Fixation Maximization in the Positional Moran Process

Josef (Pepa) Tkadlec

Harvard University

Joint work with Aarhus U. members: J. Brendborg, P. Karras, A. Pavlogiannis, A.U. Rasmussen

Spreading through networks

Settings:

- virus in human population,
- fake news / memes on a social network,
- interacting particle systems,
- genetic mutations in spatially structured populations, ...

Models:

- 1. "progressive": independent cascade, linear threshold, ...
- 2. "non-progressive": SIR-base, voter model, ...

Objectives: influence maximization, epidemic control, diversity maintenance, fairness, ...

Here: Influence maximization under Moran process

[Moran '58] [Nature '05] A graph G = (V, E) on *n* nodes.

• Nodes: agents (fitness: residents 1, mutants $1 + \delta$)

	fitness
○ mutant	$1 + \delta$
resident	1

- Nodes: agents (fitness: residents 1, mutants $1 + \delta$)
- Moran Birth-death process on a graph. Repeat:

	fitness
○ mutant	$1 + \delta$
resident	1

- Nodes: agents (fitness: residents 1, mutants $1 + \delta$)
- Moran Birth-death process on a graph. Repeat:
 - 1. Birth: Pick a node for reproduction, proportionally to fitness

	fitness
○ mutant	$1 + \delta$
resident	1

- Nodes: agents (fitness: residents 1, mutants $1 + \delta$)
- Moran Birth-death process on a graph. Repeat:
 - 1. Birth: Pick a node for reproduction, proportionally to fitness

	fitness
○ mutant	$1 + \delta$
resident	1

- Nodes: agents (fitness: residents 1, mutants $1 + \delta$)
- Moran Birth-death process on a graph. Repeat:
 - 1. Birth: Pick a node for reproduction, proportionally to fitness
 - 2. Death: Pick a neighbor, randomly

	fitness
○ mutant	$1 + \delta$
resident	1

- Nodes: agents (fitness: residents 1, mutants $1 + \delta$)
- Moran Birth-death process on a graph. Repeat:
 - 1. Birth: Pick a node for reproduction, proportionally to fitness
 - 2. Death: Pick a neighbor, randomly

	fitness
○ mutant	$1 + \delta$
resident	1

- Nodes: agents (fitness: residents 1, mutants $1 + \delta$)
- Moran Birth-death process on a graph. Repeat:
 - 1. Birth: Pick a node for reproduction, proportionally to fitness
 - 2. Death: Pick a neighbor, randomly
 - 3. Replace

	fitness
○ mutant	$1 + \delta$
resident	1

- Nodes: agents (fitness: residents 1, mutants $1 + \delta$)
- Moran Birth-death process on a graph. Repeat:
 - 1. Birth: Pick a node for reproduction, proportionally to fitness
 - 2. Death: Pick a neighbor, randomly
 - 3. Replace

	fitness
○ mutant	$1 + \delta$
resident	1

- Nodes: agents (fitness: residents 1, mutants $1 + \delta$)
- Moran Birth-death process on a graph. Repeat:
 - 1. Birth: Pick a node for reproduction, proportionally to fitness
 - 2. Death: Pick a neighbor, randomly
 - 3. Replace

	fitness
○ mutant	$1 + \delta$
resident	1

- Nodes: agents (fitness: residents 1, mutants $1 + \delta$)
- Moran Birth-death process on a graph. Repeat:
 - 1. Birth: Pick a node for reproduction, proportionally to fitness
 - 2. Death: Pick a neighbor, randomly
 - 3. Replace

	fitness
○ mutant	$1 + \delta$
resident	1

- Nodes: agents (fitness: residents 1, mutants $1 + \delta$)
- Moran Birth-death process on a graph. Repeat:
 - 1. Birth: Pick a node for reproduction, proportionally to fitness
 - 2. Death: Pick a neighbor, randomly
 - 3. Replace

	fitness
○ mutant	$1 + \delta$
○ resident	1

[Moran '58] [Nature '05] A graph G = (V, E) on n nodes.

- Nodes: agents (fitness: residents 1, mutants $1 + \delta$)
- Moran Birth-death process on a graph. Repeat:
 - 1. Birth: Pick a node for reproduction, proportionally to fitness
 - 2. Death: Pick a neighbor, randomly
 - 3. Replace

	fitness
○ mutant	$1 + \delta$
○ resident	1

Fixation probability $fp^{\delta}(G)$: Average probability that, starting from a single node, mutants spread to all sites.

