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We study algorithmic questions wrt algebraic path properties in concurrent systems, where the transitions of the system are
labeled from a complete, closed semiring. The algebraic path properties can model dataflow analysis problems, the shortest
path problem, and many other natural problems that arise in program analysis. We consider that each component of the
concurrent system is a graph with constant treewidth, a property satisfied by the controlflow graphs of most programs. We
allow for multiple possible queries, which arise naturally in demand driven dataflow analysis. The study of multiple queries
allows us to consider the tradeoff between the resource usage of the one-time preprocessing and for each individual query.
The traditional approach constructs the product graph of all components and applies the best-known graph algorithm on the
product. In this approach, even the answer to a single query requires the transitive closure (i.e., the results of all possible
queries), which provides no room for tradeoff between preprocessing and query time.

Our main contributions are algorithms that significantly improve the worst-case running time of the traditional approach, and
provide various tradeoffs depending on the number of queries. For example, in a concurrent system of two components, the
traditional approach requires hexic time in the worst case for answering one query as well as computing the transitive closure,
whereas we show that with one-time preprocessing in almost cubic time, each subsequent query can be answered in at most
linear time, and even the transitive closure can be computed in almost quartic time. Furthermore, we establish conditional
optimality results showing that the worst-case running time of our algorithms cannot be improved without achieving major
breakthroughs in graph algorithms (i.e., improving the worst-case bound for the shortest path problem in general graphs).
Preliminary experimental results show that our algorithms perform favorably on several benchmarks.
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1. INTRODUCTION

In this work we consider concurrent finite-state systems where each component is a constant-
treewidth graph, and the algorithmic question is to determine algebraic path properties between
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pairs of nodes in the system. Our main contributions are algorithms which significantly improve
the worst-case running time of the existing algorithms. We establish conditional optimality results
for some of our algorithms in the sense that they cannot be improved without achieving major
breakthroughs in the algorithmic study of graph problems. Finally, we provide a prototype imple-
mentation of our algorithms which significantly outperforms the existing algorithmic methods on
several benchmarks.

Concurrency and algorithmic approaches. The analysis of concurrent systems is one of the fun-
damental problems in computer science in general, and programming languages in particular. A
finite-state concurrent system consists of several components, each of which is a finite-state graph,
and the whole system is a composition of the components. Since errors in concurrent systems are
hard to reproduce by simulations due to combinatorial explosion in the number of interleavings,
formal methods are necessary to analyze such systems. In the heart of the formal approaches are
graph algorithms, which provide the basic search procedures for the problem. The basic graph algo-
rithmic approach is to construct the product graph (i.e., the product of the component systems) and
then apply the best-known graph algorithms on the product graph. While there are many practical
approaches for the analysis of concurrent systems, a fundamental theoretical question is whether
special properties of graphs that arise in analysis of programs can be exploited to develop asymp-
totically faster algorithms as compared to the basic approach.

Special graph properties for programs. A very well-studied notion in graph theory is the concept of
treewidth of a graph, which is a measure of how similar a graph is to a tree (a graph has treewidth 1
precisely if it is a tree) [Robertson and Seymour 1984]. The treewidth of a graph is defined based on
a tree decomposition of the graph [Halin 1976], see Section 2 for a formal definition. On one hand
the treewidth property provides a mathematically elegant way to study graphs, and on the other
hand there are many classes of graphs which arise in practice and have constant treewidth. The most
important example is that the controlflow graph for goto-free programs for many programming
languages are of constant treewidth [Thorup 1998], and it was also shown in [Gustedt et al. 2002]
that typically all Java programs have constant treewidth.

Algebraic path properties. To specify properties of traces of concurrent systems we consider a very
general framework, where edges of the system are labeled from a complete, closed semiring (which
subsumes bounded and finite distributive semirings), and we refer to the labels of the edges as
weights. For a given path, the weight of the path is the semiring product of the weights on the
edges of the path, and the weights of different paths are combined using the semiring plus operator.
For example, (i) the Boolean semiring (with semiring product as AND, and semiring plus as OR)
expresses the reachability property; (ii) the tropical semiring (with real numbers as edge weights,
semiring product as standard sum, and semiring plus as minimum) expresses the shortest path prop-
erty; and (iii) with letter labels on edges, semiring product as string concatenation and semiring plus
as union we can express the regular expression of reaching from one node to another. The algebraic
path properties subsumes the dataflow analysis of the IFDS/IDE frameworks [Reps et al. 1995; Sa-
giv et al. 1996] in the intraprocedural setting, which consider compositions of distributive dataflow
functions, and meet-over-all-paths as the semiring plus operator. Since IFDS/IDE is a special case
of our framework, a large and important class of dataflow analysis problems that can be expressed
in IFDS/IDE can also be expressed in our framework. However, the IFDS/IDE framework works
for sequential interprocedural analysis, whereas we focus on intraprocedural analysis, but in the
concurrent setting.

Expressiveness of algebraic path properties. The algebraic path properties provide an expressive
framework with rich modeling power. Here we elaborate on three important classes.

(1) Weighted shortest path. The algebraic paths framework subsumes several problems on weighted
graphs. The most well-known such problem is the shortest path problem [Floyd 1962; Warshall
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1962; Bellman 1958; Ford 1956; Johnson 1977], phrased on the tropical semiring. For example,
the edge weights (positive and negative) can express energy consumptions, and the shortest path
problem asks for the least energy consuming path. Another important quantitative property is the
mean-payoff property, where each edge weight represents a reward or cost, and the problem asks
for a path that minimizes the average of the weights along a path. Many quantitative properties
of relevance for program analysis (e.g., to express performance or resource consumption) can
be modeled as mean-payoff properties [Chatterjee et al. 2015c; Cerny et al. 2013]. The mean-
payoff and other fundamental problems on weighted graphs (e.g., the most probable path and
the minimum initial credit problem) can be reduced to the shortest-path problem [Viterbi 1967;
Lawler 1976; Karp 1978; Bouyer et al. 2008; Chatterjee et al. 2010; Cerny et al. 2013; Wilhelm
et al. 2008; Chatterjee et al. 2015a].

(2) Dataflow problems. A wide range of dataflow problems have an algebraic paths formulation,
expressed as a “meet-over-all-paths” analysis [Kildall 1973]. Perhaps the most well-known case
is that of distributive flow functions considered in the IFDS framework [Reps et al. 1995; Sagiv
et al. 1996]. Given a finite domain D and a universe F of distributive dataflow functions f :
2D Ñ 2D, a weight function wt : E Ñ F associates each edge of the controlflow graph with a
flow function. The weight of a path is then defined as the composition of the flow functions along
its edges, and the dataflow distance between two nodes u, v is the meet[ (union or intersection)
of the weights of all u ù v paths. The problem can be formulated on the meet-composition
semiring pF,[, ˝,H, Iq, where I is the identity function. We note, however, that the IFDS/IDE
framework considers interprocedural paths in sequential programs. In contrast, the current work
focuses on intraprocedural analysis of concurrent programs. The dataflow analysis of concurrent
programs has been a problem of intensive study (e.g. [Grunwald and Srinivasan 1993; Knoop
et al. 1996; Farzan and Madhusudan 2007; Chugh et al. 2008; Kahlon et al. 2009; De et al.
2011]), where (part of) the underlying analysis is based on an algebraic, “meet-over-all-paths”
approach.

(3) Regular expressions. Consider the case that each edge is annotated with an observation or ac-
tion. Then the regular expression to reach from one node to another represents all the sequences
of observable actions that lead from the start node to the target. The regular languages of ob-
servable actions have provided useful formulations in the analysis and synthesis of concurrent
systems [Dwyer et al. 2004; Farzan et al. 2013; Cerny et al. 2015]. Regular expressions have also
been used as algebraic relaxations of interprocedurally valid paths in sequential and concurrent
systems [Yan et al. 2011; Bouajjani et al. 2003].

The algorithmic problem. In graph theoretic parlance, graph algorithms typically consider two types
of queries: (i) a pair query given nodes u and v (called pu, vq-pair query) asks for the algebraic path
property from u to v; and (ii) a single-source query given a node u asks for the answer of pu, vq-pair
queries for all nodes v. In the context of concurrency, in addition to the classical pair and single-
source queries, we also consider partial queries. Given a concurrent system with k components, a
node in the product graph is a tuple of k component nodes. A partial node u in the product only
specifies nodes of a nonempty strict subset of all the components. Our work also considers partial
pair and partial single-source queries, where the input nodes are partial nodes. Queries on partial
nodes are very natural, as they capture properties between local locations in a component, that are
shaped by global paths in the whole concurrent system. For example, constant propagation and
dead code elimination are local properties in a program, but their analysis requires analyzing the
concurrent system as a whole.

Preprocess vs query. A topic of widespread interest in the programming languages community is
that of on-demand analysis [Babich and Jazayeri 1978; Zadeck 1984; Horwitz et al. 1995; Duester-
wald et al. 1995; Reps 1995; Sagiv et al. 1996; Reps 1997; Yuan et al. 1997; Naeem et al. 2010;
Chatterjee et al. 2015b]. Such analysis has several advantages, such as (quoting from [Horwitz
et al. 1995; Reps 1997]) (i) narrowing down the focus to specific points of interest, (ii) narrow-
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ing down the focus to specific dataflow facts of interest, (iii) reducing work in preliminary phases,
(iv) sidestepping incremental updating problems, and (v) offering demand analysis as a user-level
operation. For example, in alias analysis, the question is whether two pointers may point to the
same object, which is by definition modeled as a question between a pair of nodes. Similarly, in
constant propagation a relevant question is whether some variable remains constant between a pair
of controlflow locations. The problem of on-demand analysis allows us to distinguish between a
single preprocessing phase (one time computation), and a subsequent query phase, where queries
are answered on demand. The two extremes of the preprocessing and query phase are: (i) complete
preprocessing (aka transitive closure computation) where the result is precomputed for every possi-
ble query, and hence queries are answered by simple table lookup; and (ii) no preprocessing where
every query requires a new computation. However, in general, there can be a tradeoff between the
preprocessing and query computation. Most of the existing works for on-demand analysis do not
make a formal distinction between preprocessing and query phases, as the provided complexities
only guarantee the same worst-case complexity property, namely that the total time for handling any
sequence of queries is no worse than the complete preprocessing. Hence most existing tradeoffs are
practical, without any theoretical guarantees.

Preprocess Query time
Time Space Single-

source
Pair Partial

single-
source

Partial
pair

Previous results [Lehmann 1977; Floyd 1962]
[Warshall 1962; Kleene 1956] Opn6q Opn4q Opn2q Op1q Opn2q Op1q

Our result Corollary 5.9 pε ą 0q Opn3q Opn2`εq Opn2`εq Opn2q Opn2`εq Opn2q

Our result Theorem 5.6 pε ą 0q Opn3`εq Opn3q Opn2`εq Opnq Opn2q Op1q

Our result Corollary 5.10 pε ą 0q Opn4`εq Opn4q Opn2q Op1q Opn2q Op1q

Table I: The algorithmic complexity for computing algebraic path queries wrt a closed, complete
semiring on a concurrent graph G which is the product of two constant-treewidth graphs G1, G2,
with n nodes each.

Previous results. In this work we consider finite-state concurrent systems, where each component
graph has constant treewidth, and the trace properties are specified as algebraic path properties. Our
framework can model a large class of problems: typically the controlflow graphs of programs have
constant treewidth [Thorup 1998; Gustedt et al. 2002; Burgstaller et al. 2004], and if there is a con-
stant number of synchronization variables with constant-size domains, then each component graph
has constant treewidth. Note that this imposes little practical restrictions, as typically synchroniza-
tion variables, such as locks, mutexes and condition variables have small (even binary) domains
(e.g. locked/unlocked state). The best-known graph algorithm for the algebraic path property prob-
lem is the classical Warshall-Floyd-Kleene [Lehmann 1977; Floyd 1962; Warshall 1962; Kleene
1956] style dynamic programming, which requires cubic time. Two well-known special cases of
the algebraic paths problem are (i) computing the shortest path from a source to a target node in
a weighted graph, and (ii) computing the regular expression from a source to a target node in an
automaton whose edges are labeled with letters from a finite alphabet. In the first case, the best-
known algorithm is the Bellman-Ford algorithm with time complexity Opn ¨ mq, where n and m
are the number of nodes and edges, respectively. In the second case, the well-known construction of
Kleene’s [Kleene 1956] theorem requires cubic time. The only existing algorithmic approach for the
problem we consider is to first construct the product graph (thus if each component graph has size n,
and there are k components, then the product graph has size Opnkq), and then apply the best-known
graph algorithm (thus the overall time complexity is Opn3¨kq for algebraic path properties). Hence
for the important special case of two components we obtain a hexic-time (i.e., Opn6q) algorithm.
Moreover, for algebraic path properties the current best-known algorithms for one pair query (or
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one single-source query) computes the entire transitive closure. Hence the existing approach does
not allow a tradeoff of preprocessing and query as even for one query the entire transitive closure is
computed.

Our contributions. Our main contributions are improved algorithmic upper bounds, proving several
optimality results of our algorithms, and experimental results. Below all the complexity measures
(time and space) are in the number of basic machine operations and number of semiring operations.
We elaborate our contributions below.

