Maximizing the Probability of Fixation in the Positional Voter Model

Petros Petsinis, Andreas Pavlogiannis, Panagiotis Karras
Department of Computer Science
Aarhus University

February 11, 2023

Diffusion processes

Natural spread through networks

- propagation of information in social networks
- spread of virus in human population
- spread of mutation in biological networks

Diffusion processes

Natural spread through networks

- propagation of information in social networks
- spread of virus in human population
- spread of mutation in biological networks

Type of Diffusion process

Diffusion processes

Natural spread through networks

- propagation of information in social networks
- spread of virus in human population
- spread of mutation in biological networks

Type of Diffusion process
(1) Progressive: independent cascade, linear threshold, triggering,...

Diffusion processes

Natural spread through networks

- propagation of information in social networks
- spread of virus in human population
- spread of mutation in biological networks

Type of Diffusion process
(1) Progressive: independent cascade, linear threshold, triggering,...
(2) Non-Progressive: moran, voter, SIR, SIS,...

Diffusion processes

Natural spread through networks

- propagation of information in social networks
- spread of virus in human population
- spread of mutation in biological networks

Type of Diffusion process
(1) Progressive: independent cascade, linear threshold, triggering,...
(2) Non-Progressive: moran, voter, SIR, SIS,...

This paper: Non-Progressive model that describes the spread of mutation/novel-trait.

Positional Voter Model - This Work

Graph: Population of n agents spread over nodes of graph $G=(V, E, w)$.

Positional Voter Model - This Work

Graph: Population of n agents spread over nodes of graph $G=(V, E, w)$.
Agents:

Nodes:

Positional Voter Model - This Work

Graph: Population of n agents spread over nodes of graph $G=(V, E, w)$.
Agents:

Nodes:

Process:

Positional Voter Model - This Work

Graph: Population of n agents spread over nodes of graph $G=(V, E, w)$.

Agents:

Nodes:

Process:

\Rightarrow Initially residents occupy all nodes.

Example

Positional Voter Model - This Work

Graph: Population of n agents spread over nodes of graph $G=(V, E, w)$.

Agents:

Nodes:

Process:

\Rightarrow Initially residents occupy all nodes.
$\Rightarrow t=0$: random mutation in one agent.

Positional Voter Model - This Work

Graph: Population of n agents spread over nodes of graph $G=(V, E, w)$.

Agents:

Nodes:

Process:

\Rightarrow Initially residents occupy all nodes.
$\Rightarrow t=0$: random mutation in one agent.
$\Rightarrow t>0$: repeat death-Birth steps:

Positional Voter Model - This Work

Graph: Population of n agents spread over nodes of graph $G=(V, E, w)$.

Agents:

Nodes:

Process:

\Rightarrow Initially residents occupy all nodes.
$\Rightarrow t=0$: random mutation in one agent.
$\Rightarrow t>0$: repeat death-Birth steps:
(1) death: Pick random node \boldsymbol{v} to update.

Positional Voter Model - This Work

Graph: Population of n agents spread over nodes of graph $G=(V, E, w)$.
Agents:

Nodes:

Fitness:

Positional Voter Model - This Work

Graph: Population of n agents spread over nodes of graph $G=(V, E, w)$.

Agents:

Nodes:

Fitness:

death - Birth	f(u\|v)	
v)	u	$1+\delta$
v	u	1
v	u	1
v	u	1

Process:

\Rightarrow Initially residents occupy all nodes.
$\Rightarrow t=0$: random mutation in one agent.
$\Rightarrow t>0$: repeat death-Birth steps:
(1) death: Pick random node \boldsymbol{v} to update.
(2) Birth: Pick an in-neighbor node \boldsymbol{u} of \boldsymbol{v} proportionally to its fitness $f(u \mid v)$ and edge-weight $w(u, v)\left(\frac{f(u \mid v) w(u, v)}{\sum_{k} f(k \mid v) w(k, v)}\right)$ to transfer its trait on \boldsymbol{v}.

Positional Voter Model - This Work

Graph: Population of n agents spread over nodes of graph $G=(V, E, w)$.

Agents:

Nodes:

Fitness:

death - Birth	f(u\|v)	
v)	u	$1+\delta$
v	u	1
v	u	1
v	u	1

Process:

\Rightarrow Initially residents occupy all nodes.
$\Rightarrow t=0$: random mutation in one agent.
$\Rightarrow t>0$: repeat death-Birth steps:
(1) death: Pick random node \boldsymbol{v} to update.
(2) Birth: Pick an in-neighbor node \boldsymbol{u} of \boldsymbol{v} proportionally to its fitness $f(u \mid v)$ and edge-weight $w(u, v)\left(\frac{f(u \mid v) w(u, v)}{\sum_{k} f(k \mid v) w(k, v)}\right)$ to transfer its trait on \boldsymbol{v}.

