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The Motivation

Wireless Sensor Networks have received great attention recently due
to their wide range of applications.
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The Background Work

Theoritical models for WSNs have become significantly important in
order to understand their capabilities and limitations.

Population Protocols [Angluin, Aspnes, Diamadi, Fischer, and
Peralta, PODC ’04] is a model for WSNs where:

Tiny Entities: finite-state machine + sensor (agent).
Communication: Pairwise - Interaction Based.
Passively mobile agents: incapable to choose participants in
interactions.

Models: unstable environment, like water flow or wind, or the natural
mobility of their carriers.

Anonymity: No enough space for unique identifiers.
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The Population Protocols Model and Characteristics

Agents sense their environment and receive an input symbol.

Computation on predicates defined by this input.

Agents interact in pairs according to a communication graph
G = (V ,E ) where:

V : A population of |V | = n agents of constant memory
(independent of n).
E : The permissible interactions between the agents.

Interaction pattern: adversary

Adversarial choices: fairness condition

fairness condition: forbids population partition (the adversary
cannot avoid a possible interaction forever)
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Computational Power

Due to the minimalistic nature of the model the class of computable
predicates is fairly small.

In [Angluin et al. 2004, 2006] it was proven that it is exactly the
class of semilinear predicates.

Formulas such as Na ≥ 10 or Na < Nb .

Threshold, Majority...

This class does not include multiplication, exponentiation and other
important operations.
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Relaxing the PP constraints

Tiny (constant) space → Restricted space

Allowing for logarithmic memory is reasonable.
109 agents only need ∝ 30 bits!

Preserve passive mobility - no control over the interactions.

But still, fair.

Passively Mobile Communicating Machines

Study space complexity of various problems.

Interest remains on problems that use restricted space.
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Agent

Sensor: Receive the input x ∈ X .

Working Tape: Internal computation.

Output Tape: Agent’s output.

Outgoing Message Tape: Send messages to other agents.

Incoming Message Tape: Receive messages from other agents.

Working Flag: When set, the agent is busy doing internal
computation and cannot interact.
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The Passively Mobile Machines Model (PM)

Definition

PM protocol: 6-tuple (X , Γ,Q, δ, γ, q0)

X: input alphabet, t /∈ X ,

Γ: tape alphabet, t ∈ Γ and X ⊂ Γ,

Q: set of states,

δ : Q× Γ4 → Q× Γ4 × {L,R,S}4 × {0, 1}, the internal transition
function,

Internal computation, Message processing...

γ : Q×Q→ Q×Q, the external transition function,

Upon interaction, transition to a state that starts reading the
incoming message.

q0 ∈ Q, the initial state.

I. Chatzigiannakis, O. Michail, S. Nikolaou, A. Pavlogiannis, P. Spirakis FOMC 2011 8 / 23



Introduction
The Passively Mobile Communicating Machines Model

Computational Power of the PM Model
Conclusions

Motivation
The PM Model

Computation in PM

Agent Configuration B ∈ B: A tuple specifying the agent “state”.

Population Configuration C ∈ C: A tuple capturing the population
state. Configuration yieldability C → C ′: C ′ occurs from C in one
step.

Initially, every agent is assigned an input sybmol.

The adversary chooses:

An agent to execute one internal step (application of δ).
A pair of agents to interact (message exchange and application of γ)

initiator - responder distinction.

But fairly.

If C → C ′ and C appears infinite times, C ′ also appears infinite
times.
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Computation in PM (Continued)

Execution: a sequence of population configurations (C1,C2, . . . )
such that Ci → Ci+1.

Computation: an infinite fair execution.

PM protocols stabilize: ∃i : ∀v ∈ V , ∀j ≥ i , agent v does not
change his output tape in Cj , and all agents agree on output.

Stable computation of predicates p : X |V | → {0, 1}.
Symmetric predicates: p(a) = 1 ⇐⇒ p(ã) = 1, ã: permutation of a.