(1) Improved upper bounds. We present improved upper bounds both for generally k components,
and the important special case of two components.
— General case. We show that for k ě 3 components with n nodes each, after Opn3¨pk´1qq

preprocessing time, we can answer (i) single-source queries in Opn2¨pk´1qq time, (ii) pair
queries in Opnk´1q time, (iii) partial single-source queries in Opnkq time, and (iv) partial
pair queries in Op1q time; while using at all times Opn2¨k´1q space. In contrast, the existing
methods [Lehmann 1977; Floyd 1962; Warshall 1962; Kleene 1956] compute the transitive
closure even for a single query, and thus require Opn3¨kq time and Opn2¨kq space.

— Two components. For the important case of two components, the existing methods require
Opn6q time and Opn4q space even for one query. In contrast, we establish a variety of
tradeoffs between preprocessing and query times, and the best choice depends on the number
of expected queries. In particular, for any fixed ε ą 0, we establish the following three
results.

Three results. First, we show (Corollary 5.9) that with Opn3q preprocessing time and using
Opn2`εq space, we can answer single-source queries in Opn2`εq time, and pair and partial
pair queries require Opn2q time. Second, we show (Theorem 5.6) that with Opn3`εq pre-
processing time and using Opn3q space, we can answer pair and partial pair queries in time
Opnq and Op1q, respectively. Third, we show (Corollary 5.10) that the transitive closure
can be computed using Opn4`εq preprocessing time and Opn4q space, after which single-
source queries require Opn2q time, and pair and partial pair queries require Op1q time (i.e.,
all queries require linear time in the size of the output).

Tradeoffs. Our results provide various tradeoffs: The first result is best for answering
Opn1`εq pair and partial pair queries; the second result is best for answering between
Ωpn1`εq and Opn3`εq pair queries, and Ωpn1`εq partial pair queries; and the third result is
best when answering Ωpn3`εq pair queries. Observe that the transitive closure computation
is preferred when the number of queries is large, in sharp contrast to the existing methods
that compute the transitive closure even for a single query. Our results are summarized in
Table I and the tradeoffs are pictorially illustrated in Figure 1.

(2) Optimality of our results. Given our significant improvements for the case of two components,
a very natural question is whether the algorithms can be improved further. While presenting
matching bounds for polynomial-time graph algorithms to establish optimality is very rare in the
whole of computer science, we present conditional lower bounds which show that our combined
preprocessing and query time cannot be improved without achieving a major breakthrough in
graph algorithms.
— Almost optimality. First, note that in the first result (obtained from Corollary 5.9) our space

usage and single-source query time are arbitrarily close to optimal, as both the input and the
output have size Θpn2q. Moreover, the result is achieved with preprocessing time less than
Ωpn4q, which is a lower bound for computing the transitive closure (which has n4 entries).
Furthermore, in our third result (obtained from Corollary 5.10) the Opn4`εq preprocessing
time is arbitrarily close to optimal, and the Opn4q preprocessing space is indeed optimal,
as the transitive closure computes the distance among all n4 pairs of nodes (which requires
Ωpn4q time and space).
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n1`ε n3`ε n4

n1`ε

n3

n3 ` pi` jq ¨ n2

Corollary 5.9

n3`ε ` i ¨ n` j

Theorem 5.6 n4`ε ` i` j

Corollary 5.10

i pair queries

j
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Fig. 1: Given a concurrent graph G of two constant-treewidth graphs of n nodes each, the figure
illustrates the time required by the variants of our algorithms to preprocessG, and then answer i pair
queries and j partial pair queries. The different regions correspond to the best variant for handling
different number of such queries. In contrast, the current best solution requires Opn6 ` i` jq time.
For ease of presentation we omit the Op¨q notation.

— Conditional lower bound. In recent years, the conditional lower bound problem has received
vast attention in complexity theory, where under the assumption that certain problems (such
as matrix multiplication, all-pairs shortest path) cannot be solved faster than the existing
upper bounds, lower bounds for other problems (such as dynamic graph algorithms) are
obtained [Abboud and Williams 2014; Abboud et al. 2015; Henzinger et al. 2015]. The cur-
rent best-known algorithm for algebraic path properties for general (not constant-treewidth)
graphs is cubic in the number of nodes. Even for the special case of shortest paths with
positive and negative weights, the best-known algorithm (which has not been improved over
five decades) is Opn ¨ mq, where m is the number of edges. Since m can be Ωpn2q, the
current best-known worst-case complexity is cubic in the number of nodes. We prove that
pair queries require more time in a concurrent graph of two constant-treewidth graphs, with
n nodes each, than in general graphs with n nodes. This implies that improving the Opn3q
combined preprocessing and query time over our result (from Corollary 5.9) for answer-
ing r queries, for r “ Opnq, would yield the same improvement over the Opn3q time for
answering r pair queries in general graphs. That is, the combination of our preprocessing
and query time (from Corollary 5.9) cannot be improved without equal improvement on the
long standing cubic bound for the shortest path and the algebraic path problems in general
graphs. Additionally, our result (from Theorem 5.6) cannot be improved much further even
for n2 queries, as the combined time for preprocessing and answering n2 queries isOpn3`εq
using Theorem 5.6, while the existing bound is Opn3q for general graphs.

(3) Experimental results. We provide a prototype implementation of our algorithms which signifi-
cantly outperforms the baseline methods on several benchmarks.

Technical contributions. The results of this paper rely on several novel technical contributions.

(1) Upper bounds. Our upper bounds depend on a series of technical results.
(a) The first key result is an algorithm for constructing a strongly balanced tree-decomposition

T . A tree is called pβ, γq-balanced if for every node u and descendant v of u that appears γ
levels below, the size of the subtree of T rooted at v is at most a β fraction of the size of the
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subtree of T rooted at u. For any fixed δ ą 0 and λ P N with λ ě 2, let β “ pp1` δq{2qλ´1

and γ “ λ. We show that a pβ, γq-balanced tree decomposition of a constant-treewidth graph
with n nodes can be constructed in Opn ¨ log nq time and Opnq space. To our knowledge,
this is the first algorithm that constructs a tree decomposition with such a strong notion of
balance. This property is crucial for achieving the resource bounds of our algorithms for
algebraic paths. The construction is presented in Section 3.

(b) Given a concurrent graph G obtained from k constant-treewidth graphs Gi, we show how a
tree-decomposition ofG can be constructed from the strongly balanced tree-decompositions
Ti of the components Gi, in time that is linear in the size of the output. We note that G
can have large treewidth, and thus determining the treewidth of G can be computationally
expensive. Instead, our construction avoids computing the treewidth of G, and directly con-
structs a tree-decomposition of G from the strongly balanced tree decompositions Ti. The
construction is presented in Section 4.

(c) Given the above tree-decomposition algorithm for concurrent graphs G, in Section 5 we
present the algorithms for handling algebraic path queries. In particular, we introduce the
partial expansion G of G for additionally handling partial queries, and describe the algo-
rithms for preprocessing and querying G in the claimed time and space bounds.

(2) Lower bound. Given an arbitrary graph G (not of constant treewidth) of n nodes, we show how
to construct a constant-treewidth graph G2 of 2 ¨ n nodes, and a graph G1 that is the product
of G2 with itself, such that algebraic path queries in G coincide with such queries in G1. This
construction requires quadratic time on n. The conditional optimality of our algorithms follows,
as improvement over our algorithms must achieve the same improvement for algebraic path
properties on arbitrary graphs.

All our algorithms are simple to implement and provided as pseudocode in the Appendix.

A preliminary version of this work has appeared in [Chatterjee et al. 2016]. The current version
expands upon [Chatterjee et al. 2016] by including detailed algorithms, full proofs, and additional
examples.

1.1. Related Works

Treewidth of graphs. The notion of treewidth of graphs as an elegant mathematical tool to analyze
graphs was introduced in [Robertson and Seymour 1984]. The significance of constant treewidth
in graph theory is large mainly because several problems on graphs become complexity-wise eas-
ier. Given a tree decomposition of a graph with low treewidth t, many NP-complete problems for
arbitrary graphs can be solved in time polynomial in the size of the graph, but exponential in t [Arn-
borg and Proskurowski 1989; Bern et al. 1987; Bodlaender 1988; 1993; 2005]. Even for problems
that can be solved in polynomial time, faster algorithms can be obtained for low treewidth graphs,
e.g., for the distance problem [Chaudhuri and Zaroliagis 1995]. The constant-treewidth property of
graphs has also been used in the context of logic: Monadic Second Order (MSO) logic is a very
expressive logic, and a celebrated result of [Courcelle 1990] showed that for constant-treewidth
graphs the decision questions for MSO can be solved in polynomial time; and the result of [El-
berfeld et al. 2010] shows that this can even be achieved in deterministic log-space. Various other
models (such as probabilistic models of Markov decision processes and games played on graphs for
synthesis) with the constant-treewidth restriction have also been considered [Chatterjee and Lacki
2013; Obdrzálek 2003]. The problem of computing a balanced tree decomposition for a constant
treewidth graph was considered in [Reed 1992]. More importantly, in the context of programming
languages, it was shown in [Thorup 1998] that the controlflow graphs of goto-free programs in
many programming languages have constant treewidth. This theoretical result was subsequently
followed up in several practical approaches, and although in the presence of gotos the treewidth is
not guaranteed to be bounded, it has been shown that programs in several programming languages
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have typically low treewidth [Gustedt et al. 2002; Burgstaller et al. 2004]. The constant-treewidth
property of graphs has been used to develop faster algorithms for sequential interprocedural analy-
sis [Chatterjee et al. 2015b], and on the analysis of automata with auxiliary storage (e.g., stacks and
queues) [Madhusudan and Parlato 2011]. These results have been followed in practice, and some
compilers (e.g., SDCC) implement tree-decomposition-based algorithms for performance optimiza-
tions [Krause 2013].

Concurrent system analysis. The problem of concurrent system analysis has been considered in
several works, both for intraprocedural as well context-bounded interprocedural analysis [Harel
et al. 1997; Alur et al. 1999; Farzan et al. 2013; Qadeer and Rehof 2005; Bouajjani et al. 2005;
La Torre et al. 2008; Lal et al. 2008; Lal and Reps 2009; Kahlon et al. 2013], and many practical
tools have been developed as well [Qadeer and Rehof 2005; Lal and Reps 2009; Suwimonteerabuth
et al. 2008; Lal et al. 2012]. In this work we focus on the intraprocedural analysis with constant-
treewidth graphs, and present algorithms with better asymptotic complexity. To our knowledge, none
of the previous works consider the constant-treewidth property, nor do they improve the asymptotic
complexity of the basic algorithm for the algebraic path property problem.

2. DEFINITIONS

In this section we present definitions related to semirings, graphs, concurrent graphs, and tree de-
compositions. We start with some basic notation on sets and sequences.

Notation on sets and sequences. Given a number r P N, we denote by rrs “ t1, 2, . . . , ru the
natural numbers from 1 to r. Given a set X and a k P N, we denote by Xk “

śk
i“1X , the k times

Cartesian product of X . A sequence x1, . . . xk is denoted for short by pxiq1ďiďk, or pxiqi when k is
implied from the context. Given a sequence Y , we denote by y P Y the fact that y appears in Y .

2.1. Complete, closed semirings

Definition 2.1 pComplete, closed semiringsq. We fix a complete semiring S “ pΣ,‘,b,0,1q
where Σ is a countable set, ‘ and b are binary operators on Σ, and 0,1 P Σ, and the following
properties hold:

(1) ‘ is infinitely associative, commutative, and 0 is the neutral element,
(2) b is associative, and 1 is the neutral element,
(3) b infinitely distributes over ‘,
(4) 0 absorbs in multiplication, i.e., @a P Σ : ab 0 “ 0.

Additionally, we consider that S is idempotent, that is, @s P Σ we have that s ‘ s “ s. The
idempotence property defines a partial order ĺĎ Σ ˆ Σ, such that @s1, s2 P Σ, we have that
s1 ĺ s2 iff s1 ‘ s2 “ s1. Finally, we consider that S is equipped with a closure operator ˚, such
that @s P Σ : s˚ “ 1‘ psb s˚q “ 1‘ ps˚ b sq (i.e., the semiring is closed).

In the remaining of this document we fix a semiring S “ pΣ,‘,b,0,1q, and we will consider
graphs labeled with elements of Σ.

2.2. Graphs and tree decompositions

Graphs and weighted paths. Let G “ pV,Eq be a weighted finite directed graph (henceforth
called simply a graph) where V is a set of n nodes and E Ď V ˆ V is an edge relation, along with
a weight function wt : E Ñ Σ that assigns to each edge of G an element from Σ. Given a set of
nodes X Ď V , we denote by GrXs “ pX,E X pX ˆXqq the subgraph of G induced by X . A path
P : u ù v is a sequence of nodes px1, . . . , xkq such that x1 “ u, xk “ v, and for all 1 ď i ă k
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we have pxi, xi`1q P E. The length of P is |P | “ k ´ 1, and a single node is itself a 0-length
path. A path P is simple if no node repeats in the path (i.e., it does not contain a cycle). Given a
path P “ px1, . . . , xkq, the weight of P is bpP q “

Â

pwtpxi, xi`1qqi if |P | ě 1 else bpP q “ 1.
Given nodes u, v P V , the semiring distance dpu, vq is defined as dpu, vq “

À

P :uùv bpP q, and
dpu, vq “ 0 if no such P exists.

Trees. A tree T “ pV,Eq is an undirected graph with a root node u0, such that between every
two nodes there is a unique simple path. For a node u we denote by Lvpuq the level of u which is
defined as the length of the simple path from u0 to u. A child of a node u is a node v such that
Lvpvq “ Lvpuq ` 1 and pu, vq P E, and then u is the parent of v. For a node u, any node (including
u itself) that appears in the path from u0 to u is an ancestor of u, and if v is an ancestor of u, then
u is a descendant of v. Given two nodes u, v, the lowest common ancestor (LCA) is the common
ancestor of u and v with the highest level. Given a tree T , a contiguous subtree is subgraph pX,E1q
of T such thatE1 “ EXpXˆXq and for every pair u, v P X , every node that appears in the unique
path from u to v belongs to X . A tree is k-ary if every node has at most k-children (e.g., a binary
tree has at most two children for every node). In a full k-ary tree, every node has 0 or k-children.

