
Precedence-aware Automated Competitive
Analysis of Real-time Scheduling

Andreas Pavlogiannis Nico Schaumberger Ulrich Schmid
Krishnendu Chatterjee

August 28, 2020



Real-time Scheduling

Task 1

Task 2

Task 3

Task 2

How well is scheduler handling requests? → Competitive analysis

Usually done manually, some recent efforts in automated techniques

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 2



Real-time Scheduling

Task 1

Task 2

Task 3

Task 2

How well is scheduler handling requests? → Competitive analysis

Usually done manually, some recent efforts in automated techniques

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 2



Scheduling Dynamic Tasks

Task 1

Task 2

Task 3

Task 2

Spawn

Challenge

How to we compute competitiveness automatically?

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 3



Scheduling Dynamic Tasks

Task 1

Task 2

Task 3

Task 2

Spawn

Challenge

How to we compute competitiveness automatically?

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 3



This paper

A framework for push-button computation of competitiveness in
precedence-aware scheduling

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 4



Scheduling Model

Discrete time

Input: a collection of tasks Ts = {τ1, . . . , τn}
Each τi = (Eti ,Dli ,Uti ,Npi )

Eti ∈ N+ is the WCET
Dli ∈ N is the relative deadline
Uti ∈ N is the utility value
Npi = {[l1, l2], . . . , [l2k−1, l2k ]} are no-preemption intervals

In each round, various job instances of tasks are released

A scheduler decides which released task takes the processor for a
single time unit

Preemption is allowed given the no-preemption interval of each task

If a job is completed within its deadline, it contributes a utility to
the system

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 5



Scheduling Model

τ1 release τ1 deadline

τ1(1) τ1(2) τ1(3)

non-preemptible

τ1 utility

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 6



Static vs Dynamic Tasks

Static

Tasks are independent

Every release of a task has the same characteristics (e.g., utility)

Dynamic

Tasks are dependent

E.g., completion of a task can cause the release of another

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 7



1. Pairing Precedences

Precursor tasks τ1, . . . , τk

Time window [t1, t2]

Dependent task τ , modified τ ′

Semantics

If all precursor tasks τ1, . . . , τk are completed now, if dependent task
τ is released between t1 and t2 slots, it is modified to τ ′

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 8



1. Pairing Precedences (Example)

Packet Switching

A packet consists of a header fragment τh and a data fragment τd

Serving the data contributes to utility iff the header has been
completed

Pairing precedence: completing τh modifies the utility of the next
release of τd to non-zero

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 9



2. Follower Precedences

Precursor tasks τ1, . . . , τk

Time window [t1, t2]

Dependent task τ

Semantics

If all precursor tasks τ1, . . . , τk are completed now, the dependent
task τ must be released between t1 and t2 slots

When τ is released, the precedence resets

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 10



2. Follower Precedences (Example)

Handshake Protocol

Payload message τp and ack message τa

Ack is sent only if the payload message has been completed

Follower precedence: completing τp releases τa

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 11



Competitiveness (static)

Given a job sequence σ

Take UtA(σ(k)) be the utility of scheduler A in the first k slots

The goal of A is to maximize UtA(σ(k))

How good is the worst-case performance of an online scheduler?

Utility can be 0 if no tasks are ever released

Non-informative

Traditionally, captured by the competitive ratio

CR(A) = inf
B,σ

lim inf
k→∞

1 + UtA(σ(k))

1 + UtB(σ(k))

“The smallest ratio of the utility of A over the utility of an offline
scheduler B”

Note: A and B operate on the same sequence σ

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 12



Competitiveness (static)

Given a job sequence σ

Take UtA(σ(k)) be the utility of scheduler A in the first k slots

The goal of A is to maximize UtA(σ(k))

How good is the worst-case performance of an online scheduler?

Utility can be 0 if no tasks are ever released

Non-informative

Traditionally, captured by the competitive ratio

CR(A) = inf
B,σ

lim inf
k→∞

1 + UtA(σ(k))

1 + UtB(σ(k))

“The smallest ratio of the utility of A over the utility of an offline
scheduler B”

Note: A and B operate on the same sequence σ

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 12



Competitiveness (static)

Given a job sequence σ

Take UtA(σ(k)) be the utility of scheduler A in the first k slots

The goal of A is to maximize UtA(σ(k))

How good is the worst-case performance of an online scheduler?

Utility can be 0 if no tasks are ever released

Non-informative

Traditionally, captured by the competitive ratio

CR(A) = inf
B,σ

lim inf
k→∞

1 + UtA(σ(k))

1 + UtB(σ(k))

“The smallest ratio of the utility of A over the utility of an offline
scheduler B”

Note: A and B operate on the same sequence σ

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 12



Competitiveness (dynamic)

Problem

With dynamic task releases (precedences) the job sequences of online and
offline schedulers might diverge!

