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General setting

[

Evolution of populations by means of mutation and selection.

e Q: How long until some target region is found?

Existing:
e Single mutation: fixation time of a single mutant.
e Multiple mutations: beneficial mutations arising at a constant rate.

Interplay between selection and mutation.

o Beneficial mutations become rarer along the way.

@ Static fitness landscape.
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Moran process

In a population of N type A individuals, a mutant B is introduced with
selective advantage r. At each time step:

@ An individual is chosen uniformly at random to die.

@ An individual is chosen proportionally to its fitness to divide.

1-1/r
1-1/rN

A single mutant is fixed with probability p =
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Model

Population

o L : sequence length (from some alphabet {0,...x})
@ N : population size
@ u : point mutation probability (N - u < 1)
- .
t = 0 : ideal sequence
c : determines target set of sequences 7: |t — 7|y < c- L

s : fitness slope extends to sequences 7: [t — 7|y <s- L

e 6 o o

r : fitness factor f;_y = r - f;, where f; is the fitness of all sequences
Ti|t—=Tlg=1i

A. Pavlogiannis Time scales of evolutionary trajectories w.r.t sequence length
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Process

Homogeneous population on a hypercube. At each time point:
@ A point mutation might occur (either beneficial or deleterious)
@ Moran dynamics determine the fixation probability of the new mutant

@ Mutant either takes over the population, or swept out

Hitting Time
For Markov Chain M and states n;, np, denote with Hy(n1, mp) the expected
hitting time of n; from ns.

Hum(ny, i) =1+ 25(1',]) - Hm(n1,Jj)

Q: What is the expected hitting time of the target set, as a function of the
genome length L?
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From L dimensions to Markov Chain on a line

5(0,0) 6(i—1,i—1) 6(i,4) 6(i+1,i+1) 8(L, L)
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(2) 8(i,7) < k (constant - indp of L)
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Unlooping

The unloop variant M of a Markov Chain on a line M ignores self-loops.
l1—-a-»b

Q b _a_

Hitting times on the unloop variant

Q@ Hyp(n1, n2) < Hu(ny, n2).
Q@ Hm(ni, np) < z* - Hyp(ny, n2), where z* = maxo<i<1 ﬁ(”)

For z* constant, Hy;(ni, n2) = © (Hu (n1, n2))
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Hitting times on unloop variants

Lower & upper bound

© Forstates n; < x < ny <y andy=x+ Kk, if5(i,i+1)2A<%fora|I
x<i< Y, then Hm(nl, n2) = 2k'Q(L).

@ For states ny < np, if §(i,i — 1) > % forall ny <i < L, then Hy; = O(L?).
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Broad peak

exp(L) poly(L) or exp(L) exp(L)
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Broad peak

exp(L) poly(L) or exp(L) exp(L)
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Dichotomy in numbers

Hitting times for N=100 and x =1
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For large N, s behaves as ¢
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Bounded selection in the Wright-Fisher model

N=10', r=1.01, s
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Bounded selection in the Moran model
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Randomly distributed targets

e m << (k+ 1)! targets distributed uniformly at random on the
L-dimensional space

Kk

@ Each surrounded by a fitness slope extending at most to s- L, s < -5

Start of search




Randomly distributed targets

@ The Hamming distance of the origin from a target follows

Binomial (L, 7).
Q@ Pl —t|y <sL]=2790),
o Hoeffding's inequality: In a Binomial process, the probability of deviation
from the expectation drops exponentially.

© By union, the probability to fall in any of the m Hamming spheres is
p<m-2-900),
@ The process repeats and iterations follow Geometric(p).

© Expectation: &n(f) (with high probability)
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Randomly distributed targets
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Poly: Regeneration process

Process re-generating starting sequence
at Hamming distance k from target

Target

O-(= O

Hamming distance

L**+1 regenerations suffice to to hit the target set in O(%) expected time,

with probability at least 1 — e~ L.

o Every regeneration hits the target in k steps with probability at least L=,
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Poly: Independently evolving loci

@ In all cases of exponential lower bounds, the hitting time is also
exponentially upper bounded.

@ Then for @ independently evolving loci, hitting times are polynomial
in L.

o Assuming once target is hit it remains fixed.
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