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This paper: Non-Progressive model that describes the spread of
mutation /novel-trait.
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Positional Voter Model - This Work

Graph: Population of n agents spread over nodes of graph G = (V, E, w).
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Fixation Probability

Setting Parameters: graph G, set of biased nodes S, bias 9.

Fixation Probability: The probability fp(G*°,§) that a random
mutation leads to fixation.

A g -~
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Positional vs. Standard Voter Model [Liggett 1975]

S=V == Positional = Standard

Positional Standard
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Fixation Maximization

Optimization Problem: Given a graph G and a budget k&, which k&
nodes should we bias with § to maximize the fixation probability?

S* = argmaxg |-k fp(G~, )

S

0.5

o
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Fixation Maximization

Optimization Problem: Given a graph G and a budget k&, which k&
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S
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Results Overview:

©® FPRAS: for fp(G”,9) in
undirected graphs.
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S = argmaxg |g|-p, fp(G°,9).
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S = argmaxg |g|-p, fp(G°,9).

O Approximations for undirected e
graphs with self-loops and ¢ — 0. , ~

©® Optimal Solution in polynomial ‘ O @@ & ‘
time for symmetric graphs (i.e.
w(u,v) =w(v,u)) as § - 0.
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FPRAS

[The complexity of computing fp(G”,d) is OPEN even when S = V.]

Lemma 1 - Expected Time

For undirected graphs, the expected time to a homogeneous state
(all nodes are either mutants or residents) is O(n®).

[Approximations of fp(G*,§) via monte-carlo simulations in P—time.j
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Monotonicity & Non-Submodularity

death - Birth| £ (u|v)
Given biased sets S, S, with S| € S5 and @l—e 1+3

()‘| 5 (Sg >0 with (51 < (Sg, we have: ©_° 1

fp(G51,61) < Ip(G2, 65) T

OO0
O+«0| 1

Lemma 3 - Non-Submodularity

m fp(G°,6) is not submodular.
m p™(G”) is not submodular in general.

(Submodular function: ¥S1,S> €V = f(S1) + f(S2) 2 f(S1US2) + f(S1n )]

Department of Computer Science, AU
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Key Lemma

Lemma 4 - Self-looped Graphs
In undirected graphs with self-loops, if
0 — oo, mutant agents in biased nodes
are deathless; reproduce to themselves
with probability 1.

death - Birth| £ (u|v)

@1—@ 1+5

©+—o| :

1

OO
Q<0 1

[ If trajectory X; = (Xo, X1, ..., X;) hits S = mutants fixate

S

A
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NP-hardness

Theorem 5 - NP-hard

Maximizing fp(G”, ) with |S| = k, is NP-hard.
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NP-hardness
Theorem 5 - NP-hard
Maximizing fp(G~,d) with |S| = k, is NP-hard.

Reduction from Vertex Cover in regular graphs, which is NP-hard.

|
< S is a vertex-cover.

51, q
n

On undirected d-regular graphs with self-loops:

fp°° (GS) = 1+d

Department of Computer Science, AU
10 / 14
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Approximations

Lemma 6 - Submodularity

For undirected graphs with self-loops fp™ (G is submodular;
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Approximations

Corollary - Approximations

In undirected graphs with self-loops, fp™(G*) is:

Monotone + Submodular

(1-1/e) greedy approximation algorithm [Nemhauser1978]
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Optimal Solution

Theorem 7 - Optimal Solution

For symmetric graphs (w(u,v) = w(v,u)), when § — 0, finding
S* = argmaxg |g|-k fp(G”,8) can be solved in P-time.
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Optimal Solution
Theorem 7 - Optimal Solution

For symmetric graphs (w(u,v) = w(v,u)), when § — 0, finding
S* = argmaxg |g|-k fp(G”, ) can be solved in P-time.

Using the Taylor expansion of

fp(G~,8) around & = 0, that is: 0.21 : {(1’ 0
fp(G°,0) + 6 -fp'(G°,0) + O(62) iy
ﬂ ﬂ ﬂ Maximize
- . fp'(G%,0)
1/n Maximize this 0 0. 20 (slope)
Bias & 0.1
By solving a linear system of n* |
unknowns we can find the optimal " ‘ ®@ ‘

S* = argmaxg |54 fp’ (G, 0).

\
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Results Overview

©® FPRAS: for fp(G”,6) in undirected graphs.
® Monotone and not Submodular in general.
© NP-hardness of 5™ = argmaxg |5, fp(G°,6).

O Approximation Algorithm for undirected graphs with
self-loops and § — oo:
Monotone + Submodular — 1 - 1/e greedy apx. algorithm.

® Optimal Solution in polynomial time for symmetric graphs
(i.e. w(u,v)=w(v,u))as - 0.

%/ W/
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