Precedence-aware Automated Competitive Analysis of Real-time Scheduling

Andreas Pavlogiannis Nico Schaumberger Ulrich Schmid Krishnendu Chatterjee

August 28, 2020

Institute of Science and Technology

Real-time Scheduling

Real-time Scheduling

- How well is scheduler handling requests? \rightarrow Competitive analysis
- Usually done manually, some recent efforts in automated techniques

Scheduling Dynamic Tasks

Scheduling Dynamic Tasks

Challenge

How to we compute competitiveness automatically?

A framework for push-button computation of competitiveness in precedence-aware scheduling

Scheduling Model

- Discrete time
- Input: a collection of tasks $Ts = \{\tau_1, \dots, \tau_n\}$
- Each $\tau_i = (\mathsf{Et}_i, \mathsf{DI}_i, \mathsf{Ut}_i, \mathsf{Np}_i)$
 - $\mathsf{Et}_i \in \mathbb{N}^+$ is the WCET
 - $\mathsf{DI}_i \in \mathbb{N}$ is the relative deadline
 - $Ut_i \in \mathbb{N}$ is the utility value
 - $Np_i = \{[l_1, l_2], \dots, [l_{2k-1}, l_{2k}]\}$ are no-preemption intervals

- In each round, various job instances of tasks are released
- A scheduler decides which released task takes the processor for a single time unit
- Preemption is allowed given the no-preemption interval of each task
- If a job is completed within its deadline, it contributes a utility to the system

<u>Static</u>

- Tasks are independent
- Every release of a task has the same characteristics (e.g., utility)

Dynamic

- Tasks are dependent
- E.g., completion of a task can cause the release of another

- Precursor tasks τ_1, \ldots, τ_k
- Time window [*t*₁, *t*₂]
- Dependent task au, modified au'

Semantics

• If all precursor tasks τ_1, \ldots, τ_k are completed now, if dependent task τ is released between t_1 and t_2 slots, it is modified to τ'

1. Pairing Precedences (Example)

Packet Switching

- A packet consists of a header fragment τ_h and a data fragment τ_d
- Serving the data contributes to utility iff the header has been completed
- Pairing precedence: completing τ_h modifies the utility of the next release of τ_d to non-zero

- Precursor tasks τ_1, \ldots, τ_k
- Time window [*t*₁, *t*₂]
- Dependent task τ

Semantics

- If all precursor tasks τ_1, \ldots, τ_k are completed now, the dependent task τ must be released between t_1 and t_2 slots
- \bullet When τ is released, the precedence resets

2. Follower Precedences (Example)

Handshake Protocol

- Payload message τ_p and ack message τ_a
- Ack is sent only if the payload message has been completed
- Follower precedence: completing τ_p releases τ_a

Competitiveness (static)

- Given a job sequence σ
- Take $Ut_{\mathcal{A}}(\sigma(k))$ be the utility of scheduler \mathcal{A} in the first k slots
- The goal of \mathcal{A} is to maximize $Ut_{\mathcal{A}}(\sigma(k))$

Competitiveness (static)

- Given a job sequence σ
- Take $Ut_{\mathcal{A}}(\sigma(k))$ be the utility of scheduler \mathcal{A} in the first k slots
- The goal of \mathcal{A} is to maximize $Ut_{\mathcal{A}}(\sigma(k))$

How good is the worst-case performance of an online scheduler?

- Utility can be 0 if no tasks are ever released
- Non-informative

Competitiveness (static)

- Given a job sequence σ
- Take $Ut_{\mathcal{A}}(\sigma(k))$ be the utility of scheduler \mathcal{A} in the first k slots
- The goal of \mathcal{A} is to maximize $Ut_{\mathcal{A}}(\sigma(k))$

How good is the worst-case performance of an online scheduler?

- Utility can be 0 if no tasks are ever released
- Non-informative

Traditionally, captured by the competitive ratio

$$\mathcal{CR}(\mathcal{A}) = \inf_{\mathcal{B},\sigma} \quad \liminf_{k \to \infty} \frac{1 + \operatorname{Ut}_{\mathcal{A}}(\sigma(k))}{1 + \operatorname{Ut}_{\mathcal{B}}(\sigma(k))}$$

- "The smallest ratio of the utility of ${\mathcal A}$ over the utility of an offline scheduler ${\mathcal B}"$
- Note: ${\cal A}$ and ${\cal B}$ operate on the same sequence σ

Problem

With *dynamic* task releases (precedences) the job sequences of online and offline schedulers might diverge!