Positional Voter Model - This Work

Graph: Population of n agents spread over nodes of graph $G=(V, E, w)$.

Agents:

Nodes:

Fitness:

death - Birth	$f(u \mid v)$	
v	u	$1+\delta$
v	u	1
v	u	1
v	u	1

Process:

\Rightarrow Initially residents occupy all nodes.
$\Rightarrow t=0$: random mutation in one agent.
$\Rightarrow t>0$: repeat death-Birth steps:
(1) death: Pick random node \boldsymbol{v} to update.
(2) Birth: Pick an in-neighbor node \boldsymbol{u} of \boldsymbol{v} proportionally to its fitness $f(u \mid v)$ and edge-weight $w(u, v)\left(\frac{f(u \mid v) w(u, v)}{\sum_{k} f(k \mid v) w(k, v)}\right)$ to transfer its trait on \boldsymbol{v}.

Positional Voter Model - This Work

Graph: Population of n agents spread over nodes of graph $G=(V, E, w)$.

Agents:

Nodes:

Fitness:

death - Birth	$f(u \mid v)$	
v	u	$1+\delta$
v	u	1
v	u	1
v	u	1

Process:

\Rightarrow Initially residents occupy all nodes.
$\Rightarrow t=0$: random mutation in one agent.
$\Rightarrow t>0$: repeat death-Birth steps:
(1) death: Pick random node \boldsymbol{v} to update.
(2) Birth: Pick an in-neighbor node \boldsymbol{u} of \boldsymbol{v} proportionally to its fitness $f(u \mid v)$ and edge-weight $w(u, v)\left(\frac{f(u \mid v) w(u, v)}{\sum_{k} f(k \mid v) w(k, v)}\right)$ to transfer its trait on \boldsymbol{v}.

Setting Parameters: graph G, set of biased nodes S, bias δ.
Fixation Probability: The probability $\operatorname{fp}\left(G^{S}, \delta\right)$ that a random mutation leads to fixation.

$$
S=V \Longrightarrow \text { Positional = Standard }
$$

Positional

Standard

Fixation Maximization

Optimization Problem: Given a graph G and a budget k, which k nodes should we bias with δ to maximize the fixation probability?

$$
S^{*}=\arg \max _{S,|S|=k} \operatorname{fp}\left(G^{S}, \delta\right)
$$

Fixation Maximization

Optimization Problem: Given a graph G and a budget k, which k nodes should we bias with δ to maximize the fixation probability?

$$
S^{*}=\arg \max _{S,|S|=k} \mathrm{fp}\left(G^{S}, \delta\right)
$$

Results Overview:

Fixation Maximization

Optimization Problem: Given a graph G and a budget k, which k nodes should we bias with δ to maximize the fixation probability?

$$
S^{*}=\arg \max _{S,|S|=k} \mathrm{fp}\left(G^{S}, \delta\right)
$$

Results Overview:

(1) FPRAS: for $\operatorname{fp}\left(G^{S}, \delta\right)$ in undirected graphs.

Fixation Maximization

Optimization Problem: Given a graph G and a budget k, which k nodes should we bias with δ to maximize the fixation probability?

$$
S^{*}=\arg \max _{S,|S|=k} \mathrm{fp}\left(G^{S}, \delta\right)
$$

Results Overview:

(1) FPRAS: for $\operatorname{fp}\left(G^{S}, \delta\right)$ in undirected graphs.
(2) Monotone and non-Submodular in general.

Fixation Maximization

Optimization Problem: Given a graph G and a budget k, which k nodes should we bias with δ to maximize the fixation probability?

$$
S^{*}=\arg \max _{S,|S|=k} \mathrm{fp}\left(G^{S}, \delta\right)
$$

Results Overview:

(1) FPRAS: for $\operatorname{fp}\left(G^{S}, \delta\right)$ in undirected graphs.
(2) Monotone and non-Submodular in general.
(3) NP-hardness of
$S^{*}=\arg \max _{S,|S|=k} \operatorname{fp}\left(G^{S}, \delta\right)$.

Optimization Problem: Given a graph G and a budget k, which k nodes should we bias with δ to maximize the fixation probability?

$$
S^{*}=\arg \max _{S,|S|=k} \mathrm{fp}\left(G^{S}, \delta\right)
$$

Results Overview:

(1) FPRAS: for $\operatorname{fp}\left(G^{S}, \delta\right)$ in undirected graphs.
(2) Monotone and non-Submodular in general.
(3) NP-hardness of
$S^{*}=\arg \max _{S,|S|=k} \operatorname{fp}\left(G^{S}, \delta\right)$.
(4) Approximations for undirected graphs with self-loops and $\delta \rightarrow \infty$.

