The Decidability and Complexity of Interleaved Bidirected Dyck Reachability

Adam Husted Kjelstrøm and Andreas Pavlogiannis
Dyck Reachability

\[\Sigma = \{ (1,)_1, \ldots, (k,)_k \} \cup \{ \epsilon \} \]

\[S \rightarrow S \ S \mid (1 \ S)_1 \mid \ldots \mid (k \ S)_k \mid \epsilon \]

\[G = (V, E, \lambda : E \rightarrow \Sigma) \]
Dyck Reachability

$$\Sigma = \{(1,)_1, \ldots, (k,)_k\} \cup \{\epsilon\}$$

$$G = (V, E, \lambda : E \rightarrow \Sigma)$$

$$S \rightarrow S \ S \ | \ (1 \ S)_1 \ | \ \ldots \ | \ (k \ S)_k \ | \ \epsilon$$

$$P : x \rightsquigarrow z \quad \text{with} \quad \lambda(P) = (1(2)_2)_1$$

Diagram with nodes labeled as y, w, x, z and unspecified edges and labels.
Dyck Reachability

$\Sigma = \{(1,)_1, \ldots (k,)_k\} \cup \{\epsilon\}$

$G = (V, E, \lambda : E \rightarrow \Sigma)$

$S \rightarrow SS | (1 \ S)_1 | \ldots | (k \ S)_k | \epsilon$

$P : x \rightsquigarrow z \text{ with } \lambda(P) = (1(2)_2)_1$

- Alias analysis
- Data-dependence analysis
- Data-flow analysis
- Databases
- ...
- Impact analysis
- Bloat analysis
- Program slicing
- Network analysis
- ...
Dyck Reachability

\[\Sigma = \{(1,)_1, \ldots (k,)_k\} \cup \{\epsilon\} \]

\[G = (V, E, \lambda : E \rightarrow \Sigma) \]

- Data-dependence analysis
- Data-flow analysis
- Databases
- ...

- Bloat analysis
- Program slicing
- Network analysis
- ...
```c
void setX(Point p, int v){
    p.x = v;
}

int getX(Point r){
    return r.x;
}
...
int a,b;
Point q;
setX(q, a);
b=getX(q);
```
void setX(Point p, int v){
 p.x = v;
}
int getX(Point r){
 return r.x;
}
...
int a,b;
Point q;
setX(q, a);
b=getX(q);
void setX(Point p, int v){
 p.x = v;
}

int getX(Point r){
 return r.x;
}

...

int a, b;
Point q;
setX(q, a);

b = getX(q);
Interleaved Dyck Reachability

```c
void setX(Point p, int v){
    p.x = v;
}

int getX(Point r){
    return r.x;
}
...

int a, b;
Point q;
setX(q, a);
setX(q, a);
b = getX(q);
```

Context sensitivity

Field sensitivity

![Diagram](attachment:image.png)
void setX(Point p, int v) {
 p.x = v;
}

int getX(Point r) {
 return r.x;
}

...

int a, b;
Point q;
setX(q, a);

b = getX(q);
Interleaved Dyck Reachability

```c
void setX(Point p, int v){
    p.x = v;
}

int getX(Point r){
    return r.x;
}
...
int a,b;
Point q;
setX(q, a);
b=getX(q);
```

- Reachability wrt two Dyck languages \mathcal{D}_k^1, \mathcal{D}_k^2
- $\{_{10}\}_{10}\{_{11}\}_{11} \in \mathcal{D}_k^1$ and $[_{x}]_{x} \in \mathcal{D}_k^2$
- Thus $\{_{10}[_{x}]_{10}\{_{11}\}_{x}}_{11} \in \mathcal{D}_k^1 \odot \mathcal{D}_k^2$
Interleaved Dyck Reachability

- Interleaved Dyck Reachability has large modeling power in static analysis
Interleaved Dyck Reachability

- Interleaved Dyck Reachability has large modeling power in static analysis
- Perhaps “too” large

Theorem (Reps ’00)
\[\mathcal{D}_k \odot \mathcal{D}_k \text{ reachability is undecidable} \]
Interleaved Dyck Reachability

- Interleaved Dyck Reachability has large modeling power in static analysis
- Perhaps “too” large

Theorem (Reps '00)

$D_k \circ D_k$ reachability is undecidable

- Still highly used in practice — approximations, e.g.,

...
Bidirected graphs

\[\forall u, v \in V : \lambda(u, v) = (i \iff \lambda(v, u) =)_i \]

