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Spreading through networks

Settings:

▶ virus in human population,

▶ fake news / memes on a social network,

▶ interacting particle systems,

▶ genetic mutations in spatially structured populations, . . .

Models:

1. “progressive”: independent cascade, linear threshold, . . .

2. “non-progressive”: SIR-base, voter model, . . .

Objectives: influence maximization, epidemic control,
diversity maintenance, fairness, . . .

Here: Influence maximization under Moran process
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Standard Moran process

[Moran ’58] [Nature ’05] A graph G = (V ,E ) on n nodes.

▶ Nodes: agents (fitness: residents 1, mutants 1 + δ)

▶ Moran Birth-death process on a graph. Repeat:

1. Birth: Pick a node for reproduction, proportionally to fitness
2. Death: Pick a neighbor, randomly
3. Replace

mutant

resident

fitness

1 + δ

1

Fixation probability fpδ(G ): Average probability that, starting from
a single node, mutants spread to all sites.
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Moran process: what is known?

1. Strong selection: fpδ→∞(G ) = 1.

2. Neutral case: fpδ=0(G ) = 1/n.

3. Weak selection: fpδ→0(G ) = 1/n + δ · c(G ) +O(δ2), where
the “slope” c(G ) can be computed in P-time [JMB ’21].

4. The complexity of computing fpδ(G ) is open.

5. If G is undirected then fpδ(G ) can be efficiently approximated
(FPRAS) [SODA ’12].
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Positional Moran process
Idea: Mutants are better only at a subset S ⊆ V of nodes.
Quantity: Fixation probability fpδ(GS).

S = {1,2}

S = {3,5}
1

2

3

4
5

6
7

fitnessagent

1 + δ

1

1

1

1

2

3

4
5

6
7

Fixation maximization FM(G , δ, k): Given k ∈ N, which subset
S ⊆ V with |S | = k maximizes fpδ(GS)?
Specifically,

1. Strong selection: FM∞(G , k): max fpδ→∞(GS).

2. Weak selection: FM0(G , k): max “slope” c(G ,S) as δ → 0.
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Our results

1. Strong selection (δ → ∞):

1.1 Computing FM∞(G , k) is NP-hard, even on regular graphs.
1.2 But it can be (1− 1/e)-approximated (on any graph).

2. Weak selection (δ → 0):

2.1 FM0(G , k) can be computed in O(n2ω) time.

S = {1,2}
1
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7
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Strong selection: two key insights

(i) Observation. While no mutant is in S , the process is neutral.

(ii) Claim. Once S contains a mutant, mutants win whp.

fitnessagent

1 + δ

1

1

1

E

FA

B

CD
F G

E

GG

E

F

50% 50%

Proof idea: Such a mutant is essentially immortal, since it forces
its neighbors to be mutants almost all the time.
(But: The claim is not true if G is directed.)
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Strong selection: 1.1 hardness

Theorem
Deciding whether FM∞(G , k) ≥ τ is NP-hard.

S is a vertex cover

2
8 : each blue edge wins 50/50 2

8 : red edge wins less than 50/50

a vertex covernot
6
8 : win whp

Proof idea: If G is regular then fp∞(GS) ≥ n+|S|
2n iff S is a vertex

cover. Indeed, if the initial mutant:

1. lands on S : then mutants win whp;
2. lands outside S : then

2.1 if S is a vertex cover: mutants win with probability 1/2;
2.2 otherwise: mutants win with probability p ⪇ 1/2.

Thus, deciding whether there exists |S | = k with fp∞(GS) ≥ n+k
2n

is as hard as deciding whether G has a vertex cover of size k .
8



Strong selection: 1.2 submodularity

Lemma
The function fp∞(GS) is submodular, i.e.
fp∞(GS) + fp∞(GT ) ≥ fp∞(GS∪T ) + fp∞(GS∩T ).

Corollary. Thus, greedy gives a (1− 1/e)-approximation for
FM∞(G , k) [NWF ’78].

S

T

(Xt≥0)

fp∞(GS) + fp∞(GT ) ≥ fp∞(GS∪T ) + fp∞(GS∩T )
?

Proof idea. Fix a neutral trajectory τ = (X0,X1, . . . ) and track
whether it hits any of S \ T , S ∩ T , T \ S . Small casework gives
that τ contributes to LHS at least as much as it does to RHS.
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Weak selection: 2.1

Lemma
We have fpδ→0(GS) = 1/n + δ · c(G ,S) +O(δ2), where

c(G , S) =
∑
u∈S

α(u),

for a certain function α : V → R that can be found in O(n2ω) time.

Corollary. To maximize FM0(G , k), compute all α(ui ) and take the
top k nodes into S .
Proof idea: Building on [JMB ’21]. Briefly:

1. Let ψi ,j be the expected amount of time for which ui is a
mutant and uj not.

2. Then (ψi ,j | (ui , uj) ∈ E ) can be found by solving a linear
system.

3. The value α(ui ) is a certain weighted average of ψi ,j , taking
into account “how strongly ui and uj interact”.
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Summary

1. Strong selection (δ → ∞):

1.1 Computing FM∞(G , k) is NP-hard, even on regular graphs, by
vertex cover.

1.2 But it can be (1− 1/e)-approximated, since fp∞(GS) is
submodular. (We note that for δ <∞ the function fpδ(GS) is
not in general submodular.)

2. Weak selection (δ → 0):

2.1 FM0(G , k) can be computed in O(n2ω) time, since each ui ∈ S
contributes certain fixed amount α(ui ) to the slope c(G ,S).
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Open questions

1. Is there a better approximation factor for FM∞(G , k)? Perhaps
even a FPRAS?

2. Is there a constant-factor approximation for FMδ(G , k)?
▶ Can not be based on submodularity.

3. For a given S , what is the complexity of computing fpδ(GS)?
▶ Open even in special cases S = V or δ → ∞ (but not both).
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Thank you!
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