Optimization Problem: Given a graph G and a budget k, which k nodes should we bias with δ to maximize the fixation probability?

$$
S^{*}=\arg \max _{S,|S|=k} \mathrm{fp}\left(G^{S}, \delta\right)
$$

Results Overview:

(1) FPRAS: for $\operatorname{fp}\left(G^{S}, \delta\right)$ in undirected graphs.
(2) Monotone and non-Submodular in general.
(3) NP-hardness of
$S^{*}=\arg \max _{S,|S|=k} \mathrm{fp}\left(G^{S}, \delta\right)$.
(4) Approximations for undirected graphs with self-loops and $\delta \rightarrow \infty$.
(5) Optimal Solution in polynomial time for symmetric graphs (i.e. $w(u, v)=w(v, u))$ as $\delta \rightarrow 0$.

The complexity of computing $\operatorname{fp}\left(G^{S}, \delta\right)$ is OPEN even when $S=V$.

Lemma 1 - Expected Time

For undirected graphs, the expected time to a homogeneous state (all nodes are either mutants or residents) is $\mathcal{O}\left(n^{5}\right)$.

Approximations of $\operatorname{fp}\left(G^{S}, \delta\right)$ via monte-carlo simulations in P-time.

Monotonicity \& Non-Submodularity

Lemma 2 - Monotonicity

Given biased sets S_{1}, S_{2} with $S_{1} \subseteq S_{2}$ and $\delta_{1}, \delta_{2} \geq 0$ with $\delta_{1} \leq \delta_{2}$, we have:

$$
\operatorname{fp}\left(G^{S_{1}}, \delta_{1}\right) \leq \operatorname{fp}\left(G^{S_{2}}, \delta_{2}\right)
$$

death - Birth	$f(u \mid v)$
(u)	u
$1+\delta$	
(u)	1
(u)	1
(u) u	1

Lemma 3 - Non-Submodularity

- $\operatorname{fp}\left(G^{S}, \delta\right)$ is not submodular.
- $\mathrm{fp}^{\infty}\left(G^{S}\right)$ is not submodular in general.

Submodular function: $\forall S_{1}, S_{2} \subseteq V \Rightarrow f\left(S_{1}\right)+f\left(S_{2}\right) \geq f\left(S_{1} \cup S_{2}\right)+f\left(S_{1} \cap S_{2}\right)$

Key Lemma

Lemma 4 - Self-looped Graphs

In undirected graphs with self-loops, if
$\delta \rightarrow \infty$, mutant agents in biased nodes are deathless; reproduce to themselves with probability 1.

death - Birth	$\mathrm{f}(\mathrm{u} \mid \mathrm{v})$	
V	u	$1+\delta$
V	u	1
v	u	1
v	u	1

If trajectory $X_{t}=\left(X_{0}, X_{1}, \ldots, X_{t}\right)$ hits $S \Longrightarrow$ mutants fixate

NP-hardness

Theorem 5 - NP-hard
 Maximizing $\operatorname{fp}\left(G^{S}, \delta\right)$ with $|S|=k$, is NP-hard.

Theorem 5 - NP-hard

Maximizing $\operatorname{fp}\left(G^{S}, \delta\right)$ with $|S|=k$, is NP-hard.

Proof.

Reduction from Vertex Cover in regular graphs, which is NP-hard. On undirected d-regular graphs with self-loops:

$$
\mathrm{fp}^{\infty}\left(G^{S}\right)=\frac{\frac{|S|}{n}+d}{1+d} \Leftrightarrow S \text { is a vertex-cover. }
$$

$$
\mathrm{fp}^{\infty}\left(G^{S}\right)=\frac{\frac{2}{4}+3}{1+3}=\frac{3.5}{4}
$$

$$
\mathrm{fp}^{\infty}\left(G^{S}\right)<\frac{3.5}{4}
$$

Approximations

Lemma 6 - Submodularity
For undirected graphs with self-loops $\mathrm{fp}^{\infty}\left(G^{S}\right)$ is submodular;

Approximations

Lemma 6 - Submodularity
For undirected graphs with self-loops $\mathrm{fp}^{\infty}\left(G^{S}\right)$ is submodular;

Proof.

Submodular function: $\forall S_{1}, S_{2} \subseteq V \Rightarrow f\left(S_{1}\right)+f\left(S_{2}\right) \geq f\left(S_{1} \cup S_{2}\right)+f\left(S_{1} \cap S_{2}\right)$

X_{t} hits $S \Longrightarrow$ mutants fixate

$$
\begin{gathered}
\underline{\mathrm{fp}^{\infty}\left(G^{S_{1}}\right)}+\mathrm{fp}^{\infty}\left(G^{S_{2}}\right) \\
\geq \\
\mathrm{fp}^{\infty}\left(G^{S_{1} \cup S_{2}}\right)+\mathrm{fp}^{\infty}\left(G^{S_{1} \cap S_{2}}\right)
\end{gathered}
$$

Approximations

Lemma 6 - Submodularity

For undirected graphs with self-loops $\mathrm{fp}^{\infty}\left(G^{S}\right)$ is submodular;

Proof.