Tree decompositions. A tree-decomposition TreepGq “ T “ pVT , ET q of a graph G is a tree,
where every node Bi in T is a subset of nodes of G such that the following conditions hold:

C1 VT “ tB0, . . . , Bbu with Bi Ď V , and
Ť

BiPVT
Bi “ V (every node is covered).

C2 For all pu, vq P E there exists Bi P VT such that u, v P Bi (every edge is covered).
C3 For all i, j, k such that there is a bag Bk that appears in the simple path Bi ù Bj in TreepGq,

we have Bi XBj Ď Bk (every node appears in a contiguous subtree of T ).

The sets Bi which are nodes in VT are called bags. We denote by |T | “ |VT | the number of bags in
T . Conventionally, we call B0 the root of T , and denote by LvpBiq the level of Bi in TreepGq. For
a bag B of T , we denote by T pBq the subtree of T rooted at B. A bag B is called the root bag of a
node u if u P B and every B1 that contains u appears in T pBq. We often use Bu to refer to the root
bag of u, and define Lvpuq “ LvpBuq. Given a bag B, we denote by

(1) VT pBq the nodes of G that appear in bags in T pBq,
(2) VT pBq the nodes of G that appear in B and its ancestors in T .

The width of the tree-decomposition T is the size of the largest bag minus 1. The treewidth t of G
is the smallest width among the widths of all tree decompositions of G. We say that G has constant
treewidth if t is fixed and independent of n (i.e., t “ Op1q). Note that if T achieves the treewidth
of G, we have |VT pBq| ď pt ` 1q ¨ |T pBq|. Given a graph G with treewidth t and a fixed α P N, a
tree-decomposition TreepGq is called α-approximate if it has width at most α ¨ pt` 1q´ 1. Figure 2
illustrates the above definitions on a small example.

Remark 2.2. It follows directly from the definition of tree decompositions that for every bag B
and nodes u, v P B, if Lvpuq ď Lvpvq then Bv is a descendant of Bu. We make use of this property
in the proofs of our algorithms.

2.3. Concurrent graphs

Product graphs. A graph Gp “ pVp, Epq is said to be the product graph of k graphs pGi “
pVi, Eiqq1ďiďk if Vp “

ś

i Vi and Ep is such that for all u, v P Vp with u “ xuiy1ďiďk and
v “ xviy1ďiďk, we have pu, vq P Ep iff there exists a set I Ď rks such that (i) pui, viq P Ei for all
i P I, and (ii) ui “ vi for all i R I. In words, an edge pu, vq P Ep is formed in the product graph by
traversing a set of edges tpui, viq P EiuiPI in some component graphs tGiuiPI , and traversing no
edges in the remaining tGiuiRI . We say that Gp is the k-self-product of a graph G1 if Gi “ G1 for
all 1 ď i ď k.
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Fig. 2: A graph G with treewidth 2 (left) and a corresponding tree-decomposition T “ TreepGq of
8 bags and width 2 (right). The distinguished bag B6 is the root bag of node 6. We have VT pB6q “

t6, 7, 9, 4, 5u and VT pB6q “ t6, 7, 9, 8, 10, 2u. The subtree T pB6q is shown in bold.

Concurrent graphs. A graph G “ pV,Eq is called a concurrent graph of k graphs pGi “
pVi, Eiqq1ďiďk if V “ Vp and E Ď Ep, where Gp “ pVp, Epq is the product graph of pGiqi.
Given a concurrent graph G “ pV,Eq and a node u P V , we will denote by ui the i-th constituent
of u. We say that G is a k-self-concurrent of a graph G1 if Gp is the k-self-product of G1.

Various notions of composition. The framework we consider is quite general as it captures various
different notions of concurrent composition. Indeed, the edge set of the concurrent graph is any
possible subset of the edge set of the corresponding product graph. Then, two well-known compo-
sition notions can be modeled as follows. For any edge pu, vq P E of the concurrent graph G, let
Iu,v “ ti P rks : pui, viq P Eiu denote the components that execute a transition in pu, vq.

(1) In synchronous composition at every step all components make one move each simultaneously.
This is captured by Iu,v “ rks for all pu, vq P E.

(2) In asynchronous composition at every step only one component makes a move. This is captured
by |Iu,v| “ 1 for all pu, vq P E.

Thus the framework we consider is not specific to any particular notion of composition, and all our
results apply to various different notions of concurrent composition that exist in the literature.

Partial nodes of concurrent graphs. A partial node u of a concurrent graph G is an element of
ś

ipVi Y tKuq, where K R
Ť

i Vi. Intuitively, K is a fresh symbol to denote that a component is
unspecified. A partial node u is said to refine a partial node v, denoted by u Ď v if for all 1 ď i ď k
either vi “ K or vi “ ui. We say that the partial node u strictly refines v, denoted by u Ă v, if
u Ď v and u ‰ v (i.e., for at least one constituent i we have vi “ K but ui ‰ K). A partial node u
is called strictly partial if it is strictly refined by some node u P V (i.e., u has at least one K). The
notion of semiring distances is extended to partial nodes, and for partial nodes u, v of G we define
the semiring distance from u to v as

dpu, vq “
à

uĎu,vĎv

dpu, vq

where u, v P V . In the sequel, a partial node u will be either (i) a node of V , or (ii) a strictly
partial node. We refer to nodes of the first case as actual nodes, and write u (i.e., without the bar).
Distances where one endpoint is a strictly partial node u succinctly quantify over all nodes of all
the components for which the corresponding constituent of u is K. Observe that the distance still
depends on the unspecified components.

The algebraic paths problem on concurrent graphs of constant-treewidth components. In this
work we are interested in the following problem. Let G “ pV,Eq be a concurrent graph of k ě 2
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Method: DiningPhilosophers

1 while True do
2 while fork not mine or knife not mine

do
3 if fork is free then
4 lockp`q
5 acquirepforkq

6 unlockp`q
7 end
8 if knife is free then
9 lockp`q

10 acquirepknifeq

11 unlockp`q
12 end
13 end
14 dinepfork, knifeq// for some time
15 lockp`q
16 releasepforkq

17 releasepknifeq

18 unlockp`q
19 discusspq// for some time
20 end
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Fig. 3: A concurrent program (left), its controlflow graph (middle), and a tree decomposition of the
controlflow graph (right).

constant-treewidth graphs pGi “ pVi, Eiqq1ďiďk, and wt : E Ñ Σ be a weight function that assigns
to every edge ofG a weight from a set Σ that forms a complete, closed semiring S “ pΣ,‘,b,0,1q.
The algebraic path problem on G asks the following types of queries:

(1) Single-source query. Given a partial node u of G, return the distance dpu, vq to every node
v P V . When the partial node u is an actual node ofG, we have a traditional single-source query.

(2) Pair query. Given two nodes u, v P V , return the distance dpu, vq.
(3) Partial pair query. Given two partial nodes u, v of G where at least one is strictly partial, return

the distance dpu, vq.

Figure 3 presents the notions introduced in this section on a toy example on the dining philosophers
problem. See Section 7 for an example on pair and partial pair queries in the analysis of the dining
philosophers program.

Input parameters. For technical convenience, we consider a uniform upper bound n on the number
of nodes of eachGi (i.e. |Vi| ď n). Similarly, we let t “ Op1q be an upper bound on the treewidth of
each Gi. The number k is taken to be fixed and independent of n. The input of the problem consists
of the graphs pGiq1ďiďk, together with some representation of the edge relation E of G.

Complexity measures. The complexity of our algorithms is measured as a function of n. In par-
ticular, we ignore the size of the representation of E when considering the size of the input. This
has the advantage of obtaining complexity bounds that are independent of the representation of E,
which can be represented implicitly (such as synchronous or asynchronous composition) or explic-
itly, depending on the modeling of the problem under consideration. The time complexity of our
algorithms is measured in number of operations, with each operation being either a basic machine
operation, or an application of one of the operations of the semiring.
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3. STRONGLY BALANCED TREE DECOMPOSITIONS

In this section we introduce the notion of strongly balanced tree decompositions, and present an
algorithm for computing them efficiently on constant-treewidth graphs. Informally, a strongly bal-
anced tree-decomposition is a binary tree-decomposition in which the number of descendants of
each bag is typically approximately half of that of its parent. The following sections make use of
this construction.

Strongly balanced tree decompositions. Given a binary tree-decomposition T and constants 0 ă
β ă 1, γ P N`, a bag B of T is called pβ, γq-balanced if for every descendant Bi of B with
LvpBiq ´ LvpBq “ γ, we have |T pBiq| ď β ¨ |T pBq|, i.e., the number of bags in T pBiq is at most a
β-fraction of those in T pBq. A tree-decomposition T is called a pβ, γq-balanced tree-decomposition
if every bag of T is pβ, γq-balanced. A pβ, γq-balanced tree-decomposition that is α-approximate
is called an pα, β, γq-balanced tree-decomposition. The following theorem is central to the results
obtained in this paper. The proof is technical and presented later in this section. Here we provide a
sketch of the algorithm for obtaining it.

THEOREM 3.1. For every graph G with n nodes and constant treewidth, for any fixed δ ą 0
and λ P N with λ ě 2, let α “ 6 ¨ λ{δ, β “ pp1 ` δq{2qλ´1, and γ “ λ. A binary pα, β, γq
tree-decomposition TreepGq with Opnq bags can be constructed in Opn ¨ log nq time and Opnq
space.

Sketch of Theorem 3.1. The construction of Theorem 3.1 considers that a tree-decomposition T 1 of
G that has width t and Opnq bags is given (which can be obtained using e.g. [Bodlaender 1996] in
Opnq time). Given the parameters δ ą 0 and λ P N with λ ě 2, T 1 is turned to an pα, β, γq-balanced
tree-decomposition, for α “ 6 ¨ λ{δ, β “ pp1` δq{2qλ´1, and γ “ λ, in two conceptual steps.

(1) A tree of bags RG is constructed, which is pβ, γq-balanced.
(2) RG is turned to an α-approximate tree decomposition of G.

The first construction is obtained by a recursive algorithm Rank, which operates on inputs pC, `q.
The argument C represents a component of T 1, defined as a set of bags of T 1. The argument ` is
such that ` P rλs, and it specifies the type of operation the algorithm performs on C. Given such
a component C, we denote by NhpCq the neighborhood of C, defined as the set of bags of T 1 that
are incident to C (but not including bags of C). Informally, on input pC, `q, the algorithm partitions
C into two sub-components C1 and C2 such that either (i) the size of each Ci is approximately half
the size of C, or (ii) the size of the neighborhood of each Ci is approximately half the size of the
neighborhood of C. In more detail,

(1) If ` ą 0, then C is partitioned into components Y “ pC1, . . . , Crq, by removing a list of bags
X “ pB1, . . . Bmq, such that |Ci| ď δ

2 ¨ |C|. The union of X yields a new bag B in RG. Then Y is
merged into two components C1, C2 with |C1| ď |C2| ď

1`δ
2 ¨ |C|. Finally, each Ci is passed on

to the next recursive step with ` “ p`` 1q mod λ.
(2) If ` “ 0, then C is partitioned into two components C1, C2 such that |NhpCiq X NhpCq| ď

2¨|NhpCq|
3 , by removing a single bag B and appropriately merging the resulting connected com-

ponents created by such removal. This bag becomes a new bag B in RG, and each Ci is passed
on to the next recursive step with ` “ p`` 1q mod λ.

Figure 4 provides an illustration. The second construction is obtained simply by inserting in each
bag B of RG the nodes contained in the neighborhood NhpCq of the component C from which B was
constructed.

Use of pα, β, γq-balanced tree-decompositions. For ease of presentation we consider that every
TreepGq is a full binary tree. Since our tree decompositions are pβ, γq-balanced, we can always
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NhpCq B C2C1

Fig. 4: Illustration of one recursive step of Rank on a component C (horizontal lines). C is partitioned
into two sub-components C1 and C2 by removing a list of bags X “ pBiqi. Once every λ recursive
calls, X contains one bag, such that the neighborhood NhpCiq of each Ci is at most half the size of
NhpCq (i.e., the area with vertical lines is partitioned in half). In the remaining λ´ 1 recursive calls,
X contains m bags, such that the size of each Ci, is at most 1`δ

2 fraction the size of C. (i.e., the area
horizontal lines is partitioned in almost half).

attach empty children bags to those that have only one child, while increasing the size of TreepGq
by a constant factor only. In the sequel, TreepGq will denote a full binary pα, β, γq-balanced tree-
decomposition of G. The parameters δ and λ will be chosen appropriately in later sections.

Remark 3.2. The notion of balanced tree decompositions exists in the literature [Elberfeld et al.
2010; Bodlaender and Hagerup 1998], but balancing only requires that the height of the tree is
logarithmic in its size. Here we develop a stronger notion of balancing, which is crucial for proving
the complexity results of the algorithms presented in this work.