- 1. Strong selection: $fp^{\delta \to \infty}(G) = 1$.
- 2. Neutral case: $fp^{\delta=0}(G) = 1/n$.
- 3. Weak selection: $fp^{\delta \to 0}(G) = 1/n + \delta \cdot c(G) + \mathcal{O}(\delta^2)$, where the "slope" c(G) can be computed in P-time [JMB '21].
- 4. The complexity of computing $fp^{\delta}(G)$ is open.
- 5. If G is undirected then $fp^{\delta}(G)$ can be efficiently approximated (FPRAS) [SODA '12].

- 1. Strong selection: $fp^{\delta \to \infty}(G) = 1$.
- 2. Neutral case: $fp^{\delta=0}(G) = 1/n$.
- 3. Weak selection: $fp^{\delta \to 0}(G) = 1/n + \delta \cdot c(G) + \mathcal{O}(\delta^2)$, where the "slope" c(G) can be computed in P-time [JMB '21].
- 4. The complexity of computing $fp^{\delta}(G)$ is open.
- 5. If G is undirected then $fp^{\delta}(G)$ can be efficiently approximated (FPRAS) [SODA '12].

- 1. Strong selection: $fp^{\delta \to \infty}(G) = 1$.
- 2. Neutral case: $fp^{\delta=0}(G) = 1/n$.
- 3. Weak selection: $fp^{\delta \to 0}(G) = 1/n + \delta \cdot c(G) + \mathcal{O}(\delta^2)$, where the "slope" c(G) can be computed in P-time [JMB '21].
- 4. The complexity of computing $fp^{\delta}(G)$ is open.
- 5. If G is undirected then $fp^{\delta}(G)$ can be efficiently approximated (FPRAS) [SODA '12].

- 1. Strong selection: $fp^{\delta \to \infty}(G) = 1$.
- 2. Neutral case: $fp^{\delta=0}(G) = 1/n$.
- 3. Weak selection: $fp^{\delta \to 0}(G) = 1/n + \delta \cdot c(G) + \mathcal{O}(\delta^2)$, where the "slope" c(G) can be computed in P-time [JMB '21].
- 4. The complexity of computing $fp^{\delta}(G)$ is open.
- 5. If G is undirected then $fp^{\delta}(G)$ can be efficiently approximated (FPRAS) [SODA '12].

Positional Moran process

Idea: Mutants are better only at a subset $S \subseteq V$ of nodes. Quantity: Fixation probability $fp^{\delta}(G^S)$.

Fixation maximization $FM(G, \delta, k)$: Given $k \in \mathbb{N}$, which subset $S \subseteq V$ with |S| = k maximizes $fp^{\delta}(G^{S})$? Specifically,

- 1. Strong selection: $FM^{\infty}(G, k)$: max $fp^{\delta \to \infty}(G^{S})$.
- 2. Weak selection: $FM^0(G, k)$: max "slope" c(G, S) as $\delta \to 0$.

1. Strong selection ($\delta \to \infty$):

1.1 Computing $FM^{\infty}(G, k)$ is NP-hard, even on regular graphs.

- 1.2 But it can be (1 1/e)-approximated (on any graph).
- 2. Weak selection ($\delta \rightarrow 0$):

1. Strong selection ($\delta \to \infty$):

1.1 Computing $FM^{\infty}(G, k)$ is NP-hard, even on regular graphs.

- 1.2 But it can be (1 1/e)-approximated (on any graph).
- 2. Weak selection ($\delta \rightarrow 0$):

1. Strong selection ($\delta \to \infty$):

1.1 Computing $FM^{\infty}(G, k)$ is NP-hard, even on regular graphs.

- 1.2 But it can be (1 1/e)-approximated (on any graph).
- 2. Weak selection ($\delta \rightarrow 0$):

1. Strong selection ($\delta \to \infty$):

1.1 Computing $FM^{\infty}(G, k)$ is NP-hard, even on regular graphs.

- 1.2 But it can be (1 1/e)-approximated (on any graph).
- 2. Weak selection ($\delta \rightarrow 0$):

Strong selection: two key insights

(i) Observation. While no mutant is in S, the process is neutral.

(ii) Claim. Once S contains a mutant, mutants win whp.

Proof idea: Such a mutant is essentially immortal, since it forces its neighbors to be mutants almost all the time. (But: The claim is not true if G is directed.)

Strong selection: 1.1 hardness

Theorem

Deciding whether $FM^{\infty}(G, k) \geq \tau$ is NP-hard.