Space Complexity Classes:

PMSPACE(f(n)): Predicates computable by a PM protocol using
O(f (n)) space.
SSPACE(f(n)), SNSPACE(f(n)): Symmetric subsets of predicates
in SPACE(f (n)), NSPACE(f (n)).
SEM: Class of Semilinear predicates.
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In O(log log n)

Dividing the predicate space

Study of the impact of passive mobility in computational capabilities
of distributed systems.

Symmetric Predicate Space

Goal: Divide predicate
space according to pred-
icate space complexity.
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Assigning Unique Ids

Theorem

Any PM protocol A can assume the existance of unique ids, at the cost
of O(log n) space.

Proof: A protocol I for UID assignment.

All agents start with uid = 0.

Effective interactions only between agents with the same uid .

Initiator increments uid .

I does not terminate. Every time a uid is incremented, the
agent broadcasts a message for A to reinitiate computation.

Agents ignore such messages with uid smaller than the last one
(ignore late messages).

After uid = n − 1, reinitiations stop, and A finally is executed
correctly.
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Assigning Unique Ids (Continued)

Theorem

Any PM protocol A can assume the existance of unique ids and
knowledge of the population size, at the cost of O(log n) space.

Proof.

uid=0
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Theorem
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Assigning Unique Ids (Continued)

Theorem

Any PM protocol A can assume the existance of unique ids and
knowledge of the population size, at the cost of O(log n) space.

Proof.

uid=0

u

uid=1

v

w

I. Chatzigiannakis, O. Michail, S. Nikolaou, A. Pavlogiannis, P. Spirakis FOMC 2011 13 / 23



Introduction
The Passively Mobile Communicating Machines Model

Computational Power of the PM Model
Conclusions

Above log n
Below log log n
In O(log log n)

Assigning Unique Ids (Continued)

Theorem

Any PM protocol A can assume the existance of unique ids and
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Proof.
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u
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Theorem

Any PM protocol A can assume the existance of unique ids and
knowledge of the population size, at the cost of O(log n) space.

Proof.
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Assigning Unique Ids (Continued)

Theorem

Any PM protocol A can assume the existance of unique ids and
knowledge of the population size, at the cost of O(log n) space.

Proof.

uid=0

u

uid=1

v
....

z

uid=n-1

Still anonymous!
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Simulating a Deterministic Turing Machine

Theorem

For any f (n) = Ω(log n), SSPACE(nf(n))) ⊆ PMSPACE(f(n)).

Proof.

Input string w ∈ SSPACE (Ω(n log n)) decided by a TM D, |w | = n.

Each agent receives a symbol of w .

Use I to align all agents.

Use this alignment as a tape in a modular fashion.

The local tape of each agent provides O(log n) cells.

Each time, one active agent carries the simulation.

State transition rules of D embedded in the PM protocol.

Head move → pass control + current state to neighbor.

Simulation accepts a permutation of w . X
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Allowing for non-determinism

Theorem

For any f (n) = Ω(log n), SNSPACE(nf(n)) ⊆ PMSPACE(f(n)).

Proof.

Input string w ∈ SNSPACE (Ω(n log n)) decided by a NTM N, |w | = n.

Initial configuration C : all agents set output to reject.

Use simulation of D.

Non deterministic choice out of k possible.

Exploit faireness of the adversary!

Pause simulation and wait for interaction.
Pick choice based on uid of the other participant.

Simulating branch N rejects: Reset population to C .

N accepts: A good simulating branch starting from C exists.

Simulation keeps reinitiating to C , until that branch is followed.

I. Chatzigiannakis, O. Michail, S. Nikolaou, A. Pavlogiannis, P. Spirakis FOMC 2011 15 / 23



Introduction
The Passively Mobile Communicating Machines Model

Computational Power of the PM Model
Conclusions

Above log n
Below log log n
In O(log log n)

Allowing for non-determinism

Theorem

For any f (n) = Ω(log n), SNSPACE(nf(n)) ⊆ PMSPACE(f(n)).