3.1. Constructing Strongly Balanced Tree Decompositions

We now present in detail the construction of a strongly balanced tree decomposition. Given constants
0 ă δ ď 1 and λ ě 2, throughout this section we fix

α “ 6 ¨ λ{δ; β “ pp1` δq{2qλ´1; γ “ λ

We show how given a graph G of treewidth t and a tree-decomposition T 1 of b bags and width t,
we can construct in Opb ¨ log bq time and Opbq space a pα, β, γq-balanced tree-decomposition with b
bags. That is, the resulting tree-decomposition has width at most α ¨ pt`1q, and for every bagB and
descendantB1 ofB that appears γ levels below, we have that |T pB1q| ď β ¨ |T pBq| (i.e., the number
of bags in T pB1q is at most β times as large as that in T pBq). Intuitively, the parameter δ specifies
how well-balanced the new tree decomposition is, and the parameter λ specifies the frequency at
which this well-balancing takes place along the levels. The result is established in two steps.

Tree components and operations Split, Merge and NhPartition. Given a tree-decomposition T “
pVT , ET q, a component of T is a subset of bags of T . The neighborhood NhpCq of C is the set of
bags in VT zC that have a neighbor in C, i.e.

NhpCq “ tB P VT zC : ptBu ˆ Cq X ET ‰ Hu

em Operation Split. Given a component C, we define the operation Split as SplitpCq “ pX ,Yq,
where X Ď C is a list of bags pB1, . . . B2{δq and Y is a list of sub-components pC1, . . . Crq such
that removing each bag Bi from C splits C into the subcomponents Y , and for every i we have
|Ci| ď δ

2 ¨ |C|. Note that since C is a component of a tree, we can find a single separator bag that
splits C into sub-components of size at most |C|2 . Applying this step recursively for logp2{δq levels
yields the desired separator set X . For technical convenience, if this process yields less than 2{δ
bags, we repeat some of these bags until we have 2{δ many.
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Operation Merge. Consider a list of components Y “ pC1, . . . Crq, and let z “
ř

i |Ci|. Let j be
the largest integer such that

řj
i“1 |Ci| ď

z
2 . We define the operation MergepYq “ pC1, C2q, where

C1 “
Ťj
i“1 Ci and C2 “

Ťr
i“j`1 Ci. The following claim is trivially obtained.

CLAIM 1. If |Ci| ă δ
2 ¨ z for all i, then |C1| ď |C2| ď

1`δ
2 ¨ z.

PROOF. By construction, 1´δ
2 ¨ z ă |C1| ď

1
2 ¨ z, and since C1 and C2 partition Y , we have

|C1| ` |C2| “ z. The result follows.

Intuitively, if a component C is split into sub-components Y “ pC1, . . . Crq using the operation Split,
then z ă |C|, as none of the sub-components Ci contains any of the bags of the main component C
that where chosen as separator bags in Split.

Operation NhPartition. Finally, consider a component C such that |NhpCq| ě 2. We define
NhPartitionpCq “ pB, C1, C2q, as follows. The bag B P C is chosen such that its removal partitions
C into connected components C1, C2, C3 such that |NhpCiqXNhpCq| ď |NhpCq|

2 for each i P t1, 2, 3u.
We note that possibly Ci “ H for some i. We construct two (not necessarily connected) components
C1, C2 as follows. We let C1 “ Cj , where j “ arg maxi NhpCiq and C2 “

Ť

i‰j Ci. The following
claim follows easily.

CLAIM 2. For each i P 1, 2 we have that |NhpCiq X NhpCq| ď 2¨|NhpCq|
3 .

Construction of a pβ, γq-balanced rank tree. In the following, we consider that TG “ pVT , ET q
is a tree-decomposition of G and has |VT | “ b bags. Given the parameters λ P N with λ ě 2 and
0 ă δ ă 1, we use the following algorithm Rank to construct a tree of bags RG. Rank operates
recursively on inputs pC, `q where C is a component of TG and ` P t0u Y rλ´ 1s, as follows.

1. If |C| ¨ δ2 ď 1 , construct a bag B “
Ť

BPC B, and return B.
2. Else, if ` ą 0 , let pX ,Yq “ SplitpCq. Construct a bag B “

Ť

BiPX Bi, and let pC1, C2q “

MergepYq. Call Rank recursively on input pC1, p`` 1q mod λq and pC2, p`` 1q mod λq, and
let B1, B2 be the returned bags. Make B1 and B2 the left and right child of B, and return the
resulting tree.

3. Else, if ` “ 0, if |NhpCq| ą 1, let pB, C1, C2q “ NhPartitionpCq. Let B “ B. Call Rank
recursively on input pC1, p` ` 1q mod λq and pC2, p` ` 1q mod λq, and let B1, B2 be the
returned bags. Make B1 and B2 the left and right child of B, and return the resulting tree. Finally,
if |NhpCq| ď 1, call Rank recursively on input pC, p`´ 1q mod λq, and return the tree obtained
by this recursive call.

In the following we use the symbols B and B to refer to bags of TG and RG respectively. Given a
bag B, we denote by CpBq the input component of Rank when B was constructed, and define the
neighborhood of B as NhpBq “ NhpCpBqq. Additionally, we denote by BhpBq the set of separator
bags B1, . . . Br of C that were used to construct B (note that in case 1 of the algorithm, BhpBq
equals the bags of the input component C). It is straightforward that BhpB1q X BhpB2q “ H for
every distinct B1 and B2.

CLAIM 3. Let B and B1 be respectively a bag and its parent in RG. Then NhpBq Ď NhpB1q Y
BhpB1q, and thus |NhpBq| ď |NhpB1q| ` 2{δ.

PROOF. Every bag in NhpCpBqq is either a bag in NhpCpB1qq, or a separator bag of CpB1q, and
thus a bag of BhpB1q.

Note that every bagB of TG belongs in BhpBq of some bag B of RG, and thus the bags of RG already
cover all nodes and edges ofG (i.e., properties C1 and C2 of a tree decomposition). In the following
we show how RG can be modified to also satisfy condition C3, i.e., that every node u appears in a
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Br B2 CpBq NhpBq

Fig. 5: Illustration of Lemma 3.3. Since B2 belongs to CpBq and the sub-component with diagonal
lines has not been split yet, the bag Br is in the neighborhood of the sub-component with diagonal
lines, and thus in the neighborhood of CpBq.

contiguous subtree of RG. Given a bag B, we denote by NhVpBq “ B Y
Ť

BPNhpBqB, i.e., NhVpBq
is the set of nodes of G that appear in B and its neighborhood. In the sequel, to distinguish between
paths in different trees, given a tree of bags T (e.g. TG or RG) and bags B1, B2 of T , we write
B1 ùT B2 to denote the unique simple path from B1 to B2 in T .

We say that a pair of bags pB1, B2q form a gap of some node u in a tree of bags T (e.g., RG) if
u P B1 X B2 and for the unique simple path P : B1 ùT B2 we have that |P | ě 2 (i.e., there is at
least one intermediate bag in P ) and for all intermediate bags B in P we have u R B. The following
crucial lemma shows that if B1 and B2 form a gap of u in xRG, then for every intermediate bag B in
the path P : B1 ùRG

B2, u must appear in some bag of NhpBq (i.e., u P NhVpBq).

LEMMA 3.3. For every node u, and pair of bags pB1, B2q that form a gap of u in RG, such
that B1 is an ancestor of B2, for every intermediate bag B in P : B1 ùRG

B2 in RG, we have that
u P NhVpBq.

PROOF. Fix any such a bag B, and since B1 and B2 form a gap of u, there exist bagsB1 P BhpB1q

and B2 P BhpB2q with u P B1 XB2. Consider the time point j that bag B was constructed. Let Br
be the rightmost bag of the path P1 : B1 ùTG

B2 that had been chosen as a separator in some
previous step j1 ă j of the algorithm. Note that B1 has been chosen as such a separator, therefore
Br is well defined. We argue that Br P NhpBq, which implies that u P NhVpBq. This is done in two
steps.

(1) Since B2 is a descendant of B, we have thatB2 P CpBq, i.e.,B2 is a bag of the component when
B was constructed.

(2) By the choice of Br, for every intermediate bag Bi in the path Br ùTG
B2 we have that at

the time B was constructed, each Bi belongs to the same component as B2, and hence Br is
incident to that component.

These two points imply that Br P NhpBq. From the properties of tree decomposition we know that
u P Br. It follows that u P NhVpBq, as desired. Figure 5 provides an illustration of the argument.

Turning the rank tree to a tree decomposition. Lemma 3.3 suggests a way to turn the rank tree
RG to a tree-decomposition. Let xRG “ ReplacepRGq be the tree obtained by replacing each bag B
of RG with NhVpBq. For a bag B in RG let pB be the corresponding bag in xRG and vice versa.

CLAIM 4. If there is a pair of bags pB1, pB2 that form a gap of some node u in xRG, then there is
a pair of bags pB11, pB12 that also form a gap of u, and pB11 is ancestor of pB12.

PROOF. First, note that neither parent of the bags pB1 and pB2 in xRG contains u. Assume that
neither of pB1, pB2 is ancestor of the other.
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(1) If for some i P t1, 2u there is no bag Bi P BhpBiq such that u P Bi, then there exists a
bag B P NhpBiq with u P B. Let B1i be the parent of Bi, and by Claim 3, we have that B P

NhpB1iq YBhpB1iq and thus u P NhVpB1iq and u P pB1i. This contradicts that pB1 and pB2 form a gap
of u.

(2) Else, there exists a B1 P BhpB1q and B2 P BhpB2q such that u P B1 X B2. Let B be first bag
in the path B1 ùTG

B2 that was chosen as a separator. We have B P BhpBq for some ancestor
B of B1 and B2, therefore u P NhVpBq, and thus pB forms a gap of u with both pB1 and pB2 in xRG.

It follows that in both cases there exists an ancestor pB1i of some pBi so that the two form a gap of u
in xRG.

The following lemma states that xRG is a tree decomposition of G.

LEMMA 3.4. xRG “ ReplacepRGq is a tree-decomposition of G.

PROOF. It is straightforward to see that the bags of xRG cover all nodes and edges ofG (properties
C1 and C2 of the definition of tree-decomposition), because for each bag B, we have that B Ď pB. It
remains to show that every node u appears in a contiguous subtree of xRG (i.e., that property C3 is
satisfied).

Assume towards contradiction otherwise, and by Claim 4 it follows that there exist bags pB1 and pB2

in xRG that form a gap of some node u such that pB1 is an ancestor of pB2. Let pP : pB1 ù
xRG

pB2 be the
path between them, and P : B1 ùRG

B2 the corresponding path in RG. By Lemma 3.3 we have
u R B1 X B2, otherwise for every intermediate bag B P pP we would have u P NhVpBq and thus
u P pB. Additionally, we have u P B2, otherwise by Claim 3, we would have u P NhVpB12q, where
B12 is the parent of B2, and thus u P pB12, contradicting the assumption that pB1 and pB2 form a gap of
u. Hence u R B1. A similar argument as that of Claim 4 shows that for the parent B11 of B1, we have
that u P B11, and wlog, take B11 to be the lowest ancestor of B1 with this property. Then B11 is also an
ancestor of B2, and B11 and B2 form a gap of u in RG. Then by Lemma 3.3, for every intermediate
bag B in the path B11 ùRG

B2 we have that u P NhVpBq, thus u P pB. Since the path pB1 ù
xRG

pB2

is a suffix of pB11 ù
xRG

pB2, we have that pB1 and pB2 cannot form a gap of u. We have thus arrived at
a contradiction, and the desired result follows.

Properties of the tree-decomposition xRG. Lemma 3.4 states that xRG obtained by replacing each
bag of RG with NhVpBq is a tree-decomposition of G. The remaining of the section focuses on
showing that xRG is a pα, β, γq-balanced tree-decomposition of G, and that it can be constructed in
Opb ¨ log bq time and Opbq space. Recall the definition of the parameters

α “ 6 ¨ λ{δ; β “ pp1` δq{2qλ´1; γ “ λ

LEMMA 3.5. The following assertions hold:

(1) Every bag pB of xRG is pβ, γq-balanced.
(2) For every bag pB of xRG, we have | pB| ď α ¨ pt` 1q.

PROOF. We prove each item separately.

(1) For every bag B constructed by Rank, in at least γ ´ 1 out of every γ levels, Item 2 of the
algorithm applies, and by Claim 1, the recursion proceeds on components C1 and C2 that are
at most 1`δ

2 times as large as the input component C in that recursion step. Thus B is pβ, γq-
balanced in RG, and hence pB is pβ, γq-balanced in xRG.
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Fig. 6: Given the tree-decomposition TreepGq on the left, the graph in the middle is the correspond-
ing RG and the one on the right is the corresponding tree-decomposition xRG “ ReplacepRGq after
replacing each bag B with NhVpBq.

(2) It suffices to show that for every bag B, we have |NhpBq| ď α ´ 1 “ 3 ¨ p2{δq ¨ λ ´ 1.
Assume towards contradiction otherwise. Let B be the first bag that Rank constructed such that
|NhpBq| ě 3 ¨ p2{δq ¨λ. Let B1 be the lowest ancestor of B in RG that was constructed by Rank on
some input pC, `q with ` “ 1, and let B2 be the parent of B1 in RG (note that B1 can be B itself).
By Item 3 of Rank and Claim 2, it follows that |NhpB1q| ď t

2¨|NhpB2q|
3 u ` 1. Note that B1 is at

most λ´ 1 levels above B (as we allow B1 to be B). By Claim 3, the neighborhood of a bag can
increase by at most p2{δq from the neighborhood of its parents, hence NhpB1q ě 2¨p2{δq¨pλ`1q.
The last two inequalities lead to |NhpB2q| ě 3 ¨ p2{δq ¨ λ, which contradicts our choice of B.