- Used to handle mutable heap data
- Demand-driven alias analysis
- CFL formulation of pointer analysis

Bidirected graphs

\[\forall u, v \in V : \lambda(u, v) = (i \iff \lambda(v, u) = i) \]

- Used to handle mutable heap data
- Demand-driven alias analysis
- CFL formulation of pointer analysis

Inclusion-based Alias Analysis

- A Dyck-reachability formulation
- If heap object o Dyck-reaches variable x then $o \in PointsToSet(x)$
Inclusion-based Alias Analysis

- A Dyck-reachability formulation
- If heap object o Dyck-reaches variable x then $o \in \text{PointsToSet}(x)$

```java
1 x = new O(); // Object o1
2 y = new O(); // Object o2
3 ...
4 y = x.f;
5 z = x.f;
```
Inclusion-based Alias Analysis

- A Dyck-reachability formulation
- If heap object \(o \) Dyck-reaches variable \(x \) then \(o \in \text{PointsToSet}(x) \)

```java
1 x = new O(); //Object o1
2 y = new O(); //Object o2
3 ...
4 y = x.f;
5 z = x.f;
```

Inclusion based
If \(y \) may alias \(z \) and \(o \in \text{PointsToSet}(y) \) then \(o \in \text{PointsToSet}(z) \)
Inclusion-based Alias Analysis

- A Dyck-reachability formulation
- If heap object o Dyck-reaches variable x then $o \in \text{PointsToSet}(x)$

```
1. x = new O(); // Object o1
2. y = new O(); // Object o2
3. ...  
4. y = x.f;
5. z = x.f;
```

Inclusion based

If y may alias z and $o \in \text{PointsToSet}(y)$ then $o \in \text{PointsToSet}(z)$
Interleaved Bidirected Dyck Reachability

Interleaving + Bidirectedness, Variants →

1. $D_1 \odot D_1$

2. $D_k \odot D_1$

3. $D_k \odot D_k$

What do we know about this problem?

- $D_1 \odot D_1$ yields a 2-dimensional Vector Addition System with States (VASS)
- Reachability in NL
- Bidirected $D_1 \odot D_1$ in $O(n^7)$
- Bidirected $D_k \odot D_k$ is NP-hard
Interleaved Bidirected Dyck Reachability

Interleaving + Bidirectedness, Variants →

\[
\begin{align*}
1. & \quad D_1 \circ D_1 & \quad \xrightarrow{+1} \quad \xrightarrow{+1} \quad \xrightarrow{-1} \quad \xrightarrow{-1} \\
2. & \quad D_k \circ D_1 & \quad \xrightarrow{\{+1\}} \quad \xrightarrow{-1} \\
3. & \quad D_k \circ D_k & \quad \xrightarrow{\{[\text{ }]\}} \quad \xrightarrow{\text{]}}
\end{align*}
\]

What do we know about this problem?

- \(D_1 \circ D_1 \) yields a 2-dimensional Vector Addition System with States (VASS)
- Reachability in NL
- Bidirected \(D_1 \circ D_1 \) in \(O(n^7) \)
- Bidirected \(D_k \circ D_k \) is NP-hard
Main Results

<table>
<thead>
<tr>
<th></th>
<th>$D_1 \odot D_1$</th>
<th>$D_k \odot D_1$</th>
<th>$D_k \odot D_1$ (bounded counter)</th>
<th>$D_k \odot D_k$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Bound</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Bound</td>
<td>-</td>
<td>-</td>
<td></td>
<td>-</td>
</tr>
</tbody>
</table>
Main Results

<table>
<thead>
<tr>
<th></th>
<th>(\mathcal{D}_1 \otimes \mathcal{D}_1)</th>
<th>(\mathcal{D}_k \otimes \mathcal{D}_1)</th>
<th>(\mathcal{D}_k \otimes \mathcal{D}_1) (bounded counter)</th>
<th>(\mathcal{D}_k \otimes \mathcal{D}_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Bound</td>
<td>(O(n^3 \cdot \alpha(n)))(^\dagger)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lower Bound</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^\dagger\) Improves over previous \(O(n^7) \)
Main Results

