On-The-Fly Static Analysis via Dynamic Bidirected Dyck Reachability

S. Krishna, Aniket Lal, Andreas Pavlogiannis, Omkar Tuppe

AARHUS UNIVERSITY

Dyck Reachability at a Glance

- A graph reachability problem
- Widely used model for static analyses
- Graphs as program models

Dyck Reachability at a Glance

- A graph reachability problem
- Widely used model for static analyses
- Graphs as program models
- A few variants
- Need to solve fast

Dyck Reachability at a Glance

- A graph reachability problem
- Widely used model for static analyses
- Graphs as program models
- A few variants
- Need to solve fast
- ... how fast?

Dyck Reachability Graph

Dyck Reachability Graph

Computing Dyck Reachability for Alias Analysis

```
class ATree {
    ATree L;
    ATree R;
}
void main(){
    ATree c,d,e;
    ATree f,g,h;
    g.L=e;
    d=f.L;
    h.L=f;
    f.L=c;
    c. R=g;
    e=f.L
```

\}

Computing Dyck Reachability for Alias Analysis

```
class ATree {
    ATree L;
    ATree R;
}
void main(){
    ATree c,d,e;
    ATree f,g,h;
    g.L=e;
    d=f.L;
    h.L=f;
    f.L=c;
    c. R=g;
    e=f.L
    h=d.R;
}
```


Computing Dyck Reachability for Alias Analysis

```
class ATree {
    ATree L;
    ATree R;
}
void main(){
    ATree c,d,e;
    ATree f,g,h;
    g.L=e;
    d=f.L;
    h.L=f;
    f.L=c;
    c. R=g;
    e=f.L
    h=d.R;
}
```


Bidirected Dyck Reachability

Bidirected graphs

Bidirected graphs

- CFL-models of alias/pointer analysis
- Used to handle mutable heap data
- Quick overapproximation of CFL-reachability

Overview

Key Observation

Dyck reachability on bidirected graphs is an equivalence relation.

Overview

Key Observation

Dyck reachability on bidirected graphs is an equivalence relation.

$$
\otimes^{\cdots \cdots} \mathrm{O}^{(i} \mathrm{O}^{\cdots \cdots} \mathrm{O}^{)_{i}} \mathrm{O}^{\cdots \cdots} \text { (1) }
$$

Overview

Key Observation

Dyck reachability on bidirected graphs is an equivalence relation.

Overview

Key Observation

Dyck reachability on bidirected graphs is an equivalence relation.

- Compute Dyck-Strongly Connected Components (DSCC)

Overview

Key Observation

Dyck reachability on bidirected graphs is an equivalence relation.

- Compute Dyck-Strongly Connected Components (DSCC)

Overview

Key Observation

Dyck reachability on bidirected graphs is an equivalence relation.

- Compute Dyck-Strongly Connected Components (DSCC)

Overview

Key Observation

Dyck reachability on bidirected graphs is an equivalence relation.

- Compute Dyck-Strongly Connected Components (DSCC)

Overview

Key Observation

Dyck reachability on bidirected graphs is an equivalence relation.

- Compute Dyck-Strongly Connected Components (DSCC)

Overview

Key Observation

Dyck reachability on bidirected graphs is an equivalence relation.

- Compute Dyck-Strongly Connected Components (DSCC)

Overview

Key Observation

Dyck reachability on bidirected graphs is an equivalence relation.

- Compute Dyck-Strongly Connected Components (DSCC)

Overview

Key Observation

Dyck reachability on bidirected graphs is an equivalence relation.

- Compute Dyck-Strongly Connected Components (DSCC)

Unification style!

Offline Algorithm

Theorem

All DSCCs of a graph with n nodes and m edges takes $O(m+n \cdot \alpha(n)$ time.

- $\alpha(n)$ is the inverse Ackermann function.

On The Fly Analysis

- As source code is developed, the graph changes
- Maintain analysis on the fly
- Fully-dynamic reachability
- insert($u, v, i)$, delete (u, v, i)
- How fast?

On The Fly Analysis

- As source code is developed, the graph changes
- Maintain analysis on the fly
- Fully-dynamic reachability
- insert($u, v, i)$, delete (u, v, i)
- How fast?
- Running the offline algorithm after each modification takes $O(m+n \cdot \alpha(n))$

On The Fly Analysis

- As source code is developed, the graph changes
- Maintain analysis on the fly
- Fully-dynamic reachability
- insert($u, v, i)$, delete (u, v, i)
- How fast?
- Running the offline algorithm after each modification takes $O(m+n \cdot \alpha(n))$
- $o(n)$ guarantees are tricky