The desired result follows.

A minimal example. Figure 6 illustrates an example of xRG constructed out of a tree-decomposition
T 1 of G. First, T 1 is turned into a binary and balanced tree RG and then into a binary and balanced
tree xRG. If the numbers are pointers to bags, such that T 1 is a tree-decomposition for G, then xRG

is a binary and balanced tree-decomposition of G. The values of λ and δ are immaterial for this
example, as xRG becomes perfectly balanced (i.e., p1{2, 1q-balanced).

THEOREM 3.1. For every graph G with n nodes and constant treewidth, for any fixed δ ą 0
and λ P N with λ ě 2, let α “ 6 ¨ λ{δ, β “ pp1 ` δq{2qλ´1, and γ “ λ. A binary pα, β, γq
tree-decomposition TreepGq with Opnq bags can be constructed in Opn ¨ log nq time and Opnq
space.

PROOF. By [Bodlaender 1996] an initial tree-decomposition T 1 ofG with width t and b “ Opnq

bags can be constructed in Opnq time. Lemma 3.4 and Lemma 3.5 prove that the constructed xRG

is a pα, β, γq-balanced tree-decomposition of G. The time and space complexity come from the
construction of RG by the recursion of Rank. It can be easily seen that every level of the recursion
processes disjoint components Ci of T 1 in Op|Ci|q time (recall that operations Split and Merge
require linear time), thus one level of the recursion requires Opbq time in total. There are Oplog bq
such levels, since every λ levels, the size of each component has been reduced to at most a factor
pp1` δq{2qλ´1. Hence the time complexity is Opb ¨ log bq “ Opn ¨ log nq. The space complexity is
that of processing a single level of the recursion, hence Opbq “ Opnq.

4. CONCURRENT TREE DECOMPOSITION

In this section we present the construction of a tree-decomposition TreepGq of a concurrent graph
G “ pV,Eq of k constant-treewidth graphs. In general, G can have treewidth which depends on
the number of its nodes (e.g., G can be a grid, which has treewidth n, obtained as the product of
two lines, which have treewidth 1). While the treewidth computation for constant-treewidth graphs
is linear time [Bodlaender 1996], it is NP-complete for general graphs [Bodlaender 1993]. Hence
computing a tree decomposition that achieves the treewidth of G can be computationally expensive
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TreepG1q
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x3, cy

Fig. 7: The tree-decomposition ConcurTreepGq of a concurrent graph G of two constant-treewidth
graphs G1 and G2.

(e.g., exponential in the size of G). Here we develop an algorithm ConcurTree which constructs a
tree-decomposition ConcurTreepGq ofG, given an pα, β, γq tree-decomposition of the components,
inOpnkq time and space (i.e., linear in the size ofG), such that the following properties hold: (i) the
width is Opnk´1q; and (ii) for every bag in level at least i ¨ γ, the size of the bag is Opnk´1 ¨ βiq
(i.e., the size of the bags decreases geometrically along the levels).

Algorithm ConcurTree for concurrent tree decomposition. Let G be a concurrent graph of k
graphs pGiq1ďiďk. The input consists of a full binary tree-decomposition Ti of constant width for
every graphGi. In the following,Bi ranges over bags of Ti, and we denote byBi,r, with r P r2s, the
r-th child of Bi. We construct the concurrent tree-decomposition T “ ConcurTreepGq “ pVT , ET q
ofG using the recursive procedure ConcurTree, which operates as follows. On input pTipBiqq1ďiďk,
return a tree decomposition where

(1) The root bag B is

B “
ď

1ďiďk

˜˜

ź

jăi

VTj
pBjq

¸

ˆBi ˆ

˜

ź

jąi

VTj
pBjq

¸¸

(1)

(2) If every Bi is a non-leaf bag of Ti, for every choice of xr1, . . . , rky P r2sk, repeat the procedure
for pTipBi,riqq1ďiďk, and let B1 be the root of the returned tree. Make B1 a child of B.

(3) If some Bi is a leaf bag of Ti, then the algorithm terminates.

Let Bi be the root of the tree-decomposition Ti. We denote by ConcurTreepGq the application of
the recursive procedure ConcurTree on pTipBiqq1ďiďk. Figure 7 provides an illustration.

Remark 4.1. Recall that for any bag Bj of a tree-decomposition Tj , we have VTj
pBjq “

Ť

B1j
B1j , where B1j ranges over bags in TjpBjq. Then, for any two bags Bi1 , Bi2 , of tree-

decompositions Ti1 and Ti2 respectively, we have

VTi1
pBi1q ˆ VTi2

pBi2q “
ď

B1i1
,B1i2

`

B1i1 ˆB
1
i2

˘

where B1i1 and B1i2 range over bags in Ti1pBi1q and Ti2pBi2q respectively. Since each tree-
decomposition Ti has constant width, it follows that |VTi1

pBi1q ˆ VTi2
pBi2q| “ Op|Ti1pBi1q| ¨

|Ti2pBi2q|q. Thus, the size of each bag B of ConcurTreepGq constructed in Eq. 1 on some input
pTipBiqqi is |B| “ Op

ř

i

ś

j‰i njq, where ni “ |TipBiq|.
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In view of Remark 4.1, the time and space required by ConcurTree to operate on input
pTipBiqq1ďiďk where |TipBiq| “ ni, is given, up to constant factors, by

T pn1, . . . , nkq ď
ÿ

1ďiďk

ź

j‰i

nj `
ÿ

priqiPr2s
k

T pn1,r1 , . . . , nk,rkq (2)

such that for every i we have that
ř

riPr2s
ni,ri ď ni.

The following lemma establishes the correctness of the construction.

LEMMA 4.2. ConcurTreepGq is a tree decomposition of G.

PROOF. We show that T satisfies the three conditions of a tree decomposition.

C1 For each node u “ xuiy1ďiďk, let j “ arg mini Lvpuiq. Then u P B, where B is the bag
constructed by step 1 of ConcurTree when it operates on input pTipBiqq1ďiďk, where each Ti is
a tree decomposition, and additionally Bj “ Buj (i.e., Bj is the root bag of uj in Tj).

C2 Similarly, for each edge pu, vq P E with u “ xuiy1ďiďk and v “ xviy1ďiďk, let j “
arg minipmaxpLvpuiq, Lvpviqqq, where arg mini fpiq returns the value of i that minimizes f .
Then pu, vq P B, where B is a bag similar to C1.

C3 For any node u “ xuiy1ďiďk and path P : B ù B1 with u P B X B1, let B2 be any bag of
P . Since at least one of B, B1 is a descendant of B2, we have VT pBq Ď VT pB

2q or VT pB1q Ď
VT pB

2q, and because u P B X B1, if B2 was constructed on input pTipB2i qq1ďiďk, where each
Ti is a tree decomposition, we have ui P VTi

pB2i q. Let pTipBiqq1ďiďk and pTipB1iqq1ďiďk be the
inputs to the algorithm when B and B1 were constructed, and it follows that for some 1 ď j ď k
we have uj P Bj X B1j . Then B2j is an intermediate bag in the path Pj : Bj ù B1j in Tj , thus
uj P B

2
j and hence u P B2.

The desired result follows.

We now turn our attention to the complexity. We start with analyzing the following recurrence,
which will be useful in the complexity analysis afterwards.

LEMMA 4.3. Consider the following recurrence

T pn1, . . . , nkq ď
ÿ

1ďiďk

ź

j‰i

nj `
ÿ

priqiPr2s
k

T pn1,r1 , . . . , nk,rkq (3)

such that for every i we have that ni,1, ni,2 ě 1 and
ř

riPr2s
ni,ri ď ni and as the base case we

have that if ni “ 1 for some i, then

T pn1, . . . , nkq ď
ÿ

1ďiďk

ź

j‰i

nj (4)

Then Eq. 3 has the solution

T pn1, . . . , nkq ď 2 ¨ k ¨
ź

1ďiďk

ni ´
ÿ

1ďiďk

ź

j‰i

nj . (5)

PROOF. Observe that the right hand side of Eq. 5 is always larger than the right hand side of
Eq.4. Hence, in order to verify that Eq. 3 has Eq. 5 as a solution, it suffices to substitute Eq. 5 in
Eq. 3 (i.e., we take Eq. 5 also as the base case solution). Indeed, substituting Eq. 5 to the recurrence
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Eq. 3 we have

T pn1, . . . , nkq ď
ÿ

1ďiďk

ź

j‰i

nj `
ÿ

priqiPr2sk

˜

2 ¨ k ¨
ź

1ďiďk

ni,ri ´
ÿ

1ďiďk

ź

j‰i

nj,rj

¸

“
ÿ

1ďiďk

ź

j‰i

nj ` 2 ¨ k ¨X ´ Y (6)

where

X “
ÿ

priqiPr2sk

˜

ź

1ďiďk

ni,ri

¸

and Y “
ÿ

priqiPr2sk

˜

ÿ

1ďiďk

ź

j‰i

nj,rj

¸

We compute X and Y respectively.

X “
ÿ

priqiPr2sk

˜

ź

1ďiďk

ni,ri

¸

“
ÿ

r1Pr2s

n1,r1 ¨

¨

˝

ÿ

r2Pr2s

n2,r2 ¨

¨

˝. . .
ÿ

rkPr2s

nk,rk

˛

‚

˛

‚ď
ź

1ďiďk

ni (7)

by factoring out every ni,ri of the sum. Similarly,

Y “
ÿ

priqiPr2sk

˜

ÿ

1ďiďk

ź

j‰i

nj,rj

¸

“
ÿ

1ďiďk

¨

˝

ÿ

priqiPr2sk

ź

j‰i

nj,rj

˛

‚

“2 ¨
ÿ

1ďiďk

¨

˝

ÿ

r1Pr2s

n1,r1 ¨ . . . p
ÿ

ri´1Pr2s

ni´1,ri´1
¨ p

ÿ

ri`1Pr2s

ni`1,ri`1
¨ . . . p

ÿ

rkPr2s

nk,rkqqq

˛

‚

ě2 ¨
ÿ

1ďiďk

ź

j‰i

nj (8)

The second equality is obtained by swapping the inner with the outer sum. The third equality follows
by expanding the sum over priqi P r2sk. The final inequality is obtained since for all 1 ď i ď k we
have ni,1 ` ni,2 ď ni. Substituting inequalities Eq. 7 and 8 to Eq. 6 we obtain

T pn1, . . . , nkq ď
ÿ

1ďiďk

ź

j‰i

nj ` 2 ¨ k ¨X ´ Y ď 2 ¨ k ¨
ź

1ďiďk

ni ´
ÿ

1ďiďk

ź

j‰i

nj

as desired.

LEMMA 4.4. ConcurTree requires Opnkq time and space.

PROOF. It is easy to verify that ConcurTreepGq performs a constant number of operations per
node per bag in the returned tree decomposition. Hence we will bound the time taken by bounding
the size of ConcurTreepGq. Consider a recursion step of ConcurTree on input pTipBiqq1ďiďk. Let
ni “ |TipBiq| for all 1 ď i ď k, and ni,ri “ |TipBi,riq|, ri P r2s, where Bi,ri is the ri-th child
of Bi. Without loss of generality, we assume that ni ě 2 for all i. In view of Remark 4.1, the time
required by ConcurTree on this input is given by the recurrence in Eq. 3, up to a constant factor.
The desired result follows from Lemma 4.3.

We summarize the results of this section with the following theorem.

THEOREM 4.5. Let G “ pV,Eq be a concurrent graph of k constant-treewidth graphs
pGiq1ďiďk of n nodes each. Let a binary pα, β, γq tree-decomposition Ti for every graph Gi be
given, for some constant α. ConcurTree constructs a 2k-ary tree-decomposition ConcurTreepGq
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B1 B2 B3 B4

u x2 x3 x4

x2 x3 x4 v

Fig. 8: Illustration of Lemma 5.1. If P is the unique simple path B1 ù B4 in TreepGq, then there
exist (not necessarily distinct) xi P Bi´1 X Bi with 1 ă i ď 4 such that dpu, vq “ dpu, x2q b
dpx2, x3q b dpx3, x4q b dpx4, vq.

of G in Opnkq time and space, with the following property. For every i P N and bag B at level
LvpBq ě i ¨ γ, we have |B| “ Opnk´1 ¨ βiq.

PROOF. Lemma 4.2 proves the correctness and Lemma 4.4 the complexity. Here we focus on
bounding the size of a bag B with LvpBq ě i ¨ γ. Let pTipBiqq1ďiďk be the input on ConcurTree
when it constructed B using Eq. 1 and ni “ |TipBiq|. Observe that LvpBq “ LvpBiq for all i, and
since each Ti is pβ, γq-balanced, we have that ni ď Opn ¨ βiq. Since each Ti is α-approximate,
|Bi| “ Op1q for all i. It follows from Eq. 1 and Remark 4.1 that |B| “ Opnk´1 ¨ βiq.

5. CONCURRENT ALGEBRAIC PATHS

We now turn our attention to the core algorithmic problem of this paper, namely answering semiring
distance queries in a concurrent graph G of k constant-treewidth graphs pGiq1ďiďk. To this direc-
tion, we develop a data-structure ConcurAP (for concurrent algebraic paths) which will preprocess
G and afterwards support single-source, pair, and partial pair queries on G.

