()

)a
)1. — f——\»@
I) o =)3 1N,

Unification style!

Offline Algorithm

Theorem
All DSCCs of a graph with n nodes and m edges takes O(m + n - a(n) time.

e a(n) is the inverse Ackermann function.

On The Fly Analysis

e As source code is developed, the graph changes

Maintain analysis on the fly

Fully-dynamic reachability
e insert(u, v, i), delete(u, v, i)

How fast?

On The Fly Analysis

e As source code is developed, the graph changes

Maintain analysis on the fly

Fully-dynamic reachability
e insert(u, v, i), delete(u, v, i)

How fast?

Running the offline algorithm after each modification takes O(m + n - a(n))

On The Fly Analysis

e As source code is developed, the graph changes
e Maintain analysis on the fly
e Fully-dynamic reachability
e insert(u, v, i), delete(u, v, i)
e How fast?
e Running the offline algorithm after each modification takes O(m + n - «(n))

e o(n) guarantees are tricky

)))
) O——0O—@
/

@
—)>@—)>@—)>@

On The Fly Analysis

e As source code is developed, the graph changes
e Maintain analysis on the fly
e Fully-dynamic reachability
e insert(u, v, i), delete(u, v, i)
e How fast?
e Running the offline algorithm after each modification takes O(m + n - «(n))

e o(n) guarantees are tricky

)LL@L
NG
) OO0

On The Fly Analysis

e As source code is developed, the graph changes
e Maintain analysis on the fly
e Fully-dynamic reachability
e insert(u, v, i), delete(u, v, i)
e How fast?
e Running the offline algorithm after each modification takes O(m + n - «(n))

e o(n) guarantees are tricky

This Paper

Theorem
On-the-fly bidirected CFL analysis on a dynamically-changing graph of n nodes
and m < edges takes O(n - «(n)) time per update (insertion/deletion)

This Paper

Theorem
On-the-fly bidirected CFL analysis on a dynamically-changing graph of n nodes
and m < edges takes O(n - «(n)) time per update (insertion/deletion)

+ a practical improvement that updates (seemingly) in constant time

Inserting Edges is Easy

Deleting Edges is Tricky

10

Primary DSCCs

11

Primary DSCCs

11

Primary DSCCs

Our result, in two steps

e Maintaining PDCSSs in O(n - a(n)) time
e Recomputing from the PDSCC graph in O(n - a(n)) time

11

Efficient Dynamic Dyck Reachability

Consider given graph,
DSCGs :

{a}, {b}, {g}, {h}, {c.d.e}, {f}

12

Efficient Dynamic Dyck Reachability

. R
insert d — h

e Since edge insertion can only
cause merging of components,

e Update Worklist Q, call
fixpoint() computation

12

Efficient Dynamic Dyck Reachability

insert d i h
e Since edge insertion can only
cause merging of components,
e Update Worklist Q, call
fixpoint() computation
e O(n.c(n)) for each insert

update operation (Chatergee
et. al 2018)

12

Efficient Dynamic Dyck Reachability

delete f 5 ¢

12

Efficient Dynamic Dyck Reachability

delete f 5 ¢

e recompute from scratch?

©
E

®
m<6‘D
®

12

Efficient Dynamic Dyck Reachability

L
delete f — d
e recompute from scratch?

e No of edges processed by
fixpoint() function = O(n?)

—®
)

4

®
m<®
®

12

Efficient Dynamic Dyck Reachability

delete f 5 ¢

e Perform forward search from
DSCC(d) and find affected
DSCCs

12

Efficient Dynamic Dyck Reachability

delete f 5 ¢

e Perform forward search from
DSCC(d) and find affected
DSCCs

e Breakdown DSCCs to Primary
Components (PDSCCs)

12

Efficient Dynamic Dyck Reachability

delete f 5 ¢

e Perform forward search from
DSCC(d) and find affected
DSCCs

e Breakdown DSCCs to Primary
Components (PDSCCs)

e No of edges processed by
fixpoint() function = O(n)

12

Efficient Dynamic Dyck Reachability

delete f 5 ¢

e Perform forward search from
DSCC(d) and find affected

DSCCs L ‘L\TL
e Breakdown DSCCs to Primary
Components (PDSCCs)

e No of edges processed by
fixpoint() function = O(n)

e O(n.a(n)) for each delete
update operation

12

Primary components (PDSCCs) and Primal Graphs

For Bidirected graph G = (V,E), The primal
graph H = (V,L) is an unlabelled, undirected
graph, such that

L={(x,y): Jue V.HEEZC.uix,uiyeE}

e Primary DSCC (PDSCCs) of graph G is a

(maximal) connected component of primal W @

graph H
e PDSCC is a refinement of its DSCC @ @
e (a) A Bidirected Graph G (Top) and
e We use Undirected Graph Reachability its corresponding primal graph H
Data Structure to represent PDSCC (Bottom)

