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This paper

A framework for push-button computation of competitiveness in
precedence-aware scheduling
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Scheduling Model

Discrete time

Input: a collection of tasks Ts = {τ1, . . . , τn}
Each τi = (Eti ,Dli ,Uti ,Npi )

Eti ∈ N+ is the WCET
Dli ∈ N is the relative deadline
Uti ∈ N is the utility value
Npi = {[l1, l2], . . . , [l2k−1, l2k ]} are no-preemption intervals

In each round, various job instances of tasks are released

A scheduler decides which released task takes the processor for a
single time unit

Preemption is allowed given the no-preemption interval of each task

If a job is completed within its deadline, it contributes a utility to
the system
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Scheduling Model

τ1 release τ1 deadline

τ1(1) τ1(2) τ1(3)

non-preemptible

τ1 utility
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Static vs Dynamic Tasks

Static

Tasks are independent

Every release of a task has the same characteristics (e.g., utility)

Dynamic

Tasks are dependent

E.g., completion of a task can cause the release of another
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1. Pairing Precedences

Precursor tasks τ1, . . . , τk

Time window [t1, t2]

Dependent task τ , modified τ ′

Semantics

If all precursor tasks τ1, . . . , τk are completed now, if dependent task
τ is released between t1 and t2 slots, it is modified to τ ′
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1. Pairing Precedences (Example)

Packet Switching

A packet consists of a header fragment τh and a data fragment τd

Serving the data contributes to utility iff the header has been
completed

Pairing precedence: completing τh modifies the utility of the next
release of τd to non-zero
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2. Follower Precedences

Precursor tasks τ1, . . . , τk

Time window [t1, t2]

Dependent task τ

Semantics

If all precursor tasks τ1, . . . , τk are completed now, the dependent
task τ must be released between t1 and t2 slots

When τ is released, the precedence resets
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2. Follower Precedences (Example)

Handshake Protocol

Payload message τp and ack message τa

Ack is sent only if the payload message has been completed

Follower precedence: completing τp releases τa
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Competitiveness (static)

Given a job sequence σ

Take UtA(σ(k)) be the utility of scheduler A in the first k slots

The goal of A is to maximize UtA(σ(k))

How good is the worst-case performance of an online scheduler?

Utility can be 0 if no tasks are ever released

Non-informative

Traditionally, captured by the competitive ratio

CR(A) = inf
B,σ

lim inf
k→∞

1 + UtA(σ(k))

1 + UtB(σ(k))

“The smallest ratio of the utility of A over the utility of an offline
scheduler B”

Note: A and B operate on the same sequence σ
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Competitiveness (dynamic)

Problem

With dynamic task releases (precedences) the job sequences of online and
offline schedulers might diverge!

E.g., a follower task is only seen by the scheduler that completes the
precursor tasks

This Paper

How do we

1 define, and

2 automatically compute

the competitive ratio in the presence of precedences?
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Safety Monitors

Observation: Precedences can be monitored in finite-state

A precedence C can be formally specified by a safety monitor SC

Input alphabet is Θ = Σ× Π

Σ is the set of possible tasks released in each step
Π is the set of possible scheduling decisions on previously released
and non-completed tasks
If C is not satisfied by the environment, SC enters a special reject
state
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Example

Pairing precedence: Completion of τ modifies the next release of τ1 in
the interval [1, 2] to τ ′1
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Global Safety Monitor

S is global safety monitor tracking all precedences

Given a scheduler A, A[σ] is the schedule on job sequence σ

Write σ |= A,S to denote that S accepts (σ,A[σ])

I.e., σ satisfies the precedences of S for the schedule produced by A
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Job Sequence Compatibility

Split the taskset Ts into
Tsb is the baseline taskset

Contains independent tasks

Tsf is the follower taskset
Contains tasks that can be released only as a consequence of a
follower precedence

Tsp is the pairing taskset
Contains the paired version τ ′ of each task τ that is a consequence
to a pairing precedence
A grounding function f maps τ ′ to τ

Compatible Sequences

Two job sequences σ1 and σ2 are compatible σ1 on σ2 iff(
σ`1 ∪ f (σ`1)

)
∩ Tsb =

(
σ`2 ∪ f (σ`2)

)
∩ Tsb

“At every slot `, baseline tasks and groundings of pairing tasks should
coincide in σ1, σ2”
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Putting it all Together

Competitive ratio under precedences

CR(A) = inf
B,σA,σB :
σAonσB
σA|=A,S
σB|=B,S

lim inf
k→∞

1 + UtA(σA(k))

1 + UtB(σB(k))
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We have defined competitiveness under precedences

How to compute it automatically given an online scheduler and a
taskset?
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Schedulers as Labeled Transition Systems

Let Dlmax be the maximum deadline

No need to remember task releases more than Dlmax slots ago

Finite state!

Online scheduler

Represented as a deterministic labeled-transition system

Input alphabet is Θ = Σ, the set of possible tasks released in each
step

Output alphabet is Ξ = Π, is the set of possible scheduling choices
for tasks released in the last Dlmax slots

Offline scheduler

Offline scheduler → Online, but non-deterministic

Represented as a finite-state labeled transition system
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Main Contribution

Schedulers, precedences, job sequence compatibility, all represented
as finite state automata

Take their Cartesian product P
Competitive ratio reduces to the minimum mean cycle problem on
the state space of P

Theorem

The competitive ratio CR(A) can be computed in
O((n ·m) · log(n · Utmax)) time, where

n is the number of states in P
m is the number of transitions in P
Utmax is the maximum utility of all tasks

In the paper: A parallel algorithm (CUDA)
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Experiments
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Example Scheduling Scenarios with Precedences

1 Packet Switching (PS)

Packet consists of a header τh, data τd
Pairing precedence: τd has positive utility only if paired with τh

2 Handshake Protocols (HP)

Handshake consists of a payload message τp and an acknowledgment
τa
Follower precedence: τa released iff τp is completed

3 Sporadic Interrupts (SI)

Periodic worker τw , interrupt τi
Pairing precedence: workload and utility of τw depend on preceding
interrupt

4 Query Scheduling (QS)

Completing query τ1 releases τ3
Completing τ1 and either τ2 or τ3 releases τ4
Follower precedence: τ3 released iff τ1 is completed
Follower precedence: τ4 released iff τ1 and either τ2 or τ3 are
completed
Pairing precedence: zeros the utility of one τ4 release when all
τ1, τ2, τ3 are completed
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10 Schedulers Tested

1 Earliest Deadline First
(EDF)

2 Earliest Deadline First
(EDF∗)

3 First-in First-out (FIFO)

4 Static Priorities (SP)

5 Dynamic Priorities (DP)

1 Smallest Remaining
Time (SRT)

2 Profit Density (PD)

3 Smallest Slack Time
(SST)

4 D-over (Dover )

5 D-star (D∗)
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Competitive Ratios (1)
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Competitive Ratios (2)

Competitive ratio varies drastically per scheduler/taskset

Very hard to predict/analyze by hand
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Effect of Parallelism

3072 cores

How much speedup?
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Conclusion

1 Competitiveness characterizes a real-time scheduler’s performance

2 Automated techniques for competitiveness can be very instrumental

3 Research in fairly early stages

This work
1 A framework for formal, automated competitive analysis

2 Uniprocessor, firm deadlines

3 Precedences capture dynamic interaction between tasks

4 Parallel implementation based on CUDA

5 Results show competitiveness is very intricate in presence of
precedences

6 Tool support is instrumental
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