Proof.

Input string w ∈ SNSPACE (Ω(n log n)) decided by a NTM N, |w | = n.

Initial configuration C : all agents set output to reject.

Use simulation of D.

Non deterministic choice out of k possible.

Exploit faireness of the adversary!

Pause simulation and wait for interaction.
Pick choice based on uid of the other participant.

Simulating branch N rejects: Reset population to C .

N accepts: A good simulating branch starting from C exists.

Simulation keeps reinitiating to C , until that branch is followed.

I. Chatzigiannakis, O. Michail, S. Nikolaou, A. Pavlogiannis, P. Spirakis FOMC 2011 15 / 23



Introduction
The Passively Mobile Communicating Machines Model

Computational Power of the PM Model
Conclusions

Above log n
Below log log n
In O(log log n)

Allowing for non-determinism

Theorem

For any f (n) = Ω(log n), SNSPACE(nf(n)) ⊆ PMSPACE(f(n)).

Proof.

Input string w ∈ SNSPACE (Ω(n log n)) decided by a NTM N, |w | = n.

Initial configuration C : all agents set output to reject.

Use simulation of D.

Non deterministic choice out of k possible.

Exploit faireness of the adversary!

Pause simulation and wait for interaction.
Pick choice based on uid of the other participant.

Simulating branch N rejects: Reset population to C .

N accepts: A good simulating branch starting from C exists.

Simulation keeps reinitiating to C , until that branch is followed.

I. Chatzigiannakis, O. Michail, S. Nikolaou, A. Pavlogiannis, P. Spirakis FOMC 2011 15 / 23



Introduction
The Passively Mobile Communicating Machines Model

Computational Power of the PM Model
Conclusions

Above log n
Below log log n
In O(log log n)

Allowing for non-determinism

Theorem

For any f (n) = Ω(log n), SNSPACE(nf(n)) ⊆ PMSPACE(f(n)).

Proof.

Input string w ∈ SNSPACE (Ω(n log n)) decided by a NTM N, |w | = n.

Initial configuration C : all agents set output to reject.

Use simulation of D.

Non deterministic choice out of k possible.

Exploit faireness of the adversary!

Pause simulation and wait for interaction.
Pick choice based on uid of the other participant.

Simulating branch N rejects: Reset population to C .

N accepts: A good simulating branch starting from C exists.

Simulation keeps reinitiating to C , until that branch is followed.

I. Chatzigiannakis, O. Michail, S. Nikolaou, A. Pavlogiannis, P. Spirakis FOMC 2011 15 / 23



Introduction
The Passively Mobile Communicating Machines Model

Computational Power of the PM Model
Conclusions

Above log n
Below log log n
In O(log log n)

Exact Characterization

Theorem

PMSPACE(f(n)) ⊆ SNSPACE(nf(n)).

Proof Idea.

A NTM N simulates the behaviour of the population.

Encode n agent configurations of size f (n).

Non deterministic guesses of adversarial strategies.

For any f (n) = Ω(log n), PMSPACE(f(n)) = SNSPACE(nf(n)).
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A Space Hierarchy

Theorem

For h(n) ∈ Ω(log n) and recursive l(n), separated by a
nondeterministically fully space constructible function g(n), with
h(n) ∈ Ω(g(n)) but l(n) /∈ Ω(g(n)), ∃ language in
PMSPACE(h(n))− PMSPACE(l(n)).

Proof.

A unary seperation language has been shown to exist for NSPACE.

V. Geffert. Space hierarchy theorem revised.

Unary languages are symmetric: NSPACE = SNSPACE.

But when h(n) ∈ Ω(log n) →
SNSPACE (nh(n)) = PMSPACE (h(n)).