<table>
<thead>
<tr>
<th></th>
<th>$\mathcal{D}_1 \circ \mathcal{D}_1$</th>
<th>$\mathcal{D}_k \circ \mathcal{D}_1$</th>
<th>$\mathcal{D}_k \circ \mathcal{D}_1$ (bounded counter)</th>
<th>$\mathcal{D}_k \circ \mathcal{D}_k$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Bound</td>
<td>$O(n^3 \cdot \alpha(n))$†</td>
<td>Decidable‡</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Lower Bound</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

† Improves over previous $O(n^7)$

‡ Without bidirectedness, decidability is open (PVASS)
Main Results

<table>
<thead>
<tr>
<th></th>
<th>$\mathcal{D}_1 \odot \mathcal{D}_1$</th>
<th>$\mathcal{D}_k \odot \mathcal{D}_1$</th>
<th>$\mathcal{D}_k \odot \mathcal{D}_1$ (bounded counter)</th>
<th>$\mathcal{D}_k \odot \mathcal{D}_k$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Bound</td>
<td>$O(n^3 \cdot \alpha(n))$†</td>
<td>Decidable‡</td>
<td>$O(n^2 \cdot \alpha(n))$</td>
<td></td>
</tr>
<tr>
<td>Lower Bound</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

† Improves over previous $O(n^7)$
‡ Without bidirectedness, decidability is open (PVASS)
Main Results

<table>
<thead>
<tr>
<th></th>
<th>$\mathcal{D}_1 \circ \mathcal{D}_1$</th>
<th>$\mathcal{D}_k \circ \mathcal{D}_1$</th>
<th>$\mathcal{D}_k \circ \mathcal{D}_1$ (bounded counter)</th>
<th>$\mathcal{D}_k \circ \mathcal{D}_k$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Bound</td>
<td>$O(n^3 \cdot \alpha(n))$†</td>
<td>Decidable‡</td>
<td>$O(n^2 \cdot \alpha(n))$</td>
<td>-</td>
</tr>
<tr>
<td>Lower Bound</td>
<td>-</td>
<td>-</td>
<td>OV-hard§</td>
<td>-</td>
</tr>
</tbody>
</table>

† Improves over previous $O(n^7)$
‡ Without bidirectedness, decidability is open (PVASS)
§ $O(n^2)$ is tight (wrt polynomial improvements)
Main Results

<table>
<thead>
<tr>
<th></th>
<th>$D_1 \odot D_1$</th>
<th>$D_k \odot D_1$</th>
<th>$D_k \odot D_1$ (bounded counter)</th>
<th>$D_k \odot D_k$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Bound</td>
<td>$O(n^3 \cdot \alpha(n))$†</td>
<td>Decidable‡</td>
<td>$O(n^2 \cdot \alpha(n))$</td>
<td>-</td>
</tr>
<tr>
<td>Lower Bound</td>
<td>-</td>
<td>-</td>
<td>OV-hard◊</td>
<td>Undecidable*</td>
</tr>
</tbody>
</table>

† Improves over previous $O(n^7)$
‡ Without bidirectedness, decidability is open (PVASS)
◊ $O(n^2)$ is tight (wrt polynomial improvements)
* Improves over previous NP-hard
Main Results

<table>
<thead>
<tr>
<th></th>
<th>$D_1 \circ D_1$</th>
<th>$D_k \circ D_1$</th>
<th>$D_k \circ D_1$ (bounded counter)</th>
<th>$D_k \circ D_k$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Bound</td>
<td>$O(n^3 \cdot \alpha(n))$†</td>
<td>Decidable‡</td>
<td>$O(n^2 \cdot \alpha(n))$</td>
<td>-</td>
</tr>
<tr>
<td>Lower Bound</td>
<td>-</td>
<td>-</td>
<td>OV-hard○</td>
<td>Undecidable*</td>
</tr>
</tbody>
</table>

† Improves over previous $O(n^7)$
‡ Without bidirectedness, decidability is open (PVASS)
○ $O(n^2)$ is tight (wrt polynomial improvements)
* Improves over previous NP-hard
Theorem
Bidirected $D_1 \otimes D_1$ reachability can be solved in $O(n^3 \cdot \alpha(n))$ time.

- n is the number of nodes
- $\alpha(n)$ is the inverse Ackermann function (practically constant)

Lemma
Without loss of generality, both counters along any witness path $P: u \rightarrow v$ remain bounded by $O(n^2)$.
Theorem

Bidirected $\mathcal{D}_1 \odot \mathcal{D}_1$ reachability can be solved in $O(n^3 \cdot \alpha(n))$ time.

