Time scales of evolutionary trajectories w.r.t sequence length

Andreas Pavlogiannis

January 4, 2014

- Evolution of populations by means of mutation and selection.
 - Q: How long until some target region is found?
- Existing:
 - Single mutation: fixation time of a single mutant.
 - Multiple mutations: beneficial mutations arising at a constant rate.
- Interplay between selection and mutation.
 - Beneficial mutations become rarer along the way.
- Static fitness landscape.

In a population of N type A individuals, a mutant B is introduced with selective advantage r. At each time step:

- An individual is chosen uniformly at random to die.
- **②** An individual is chosen proportionally to its fitness to divide.

A single mutant is fixed with probability $\rho = \frac{1-1/r}{1-1/r^N}$

Population

- L : sequence length (from some alphabet {0,...κ})
- N : population size
- **u** : point mutation probability $(N \cdot u < 1)$
- $\mathbf{t} = \overrightarrow{\mathbf{0}}$: ideal sequence
- c : determines target set of sequences au: $|t \tau|_H \leq c \cdot L$
- **s** : fitness slope extends to sequences τ : $|t \tau|_H \leq s \cdot L$
- **r** : fitness factor $f_{i-1} = r \cdot f_i$, where f_i is the fitness of all sequences $\tau : |t \tau|_H = i$

Homogeneous population on a hypercube. At each time point:

- A point mutation might occur (either beneficial or deleterious)
- Moran dynamics determine the fixation probability of the new mutant
- Mutant either takes over the population, or swept out

Hitting Time

For Markov Chain M and states n_1 , n_2 , denote with $H_M(n_1, n_2)$ the expected hitting time of n_1 from n_2 .

$$H_M(n_1,i) = 1 + \sum_j \delta(i,j) \cdot H_M(n_1,j)$$

Q: What is the expected hitting time of the target set, as a function of the genome length L?

From L dimensions to Markov Chain on a line

(1)
$$\frac{\delta(i,i+1)}{\delta(i,i-1)} = \frac{L-i}{i} \kappa \cdot r^{-(N-1)}$$
 (2) $\delta(i,i) \le k$ (constant - indp of L)

The unloop variant \overline{M} of a Markov Chain on a line M ignores self-loops.

Hitting times on the unloop variant

For
$$z^*$$
 constant, $H_{\overline{M}}(n_1, n_2) = \Theta(H_M(n_1, n_2))$

Lower & upper bound

- For states $n_1 \le x < n_2 \le y$ and y = x + k, if $\delta(i, i+1) \ge A < \frac{1}{2}$ for all x < i < y, then $H_{\overline{M}}(n_1, n_2) = 2^{k \cdot \Omega(L)}$.
- **9** For states $n_1 \le n_2$, if $\delta(i, i-1) \ge \frac{1}{2}$ for all $n_1 \le i \le L$, then $H_{\overline{M}} = O(L^2)$.

(b): Dichotomy, $c \cdot (1 + \frac{r^{N-1}}{\kappa}) < 1$

(b): Dichotomy,
$$c \cdot (1 + \frac{r^{N-1}}{\kappa}) < 1$$

Remains exponential for polynomially many population replicates

Dichotomy in numbers

For large *N*, *s* behaves as *c*

Bounded selection in the Wright-Fisher model

Bounded selection in the Moran model

$$s = \frac{1}{2}, r = 1.01$$

Randomly distributed targets

- $m << (\kappa + 1)^L$ targets distributed uniformly at random on the L-dimensional space
- Each surrounded by a fitness slope extending at most to $s \cdot L$, $s < \frac{\kappa}{\kappa+1}$

- The Hamming distance of the origin from a target follows Binomial $\left(L, \frac{\kappa}{\kappa+1}\right)$.
- **2** $P[|\tau t|_H \le sL] = 2^{-O(L)}.$
 - Hoeffding's inequality: In a Binomial process, the probability of deviation from the expectation drops exponentially.
- **③** By union, the probability to fall in any of the *m* Hamming spheres is $p < m \cdot 2^{-O(L)}$.
- The process repeats and iterations follow *Geometric(p)*.
- Expectation: $\frac{2^{\Omega(L)}}{m}$ (with high probability)

Randomly distributed targets

Poly: Regeneration process

 L^{k+1} regenerations suffice to to hit the target set in $O(\frac{L^{k+1}}{u})$ expected time, with probability at least $1 - e^{-L}$.

• Every regeneration hits the target in k steps with probability at least L^{-k} .

- In all cases of exponential lower bounds, the hitting time is also exponentially upper bounded.
- Then for $\propto \frac{L}{\log L}$ independently evolving loci, hitting times are polynomial in *L*.
 - Assuming once target is hit it remains fixed.