I. Chatzigiannakis, O. Michail, S. Nikolaou, A. Pavlogiannis, P. Spirakis FOMC 2011 17 / 23



Introduction
The Passively Mobile Communicating Machines Model

Computational Power of the PM Model
Conclusions

Above log n
Below log log n
In O(log log n)

A Computational Threshold

Theorem

Threshold. PMSPACE(o(log log n)) = SEM.

Proof Idea

Agent Configuration Graph: Describes the effects of interactions of
protocol A, but ignores the deterministic internal computation.

Fixed for specific A, V .
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A Computational Threshold

Theorem

Threshold. PMSPACE(o(log log n)) = SEM.

Proof Idea

Agent Configuration Graph: Describes the effects of interactions of
protocol A, but ignores the deterministic internal computation.

Fixed for specific A, V .

Moving to V ′, |V ′| > |V | adds new configurations k.

Accessible through interacting configurations (a, b) existing in V .
Since k does not exist in V , a and b cannot exist concurently in V .
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A Computational Threshold (Continued)

Theorem

Threshold. PMSPACE(o(log log n)) = SEM.

Proof Idea

Important Lemma: When f (n) = o(log log n), ∃V such that any

configuration can occur in a subpopulation of size |V |
2 .

V
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A Computational Threshold (Continued)

Theorem

Threshold. PMSPACE(o(log log n)) = SEM.

Proof Idea

Important Lemma: When f (n) = o(log log n), ∃V such that any

configuration can occur in a subpopulation of size |V |
2 .

Partition V in V1, V2.

V

V1 V2
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A Computational Threshold (Continued)

Theorem

Threshold. PMSPACE(o(log log n)) = SEM.

Proof Idea

Important Lemma: When f (n) = o(log log n), ∃V such that any

configuration can occur in a subpopulation of size |V |
2 .

Partition V in V1, V2.

V1 creates a, V2 creates b.

V

V1 V2

a

b
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A Computational Threshold (Continued)

Theorem

Threshold. PMSPACE(o(log log n)) = SEM.

Proof Idea

Important Lemma: When f (n) = o(log log n), ∃V such that any

configuration can occur in a subpopulation of size |V |
2 .

Partition V in V1, V2.

V1 creates a, V2 creates b.

Interaction creates k → k not new in V ′!

V

V1 V2

a

b

k

V ′
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A Computational Threshold (Continued)

Theorem

Threshold. PMSPACE(o(log log n)) = SEM.

Proof Idea

Important Lemma: When f (n) = o(log log n), ∃V such that any

configuration can occur in a subpopulation of size |V |
2 .

Partition V in V1, V2.

V1 creates a, V2 creates b.

Interaction creates k → k not new in V ′!

V V

V1 V2

a

b

k

V ′

No new states in V ′!
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Theorem

Predicate p : logNa = t, for some t is in PMSPACE (log log n).

Whenever xv = xv + 1 for some v, there are at least 2xv+1 a’s.

xv 6= 0 for only one v ⇐⇒ 2xv+1.

Max(xv ) = logNa ≤ log n =⇒ O(log log n) space.

inactive

x = 0

x = 1

x = blogNac
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PMSPACE

o(log log n)

o(log n)

O(log n)

O(ω(log n))

. . .

SNSPACE

SEM

O(n log n)

O(ω(n log n))

. . .

I. Chatzigiannakis, O. Michail, S. Nikolaou, A. Pavlogiannis, P. Spirakis FOMC 2011 21 / 23



Introduction
The Passively Mobile Communicating Machines Model

Computational Power of the PM Model
Conclusions

Conclusions - Further Research

Our contribution:

We have presented a new model to study passive mobility in
interaction-based, distributed, anonymous systems.
We have given a space hierarchy for functions Ω(log n).
We have proved an interesting threshold in o(log log n).

Tight.

Further research:

Computational characterization between log log n and log n.
Fault tolerance.
Probabilistic assumptions & time complexity.
Adversarial perspective.
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Thank You!
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