- n is the number of nodes
- $\alpha(\cdot)$ is the inverse Ackermann function (practically constant)
Theorem

Bidirected $\mathcal{D}_1 \circ \mathcal{D}_1$ reachability can be solved in $O(n^3 \cdot \alpha(n))$ time.

- n is the number of nodes
- $\alpha(\cdot)$ is the inverse Ackermann function (practically constant)

Lemma

Without loss of generality, both counters along any witness path $P: u \leadsto v$ remain bounded by $O(n^2)$.
One Key Idea

Bidirectedness \implies Boundedness

If u reaches v then there is a witness path where the counters are bounded.

\implies limits the search space for witness paths
One Key Idea

Bidirectedness \implies Boundedness

If u reaches v then there is a witness path where the counters are bounded.

\implies limits the search space for witness paths

If we had just 1 counter (instead of 2):

$\text{Cnt}_1(H) > 0$ \hspace{2cm} $\text{Cnt}_1(C) < 0$

With 2 counters, more involved, gives $O(n^2)$ bound instead
One Key Idea

Bidirectedness \(\implies \) Boundedness

If \(u \) reaches \(v \) then there is a witness path where the counters are bounded.

\[\implies \text{limits the search space for witness paths} \]

If we had just 1 counter (instead of 2):

\[\text{Cnt}_1(H) > 0 \quad \text{Cnt}_1(C) < 0 \]

With 2 counters, more involved, gives \(O(n^2) \) bound instead.
One Key Idea

Bidirectedness \Rightarrow Boundedness

If u reaches v then there is a witness path where the counters are bounded.

\Rightarrow limits the search space for witness paths

If we had just 1 counter (instead of 2):

\[\text{Cnt}_1(H) > 0 \quad \text{Cnt}_1(C) < 0 \]

With 2 counters, more involved, gives $O(n^2)$ bound instead
One Key Idea

Bidirectedness \implies Boundedness

If u reaches v then there is a witness path where the counters are bounded.

\implies limits the search space for witness paths

If we had just 1 counter (instead of 2):

$$\text{Cnt}_1(H) > 0$$

$$\text{Cnt}_1(C) < 0$$

With 2 counters, more involved, gives $O(n^2)$ bound instead
Using the $O(n^2)$ Counter Bound
Using the $O(n^2)$ Counter Bound
Using the $O(n^2)$ Counter Bound

Total time $O(n^3 \alpha(n))$
Using the $O(n^2)$ Counter Bound

\[D_1 \circ D_1 \text{ on } G \]
with n nodes

\[D_1 \text{ on } G' \]
with n^3 nodes

Total time $O(n^3 \alpha(n))$
Using the $O(n^2)$ Counter Bound

$\mathcal{D}_1 \odot \mathcal{D}_1$ on G
with n nodes

\mathcal{D}_1 on G'
with n^3 nodes

Total time $O(n^3 \alpha(n))$
The Counter Bound $O(n^2)$ is Tight

Both counters reach a quadratic value
Bidirected $D_k \circ D_k$

Theorem

- Bidirected formalisms of context + field sensitivity are undecidable.
- Need coarser approximations.
- Or just techniques that work well in practice.
Bidirected $\mathcal{D}_k \odot \mathcal{D}_k$

Theorem

*Bidirected $\mathcal{D}_k \odot \mathcal{D}_k$ reachability is **undecidable**.*
Bidirected $\mathcal{D}_k \odot \mathcal{D}_k$

Theorem

Bidirected $\mathcal{D}_k \odot \mathcal{D}_k$ reachability is **undecidable**.

- Even bidirected formalisms of context + field sensitivity are undecidable
- Need coarser approximations
- Or just techniques that work well in practice
Undecidability - Sketch

Directed

\[
\begin{align*}
\alpha_2 & \quad \beta_1 \\
\alpha_1 & \quad \bar{\alpha}_1 \\
\bar{\beta}_1 & \quad \bar{\alpha}_2
\end{align*}
\]
Undecidability - Sketch

Directed

Bidirected

Stack 1

Stack 2
Undecidability - Sketch

Directed

\[
\begin{align*}
\beta_1 & \quad & \alpha_1 & \quad & \overline{\alpha}_1 \\
\alpha_2 & \quad & \overline{\beta}_1 & \quad & \overline{\alpha}_2
\end{align*}
\]