Semiring distances on tree decompositions. The preprocessing and query of our data-structure
exploits a key property of semiring distances on tree decompositions. This property is formally
stated in Lemma 5.1, and concerns any two nodes u, v that appear in some distinct bags B1, Bj of
TreepGq. Informally, the semiring distance dpu, vq can be written as the semiring multiplication of
distances dpxi, xi`1q, where xi is a node that appears in the i-th and pi ´ 1q-th bags of the unique
simple path B1 ù Bj in TreepGq (recall that since TreepGq is a tree decomposition, there is a
unique simple path between every pair of its bags). Figure 8 provides an illustration.

LEMMA 5.1. Consider a graph G “ pV,Eq with a weight function wt : E Ñ Σ, and
a tree-decomposition TreepGq. Let u, v P V , and P : B1, B2, . . . , Bj be any simple path
in T such that u P B1 and v P Bj . Let A “ tuu ˆ p

ś

1ăiďj pBi´1 XBiqq ˆ tvu. Then

dpu, vq “
À

px1,...,xj`1qPA

Âj
i“1 dpxi, xi`1q.

PROOF. By [Chatterjee et al. 2015b, Lemma 1], for every bag Bi with i ą 1 and path P : u ù

v, there exists a node xi P Bi´1 XBi X P . Denote by Px,y a path x ù y in G. Then

dpu, vq “
à

Pu,v

bpPu,vq “
à

xiPBi´1XBiXP

˜

à

Pu,xi

bpPu,xi
q b

à

Pxi,v

bpPxi,vq

¸

“
à

xiPBi´1XBi

pdpu, xiq b dpxi, vqq

and the proof follows an easy induction on i.

Informal description of the preprocessing. The preprocessing phase of ConcurAP is handled by
algorithm ConcurPreprocess, which performs the following steps.
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(1) First, the partial expansion G of G is constructed by introducing a pair of strictly partial nodes
u1, u2 for every strictly partial node u of G, and edges between strictly partial nodes and the
corresponding nodes of G that refine them.

(2) Second, the concurrent tree-decomposition T “ ConcurTreepGq of G is constructed, and mod-
ified to a tree-decomposition T of the partial expansion graph G.

(3) Third, a standard, two-way pass of T is performed to compute local distances. In this step, for
every bag B in T and all partial nodes u, v P B, the distance dpu, vq is computed (i.e., all-pair
distances in B). Since we compute distances between nodes that are local in a bag, this step is
called local distance computation. This information is used to handle (i) single-source queries
and (ii) partial pair queries in which both nodes are strictly partial.

(4) Finally, a top-down pass of T is performed in which for every node u and partial node v P
VT pBuq (i.e., v appears in some ancestor ofBu) the distances dpu, vq and dpv, uq are computed.
This information is used to handle pair queries in which at least one node is a node of G (i.e.,
not strictly partial).

Bottom-up and top-down traversals. In the description of the preprocessing algorithm
ConcurPreprocess, we make use of two types of traversals of the tree decomposition. A bottom-
up traversal is any traversal of the tree in which a bag B is visited after all children of B have been
visited. A top-down traversal is any traversal of the tree in which a bag B is visited after the parent
of B has been visited.

Algorithm ConcurPreprocess. We now formally describe algorithm ConcurPreprocess for prepro-
cessing the concurrent graph G “ pV,Eq for the purpose of answering algebraic path queries. For
any desired 0 ă ε ď 1, we choose appropriate constants α, β, γ, which will be defined later for the
complexity analysis. On input G “ pV,Eq, where G is a concurrent graph of k constant-treewidth
graphs pGi “ pVi, Eiqq1ďiďk, and a weight function wt : E Ñ Σ, ConcurPreprocess operates as
follows:

(1) Construct the partial expansion G “ pV ,Eq of G together with an extended weight function
wt : E Ñ Σ as follows.
(a) The node set is V “ V Y tu1, u2 : Du P V s.t. u Ă uu; i.e., V consists of nodes in V and

two copies for every partial node u that is strictly refined by a node u of G.
(b) The edge set is E “ E Y tpu1, uq, pu, u2q : u1, u2 P V and u P V s.t. u Ă u1, u2u, i.e.,

along with the original edges E, the first (resp., second) copy of every strictly partial node
has outgoing (resp., incoming) edges to (resp., from) the nodes of G that refine it.

(c) For the weight function we have wtpu, vq “ wtpu, vq if u, v P V , and wtpu, vq “ 1 oth-
erwise. That is, the original weight function is extended with value 1 (which is neutral for
semiring multiplication) to all new edges in G.

(2) Construct the tree-decomposition T “ pV T , ET q of G as follows.
(a) Obtain an pα, β, γq-balanced tree-decomposition Ti “ TreepGiq of every graph Gi using

Theorem 3.1.
(b) Construct the concurrent tree-decomposition T “ ConcurTreepGq of G using pTiq1ďiďk.
(c) Let T be identical to T , with the following exception: For every bag B of T and B the

corresponding bag in T , for every node u P B, insert in B all strictly partial nodes u1, u2 of
V that u refines. Formally, set B “ BYtu1, u2 : Du P B s.t. u Ă uu. Note that also u P B.

Observe that the root bag of T contains all strictly partial nodes.
(3) Perform the local distance computation on T as follows. For every partial node u, maintain two

map data-structures FWDu,BWDu : Bu Ñ Σ. Intuitively, FWDu (resp., BWDu) aims to store
the forward (resp., backward) distance, i.e., distance from (resp., to) u to (resp., from) vertices
in Bu. Initially set FWDupvq “ wtpu, vq and BWDupvq “ wtpv, uq for all partial nodes v P Bu
(and FWDupvq “ BWDupvq “ 0 if pu, vq R E). At any point in the computation, given a bag B
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we denote by wtB : B ˆ B Ñ Σ a map data-structure such that for every pair of partial nodes
u, v with Lvpvq ď Lvpuq we have wtBpu, vq “ FWDupvq and wtBpv, uq “ BWDupvq.
(a) Traverse T bottom-up, and for every bag B, execute an all-pairs algebraic path computation

onGrBs with weight function wtB . This is done using classical algorithms for the transitive
closure, e.g. [Lehmann 1977; Floyd 1962; Warshall 1962; Kleene 1956]. For every pair of
partial nodes u, v with Lvpvq ď Lvpuq, set BWDupvq “ d1pv, uq and FWDupvq “ d1pu, vq,
where d1pu, vq and d1pv, uq are the computed distances in GrBs (recall that GrBs denotes
the restriction of the graph G on the node set B).

(b) Traverse T top-down, and for every bag B perform the computation of Item 3a.
(4) Perform the ancestor distance computation on T as follows. For every node u, maintain two

map data-structures FWD`u ,BWD`u : VT pBuq Ñ Σ from partial nodes that appear in the an-
cestor bags of Bu to Σ. These maps aim to capture distances between the node u and nodes in
the ancestor bags of Bu (in contrast to FWDu and BWDu which store distances only between
u and nodes in Bu). Initially, set FWD`u pvq “ FWDupvq and BWD`u pvq “ BWDupvq for ev-
ery partial node v P Bu. Given a pair of partial nodes u, v with Lvpvq ď Lvpuq we denote by
wt`pu, vq “ FWD`u pvq and wt`pv, uq “ BWD`u pvq. Traverse T via a DFS starting from the
root, and for every encountered bag B with parent B

1
, for every node u such that B is the root

bag of u, for every partial node v P VT pBuq, assign

FWD`u pvq “
à

xPBXB
1

FWDupxq b wt`px, vq (9)

BWD`u pvq “
à

xPBXB
1

BWDupxq b wt`pv, xq (10)

IfB is the root of T , simply initialize the maps FWD`u and BWD`u according to the corresponding
maps FWDu and BWDu constructed from Item 3.

(5) Preprocess T to answer LCA queries in Op1q time [Harel and Tarjan 1984].

The following claim states that the first (resp., second) copy of each strictly partial node inserted in
Item 1 captures the distance from (resp., to) the corresponding strictly partial node of G.

CLAIM 5. For every partial node u and strictly partial node v we have dpu, vq “ dpu, v2q and
dpv, uq “ dpv1, uq.

PROOF. By construction, for every node v P V that strictly refines v (i.e., v Ă v), we have
wtpv1, vq “ dpv1, vq “ 1 and wtpv, v2q “ dpv, v2q “ 1, i.e., every such v can reach (resp., be
reached from) v2 (resp., v1) without changing the distance from u. The claim follows easily.

Key novelty and insights. The key novelty and insights of our algorithm are as follows:

(1) A partial pair query can be answered by breaking it down to several pair queries. Instead, pre-
processing the partial expansion of the concurrent graph allows to answer partial pair queries
directly. Moreover, the partial expansion does not increase the asymptotic complexity of the
preprocessing time and space.

(2) ConcurPreprocess computes the transitive closure only during the local distance computation
in each bag (Item 3 above), instead of a global computation on the whole graph. The key reason
of our algorithmic improvement lies on the fact that the local computation is cheaper than the
global computation, and is also sufficient to handle queries fast.

(3) The third key aspect of our algorithm is the strongly balanced tree decomposition, which is cru-
cially used in Theorem 4.5 to construct a tree decomposition for the concurrent graph such that
the size of the bags decreases geometrically along the levels. By using the cheaper local distance
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computation (as opposed to the transitive closure globally) and recursing on a geometrically de-
creasing series we obtain the desired complexity bounds for our algorithm. Both the strongly
balanced tree decomposition and the fast local distance computation play important roles in our
algorithmic improvements.

We now turn our attention to the analysis of ConcurPreprocess.

LEMMA 5.2. T is a tree decomposition of the partial expansion G.

PROOF. By Theorem 4.5, ConcurTreepGq is a tree decomposition of G. To show that T is a tree
decomposition of the partial expansion G, it suffices to show that the conditions C1-C3 are met for
every pair of nodes u1, u2 that correspond to a strict partial node u of G. We only focus on u1, as
the other case is similar.

C1 This condition is met, as u1 appears in every bag of T that contains a node u that refines u1.
C2 Since every node u1 is connected only to nodes u of G that refine u, this condition is also met.
C3 First, observe that u1 appears in the root bag B of T . Then, for every simple path P : B ù B

1

from the root to some leaf bag B
1
, if B

2
is the first bag in P where u1 does not appear, then

some non-K constituent of u does not appear in bags of TB2 , hence neither does u1. Thus, u1

appears in a contiguous subtree of T .

The desired result follows.

In Lemma 5.3 we establish that the forward and backward maps computed by ConcurPreprocess
store the distances between nodes.

LEMMA 5.3. At the end of ConcurPreprocess, the following assertions hold:

(1) For all nodes u, v P V such that Bu appears in T pBvq, we have FWD`u pvq “ dpu, vq and
BWD`u pvq “ dpv, uq.

(2) For all strictly partial nodes v P V and nodes u P V we have FWD`u pv
2q “ dpu, vq and

BWD`u pv
1q “ dpv, uq.

(3) For all strictly partial nodes u, v P V we have FWDu1pv2q “ dpu, vq and BWDu2pv1q “
dpv, uq.

PROOF. We describe the key invariants that hold during the traversals of T by ConcurPreprocess
in Item 3a, Item 3b and Item 4 after the algorithm processes a bag B.

Item 3a For every pair of partial nodes u, v P B such that Lvpvq ď Lvpuq we have FWDupvq ĺ
À

P1
bpP1q and BWDupvq ĺ

À

P2
bpP2q where P1 and P2 are u ù v and v ù u paths

respectively that only traverse nodes in V T pBq. The statement follows by a straightforward
induction on the levels processed by the algorithm in the bottom-up pass. Note that if u and v are
partial nodes in the root of T , the statement yields FWDupvq “ dpu, vq and BWDupvq “ dpv, uq.

Item 3b The invariant is similar to the previous, except that P1 and P2 range over all u ù v and
v ù u paths in G respectively. Hence now FWDupvq “ dpu, vq and BWDupvq “ dpv, uq. The
statement follows by a straightforward induction on the levels processed by the algorithm in the
top-down pass. Note that the base case on the root follows from the previous item, where the
maps BWD and FWD store actual distances.

Item 4 For every node u P B and partial node v P VT pBq we have FWD`u pvq “ dpu, vq and
BWD`u pvq “ dpv, uq. The statement follows from Lemma 5.1 and a straightforward induction
on the length of the path from the root of T to the processed bag B. Indeed, the statement is true
when B is the root of the tree decomposition, which serves as the basis of the induction. This
follows from the correctness Item 3b, as at this point the maps FWD` and BWD` restricted to
nodes of B are identical to the maps FWD and BWD restricted to nodes of B. For the inductive
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step, consider any bag B, and assume that the statement holds for the parent bag B
1

of B.
Lemma 5.1 yields that for bag B

2
P VT pBq, for every pair of partial nodes u, v such that u P B

and v P B
2
, we have that

dpu, vq “
à

wPB
1

pdpu,wq b dpw, vqq

By the induction hypothesis, the distances dpw, vq are found in the map FWD`u , whereas the
distances dpu,wq are found, by the correctness of Item 3b in the maps FWDu and BWDu. It fol-
lows that the algorithm combines the distances computed in these maps to compute the distance
dpu, vq.

Statement 1 of the lemma follows from Item 4. Similarly for statement 2, together with the obser-
vation that every strictly partial node v appears in the root of T , and thus v P VT pBuq. Finally,
statement 3 follows again from the fact that all strictly partial nodes appear in the root bag of T . The
desired result follows.

