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Computing Dyck Reachability for Alias Analysis

class ATree {
ATree L;
ATree R;

}

void main(){

ATree c,d,e;
ATree f,g,h;
g.L=e;
d=f.L;
h.L=f;
f.L=c;
c.R=g;
e=f.L
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Bidirected Dyck Reachability



Bidirected graphs



Bidirected graphs

e CFL-models of alias/pointer analysis
e Used to handle mutable heap data

e Quick overapproximation of CFL-reachability
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Overview

Key Observation
Dyck reachability on bidirected graphs is an equivalence relation.
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Offline Algorithm

Theorem
All DSCCs of a graph with n nodes and m edges takes O(m + n - a(n) time.

e a(n) is the inverse Ackermann function.
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Maintain analysis on the fly

Fully-dynamic reachability
e insert(u, v, i), delete(u, v, i)
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This Paper

Theorem
On-the-fly bidirected CFL analysis on a dynamically-changing graph of n nodes
and m < edges takes O(n - «(n)) time per update (insertion/deletion)

+ a practical improvement that updates (seemingly) in constant time



Inserting Edges is Easy



Deleting Edges is Tricky

10



Primary DSCCs
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Primary DSCCs

Our result, in two steps

e Maintaining PDCSSs in O(n - a(n)) time
e Recomputing from the PDSCC graph in O(n - a(n)) time
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Efficient Dynamic Dyck Reachability

Consider given graph,
DSCGs :

{a}, {b}, {g}, {h}, {c.d.e}, {f}
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Efficient Dynamic Dyck Reachability

. R
insert d — h

e Since edge insertion can only
cause merging of components,

e Update Worklist Q, call
fixpoint() computation
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Efficient Dynamic Dyck Reachability

insert d i h
e Since edge insertion can only
cause merging of components,
e Update Worklist Q, call
fixpoint() computation
e O(n.c(n)) for each insert

update operation (Chatergee
et. al 2018)
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Efficient Dynamic Dyck Reachability

delete f 5 ¢
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Efficient Dynamic Dyck Reachability

delete f 5 ¢

e recompute from scratch?
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Efficient Dynamic Dyck Reachability

L
delete f — d
e recompute from scratch?

e No of edges processed by
fixpoint() function = O(n?)
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Efficient Dynamic Dyck Reachability

delete f 5 ¢

e Perform forward search from
DSCC(d) and find affected

DSCCs L ‘L\TL
e Breakdown DSCCs to Primary
Components (PDSCCs)

e No of edges processed by
fixpoint() function = O(n)

e O(n.a(n)) for each delete
update operation
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Primary components (PDSCCs) and Primal Graphs

For Bidirected graph G = (V,E), The primal
graph H = (V,L) is an unlabelled, undirected
graph, such that

L={(x,y): Jue V.HEEZC.uix,uiyeE}

e Primary DSCC (PDSCCs) of graph G is a

(maximal) connected component of primal W @

graph H
e PDSCC is a refinement of its DSCC @ @
e (a) A Bidirected Graph G (Top) and
e We use Undirected Graph Reachability its corresponding primal graph H
Data Structure to represent PDSCC (Bottom)
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Sparsification to maintain PDSCCs efficiently

1insert(u,x,ﬁ)
PDSCCs of G; across edge inser-

tions and deletions, corresponding
primal graphs H;.

e Inserting/deleting an edge
in G, may lead to
addition/removal of 0 to
n-1 undirected edges in
primal graph
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Sparsification to maintain PDSCCs efficiently

PDSCCs of G; across edge inser-
tions and deletions, corresponding
primal graphs H;.

e Inserting/deleting an edge
in G, may lead to
addition/removal of 0 to
n-1 undirected edges in
primal graph

e either one of xy or xz edge
is added in H»

e Xy and yz edge is deleted,
xz edge is added

G1 @ Hy @
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Maintainance of the sets

e The first edge insertion u % leads
to u € InPrimary[x][a].

O] O]

insert(u, x, @) ar
000 é/@ ©

insert(u, y, @) | insert(u, z, @)
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Maintainance of the sets

e The first edge insertion u % leads
to u € InPrimary[x][a].

o u E>y and u % z do not modify
InPrimary, as x, y and z belong to
the same PDSCC

Gy

Gy '@

insert(u, x, @) 5
—_— a
\

OXONO) ONONO)

insert(u, y, @) | insert(u, z, @)

G3 ’@

delete(u, x,@) 5/
- 'a alﬁ

{o)oxe}

15



G Gy
Maintainance of the sets @ . "@

insert(u, x, @) 5
= —_— a
e The first edge insertion u — x leads )

to u € InPrimary|[x][a]. @ @ @ @ @ @

@ @ .

e u— y and u — z do not modify
InPrimary, as x, y and z belong to insert(u, y, @) | insert(u, z, @)
the same PDSCC

e On delete u <5 x, we move u to Ga Gs @

InPrimary|y][@], thus u can still be 7‘%1(\ delete(u, x, @) 7/%1@\‘

retrieved as a @-neighbor of the gty

PDSCC {y, z} O @: @@ @
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Experiments — Benchmarks

Context-Sensitive Data Dependence Analysis [Tang et al. 2015]
©Aniket: Put here a very short snippet of code, and the graph it is modeled as

Field-Sensitive Alias Analysis for Java [Yan et al. 2011; Zhang et al.
2013]
©Aniket: Put here a very short snippet of code, and the graph it is modeled as
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Field-Sensitive Alias Analysis for Java

Class Node{
Node f;
Node g;

}; @

LN

a.g = b;

b.f = e;

C e ® © O
h =c.f; l?: Tf

d = a.f;

©®© o

Figure 6: Field-Sensitive Inter-procedural Symbolic Points to graph [Yan et al. 2011;
Zhang et al. 2013]
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Context-Sensitive Data Dependence Analysis

£(x1) {
yl =x1 + 1;
return yi; {
} ®_>@

. @
ffi(x); } /

Figure 7: Context-sensitive Data-Dependence graph [Tang et al. 2015]
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Experiments — Algorithms

Compared 3 algorithms

e Offline
e Invoked after each update
e Dynamic Datalog

e Each update modifes a Datalog program that expresses reachability
e Dispatched to a Dynamic Datalog solver

e Our Dynamic Algorithm

e As sketched so far
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Experimentation - Formulating update sequence

For each benchmark graph G, we generate a sequence of update (edge insert/delete) operations
S¢ as follows:

e Incremental setting - Sic"c is a sequence of edge insertions from a random permutation of
90% of edges of G

e Decremental setting - Sgec is a sequence of edge deletions from a random permutation of
90% of edges of G
e Mixed setting - Randomly split G into sets ET and E~ with proportion 10% and 90%

e |Initial graph - E~

e sequence SZ™ - Created by repeated stochastic sampling of E* and randomly
selecting that edge as insert/delete operation

20



Experimental Results

Data Dependence Analysis
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Thank You!

Questions?
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Appendix



Declarative DatalLog Approach

Dispatching to a Datalog solver:

e Reaches(u,u)

e Close(x,u,i) - Edge(x,u,i)

e Close(x,u,i) - Edge(y,u,i), Reaches(x,y)
e Reaches(u,v) :- Close(x,u,i), Close(x,v,i)

e Reaches(u,v) :- Reaches(u,v), Reaches(x,v)



	Bidirected Dyck Reachability
	Appendix

