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Diffusion processes

Natural spread through networks
propagation of information in social networks
spread of virus in human population
spread of mutation in biological networks

Type of Diffusion process
1 Progressive:

independent cascade,
linear threshold,
triggering,...

2 Non-Progressive:
moran, voter, SIR,
SIS,...

This paper: Non-Progressive model that describes the spread of
mutation/novel-trait.
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Positional Voter Model - This Work
Graph: Population of n agents spread over nodes of graph G = (V,E,w).

Agents:
Mutants Residents

Nodes:
Biased Unbiased

Fitness:

1+δ

f(u|v)death - Birth

v u

1v u

uv

uv 1
1

Process:

⇒ Initially residents occupy all nodes.
⇒ t = 0: random mutation in one agent.
⇒ t > 0: repeat death-Birth steps:

1 death: Pick random node vvv to update.
2 Birth: Pick an in-neighbor node uuu of vvv

proportionally to its fitness f(u∣v) and
edge-weight w(u, v) ( f(u∣v)w(u,v)

∑k f(k∣v)w(k,v)) to
transfer its trait on vvv.

Example
for δ=2
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Fixation Probability

Setting Parameters: graph G, set of biased nodes S, bias δ.

Fixation Probability: The probability fp(GS , δ) that a random
mutation leads to fixation.
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Positional vs. Standard Voter Model [Liggett 1975]

S=V Ô⇒ Positional = Standard

Positional Standard
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Fixation Maximization

Optimization Problem: Given a graph G and a budget k, which k
nodes should we bias with δ to maximize the fixation probability?

S∗ = argmaxS,∣S∣=k fp(GS , δ)

Results Overview:
1 FPRAS: for fp(GS , δ) in

undirected graphs.
2 Monotone and non-Submodular

in general.
3 NP-hardness of

S∗ = argmaxS,∣S∣=k fp(GS , δ).
4 Approximations for undirected

graphs with self-loops and δ →∞.
5 Optimal Solution in polynomial

time for symmetric graphs (i.e.
w(u, v) = w(v, u)) as δ → 0.
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FPRAS

The complexity of computing fp(GS , δ) is OPEN even when S = V .

Lemma 1 - Expected Time
For undirected graphs, the expected time to a homogeneous state
(all nodes are either mutants or residents) is O(n5).

Approximations of fp(GS , δ) via monte-carlo simulations in P-time.
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Monotonicity & Non-Submodularity

Lemma 2 - Monotonicity

Given biased sets S1, S2 with S1 ⊆ S2 and
δ1, δ2 ≥ 0 with δ1 ≤ δ2, we have:

fp(GS1 , δ1) ≤ fp(GS2 , δ2)

1+δ

f(u|v)death - Birth

v u

1v u

uv

uv 1
1

Lemma 3 - Non-Submodularity

fp(GS , δ) is not submodular.
fp∞(GS) is not submodular in general.

Submodular function: ∀S1, S2 ⊆ V ⇒ f(S1) + f(S2) ≥ f(S1 ∪ S2) + f(S1 ∩ S2)
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Key Lemma

Lemma 4 - Self-looped Graphs
In undirected graphs with self-loops, if
δ → ∞, mutant agents in biased nodes
are deathless; reproduce to themselves
with probability 1.

1+δ

f(u|v)death - Birth

v u

1v u

uv

uv 1
1

If trajectory Xt = (X0,X1, ...,Xt) hits S Ô⇒ mutants fixate

S

Xt
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NP-hardness

Theorem 5 - NP-hard

Maximizing fp(GS , δ) with ∣S∣ = k, is NP-hard.

Proof.
Reduction from Vertex Cover in regular graphs, which is NP-hard.
On undirected d-regular graphs with self-loops:

fp∞(GS) =
∣S∣
n
+d

1+d ⇔ S is a vertex-cover.

fp∞(GS) =
2
4
+3

1+3 =
3.5
4

fp∞(GS) < 3.5
4
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Approximations

Lemma 6 - Submodularity

For undirected graphs with self-loops fp∞(GS) is submodular;
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Approximations

Corollary - Approximations

In undirected graphs with self-loops, fp∞(GS) is:

Monotone + Submodular
ÚÚÙ

(1-1/e)(1-1/e)(1-1/e) greedy approximation algorithm [Nemhauser1978]
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Optimal Solution

Theorem 7 - Optimal Solution

For symmetric graphs (w(u, v) = w(v, u)), when δ → 0, finding
S∗ = argmaxS,∣S∣=k fp(GS , δ) can be solved in P-time.

Proof.
Using the Taylor expansion of
fp(GS , δ) around δ = 0, that is:

fp(GS ,0) + δ ⋅ fp′(GS ,0) +O(δ2)
⇑ ⇑ ⇑

1/n Maximize this 0

By solving a linear system of n2

unknowns we can find the optimal
S∗ = argmaxS,∣S∣=k fp

′(GS ,0).

Petros Petsinis, Andreas Pavlogiannis, Panagiotis Karras Department of Computer Science, AU

Maximizing the Probability of Fixation in the Positional Voter Model 13 / 14



Optimal Solution

Theorem 7 - Optimal Solution

For symmetric graphs (w(u, v) = w(v, u)), when δ → 0, finding
S∗ = argmaxS,∣S∣=k fp(GS , δ) can be solved in P-time.

Proof.
Using the Taylor expansion of
fp(GS , δ) around δ = 0, that is:

fp(GS ,0) + δ ⋅ fp′(GS ,0) +O(δ2)
⇑ ⇑ ⇑

1/n Maximize this 0

By solving a linear system of n2

unknowns we can find the optimal
S∗ = argmaxS,∣S∣=k fp

′(GS ,0).

Petros Petsinis, Andreas Pavlogiannis, Panagiotis Karras Department of Computer Science, AU

Maximizing the Probability of Fixation in the Positional Voter Model 13 / 14



Results Overview

1 FPRAS: for fp(GS , δ) in undirected graphs.
2 Monotone and not Submodular in general.
3 NP-hardness of S∗ = argmaxS,∣S∣=k fp(GS , δ).
4 Approximation Algorithm for undirected graphs with

self-loops and δ →∞:
Monotone + Submodular → 1 − 1/e greedy apx. algorithm.

5 Optimal Solution in polynomial time for symmetric graphs
(i.e. w(u, v) = w(v, u)) as δ → 0.

Thank you!
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