On The Fly Analysis

- As source code is developed, the graph changes
- Maintain analysis on the fly
- Fully-dynamic reachability
- insert($u, v, i)$, delete (u, v, i)
- How fast?
- Running the offline algorithm after each modification takes $O(m+n \cdot \alpha(n))$
- $o(n)$ guarantees are tricky

On The Fly Analysis

- As source code is developed, the graph changes
- Maintain analysis on the fly
- Fully-dynamic reachability
- insert($u, v, i)$, delete (u, v, i)
- How fast?
- Running the offline algorithm after each modification takes $O(m+n \cdot \alpha(n))$
- $o(n)$ guarantees are tricky

This Paper

Theorem

On-the-fly bidirected CFL analysis on a dynamically-changing graph of n nodes and $m \leq$ edges takes $O(n \cdot \alpha(n))$ time per update (insertion/deletion)

This Paper

Theorem

On-the-fly bidirected CFL analysis on a dynamically-changing graph of n nodes and $m \leq$ edges takes $O(n \cdot \alpha(n))$ time per update (insertion/deletion)

+ a practical improvement that updates (seemingly) in constant time

Inserting Edges is Easy

Deleting Edges is Tricky

Primary DSCCs

Primary DSCCs

Primary DSCCs

Our result, in two steps

- Maintaining PDCSSs in $O(n \cdot \alpha(n))$ time
- Recomputing from the PDSCC graph in $O(n \cdot \alpha(n))$ time

Efficient Dynamic Dyck Reachability

Consider given graph, DSCCs :
$\{a\},\{b\},\{g\},\{h\},\{c, d, e\},\{f\}$

Efficient Dynamic Dyck Reachability

insert $d \xrightarrow{\bar{R}} h$

- Since edge insertion can only cause merging of components,
- Update Worklist Q, call fixpoint() computation

Efficient Dynamic Dyck Reachability

insert $d \xrightarrow{\bar{R}} h$

- Since edge insertion can only cause merging of components,
- Update Worklist Q, call fixpoint() computation
- $O(n . \alpha(n))$ for each insert update operation (Chatergee

et. al 2018)

Efficient Dynamic Dyck Reachability

delete $f \xrightarrow{\bar{L}} d$

Efficient Dynamic Dyck Reachability

delete $f \xrightarrow{\bar{L}} d$

- recompute from scratch?

Efficient Dynamic Dyck Reachability

delete $f \xrightarrow{\bar{L}} d$

- recompute from scratch?
- No of edges processed by fixpoint() function $=O\left(n^{2}\right)$

Efficient Dynamic Dyck Reachability

delete $f \xrightarrow{\bar{L}} d$

- Perform forward search from DSCC(d) and find affected DSCCs

Efficient Dynamic Dyck Reachability

delete $f \xrightarrow{\bar{L}} d$

- Perform forward search from DSCC(d) and find affected DSCCs
- Breakdown DSCCs to Primary Components (PDSCCs)

Efficient Dynamic Dyck Reachability

delete $f \xrightarrow{\bar{L}} d$

- Perform forward search from DSCC(d) and find affected DSCCs
- Breakdown DSCCs to Primary Components (PDSCCs)
- No of edges processed by fixpoint() function $=O(n)$

Efficient Dynamic Dyck Reachability

delete $f \xrightarrow{\bar{L}} d$

- Perform forward search from DSCC(d) and find affected DSCCs
- Breakdown DSCCs to Primary Components (PDSCCs)
- No of edges processed by fixpoint() function $=O(n)$
- $O(n . \alpha(n))$ for each delete update operation

Primary components (PDSCCs) and Primal Graphs

For Bidirected graph $G=(V, E)$, The primal graph $\mathrm{H}=(\mathrm{V}, \mathrm{L})$ is an unlabelled, undirected graph, such that
$L=\left\{(x, y): \exists u \in V . \exists \bar{\alpha} \in \Sigma^{C} \cdot u \xrightarrow{\bar{\alpha}} x, u \xrightarrow{\bar{\alpha}} y \in E\right\}$

- Primary DSCC (PDSCCs) of graph G is a (maximal) connected component of primal graph H
- PDSCC is a refinement of its DSCC partitioning
- We use Undirected Graph Reachability Data Structure to represent PDSCC

Sparsification to maintain PDSCCs efficiently

Sparsification to maintain PDSCCs efficiently

PDSCCs of G_{i} across edge insertions and deletions, corresponding primal graphs H_{i}.

- Inserting/deleting an edge in G, may lead to addition/removal of 0 to n -1 undirected edges in primal graph
- either one of $x y$ or $x z$ edge is added in H_{2}

Sparsification to maintain PDSCCs efficiently

PDSCCs of G_{i} across edge insertions and deletions, corresponding primal graphs H_{i}.