E.g., a follower task is only seen by the scheduler that completes the
precursor tasks

This Paper

How do we

1 define, and

2 automatically compute

the competitive ratio in the presence of precedences?

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 13



Competitiveness (dynamic)

Problem

With dynamic task releases (precedences) the job sequences of online and
offline schedulers might diverge!

E.g., a follower task is only seen by the scheduler that completes the
precursor tasks

This Paper

How do we

1 define, and

2 automatically compute

the competitive ratio in the presence of precedences?

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 13



Safety Monitors

Observation: Precedences can be monitored in finite-state

A precedence C can be formally specified by a safety monitor SC

Input alphabet is Θ = Σ× Π

Σ is the set of possible tasks released in each step
Π is the set of possible scheduling decisions on previously released
and non-completed tasks
If C is not satisfied by the environment, SC enters a special reject
state

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 14



Example

Pairing precedence: Completion of τ modifies the next release of τ1 in
the interval [1, 2] to τ ′1

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 15



Global Safety Monitor

S is global safety monitor tracking all precedences

Given a scheduler A, A[σ] is the schedule on job sequence σ

Write σ |= A,S to denote that S accepts (σ,A[σ])

I.e., σ satisfies the precedences of S for the schedule produced by A

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 16



Job Sequence Compatibility

Split the taskset Ts into
Tsb is the baseline taskset

Contains independent tasks

Tsf is the follower taskset
Contains tasks that can be released only as a consequence of a
follower precedence

Tsp is the pairing taskset
Contains the paired version τ ′ of each task τ that is a consequence
to a pairing precedence
A grounding function f maps τ ′ to τ

Compatible Sequences

Two job sequences σ1 and σ2 are compatible σ1 on σ2 iff(
σ`1 ∪ f (σ`1)

)
∩ Tsb =

(
σ`2 ∪ f (σ`2)

)
∩ Tsb

“At every slot `, baseline tasks and groundings of pairing tasks should
coincide in σ1, σ2”

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 17



Job Sequence Compatibility

Split the taskset Ts into
Tsb is the baseline taskset

Contains independent tasks

Tsf is the follower taskset
Contains tasks that can be released only as a consequence of a
follower precedence

Tsp is the pairing taskset
Contains the paired version τ ′ of each task τ that is a consequence
to a pairing precedence
A grounding function f maps τ ′ to τ

Compatible Sequences

Two job sequences σ1 and σ2 are compatible σ1 on σ2 iff(
σ`1 ∪ f (σ`1)

)
∩ Tsb =

(
σ`2 ∪ f (σ`2)

)
∩ Tsb

“At every slot `, baseline tasks and groundings of pairing tasks should
coincide in σ1, σ2”

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 17



Putting it all Together

Competitive ratio under precedences

CR(A) = inf
B,σA,σB :
σAonσB
σA|=A,S
σB|=B,S

lim inf
k→∞

1 + UtA(σA(k))

1 + UtB(σB(k))

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 18



We have defined competitiveness under precedences

How to compute it automatically given an online scheduler and a
taskset?

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 19



Schedulers as Labeled Transition Systems

Let Dlmax be the maximum deadline

No need to remember task releases more than Dlmax slots ago

Finite state!

Online scheduler

Represented as a deterministic labeled-transition system

Input alphabet is Θ = Σ, the set of possible tasks released in each
step

Output alphabet is Ξ = Π, is the set of possible scheduling choices
for tasks released in the last Dlmax slots

Offline scheduler

Offline scheduler → Online, but non-deterministic

Represented as a finite-state labeled transition system

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 20



Schedulers as Labeled Transition Systems

Let Dlmax be the maximum deadline

No need to remember task releases more than Dlmax slots ago

Finite state!

Online scheduler

Represented as a deterministic labeled-transition system

Input alphabet is Θ = Σ, the set of possible tasks released in each
step

Output alphabet is Ξ = Π, is the set of possible scheduling choices
for tasks released in the last Dlmax slots

Offline scheduler

Offline scheduler → Online, but non-deterministic

Represented as a finite-state labeled transition system

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 20



Schedulers as Labeled Transition Systems

Let Dlmax be the maximum deadline

No need to remember task releases more than Dlmax slots ago

Finite state!