Bidirected

\[
\begin{align*}
(u, y), \epsilon & \quad & (x, u), \overline{\beta}_1 \\
(y, y), \beta_1 & \quad & (y, v), \epsilon \\
(v, v), \epsilon & \quad & (v, v), \epsilon \\
(u, x), \epsilon & \quad & (u, y), \alpha_2 \\
(u, x), \alpha_1 & \quad & (v, v), \overline{\alpha}_1 \\
(y, y), \epsilon & \quad & (y, v), \overline{\alpha}_2 \\
(y, v), \epsilon & \quad & (y, v), \overline{\alpha}_2 \quad & \overline{\nu}
\end{align*}
\]
Undecidability - Sketch

Directed

\[
\begin{align*}
&\alpha_1 : \{u, x\} \\
&\beta_1 : \{y, v\} \\
&\alpha_2 : \{y\} \\
&\bar{\alpha}_1 : \{v\} \\
&\bar{\beta}_1 : \{y\}
\end{align*}
\]

Bidirected

\[
\begin{align*}
&(u, y), \epsilon \\
&(y, y), \beta_1 \\
&(y, v), \epsilon \\
&(v, v), \epsilon \\
&(u, x), \epsilon
\end{align*}
\]
Undecidability - Sketch

Directed

\[
\begin{array}{c}
u \\
\downarrow \alpha_2 \\
y \\
\downarrow \bar{\beta}_1 \\
v \\
\end{array}
\]
\[
\begin{array}{c}
\downarrow \alpha_1 \\
x \\
\end{array}
\]
\[
\begin{array}{c}
\beta_1 \\
\end{array}
\]

Bidirected

\[
\begin{array}{c}
\bar{s} \\
\end{array}
\]
\[
\begin{array}{c}
(x, u), \bar{\beta}_1 \\
(u, y), \epsilon \\
(y, y), \beta_1 \\
(y, v), \epsilon \\
v, v), \epsilon \\
\end{array}
\]
\[
\begin{array}{c}
(u, x), \epsilon \\
(u, \bar{u}), \epsilon \\
\bar{u}, x), \alpha_1 \\
(u, y), \alpha_2 \\
(y, v), \bar{\alpha}_2 \\
(y, \bar{y}), \epsilon \\
\end{array}
\]
\[
\begin{array}{c}
\bar{v} \\
t \\
\end{array}
\]
Undecidability - Sketch

Directed

Bidirected

Stack 1

Stack 2
Undecidability - Sketch

Directed

\[u \xrightarrow{\alpha_1} x \xleftarrow{\beta_1} \]
\[y \xrightarrow{\alpha_2} v \xleftarrow{\bar{\alpha}_2} \]
\[y \xrightarrow{\bar{\beta}_1} \]

Bidirected

\[(u, y), \epsilon \]
\[(x, u), \bar{\beta}_1 \]
\[(y, y), \beta_1 \]
\[(y, v), \epsilon \]
\[(v, v), \epsilon \]
\[(\bar{x}, u), \epsilon \]
\[(u, x), \alpha_1 \]
\[(u, y), \alpha_2 \]
\[(v, v), \bar{\alpha}_1 \]
\[(y, y), \epsilon \]
\[(y, v), \bar{\alpha}_2 \]

Stack 1

\[(y, y) \]
\[(y, v) \]

Stack 2

\[\beta_1 \]
Undecidability - Sketch

Directed

![Directed Graph](image)

- Edges: $\alpha_1, \beta_1, \alpha_2, \beta_1\overline{\alpha}_1, \overline{\beta}_1$

<table>
<thead>
<tr>
<th>Stack 1</th>
<th>Stack 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>(u, y)</td>
<td></td>
</tr>
<tr>
<td>(y, y)</td>
<td></td>
</tr>
<tr>
<td>(y, v)</td>
<td>β_1</td>
</tr>
</tbody>
</table>

Bidirected

![Bidirected Graph](image)

- Edges: $(u, y), \epsilon, (x, u), \overline{\beta}_1, (y, y), \beta_1, (v, v), \epsilon, (v, v), \epsilon, (u, x), \epsilon, (\overline{x}, u), \epsilon, (\overline{u}, x), \alpha_1, (\overline{u}, y), \alpha_2, (v, v), \overline{\alpha}_1, (y, v), \overline{\alpha}_2, (y, y), \epsilon$