Submodular function: $\forall S_{1}, S_{2} \subseteq V \Rightarrow f\left(S_{1}\right)+f\left(S_{2}\right) \geq f\left(S_{1} \cup S_{2}\right)+f\left(S_{1} \cap S_{2}\right)$

X_{t} hits $S \Longrightarrow$ mutants fixate

$$
\begin{gathered}
\operatorname{fp}^{\infty}\left(G^{S_{1}}\right)+\mathrm{fp}^{\infty}\left(G^{S_{2}}\right) \\
\geq \\
\underline{f p}^{\infty}\left(G^{S_{1} \cup S_{2}}\right) \\
\hline
\end{gathered}
$$

Approximations

Lemma 6 - Submodularity

For undirected graphs with self-loops $\mathrm{fp}^{\infty}\left(G^{S}\right)$ is submodular;

Proof.

Submodular function: $\forall S_{1}, S_{2} \subseteq V \Rightarrow f\left(S_{1}\right)+f\left(S_{2}\right) \geq f\left(S_{1} \cup S_{2}\right)+f\left(S_{1} \cap S_{2}\right)$

Approximations

Lemma 6 - Submodularity
For undirected graphs with self-loops $\mathrm{fp}^{\infty}\left(G^{S}\right)$ is submodular;

Proof.

Submodular function: $\forall S_{1}, S_{2} \subseteq V \Rightarrow f\left(S_{1}\right)+f\left(S_{2}\right) \geq f\left(S_{1} \cup S_{2}\right)+f\left(S_{1} \cap S_{2}\right)$

X_{t} hits $S \Longrightarrow$ mutants fixate

$$
\begin{gathered}
\underline{\mathrm{fp}^{\infty}\left(G^{S_{1}}\right)}+\underset{\geq \mathrm{fp}^{\infty}\left(G^{S_{2}}\right)}{\geq \mathrm{fp}^{\infty}\left(G^{S_{1} \cup S_{2}}\right)}+\underline{f p}^{\infty}\left(G^{S_{1} \cap S_{2}}\right)
\end{gathered}
$$

Corollary - Approximations

In undirected graphs with self-loops, $\mathrm{fp}^{\infty}\left(G^{S}\right)$ is:
Monotone + Submodular
(1-1/e) greedy approximation algorithm [Nemhauser1978]

Optimal Solution

Theorem 7 - Optimal Solution

For symmetric graphs $(w(u, v)=w(v, u))$, when $\delta \rightarrow 0$, finding $S^{*}=\arg \max _{S,|S|=k} \mathrm{fp}\left(G^{S}, \delta\right)$ can be solved in P-time.

Optimal Solution

Theorem 7 - Optimal Solution

For symmetric graphs $(w(u, v)=w(v, u))$, when $\delta \rightarrow 0$, finding $S^{*}=\arg \max _{S,|S|=k} \operatorname{fp}\left(G^{S}, \delta\right)$ can be solved in P-time.

Proof.

Using the Taylor expansion of $\operatorname{fp}\left(G^{S}, \delta\right)$ around $\delta=0$, that is:

$$
\begin{gathered}
\frac{\operatorname{fp}\left(G^{S}, 0\right)}{\Uparrow}+\delta \cdot \frac{\operatorname{fp}^{\prime}\left(G^{S}, 0\right)}{\Uparrow}+\frac{\mathcal{O}\left(\delta^{2}\right)}{\Uparrow} \\
1 / \mathrm{n}
\end{gathered} \text { Maximize this } 0
$$

 $S^{*}=\arg \max _{S,|S|=k} \mathrm{fp}^{\prime}\left(G^{S}, 0\right)$.
(1) FPRAS: for $\mathrm{fp}\left(G^{S}, \delta\right)$ in undirected graphs.
(2) Monotone and not Submodular in general.
(3) NP-hardness of $S^{*}=\arg \max _{S,|S|=k} \mathrm{fp}\left(G^{S}, \delta\right)$.
(4) Approximation Algorithm for undirected graphs with self-loops and $\delta \rightarrow \infty$: Monotone + Submodular $\rightarrow 1-1 / e$ greedy apx. algorithm.
(5) Optimal Solution in polynomial time for symmetric graphs (i.e. $w(u, v)=w(v, u))$ as $\delta \rightarrow 0$.