Online scheduler

Represented as a deterministic labeled-transition system

Input alphabet is Θ = Σ, the set of possible tasks released in each
step

Output alphabet is Ξ = Π, is the set of possible scheduling choices
for tasks released in the last Dlmax slots

Offline scheduler

Offline scheduler → Online, but non-deterministic

Represented as a finite-state labeled transition system

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 20



Main Contribution

Schedulers, precedences, job sequence compatibility, all represented
as finite state automata

Take their Cartesian product P
Competitive ratio reduces to the minimum mean cycle problem on
the state space of P

Theorem

The competitive ratio CR(A) can be computed in
O((n ·m) · log(n · Utmax)) time, where

n is the number of states in P
m is the number of transitions in P
Utmax is the maximum utility of all tasks

In the paper: A parallel algorithm (CUDA)

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 21



Main Contribution

Schedulers, precedences, job sequence compatibility, all represented
as finite state automata

Take their Cartesian product P
Competitive ratio reduces to the minimum mean cycle problem on
the state space of P

Theorem

The competitive ratio CR(A) can be computed in
O((n ·m) · log(n · Utmax)) time, where

n is the number of states in P
m is the number of transitions in P
Utmax is the maximum utility of all tasks

In the paper: A parallel algorithm (CUDA)

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 21



Main Contribution

Schedulers, precedences, job sequence compatibility, all represented
as finite state automata

Take their Cartesian product P
Competitive ratio reduces to the minimum mean cycle problem on
the state space of P

Theorem

The competitive ratio CR(A) can be computed in
O((n ·m) · log(n · Utmax)) time, where

n is the number of states in P
m is the number of transitions in P
Utmax is the maximum utility of all tasks

In the paper: A parallel algorithm (CUDA)

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 21



Experiments

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 22



Example Scheduling Scenarios with Precedences

1 Packet Switching (PS)

Packet consists of a header τh, data τd
Pairing precedence: τd has positive utility only if paired with τh

2 Handshake Protocols (HP)

Handshake consists of a payload message τp and an acknowledgment
τa
Follower precedence: τa released iff τp is completed

3 Sporadic Interrupts (SI)

Periodic worker τw , interrupt τi
Pairing precedence: workload and utility of τw depend on preceding
interrupt

4 Query Scheduling (QS)

Completing query τ1 releases τ3
Completing τ1 and either τ2 or τ3 releases τ4
Follower precedence: τ3 released iff τ1 is completed
Follower precedence: τ4 released iff τ1 and either τ2 or τ3 are
completed
Pairing precedence: zeros the utility of one τ4 release when all
τ1, τ2, τ3 are completed

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 23



10 Schedulers Tested

1 Earliest Deadline First
(EDF)

2 Earliest Deadline First
(EDF∗)

3 First-in First-out (FIFO)

4 Static Priorities (SP)

5 Dynamic Priorities (DP)

1 Smallest Remaining
Time (SRT)

2 Profit Density (PD)

3 Smallest Slack Time
(SST)

4 D-over (Dover )

5 D-star (D∗)

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 24



Competitive Ratios (1)

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 25



Competitive Ratios (2)

Competitive ratio varies drastically per scheduler/taskset

Very hard to predict/analyze by hand

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 26



Competitive Ratios (2)

Competitive ratio varies drastically per scheduler/taskset

Very hard to predict/analyze by hand

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 26



Effect of Parallelism

3072 cores

How much speedup?

Ts1 Ts2 Ts3 Ts4 Ts5 Ts6

10-4

10-3

10-2

10-1

100

101

102

103

104

105

T
im

e
 (

s)

parallel

sequential

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 27



Effect of Parallelism

3072 cores

How much speedup?

Ts1 Ts2 Ts3 Ts4 Ts5 Ts6

10-4

10-3

10-2

10-1

100

101

102

103

104

105

T
im

e
 (

s)

parallel

sequential

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 27



Conclusion

1 Competitiveness characterizes a real-time scheduler’s performance

2 Automated techniques for competitiveness can be very instrumental

3 Research in fairly early stages

This work
1 A framework for formal, automated competitive analysis

2 Uniprocessor, firm deadlines

3 Precedences capture dynamic interaction between tasks

4 Parallel implementation based on CUDA

5 Results show competitiveness is very intricate in presence of
precedences

6 Tool support is instrumental

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 28



Conclusion

1 Competitiveness characterizes a real-time scheduler’s performance

2 Automated techniques for competitiveness can be very instrumental

3 Research in fairly early stages

This work
1 A framework for formal, automated competitive analysis

2 Uniprocessor, firm deadlines

3 Precedences capture dynamic interaction between tasks

4 Parallel implementation based on CUDA

5 Results show competitiveness is very intricate in presence of
precedences

6 Tool support is instrumental

Precedence-aware Automated Competitive Analysis of Real-time Scheduling 28