- Vertices: s, u, x, y, v, t

- Stack 2
 - β_1
Undecidability - Sketch

Directed

\[
\begin{align*}
&\quad u \\
&\quad \quad \alpha_1 \\
&\quad \quad \uparrow \\
&\quad x \\
&\quad \quad \beta_1 \\
&\quad \quad \downarrow \\
&\quad y \\
&\quad \quad \alpha_2 \\
&\quad \quad \downarrow \\
&\quad v \\
&\quad \quad \overline{\alpha}_2 \\
&\quad \quad \downarrow \\
&\quad \quad \overline{\beta}_1 \\
\end{align*}
\]

Stack 1

<table>
<thead>
<tr>
<th>(x, u)</th>
<th>(u, y)</th>
<th>(y, y)</th>
<th>(y, v)</th>
</tr>
</thead>
</table>

Stack 2

Bidirected

\[
\begin{align*}
&(u, y), \epsilon \\
&(x, u), \overline{\beta}_1 \\
&(y, y), \beta_1 \\
&(y, v), \epsilon \\
&(v, v), \epsilon \\
&(u, x), \epsilon \\
&(\overline{x}, u), \epsilon \\
&(u, x), \alpha_1 \\
&(u, y), \alpha_2 \\
&(v, v), \overline{\alpha}_1 \\
&(y, y), \epsilon \\
&(y, v), \overline{\alpha}_2 \\
\end{align*}
\]
Undecidability - Sketch

Directed

Bidirected

Stack 1

Stack 2

\[
\begin{array}{c}
(x, u) \\
(u, y) \\
(y, y) \\
(y, v) \\
\end{array}
\]

\[
\begin{array}{c}
\end{array}
\]

\[
\begin{array}{c}
\nu
\end{array}
\]
Undecidability - Sketch

Directed

Bidirected

Stack 1

Stack 2
Undecidability - Sketch

Directed

Bidirected

Stack 1

Stack 2
Undecidability - Sketch

Directed

\[
\begin{align*}
& u \quad \alpha_1 \quad x \\
& y \quad \alpha_2 \quad v \\
& \beta_1 \\
& \overline{\beta}_1
\end{align*}
\]

Bidirected

\[
\begin{align*}
&(u, y), \epsilon \\
&(x, u), \overline{\beta}_1 \\
&(y, y), \beta_1 \\
&(y, v), \epsilon \\
&(v, v), \epsilon \\
&(s) \\
&\nu \\
&(\overline{x}, u), \epsilon \\
&(u, \overline{x}), \alpha_1 \\
&(u, y), \alpha_2 \\
&(v, v), \overline{\alpha}_1 \\
&(y, \overline{y}), \epsilon \\
&(\overline{y}, v), \overline{\alpha}_2 \\
&\overline{\nu}
\end{align*}
\]

\begin{align*}
\text{Stack 1} & \quad \text{Stack 2} \\
(y, y) & \quad \alpha_2 \\
(y, v) & \quad \nu
\end{align*}
Undecidability - Sketch

Directed

\[
\begin{align*}
&\quad \beta_1 \\
&\alpha_1 \quad \alpha_1 \\
&\quad \beta_1 \\
&\alpha_2 \quad \alpha_2 \\
&\quad \beta_1 \\
&\alpha_2 \quad \alpha_2 \\
&\quad \beta_1 \\
&\alpha_2 \quad \alpha_2 \\
\end{align*}
\]

Stack 1

\[(y, \nu)\]

Stack 2

\[\nu\]

Bidirected

\[
\begin{align*}
&(u, y), \epsilon \\
&(x, u), \bar{\beta}_1 \\
&(y, y), \beta_1 \\
&(y, \nu), \epsilon \\
&(\nu, \nu), \epsilon \\
&(v, v), \epsilon \\
&(\nu, \nu), \epsilon \\
&(x, u), \epsilon \\
&(u, x), \epsilon \\
&(u, y), \alpha_2 \\
&(u, x), \alpha_1 \\
&(u, \nu), \alpha_2 \\
&(v, \nu), \bar{\alpha}_1 \\
&(y, \nu), \epsilon \\
&(y, y), \epsilon \\
&(y, \nu), \bar{\alpha}_2 \\
&(y, y), \epsilon \\
&(y, v), \epsilon \\
&(v, v), \epsilon \\
\end{align*}
\]

Stack 1

\[(y, \nu)\]

Stack 2

\[\nu\]
Undecidability - Sketch

Directed

\[\alpha_1 \] \quad \beta_1 \quad \alpha_2 \quad \overline{\alpha}_1 \quad \overline{\beta}_1