Complexity analysis. We now consider the complexity analysis of ConcurPreprocess. Recall that
ConcurPreprocess takes as part of its input a desired constant 0 ă ε ď 1. We choose a λ P N and
δ P R such that λ ě 4{ε and δ ď ε{18. Additionally, we set α “ 6 ¨ λ{δ, β “ pp1 ` δq{2qλ´1

and γ “ λ, which are the constants used for constructing an pα, β, γq-balanced tree-decomposition
Ti “ TreepGiq in Item 2a of ConcurPreprocess. We start with a technical lemma on two recurrence
relations, Tk and Sk, which are parameterized by k, and will help us bound the time and space,
respectively, spent by ConcurPreprocess.

LEMMA 5.4. Consider the recurrences in Eq. 11 and Eq. 12.

Tkpnq ď n3¨pk´1q ` 2λ¨k ¨ Tk

˜

n ¨

ˆ

1` δ

2

˙λ´1
¸

(11)

Skpnq ď n2¨pk´1q ` 2λ¨k ¨ Sk

˜

n ¨

ˆ

1` δ

2

˙λ´1
¸

(12)

Then

(1) Tkpnq “ Opn3¨pk´1qq, and
(2) (i) Skpnq “ Opn2¨pk´1qq if k ě 3, and (ii) S2pnq “ Opn2`εq.

PROOF. We analyze each recurrence separately. First we consider Eq. 11. Note that
˜

n ¨

ˆ

1` δ

2

˙λ´1
¸3¨pk´1q

“

ˆ

1` δ

2

˙3¨pλ´1q¨pk´1q

¨ n3¨pk´1q (13)

and

2λ¨k ¨

ˆ

1` δ

2

˙3¨pλ´1q¨pk´1q

“
p1` δq3¨pλ´1q¨pk´1q

22¨k¨λ`3¨pk`λ´1q
(14)

and since logp1` δq “ lnp1`δq
ln 2 ă δ

ln 2 ă 2 ¨ δ, we have

p1` δq3¨pλ´1q¨pk´1q “ 2logp1`δq¨3¨pλ´1q¨pk´1q ă 26¨δ¨pλ´1q¨pk´1q

Hence the expression in Eq. 14 is bounded by 2x with

x ď 6 ¨ δ ¨ pλ´ 1q ¨ pk ´ 1q ´ 2 ¨ k ¨ λ` 3 ¨ pλ` k ´ 1q

“ ´2 ¨ λ ¨ k ¨ p1´ 3 ¨ δq ` 3 ¨ pλ` k ´ 1q ¨ p1´ 2 ¨ δq
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Let fpkq “ ´2 ¨ λ ¨ k ¨ p1 ´ 3 ¨ δq ` 3 ¨ pλ ` k ´ 1q ¨ p1 ´ 2 ¨ δq and note that since λ ě 4
ε ě 4

and δ ď ε
18 ď

1
18 , fpkq is decreasing, and thus maximized for k “ 2, for which we obtain fp2q “

´4 ¨ λ ¨ p1´ 3 ¨ δq ` 3 ¨ pλ` 1q ¨ p1´ 2 ¨ δq “ ´λ ¨ p1´ 6 ¨ δq ď 0 as δ ď 1
18 . It follows that there

exists a constant c ă 1 for which

2λ¨k ¨ Tk

˜

n ¨

ˆ

1` δ

2

˙λ´1
¸

ď c ¨ n3¨pk´1q

which yields that Eq. 11 follows a geometric series, and thus Tkpnq “ Opn3¨pk´1qq.

We now turn our attention to Eq. 12. When k ě 3, an analysis similar to Eq. 11 yields the bound
Opn2¨pk´1qq. When k “ 2, since ε ą 0, we write Eq. 12 as

S2pnq ď n2`ε ` 22¨λ ¨ S2

˜

n ¨

ˆ

1` δ

2

˙λ´1
¸

(15)

Similarly as above, we have
˜

n ¨

ˆ

1` δ

2

˙λ´1
¸2`ε

“

ˆ

1` δ

2

˙p2`εq¨pλ´1q

¨ n2`ε (16)

and

22¨λ ¨

ˆ

1` δ

2

˙p2`εq¨pλ´1q

“
p1` δqp2`εq¨pλ´1q

2´2`ε¨pλ´1q
(17)

and since logp1` δq “ lnp1`δq
ln 2 ă δ

ln 2 ă 2 ¨ δ, we have

p1` δqp2`εq¨pλ´1q ă 22¨δ¨p2`εq¨pλ´1q

Hence the expression in Eq. 17 is bounded by 2x with

x ď 2 ¨ δ ¨ p2` εq ¨ pλ´ 1q ` 2´ ε ¨ pλ´ 1q

“ pλ´ 1q ¨ p2 ¨ δ ¨ p2` εq ´ εq ` 2

ď pλ´ 1q ¨
4 ¨ ε` 2 ¨ ε2 ´ 18 ¨ ε

18
` 2

ď p1´ λq ¨ ε ¨
2

3
` 2

ď ´p4´ εq ¨
2

3
` 2 ď 0

since δ ď ε
18 and λ ě 4

ε and ε ď 1. It follows that there exists a constant c ă 1 for which

22¨λ ¨ S2pnq ď c ¨ n2`ε

which yields that Eq. 15 follows a geometric series, and thus S2pnq “ Opn2`εq.

The following lemma analyzes the complexity of ConcurPreprocess, and makes use of the above
recurrences.

LEMMA 5.5. ConcurPreprocess requires Opn2¨k´1q space and (1) Opn3¨pk´1qq time if k ě 3,
and (2) Opn3`εq time if k “ 2.
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PROOF. We examine each step of the algorithm separately.

(1) The time and space required for this step is bounded by the number of nodes introduced in the
partial expansion G, which is 2 ¨

ř

iăk

`

n
i

˘

“ Opnk´1q.
(2) By Theorem 4.5, ConcurTreepGq is constructed in Opnkq time and space. In T , the size of each

bag B is increased by constant factor, hence this step requires Opnkq time and space.
(3) In each pass, ConcurPreprocess spends |B|3 time to perform an all-pairs algebraic paths com-

putation in each bag B of T [Lehmann 1977; Floyd 1962; Warshall 1962; Kleene 1956]. The
space usage for storing all maps FWDu and BWDu for every node u whose root bag is B is
Op|B|2q, since there are at most |B| such nodes u, and each map has size |B|. By the previous
item, we have |B| “ Op|B|q, where B is the corresponding bag of T before the partial expan-
sion of G. By Theorem 4.5, we have |B| “ Opnk´1 ¨ βiq, where LvpBq ě i ¨ γ “ i ¨ λ, and
β “ pp1 ` δq{2qλ´1. Then, since T is a full 2k-ary tree, the time and space required for pre-
processing every γ “ λ levels of T is given by the following recurrences respectively (ignoring
constant factors for simplicity).

Tkpnq ď n3¨pk´1q ` 2λ¨k ¨ Tk

˜

n ¨

ˆ

1` δ

2

˙λ´1
¸

Skpnq ď n2¨pk´1q ` 2λ¨k ¨ Sk

˜

n ¨

ˆ

1` δ

2

˙λ´1
¸

By the analysis of Eq. 11 and Eq. 12 of Lemma 5.4, we have that Tkpnq “ Opn3¨pk´1qq and
(i) Skpnq “ Opn2¨pk´1qq if k ě 3, and (ii) S2pnq “ Opn2`εq.

(4) We first focus on the space usage. Let B
i

u denote the ancestor bag of Bu at level i. We have

|VT pBuq| ď
ÿ

i

|B
i

u| ď c1 ¨
ÿ

i

|B
ti{γu

u | ď c2 ¨
ÿ

i

|Bti{γu
u |

ď c3 ¨
ÿ

i

`

nk´1 ¨ βi
˘

“ Opnk´1q

for some constants c1, c2, c3. The first inequality comes from expressing the size of all (con-
stantly many) ancestors B

i

u with ti{γu “ j as a constant factor the size of B
ti{γu

u . The second
inequality comes from Item 1 of this lemma, which states that Op|B|q “ Op|B|q for every bag
B. The third inequality comes from Theorem 4.5. The final equality holds because β is a con-
stant, and thus the sum forms a geometric series. By Item 2, there are Opnkq such nodes u in T ,
hence the space required is Opn2¨k´1q.
We now turn our attention to the time requirement. For every bag B, the algorithm requires
Op|B|2q time to iterate over all pairs of nodes u and x in Eq. 9 and Eq. 10 to compute the values
FWD`u pvq and BWD`u pvq for every v P VT pBq. Hence the time required for all nodes u and
one partial node v P VT pBq to store the maps values FWD`u pvq and BWD`pvq is given by the
recurrence

Tkpnq ď n2¨pk´1q ` 2λ¨k ¨ Tk

˜

n ¨

ˆ

1` δ

2

˙λ´1
¸

The analysis of Eq. 11 and Eq. 12 of Lemma 5.4 gives Tkpnq “ Opn2¨pk´1qq for k ě 3 and
T2pnq “ Opn2`εq (i.e., the above time recurrence is analyzed as the recurrence for Sk of
Lemma 5.4). From the space analysis we have that there existOpnk´1q partial nodes v P VT pBq
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for every node u whose root bag isB. Hence the total time for this step isOpn3¨pk´1qq for k ě 3,
and Opn3`εq for k “ 2.

(5) This step requires time linear in the size of T [Harel and Tarjan 1984].

The desired result follows.

Algorithm ConcurQuery. In the query phase, ConcurAP answers distance queries using the algo-
rithm ConcurQuery. We distinguish three cases, according to the type of the query. Recall that all
strictly partial nodes appear in the root bag of the tree decomposition.

(1) Single-source query. Given a source node u, initialize a map data-structure A : V Ñ Σ, and
initially set Apvq “ FWDupvq for all v P Bu, and Apvq “ 0 for all other nodes v P V zBu.
Perform a BFS on T starting from Bu, and for every encountered bag B and nodes x, v P B
with Lvpvq ď Lvpxq, set Apvq “ Apvq ‘ pApxq b FWDxpvqq. Return the map A.

(2) Pair query. Given two nodes u, v P V , find the LCA B of bags Bu and Bv . Return
À

xPBXV pFWD`u pxq b BWD`v pxqq.
(3) Partial pair query. Given two partial nodes u, v,

(a) If both u and v are strictly partial, return FWDu1pv2q, else
(b) If u is strictly partial, return BWD`v pu

1q, else
(c) Return FWD`u pv

2q.

We thus establish the following theorem.

THEOREM 5.6. Let G “ pV,Eq be a concurrent graph of k constant-treewidth graphs
pGiq1ďiďk, and wt : E Ñ Σ a weight function of G. For any fixed ε ą 0, the data-structure
ConcurAP correctly answers single-source and pair queries and requires:

(1) Preprocessing time
(a) Opn3¨pk´1qq if k ě 3, and (b) Opn3`εq if k “ 2.

(2) Preprocessing space Opn2¨k´1q.
(3) Single-source query time

(a) Opn2¨pk´1qq if k ě 3, and (b) Opn2`εq if k “ 2.
(4) Pair query time Opnk´1q.
(5) Partial pair query time Op1q.

PROOF. The correctness of ConcurQuery for handling all queries follows from Lemma 5.1 and
the properties of the preprocessing established in Lemma 5.3. The preprocessing complexity is
stated in Lemma 5.5. The time complexity for the single-source query comes from the observation
that ConcurQuery spends quadratic time in each encountered bag, and the result follows from the
recurrence analysis of Eq. 12 in Lemma 5.4. The time complexity for the pair query follows from
the Op1q time to access the LCA bag B of Bu and Bv , and the Op|B|q “ Opnk´1q time required
to iterate over all nodes x P B X V . Finally, the time complexity for the partial pair query follows
from the Op1q time lookup in the constructed maps FWD, FWD` and BWD`.

Note that a single-source query from a strictly partial node u can be answered in Opnkq time by
breaking it down to nk partial pair queries. The most common case in analysis of concurrent pro-
grams is that of two threads, for which we obtain the following corollary.

COROLLARY 5.7. Let G “ pV,Eq be a concurrent graph of two constant-treewidth graphs
G1, G2, and wt : E Ñ Σ a weight function of G. For any fixed ε ą 0, the data-structure ConcurAP
correctly answers single-source and pair queries and requires:

(1) Preprocessing time Opn3`εq.
(2) Preprocessing space Opn3q.
(3) Single-source query time Opn2`εq.
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(4) Pair query time Opnq.
(5) Partial pair query time Op1q.

Remark 5.8. In contrast to Corollary 5.7, the existing methods for handling even one pair query
require hexic time and quartic space [Lehmann 1977; Floyd 1962; Warshall 1962; Kleene 1956] by
computing the transitive closure. While our improvements are most significant for algebraic path
queries, they imply improvements also for special cases like reachability (expressed in Boolean
semirings). For reachability, the complete preprocessing requires quartic time, and without prepro-
cessing every query requires quadratic time. In contrast, with almost cubic preprocessing we can
answer pair (resp., partial pair) queries in linear (resp., constant) time.

Note that Item 4 of ConcurPreprocess is required for handling pair queries only. By skipping this
step, we can handle every (partial) pair query u, v similarly to the single source query from u, but
restricting the BFS to the path P : Bu ù Bv , and spending Op|B|2q time for each bag B of
P . Recall (Theorem 4.5) that the size of each bag B in T (and thus the size of the corresponding
bag B in T ) decreases geometrically every γ levels. Then, the time required for this operation is
Op|B

1
|2q “ Opn2q, where B

1
is the bag of P with the smallest level. This leads to the following

corollary.