- Inserting/deleting an edge in G, may lead to addition/removal of 0 to n -1 undirected edges in primal graph
- either one of $x y$ or $x z$ edge is added in H_{2}
- $x y$ and $y z$ edge is deleted, $x z$ edge is added

InPrimary

Maintainance of the sets InPrimary

- The first edge insertion $u \xrightarrow{\bar{\alpha}} \times$ leads to $u \in \operatorname{InPrimary}[x][\bar{\alpha}]$.
- $u \xrightarrow{\alpha} y$ and $u \xrightarrow{\alpha} z$ do not modify InPrimary, as x, y and z belong to the same PDSCC
- On delete $u \xrightarrow{\alpha} x$, we move u to InPrimary $[y][\bar{\alpha}]$, thus u can still be retrieved as a $\bar{\alpha}$-neighbor of the PDSCC $\{y, z\}$

InPrimary

Maintainance of the sets InPrimary

- The first edge insertion $u \xrightarrow{\bar{\alpha}} \times$ leads to $u \in \operatorname{InPrimary}[x][\bar{\alpha}]$.
- $u \xrightarrow{\bar{\alpha}} y$ and $u \xrightarrow{\bar{\alpha}} z$ do not modify InPrimary, as x, y and z belong to the same PDSCC
- On delete $u \xrightarrow{\alpha} x$, we move u to InPrimary $[y][\bar{\alpha}]$, thus u can still be retrieved as a $\bar{\alpha}$-neighbor of the PDSCC $\{y, z\}$

InPrimary

Maintainance of the sets InPrimary

- The first edge insertion $u \xrightarrow{\bar{\alpha}} \times$ leads to $u \in \operatorname{InPrimary}[x][\bar{\alpha}]$.
- $u \xrightarrow{\bar{\alpha}} y$ and $u \xrightarrow{\bar{\alpha}} z$ do not modify InPrimary, as x, y and z belong to the same PDSCC
- On delete $u \xrightarrow{\bar{\alpha}} x$, we move u to InPrimary $[y][\bar{\alpha}]$, thus u can still be retrieved as a $\bar{\alpha}$-neighbor of the PDSCC $\{y, z\}$

Experiments - Benchmarks

Context-Sensitive Data Dependence Analysis [Tang et al. 2015] @Aniket: Put here a very short snippet of code, and the graph it is modeled as

Field-Sensitive Alias Analysis for Java [Yan et al. 2011; Zhang et al. 2013]
@Aniket: Put here a very short snippet of code, and the graph it is modeled as

Field-Sensitive Alias Analysis for Java

```
Class Node{
    Node f;
    Node g;
};
a.g = b;
b.f = e;
c = a.g;
h = c.f;
d = a.f;
```


Figure 6: Field-Sensitive Inter-procedural Symbolic Points to graph [Yan et al. 2011; Zhang et al. 2013]

Context-Sensitive Data Dependence Analysis

```
f(x1) {
    y1 = x1 + 1;
    return y1;
}
x = 4;
y = f(x);
```


Figure 7: Context-sensitive Data-Dependence graph [Tang et al. 2015]

Experiments - Algorithms

Compared 3 algorithms

- Offline
- Invoked after each update
- Dynamic DataLog
- Each update modifes a DataLog program that expresses reachability
- Dispatched to a Dynamic DataLog solver
- Our Dynamic Algorithm
- As sketched so far

Experimentation - Formulating update sequence

For each benchmark graph G, we generate a sequence of update (edge insert/delete) operations S_{G} as follows:

- Incremental setting - $S_{G}^{i n c}$ is a sequence of edge insertions from a random permutation of 90% of edges of G
- Decremental setting - $S_{G}^{\text {dec }}$ is a sequence of edge deletions from a random permutation of 90% of edges of G
- Mixed setting - Randomly split G into sets E^{+}and E^{-}with proportion 10% and 90%
- Initial graph - E^{-}
- sequence $S_{G}^{\text {mix }}$ - Created by repeated stochastic sampling of E^{+}and randomly selecting that edge as insert/delete operation

Experimental Results

Data Dependence Analysis

Alias Analysis

Thank You!
Questions?

Appendix

Declarative DataLog Approach

Dispatching to a DataLog solver:

- Reaches(u, u)
- Close($\mathrm{x}, \mathrm{u}, \mathrm{i}$) :- Edge($\mathrm{x}, \mathrm{u}, \mathrm{i})$
- Close($\mathrm{x}, \mathrm{u}, \mathrm{i}$) :- Edge($\mathrm{y}, \mathrm{u}, \mathrm{i})$, Reaches($\mathrm{x}, \mathrm{y})$
- Reaches(u,v) :- Close($x, u, i)$, Close((x, v, i)
- Reaches(u,v) :- Reaches(u,v), Reaches(x,v)