Bidirected

\[(u, y), \epsilon \]
\[(x, u), \overline{\beta}_1 \]
\[(y, y), \beta_1 \]
\[(y, v), \epsilon \]
\[(v, v), \epsilon \]
\[\nu \]
\[(\overline{x}, u), \epsilon \]
\[(\overline{u}, x), \alpha_1 \]
\[(\overline{u}, y), \alpha_2 \]
\[(y, v), \overline{\alpha}_2 \]
\[(y, y), \epsilon \]
\[(\overline{y}, y), \epsilon \]
\[(y, v), \overline{\alpha}_2 \]
\[\nu \]

Stack 1
\[\nu \]

Stack 2
Undecidability - Sketch

Directed

\[u \xrightarrow{\alpha_1} x, \quad x \xrightarrow{\alpha_1} y, \quad y \xrightarrow{\beta_1} u \]

\[y \xrightarrow{\alpha_2} v, \quad v \xrightarrow{\beta_1} y \]

Bidirected

\[(u, y), \epsilon \]

\[(x, u), \overline{\beta_1} \]

\[(y, y), \beta_1 \]

\[(v, v), \epsilon \]

\[(u, x), \epsilon \]

\[(\overline{u}, u), \epsilon \]

\[(\overline{u}, x), \alpha_1 \]

\[(u, y), \alpha_2 \]

\[(v, v), \overline{\alpha_1} \]

\[(y, y), \epsilon \]

\[(y, v), \overline{\alpha_2} \]

Stack 1

Stack 2
Experiments

• DaCapo benchmarks
• (field + context)-sensitive alias analysis → Bidirected $D_k \circ D_k$ reachability
• $D_1 \circ D_1$ and bounded $D_k \circ D_1$ reachability by abstracting on one language

Summary
• Previously $D_1 \circ D_1$ took more than 2 days
• Now the whole dataset takes ~ 5 mins on a laptop for each case $D_1 \circ D_1$ and $D_k \circ D_1$
• Times are usable!
Experiments

Setup

- DaCapo benchmarks
- (field + context)-sensitive alias analysis → Bidirected $D_k \circ D_k$ reachability
- $D_1 \circ D_1$ and bounded $D_k \circ D_1$ reachability by abstracting on one language

Summary

- Previously $D_1 \circ D_1$ took more than 2 days
- Now the whole dataset takes ~ 5 mins on a laptop for each case $D_1 \circ D_1$ and $D_k \circ D_1$ reachability
- Times are usable!
Experiments

Setup

- DaCapo benchmarks
- (field + context)-sensitive alias analysis → Bidirected $D_k \odot D_k$ reachability
- $D_1 \odot D_1$ and bounded $D_k \odot D_1$ reachability by abstracting on one language

Summary

- Previously $D_1 \odot D_1$ took more than 2 days
- Now the whole dataset takes ~ 5 mins on a laptop for each case $D_1 \odot D_1$ and $D_k \odot D_1$
- Times are usable!
Thank you!

Appendix
Experiments

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>(n)</th>
<th>(D_1 \odot D_1)</th>
<th>(D_k \odot D_1) (bounded counter)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ID-CCs</td>
<td>Time (s)</td>
<td>ID-CCs</td>
</tr>
<tr>
<td>antlr</td>
<td>29831</td>
<td>26793</td>
<td>40.5</td>
</tr>
<tr>
<td>bloat</td>
<td>36181</td>
<td>32693</td>
<td>16.2</td>
</tr>
<tr>
<td>chart</td>
<td>67535</td>
<td>60787</td>
<td>32.8</td>
</tr>
<tr>
<td>eclipse</td>
<td>30981</td>
<td>27812</td>
<td>16.0</td>
</tr>
<tr>
<td>fop</td>
<td>61016</td>
<td>54671</td>
<td>29.8</td>
</tr>
<tr>
<td>hsqldb</td>
<td>27494</td>
<td>24584</td>
<td>15.5</td>
</tr>
<tr>
<td>jython</td>
<td>36162</td>
<td>31811</td>
<td>26.3</td>
</tr>
<tr>
<td>luindex</td>
<td>28595</td>
<td>25610</td>
<td>15.6</td>
</tr>
<tr>
<td>lusearch</td>
<td>29530</td>
<td>26417</td>
<td>17.8</td>
</tr>
<tr>
<td>pmd</td>
<td>31333</td>
<td>28064</td>
<td>18.2</td>
</tr>
<tr>
<td>xalan</td>
<td>27358</td>
<td>24498</td>
<td>15.2</td>
</tr>
</tbody>
</table>
1. Double-self-loops