E.g., a follower task is only seen by the scheduler that completes the precursor tasks

Problem

With *dynamic* task releases (precedences) the job sequences of online and offline schedulers might diverge!

E.g., a follower task is only seen by the scheduler that completes the precursor tasks

This Paper

How do we

- define, and
- automatically compute

the competitive ratio in the presence of precedences?

Observation: Precedences can be monitored in finite-state

A precedence C can be formally specified by a safety monitor \mathcal{S}^{C}

- Input alphabet is $\Theta = \Sigma \times \Pi$
 - $\bullet~\Sigma$ is the set of possible tasks released in each step
 - $\bullet~\Pi$ is the set of possible scheduling decisions on previously released and non-completed tasks
 - If C is not satisfied by the environment, S^{C} enters a special *reject* state

Example

Pairing precedence: Completion of τ modifies the next release of τ_1 in the interval [1,2] to τ_1'

- $\overline{\mathcal{S}}$ is global safety monitor tracking all precedences
- Given a scheduler \mathcal{A} , $\mathcal{A}[\sigma]$ is the schedule on job sequence σ
- Write $\sigma \models A, \overline{S}$ to denote that \overline{S} accepts $(\sigma, A[\sigma])$
- I.e., σ satisfies the precedences of $\overline{\mathcal{S}}$ for the schedule produced by \mathcal{A}

Job Sequence Compatibility

Split the taskset Ts into

- Ts_b is the baseline taskset
 - Contains independent tasks
- Ts_f is the follower taskset
 - Contains tasks that can be released only as a consequence of a follower precedence
- Ts_p is the *pairing* taskset
 - \bullet Contains the paired version τ' of each task τ that is a consequence to a pairing precedence
 - A grounding function f maps τ' to τ

Job Sequence Compatibility

Split the taskset Ts into

- Ts_b is the baseline taskset
 - Contains independent tasks
- Ts_f is the follower taskset
 - Contains tasks that can be released only as a consequence of a follower precedence
- Ts_p is the *pairing* taskset
 - \bullet Contains the paired version τ' of each task τ that is a consequence to a pairing precedence
 - A grounding function f maps τ' to τ

Compatible Sequences

Two job sequences σ_1 and σ_2 are *compatible* $\sigma_1 \bowtie \sigma_2$ iff

$$ig(\sigma_1^\ell \cup f(\sigma_1^\ell)ig) \cap \mathsf{Ts}_b = ig(\sigma_2^\ell \cup f(\sigma_2^\ell)ig) \cap \mathsf{Ts}_b$$

"At every slot $\ell,$ baseline tasks and groundings of pairing tasks should coincide in σ_1,σ_2 "

Competitive ratio under precedences

$$\mathcal{CR}(\mathcal{A}) = \inf_{\substack{\mathcal{B}, \sigma_{\mathcal{A}}, \sigma_{\mathcal{B}}:\\\sigma_{\mathcal{A}} \bowtie \sigma_{\mathcal{B}} \\ \sigma_{\mathcal{A}} \models \mathcal{A}, \overline{\mathcal{S}} \\ \sigma_{\mathcal{B}} \models \mathcal{B}, \overline{\mathcal{S}}}} \lim_{k \to \infty} \frac{\liminf_{k \to \infty} \frac{1 + \operatorname{Ut}_{\mathcal{A}}(\sigma_{\mathcal{A}}(k))}{1 + \operatorname{Ut}_{\mathcal{B}}(\sigma_{\mathcal{B}}(k))}$$

- We have defined competitiveness under precedences
- How to compute it automatically given an online scheduler and a taskset?

Schedulers as Labeled Transition Systems

- Let DI_{max} be the maximum deadline
- \bullet No need to remember task releases more than $\mathsf{DI}_{\mathsf{max}}$ slots ago
- Finite state!

Schedulers as Labeled Transition Systems

- Let DI_{max} be the maximum deadline
- \bullet No need to remember task releases more than $\mathsf{DI}_{\mathsf{max}}$ slots ago
- Finite state!

Online scheduler

- Represented as a deterministic labeled-transition system
- Input alphabet is $\Theta = \Sigma,$ the set of possible tasks released in each step
- Output alphabet is $\Xi=\Pi,$ is the set of possible scheduling choices for tasks released in the last DI_{max} slots

Schedulers as Labeled Transition Systems

- Let DI_{max} be the maximum deadline
- \bullet No need to remember task releases more than $\mathsf{DI}_{\mathsf{max}}$ slots ago
- Finite state!