13

Sparsification to maintain PDSCCs efficiently

1insert(u,x,ﬁ)
PDSCCs of G; across edge inser-

tions and deletions, corresponding
primal graphs H;.

e Inserting/deleting an edge
in G, may lead to
addition/removal of 0 to
n-1 undirected edges in
primal graph

14

Sparsification to maintain PDSCCs efficiently

G1 @ Hy @

PDSCCs of G; across edge inser-
tions and deletions, corresponding

Gz H2
primal graphs H;. @ @

e Inserting/deleting an edge e ?/El\\f X
500 0—0—0

addition/removal of 0 to e

n-1 undirected edges in ldelete(u,y,a)
primal graph

e either one of xy or xz edge
is added in H»

14

Sparsification to maintain PDSCCs efficiently

PDSCCs of G; across edge inser-
tions and deletions, corresponding
primal graphs H;.

e Inserting/deleting an edge
in G, may lead to
addition/removal of 0 to
n-1 undirected edges in
primal graph

e either one of xy or xz edge
is added in H»

e Xy and yz edge is deleted,
xz edge is added

G1 @ Hy @

14

Maintainance of the sets

e The first edge insertion u % leads
to u € InPrimary[x][a].

O] O]

insert(u, x, @) ar
000 é/@ ©

insert(u, y, @) | insert(u, z, @)

15

Maintainance of the sets

e The first edge insertion u % leads
to u € InPrimary[x][a].

o u E>y and u % z do not modify
InPrimary, as x, y and z belong to
the same PDSCC

Gy

Gy '@

insert(u, x, @) 5
—_— a
\

OXONO) ONONO)

insert(u, y, @) | insert(u, z, @)

G3 ’@

delete(u, x,@) 5/
- 'a alﬁ

{o)oxe}

15

G Gy
Maintainance of the sets @ . "@

insert(u, x, @) 5
= —_— a
e The first edge insertion u — x leads)

to u € InPrimary|[x][a]. @ @ @ @ @ @

@ @ .

e u— y and u — z do not modify
InPrimary, as x, y and z belong to insert(u, y, @) | insert(u, z, @)
the same PDSCC

e On delete u <5 x, we move u to Ga Gs @

InPrimary|y][@], thus u can still be 7‘%1(\ delete(u, x, @) 7/%1@\‘

retrieved as a @-neighbor of the gty

PDSCC {y, z} O @: @@ @

15

Experiments — Benchmarks

Context-Sensitive Data Dependence Analysis [Tang et al. 2015]
©Aniket: Put here a very short snippet of code, and the graph it is modeled as

Field-Sensitive Alias Analysis for Java [Yan et al. 2011; Zhang et al.
2013]
©Aniket: Put here a very short snippet of code, and the graph it is modeled as

16

Field-Sensitive Alias Analysis for Java

Class Node{
Node f;
Node g;

}; @

LN

a.g = b;

b.f = e;

C e ® © O
h =c.f; l?: Tf

d = a.f;

©®© o

Figure 6: Field-Sensitive Inter-procedural Symbolic Points to graph [Yan et al. 2011;
Zhang et al. 2013]

17

Context-Sensitive Data Dependence Analysis

£(x1) {
yl =x1 + 1;
return yi; {
} ®_>@

. @
ffi(x); } /

Figure 7: Context-sensitive Data-Dependence graph [Tang et al. 2015]

18

Experiments — Algorithms

Compared 3 algorithms

e Offline
e Invoked after each update
e Dynamic Datalog

e Each update modifes a Datalog program that expresses reachability
e Dispatched to a Dynamic Datalog solver

e Our Dynamic Algorithm

e As sketched so far

19

Experimentation - Formulating update sequence

For each benchmark graph G, we generate a sequence of update (edge insert/delete) operations
S¢ as follows:

e Incremental setting - Sic"c is a sequence of edge insertions from a random permutation of
90% of edges of G

e Decremental setting - Sgec is a sequence of edge deletions from a random permutation of
90% of edges of G
e Mixed setting - Randomly split G into sets ET and E~ with proportion 10% and 90%

e |Initial graph - E~

e sequence SZ™ - Created by repeated stochastic sampling of E* and randomly
selecting that edge as insert/delete operation

20

Experimental Results

Data Dependence Analysis

‘DDOfﬂine ImDDlog llDynamic‘

microsecs

X A& O D L L R
I LRX L TP K 0
FERL L OCR L S

¢ \\a\o Qef’o S RN SN

microsecs

Alias Analysis

T Oooffline BEDDIog BB Dynamic

10%] .

10%H f

21

Thank You!

Questions?

22

Appendix

Declarative DatalLog Approach

Dispatching to a Datalog solver:

e Reaches(u,u)

e Close(x,u,i) - Edge(x,u,i)

e Close(x,u,i) - Edge(y,u,i), Reaches(x,y)
e Reaches(u,v) :- Close(x,u,i), Close(x,v,i)

e Reaches(u,v) :- Reaches(u,v), Reaches(x,v)

	Bidirected Dyck Reachability
	Appendix