2. Trimming

3. CFL underapproximation

1. Treat $D_k \circ D_k$ as one Dyck language over the union alphabet
2. Perform reachability and collapse components
3. Solve $D_k \circ D_k$ on the quotient graph
Coverability

u covers (v, k) if u can reach v with an empty stack and counter at least k
Coverability

u covers (v, k) if u can reach v with an empty stack and counter at least k.

Theorem (LST '15)

Coverability in PVASS is decidable.

1. u covers $(v, 0)$ and v covers $(u, 0)$?
1. u covers $(v, 0)$ and v covers $(u, 0)$
1. u covers $(v, 0)$ and v covers $(u, 0)$ ✓
2. u covers $(v, 1)$ and v covers $(u, 1)$?
Algorithm

1. u covers $(v, 0)$ and v covers $(u, 0)$ ✓
2. u covers $(v, 1)$ and v covers $(u, 1)$ ✓
\(D_k \odot D_1 \) Algorithm

1. \(u \) covers \((v, 0)\) and \(v \) covers \((u, 0)\) \(\checkmark\)
2. \(u \) covers \((v, 1)\) and \(v \) covers \((u, 1)\) \(\checkmark\)
3. Derive a stack height bound = \(\max(n^2, \text{height of coverability witnesses}) \)
1. u covers $(v, 0)$ and v covers $(u, 0)$ ✓
2. u covers $(v, 1)$ and v covers $(u, 1)$ ✓
3. Derive a stack height bound $= \max(n^2, \text{height of coverability witnesses})$
1. u covers $(v, 0)$ and v covers $(u, 0)$ ✓
2. u covers $(v, 1)$ and v covers $(u, 1)$ ✓
3. Derive a stack height bound $= \max(n^2, \text{height of coverability witnesses})$
$D_k \otimes D_1$ Algorithm

1. u covers $(v, 0)$ and v covers $(u, 0)$ ✓
2. u covers $(v, 1)$ and v covers $(u, 1)$ ✓
3. Derive a stack height bound $= \max(n^2, \text{height of coverability witnesses})$
1. u covers $(v, 0)$ and v covers $(u, 0)$ ✓
2. u covers $(v, 1)$ and v covers $(u, 1)$ ✓
3. Derive a stack height bound $= \max(n^2, \text{height of coverability witnesses})$

$C_u \circ P \circ C_v$
1. u covers $(v, 0)$ and v covers $(u, 0)$ ✓
2. u covers $(v, 1)$ and v covers $(u, 1)$ ✓
3. Derive a stack height bound $= \max(n^2, \text{height of coverability witnesses})$

$$C_u \circ P \circ C_v \circ \overline{P}$$
1. u covers $(v, 0)$ and v covers $(u, 0)$ ✓
2. u covers $(v, 1)$ and v covers $(u, 1)$ ✓
3. Derive a stack height bound $= \max(n^2, \text{height of coverability witnesses})$
Algorithm \(\mathcal{D}_k \odot \mathcal{D}_1 \)

1. \(u \) covers \((v, 0)\) and \(v \) covers \((u, 0)\)

2. \(u \) covers \((v, 1)\) and \(v \) covers \((u, 1)\)

3. Derive a stack height bound \(= \max(n^2, \text{height of coverability witnesses}) \)

\[
\begin{align*}
&\quad \sum_{u} + \quad C_u \\
\quad u \quad \text{arrow} \quad \text{arrow} \quad \text{arrow} \\
\quad \text{arrow} \quad \text{arrow} \quad \text{arrow} \\
\quad P, \text{ stack height } \leq n^2 \quad \text{arrow} \\
\quad \text{arrow} \quad \text{arrow} \quad \text{arrow} \\
&\quad \sum_{v} + \quad C_v
\end{align*}
\]

\[
C_u^* \circ P \circ C_v^* \circ \overline{P} \circ \overline{C_u^*} \circ P
\]
1. u covers $(v, 0)$ and v covers $(u, 0)$ ✓
2. u covers $(v, 1)$ and v covers $(u, 1)$ ✓
3. Derive a stack height bound $= \max(n^2, \text{height of coverability witnesses})$