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Spreading through networks

Settings:
» virus in human population,
» fake news / memes on a social network,

P interacting particle systems,

P genetic mutations in spatially structured populations, ...

Models:

1. “progressive”: independent cascade, linear threshold, ...

2. "non-progressive”: SIR-base, voter model, ...

Objectives: influence maximization, epidemic control,
diversity maintenance, fairness, ...

Here: Influence maximization under Moran process



Standard Moran process

[Moran '58] [Nature '05] A graph G = (V, E) on n nodes.
» Nodes: agents (fitness: residents 1, mutants 1 + ¢)
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Standard Moran process

[Moran '58] [Nature '05] A graph G = (V, E) on n nodes.
» Nodes: agents (fitness: residents 1, mutants 1 + ¢)

» Moran Birth-death process on a graph. Repeat:

1. Birth: Pick a node for reproduction, proportionally to fitness
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fithess
Omutant | 1+6
Oresident 1

Fixation probability fp(;(G): Average probability that, starting from

a single node, mutants spread to all sites.




Moran process: what is known?
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1. Strong selection: fp~>>(G) = 1.

2. Neutral case: fp’=%(G) =1/n.

3. Weak selection: fp’2%(G) = 1/n+ 8- c(G) + O(6%), where
the “slope” ¢(G) can be computed in P-time [JMB '21].

4. The complexity of computing fp‘s(G) is open.

5. If G is undirected then fp’(G) can be efficiently approximated
(FPRAS) [SODA '12).
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Positional Moran process

Idea: Mutants are better only at a subset S C V' of nodes.
Quantity: Fixation probability fp®(G?).

Fitness advantage, 6

Fixation maximization FM(G, 0, k): Given k € N, which subset
S C V with |S| = k maximizes fp’(G°)?
Specifically,

1. Strong selection: FM°(G, k): max fp°7>(G?%).
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2. Weak selection: FMO(G, k): max “slope”’ c(G,S) as § — 0.



Our results

1. Strong selection (§ — 00):

1.1 Computing FM*°(G, k) is NP-hard, even on regular graphs.
1.2 But it can be (1 — 1/e)-approximated (on any graph).

2. Weak selection (6 — 0):
2.1 FM°(G, k) can be computed in O(n**) time.
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Strong selection: two key insights

(i) Observation. While no mutant is in S, the process is neutral.

(ii) Claim. Once S contains a mutant, mutants win whp.

agent [fitness|

Q© |1+6

0|0|0

Proof idea: Such a mutant is essentially immortal, since it forces
its neighbors to be mutants almost all the time.
(But: The claim is not true if G is directed.)



Strong selection: 1.1 hardness

Theorem
Deciding whether FM>*(G, k) > 7 is NP-hard.

S is a vertex cover not a vertex cover

8: win whp

g: each blue edge wins 50/50 g: red edge wins less than 50/50

Proof idea: If G is regular then fp>°(G°) > %{‘f' iff S is a vertex
cover. Indeed, if the initial mutant:
1. lands on S: then mutants win whp;
2. lands outside S: then
2.1 if S is a vertex cover: mutants win with probability 1/2;
2.2 otherwise: mutants win with probability p < 1/2.

Thus, deciding whether there exists |S| = k with fp>°(G>) > 2tk
is as hard as deciding whether G has a vertex cover of size k.



Strong selection: 1.2 submodularity

Lemma
The function fp™(G?) is submodular, i.e.
p(G%) +fp(GT) = p>(G5VT) + fp=(6°T).
Corollary. Thus, greedy gives a (1 — 1/e)-approximation for
FM>(G, k) [NWF '78].
?
fp(G%) + fp>(G") > fp™(GV7) + fp™(GS™)

(\;3

(Xi>0)

Proof idea. Fix a neutral trajectory 7 = (Xo, X1,...) and track
whether it hits any of S\ T, SN T, T\ S. Small casework gives
that 7 contributes to LHS at least as much as it does to RHS.
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Weak selection: 2.1

Lemma
We have fp’7%(G%) = 1/n+ 3§ - c(G, S) + O(3?), where

c(G,8) =) a(u),

uesS

for a certain function a: V — R that can be found in O(n*) time.

Corollary. To maximize FM°(G, k), compute all a(u;) and take the
top k nodes into S.
Proof idea: Building on [JMB '21]. Briefly:
1. Let 1);; be the expected amount of time for which u; is a
mutant and u; not.
2. Then (¢ij | (ui, u;) € E) can be found by solving a linear
system.
3. The value a(u;) is a certain weighted average of v; j, taking
into account “how strongly u; and u; interact”.
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Summary

1. Strong selection (§ — o0):

1.1 Computing FM>°(G, k) is NP-hard, even on regular graphs, by
vertex cover.

1.2 But it can be (1 — 1/e)-approximated, since fp™°(G?) is
submodular. (We note that for § < oo the function fp’(G®) is
not in general submodular.)

2. Weak selection (6 — 0):

2.1 FM°(G, k) can be computed in O(n**) time, since each u; € S

contributes certain fixed amount a(y;) to the slope ¢(G, S).
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Open questions

1. Is there a better approximation factor for FM>°(G, k)? Perhaps
even a FPRAS?

2. |s there a constant-factor approximation for FM‘s(G7 k)?
» Can not be based on submodularity.

3. For a given S, what is the complexity of computing fp?(G°)?
» Open even in special cases S = V or § — oo (but not both).
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Thank you!