Online scheduler

- Represented as a deterministic labeled-transition system
- Input alphabet is $\Theta = \Sigma,$ the set of possible tasks released in each step
- Output alphabet is $\Xi=\Pi,$ is the set of possible scheduling choices for tasks released in the last DI_{max} slots

Offline scheduler

- \bullet Offline scheduler \rightarrow Online, but *non-deterministic*
- Represented as a finite-state labeled transition system

Main Contribution

- Schedulers, precedences, job sequence compatibility, all represented as finite state automata
- $\bullet\,$ Take their Cartesian product ${\cal P}\,$
- \bullet Competitive ratio reduces to the minimum mean cycle problem on the state space of $\mathcal P$

Main Contribution

- Schedulers, precedences, job sequence compatibility, all represented as finite state automata
- $\bullet\,$ Take their Cartesian product ${\cal P}\,$
- \bullet Competitive ratio reduces to the minimum mean cycle problem on the state space of $\mathcal P$

Theorem

The competitive ratio CR(A) can be computed in $O((n \cdot m) \cdot \log(n \cdot Ut_{max}))$ time, where

- n is the number of states in $\mathcal P$
- m is the number of transitions in ${\mathcal P}$
- Ut_{max} is the maximum utility of all tasks

Main Contribution

- Schedulers, precedences, job sequence compatibility, all represented as finite state automata
- $\bullet\,$ Take their Cartesian product ${\cal P}\,$
- \bullet Competitive ratio reduces to the minimum mean cycle problem on the state space of $\mathcal P$

Theorem

The competitive ratio CR(A) can be computed in $O((n \cdot m) \cdot \log(n \cdot Ut_{max}))$ time, where

- n is the number of states in $\mathcal P$
- ullet m is the number of transitions in ${\mathcal P}$
- Ut_{max} is the maximum utility of all tasks

In the paper: A parallel algorithm (CUDA)

Experiments

Example Scheduling Scenarios with Precedences

Packet Switching (PS)

- Packet consists of a header τ_h , data τ_d
- Pairing precedence: τ_d has positive utility only if paired with τ_h
- e Handshake Protocols (HP)
 - $\bullet\,$ Handshake consists of a payload message $\tau_{\rm p}$ and an acknowledgment $\tau_{\rm a}$
 - Follower precedence: τ_a released iff τ_p is completed
- Sporadic Interrupts (SI)
 - Periodic worker τ_w , interrupt τ_i
 - Pairing precedence: workload and utility of τ_w depend on preceding interrupt
- Query Scheduling (QS)
 - Completing query τ_1 releases τ_3
 - Completing τ_1 and either τ_2 or τ_3 releases τ_4
 - Follower precedence: τ_3 released iff τ_1 is completed
 - Follower precedence: τ_4 released iff τ_1 and either τ_2 or τ_3 are completed
 - Pairing precedence: zeros the utility of one τ_4 release when all τ_1, τ_2, τ_3 are completed

- Earliest Deadline First (EDF)
- Earliest Deadline First (EDF*)
- First-in First-out (FIFO)
- Static Priorities (SP)
- Oynamic Priorities (DP)

- Smallest Remaining Time (SRT)
- Profit Density (PD)
- Smallest Slack Time (SST)
- Over (D^{over})
- D-star (D*)

Competitive Ratios (1)

Competitive Ratios (2)

Competitive Ratios (2)

- Competitive ratio varies drastically per scheduler/taskset
- Very hard to predict/analyze by hand

Effect of Parallelism

- 3072 cores
- How much speedup?

Effect of Parallelism

- 3072 cores
- How much speedup?

Conclusion

- **O** Competitiveness characterizes a real-time scheduler's performance
- Automated techniques for competitiveness can be very instrumental
- Research in fairly early stages

Conclusion

- **O** Competitiveness characterizes a real-time scheduler's performance
- Automated techniques for competitiveness can be very instrumental
- Research in fairly early stages

This work

- A framework for formal, automated competitive analysis
- Oniprocessor, firm deadlines
- Precedences capture dynamic interaction between tasks
- Parallel implementation based on CUDA
- Results show competitiveness is very intricate in presence of precedences
- Tool support is instrumental