Proof idea: If G is regular then $fp^{\infty}(G^{S}) \ge \frac{n+|S|}{2n}$ iff S is a vertex cover. Indeed, if the initial mutant:

- 1. lands on S: then mutants win whp;
- 2. lands outside S: then
 - 2.1 if S is a vertex cover: mutants win with probability 1/2;

2.2 otherwise: mutants win with probability $p \leq 1/2$.

Thus, deciding whether there exists |S| = k with $fp^{\infty}(G^S) \ge \frac{n+k}{2n}$ is as hard as deciding whether G has a vertex cover of size k.

Strong selection: 1.2 submodularity

Lemma

The function $fp^{\infty}(G^S)$ is submodular, i.e. $fp^{\infty}(G^S) + fp^{\infty}(G^T) \ge fp^{\infty}(G^{S \cup T}) + fp^{\infty}(G^{S \cap T}).$

Corollary. Thus, greedy gives a (1 - 1/e)-approximation for FM^{∞}(*G*, *k*) [NWF '78].

Proof idea. Fix a neutral trajectory $\tau = (X_0, X_1, ...)$ and track whether it hits any of $S \setminus T$, $S \cap T$, $T \setminus S$. Small casework gives that τ contributes to LHS at least as much as it does to RHS.

Strong selection: 1.2 submodularity

Lemma

The function $fp^{\infty}(G^S)$ is submodular, i.e. $fp^{\infty}(G^S) + fp^{\infty}(G^T) \ge fp^{\infty}(G^{S \cup T}) + fp^{\infty}(G^{S \cap T}).$

Corollary. Thus, greedy gives a (1 - 1/e)-approximation for FM^{∞}(G, k) [NWF '78].

Proof idea. Fix a neutral trajectory $\tau = (X_0, X_1, ...)$ and track whether it hits any of $S \setminus T$, $S \cap T$, $T \setminus S$. Small casework gives that τ contributes to LHS at least as much as it does to RHS.

Strong selection: 1.2 submodularity

Lemma

The function $fp^{\infty}(G^S)$ is submodular, i.e. $fp^{\infty}(G^S) + fp^{\infty}(G^T) \ge fp^{\infty}(G^{S \cup T}) + fp^{\infty}(G^{S \cap T}).$

Corollary. Thus, greedy gives a (1 - 1/e)-approximation for FM^{∞}(G, k) [NWF '78].

Proof idea. Fix a neutral trajectory $\tau = (X_0, X_1, ...)$ and track whether it hits any of $S \setminus T$, $S \cap T$, $T \setminus S$. Small casework gives that τ contributes to LHS at least as much as it does to RHS.

Weak selection: 2.1

Lemma We have $fp^{\delta \to 0}(G^S) = 1/n + \delta \cdot c(G, S) + O(\delta^2)$, where

$$c(G,S)=\sum_{u\in S}\alpha(u),$$

for a certain function $\alpha: V \to \mathbb{R}$ that can be found in $\mathcal{O}(n^{2\omega})$ time. Corollary. To maximize $FM^0(G, k)$, compute all $\alpha(u_i)$ and take the top k nodes into S.

Proof idea: Building on [JMB '21]. Briefly:

- 1. Let $\psi_{i,j}$ be the expected amount of time for which u_i is a mutant and u_j not.
- Then (ψ_{i,j} | (u_i, u_j) ∈ E) can be found by solving a linear system.
- 3. The value $\alpha(u_i)$ is a certain weighted average of $\psi_{i,j}$, taking into account "how strongly u_i and u_j interact".

Summary

- 1. Strong selection ($\delta \to \infty$):
 - 1.1 Computing $\mathbb{F}M^{\infty}(G, k)$ is NP-hard, even on regular graphs, by vertex cover.
 - 1.2 But it can be (1 1/e)-approximated, since fp^{∞}(G^{S}) is submodular. (We note that for $\delta < \infty$ the function fp^{δ}(G^{S}) is not in general submodular.)
- 2. Weak selection ($\delta \rightarrow 0$):
 - 2.1 $\text{FM}^0(G, k)$ can be computed in $\mathcal{O}(n^{2\omega})$ time, since each $u_i \in S$ contributes certain fixed amount $\alpha(u_i)$ to the slope c(G, S).

Open questions

- 1. Is there a better approximation factor for $FM^{\infty}(G, k)$? Perhaps even a FPRAS?
- 2. Is there a constant-factor approximation for FM^δ(G, k)?
 ▶ Can not be based on submodularity.
- 3. For a given S, what is the complexity of computing fp^δ(G^S)?
 ▶ Open even in special cases S = V or δ → ∞ (but not both).

Thank you!