COROLLARY 5.9. Let G “ pV,Eq be a concurrent graph of two constant-treewidth graphs
G1, G2, and wt : E Ñ Σ a weight function of G. For any fixed ε, the data-structure ConcurAP
(by skipping Item 4 in ConcurPreprocess) correctly answers single-source and pair queries and
requires:

(1) Preprocessing time Opn3q.
(2) Preprocessing space Opn2`εq.
(3) Single-source query time Opn2`εq.
(4) Pair and partial pair query time Opn2q.

Finally, we can use ConcurAP to obtain the transitive closure of G by performing n2 single-source
queries. The preprocessing space isOpn2`εq by Corollary 5.9, and the space of the output isOpn4q,
since there are n4 pairs for the computed distances. Hence the total space requirement isOpn4q. The
time requirement is Opn4`εq, since by Corollary 5.9, every single-source query requires Opn2`εq
time. We obtain the following corollary.

COROLLARY 5.10. Let G “ pV,Eq be a concurrent graph of two constant-treewidth graphs
G1, G2, and wt : E Ñ Σ a weight function of G. For any fixed ε ą 0, the transitive closure of G
wrt wt can be computed in Opn4`εq time and Opn4q space.

6. CONDITIONAL OPTIMALITY FOR TWO GRAPHS

In the current section we establish the optimality of Corollary 5.9 in handling algebraic path queries
in a concurrent graph that consists of two constant-treewidth components. The key idea is to show
that for any arbitrary graph (i.e., without the constant-treewidth restriction) G of n nodes, we can
construct a concurrent graph G1 as a 2-self-concurrent asynchronous composition of a constant-
treewidth graph G2 of 2 ¨ n nodes, such that semiring queries in G coincide with semiring queries
in G1.

Arbitrary graphs as composition of two constant-treewidth graphs. We fix an arbitrary graph
G “ pV,Eq of n nodes, and a weight function wt : E Ñ Σ. Let xi, 1 ď i ď n range over the
nodes V of G, and construct a graph G2 “ pV 2, E2q such that V 2 “ txi, yi : 1 ď i ď nu and
E2 “ tpxi, yiq, pyi, xiq : 1 ď i ď nu Y tpyi, yi`1q, pyi`1, yiq : 1 ď i ă nu.

CLAIM 6. The treewidth of G2 is 1.
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Fig. 9: A graph G (left), and G1 that is a 2-self-product of a graph G2 of treewidth 1 (right). The
weighted edges of G correspond to weighted red edges on G1. The distance dpxi, xjq in G equals
the distance dpxxi, xiy, xxj , xjyq “ dpxK, xiy, xK, xjyq in G1.

PROOF. Observe that if we (i) ignore the direction of the edges and (ii) remove multiple appear-
ances of the same edge, we obtain a tree. It is known that trees have treewidth 1.

Given G2, we construct a graph G1 as a 2-self-concurrent asynchronous composition of G2. Infor-
mally, a node xi of G corresponds to the node xxi, xiy of G1. An edge pxi, xjq in G is simulated by
two paths in G1.

(1) The first path has the form P1 : xxi, xiy ù xxi, xjy, and is used to witness the weight of the
edge in G, i.e., wtpxi, xjq “ bpP1q. It traverses a sequence of nodes, where the first constituent
is fixed to xi, and the second constituent forms the path xi Ñ yi Ñ yi1 Ñ ¨ ¨ ¨ Ñ yj Ñ xj . The
last transition will have weight equal to wtpxi, xjq, and the other transitions have weight 1. Any
path that has the above form can be taken as P1.

(2) The second path has the form P2 : xxi, xjy ù xxj , xjy, it has no weight (i.e.,bpP2q “ 1), and
is used to reach the node xxj , xjy. It traverses a sequence of nodes, where the second constituent
is fixed to xj , and the first constituent forms the path xi Ñ yi Ñ yi1 Ñ ¨ ¨ ¨ Ñ yj Ñ xj . Any
path that has the above form can be taken as P2.

Then the concatenation of P1 and P2 creates a path P : xxi, xiy ù xxj , xjy with bpP q “
bpP1q b bpP2q “ wtpxi, xjq b 1 “ wtpxi, xjq.

Formal construction. We construct a graph G1 “ pV 1, E1q as a 2-self-concurrent asynchronous
composition of G2, by including the following edges.

(1) Black edges. For all 1 ď i ď n and 1 ď j ă n we have
pxxi, yjy, xxi, yj`1yq, pxxi, yj`1y, xxi, yjyq P E1 , and for all 1 ď i ă n and 1 ď j ď n
we have pxyi, xjy, xyi`1, xjyq, pxyi`1, xjy, xyi, xjyq P E

1.
(2) Blue edges. For all 1 ď i ď n we have pxxi, xiy, xxi, yiyq, pxyi, xiy, xxi, xiyq P E1 .
(3) Red edges. For all pxi, xjq P E we have pxxi, yjy, xxi, xjyq P E1.
(4) Green edges. For all 1 ď i, j ď n with i ‰ j we have pxxi, xjy, xyi, xjyq P E1.

Additionally, we construct a weight function such that wt1pxxi, yjy, xxi, xjyq “ wtpxi, xjq for every
red edge pxxi, yjy, xxi, xjyq, and wt1pu, vq “ 1 for every other edge pu, vq. Figure 9 provides an
illustration of the construction.

LEMMA 6.1. For every xi, xj P V , there exists a path P : xi ù xj with bpP q “ z in G iff
there exists a path P 1 : xxi, xiy ù xxj , xjy with bpP 1q “ z in G1.
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PROOF. Recall that only red edges contribute to the weights of paths in G1. We argue that there
is path P : xxi, xiy ù xxj , xjy in G1 that traverses a single red edge iff there is an edge pxi, xjq in
G with bpP q “ wtpxi, xjq.

(1) Given the edge pxi, xjq, the path P is formed by traversing the red edge pxxi, yjy, xxi, xjyq as

xxi, xiy Ñ xxi, yiy ù xxi, yjy Ñ xxi, xjy Ñ xyi, xjy ù xyi, xjy Ñ xxj , yjy

Since wtppxxi, yjy, xxi, xjyqq “ wtpxi, xjq and all other edges of P have weight 1, we have that
bpP q “ wtpxi, xjq.

(2) Every path P that traverses a red edge xxi1 , yj1y Ñ xxi1 , xj1y has to traverse a blue edge to
xxj1 , xj1y. Then xj1 must be xj , otherwise P will traverse a second red edge before reaching
xxj , xjy.

The result follows easily from the above.

Lemma 6.1 implies that for every xi, xj P V , we have dpxi, xjq “ dpxxi, xiy, xxj , xjyq, i.e., pair
queries in G for nodes xi, xj coincide with pair queries pxxi, xiy, xxj , xjyq in G1. Observe that in
G1 we have dpxxi, xiy, xxj , xjyq “ dpxK, xiy, xK, xjyq, and hence pair queries in G also coincide
with partial pair queries in G1.

THEOREM 6.2. For every graph G “ pV,Eq and weight function wt : E Ñ Σ there exists
a graph G1 “ pV ˆ V,E1q that is a 2-self-concurrent asynchronous composition of a constant-
treewidth graph, together with a weight function wt1 : E1 Ñ Σ, such that for all u, v P V , and
xu, uy, xv, vy P V 1 we have dpu, vq “ dpxu, uy, xv, vyq “ dpxK, uy, xK, vyq. Moreover, the graph
G1 can be constructed in quadratic time in the size of G.

This leads to the following corollary.

COROLLARY 6.3. Let TSpnq “ Ωpn2q be a lower bound on the time required to answer a
single algebraic paths query wrt to a semiring S on arbitrary graphs of n nodes. Consider any
concurrent graph G which is an asynchronous self-composition of two constant-treewidth graphs of
n nodes each. For any data-structure DS, let TDSpG, rq be the time required by DS to preprocess
G and answer r pair queries. That is, DS is an oracle that has a build phase for preprocessing G,
and and query phase for handing queries on the semiring distance between nodes of G. We have
TDSpG, 1q “ ΩpTSpnqq.

Conditional optimality of Corollary 5.9. Note that for r “ Opnq pair queries, Corollary 5.9 yields
that the time spent by our data-structure ConcurAP for preprocessing G and answering r queries is
TConcurAPpG, rq “ Opn3q. The long-standing (over five decades) upper bound for answering even
one pair query for algebraic path properties in arbitrary graphs of n nodes is Opn3q. Theorem 6.2
implies that any improvement upon our results would yield the same improvement for the long-
standing upper bound, which would be a major breakthrough.

Almost-optimality of Theorem 5.6 and Corollary 5.10. Finally, we highlight some almost-
optimality results obtained by variants of ConcurAP for the case of two graphs. By almost-
optimality we mean that the obtained bounds are Opnεq factor worse that optimal, for any fixed
ε ą 0 arbitrarily close to 0.

(1) According to Theorem 5.6, after Opn3`εq preprocessing time, single-source queries are han-
dled in Opn2`εq time, and partial pair queries in Op1q time. The former (resp. later) query time
is almost linear (resp. exactly linear) in the size of the output. Hence the former queries are han-
dled almost-optimally, and the latter indeed optimally. Moreover, this is achieved usingOpn3`εq
preprocessing time, which is far less than the Ωpn4q time required for the transitive closure com-
putation (which computes the distance between all n4 pairs of nodes).
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(2) According to Corollary 5.10, the transitive closure can be computed in Opn4`εq time, for any
fixed ε ą 0, and Opn4q space. Since the size of the output is Θpn4q, the transitive closure is
computed in almost-optimal time and optimal space.

7. MODELING EXAMPLE

Figure 3 illustrates the introduced notions in a small example of the well-known k dining philoso-
phers problem. For the purpose of the example, lock is considered a blocking operation. Consider
the case of k “ 2 threads being executed in parallel. The graphs G1 and G2 that correspond to the
two threads have nodes of the form pi, `q, where i P r20s is a node of the controlflow graph, and
` P r3s denotes the thread that controls the lock (` “ 3 denotes that ` is free, whereas ` “ i P r2s
denotes that it is acquired by thread i). The concurrent graph G is taken to be the asynchronous
composition of G1 and G2, and consists of nodes xx, yy, where x and y is a node of G1 and G2

respectively, such that x and y agree on the value of ` (all other nodes can be discarded). For brevity,
we represent nodes of G as triplets xx, y, `y where now x and y are nodes in the controlflow graphs
G1 and G2 (i.e., without carrying the value of the lock), and ` is the value of the lock. A transition
to a node xx, y, `y in which one component Gi performs a lock is allowed only from a node where
` “ 3, and sets ` “ i in the target node (i.e., xx, y, iy). Similarly, a transition to a node xx, y, `y in
which one component Gi performs an unlock is allowed from a node where ` “ i, and sets ` “ 3
in the target node(i.e., xx, y, 3y).

Suppose that we are interested in determining (1) whether the first thread can execute
dinepfork, knifeq without owning fork or knife, and (2) whether a deadlock can be reached in which
each thread owns one resource. These questions naturally correspond to partial pair and pair queries
respectively, as in case (1) we are interested in a local property of G1, whereas in case (2) we
are interested in a global property of G. We note, however, that case (1) still requires an analy-
sis on the concurrent graph G. In each case, the analysis requires a set of datafacts D, along with
dataflow functions f : 2D Ñ 2D that mark each edge. These functions are distributive, in the
sense that fpAq “

Ť

aPA fpaq. Hence, with a slight abuse of notation, we can define f as functions
f : D Ñ D, and their extension to 2D Ñ 2D is according to the distributivity property.

Local property as a partial pair query. Assume that we are interested in determining whether
the first thread can execute dinepfork, knifeq without owning fork or knife. A typical datafact set is
D “ tfork, knife, nullu, where each datafact denotes that the corresponding resource must be owned
by the first thread. The concurrent graph G is associated with a weight function wt of dataflow
functions f : 2D Ñ 2D. The dataflow function wtpeq along an edge e behaves as follows on input
datafact F (we only describe the case where F “ fork, as the other case is symmetric).

(1) If e transitions to a node in which the second thread acquires fork or the first thread releases
fork, then wtpeqpforkq Ñ null (i.e., fork is removed from the datafacts).

(2) Else, if e transitions to a node in which the first thread acquires fork, then wtpeqpnullq Ñ fork
(i.e., fork is inserted to the datafacts).

Similarly for the F “ knife datafact. The “meet-over-all-paths” operation is set intersection. Then
the question is answered by testing whether dpx1, 1, 3y, x14,K, 3yq “ ttfork, knifeuu, i.e., by per-
forming a partial pair query, in which the node of the second thread is unspecified.

Global property as a pair query. Assume that we are interested in determining whether the two
threads can cause a deadlock. Because of symmetry, we look for a deadlock in which the first
thread may hold the fork, and the second thread may hold the knife. A typical datafact set is D “

2tfork,knifeu. For a datafact F P D we have

(1) fork P F if fork may be acquired by the first thread.
(2) knife P F if knife may be acquired by the second thread.
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The concurrent graphG is associated with a weight function wt of dataflow functions f : 2D Ñ 2D.
The dataflow function wtpeq along an edge e behaves as follows on input datafact F .

(1) If e transitions to a node in which the second thread acquires fork or the first thread releases
fork, then wtpeqpF q Ñ F ztforku (i.e., the first thread no longer owns fork).

(2) If e transitions to a node in which the first thread acquires fork, then wtpeqpF q Ñ F Y tforku
(i.e., the first thread now owns fork).

(3) If e transitions to a node in which the first thread acquires knife or the second thread releases
knife, then wtpeqpF q Ñ F ztknifeu (i.e., the second thread no longer owns knife).

(4) If e transitions to a node in which the second thread acquires knife, then wtpeqpF q Ñ F Y
tknifeu (i.e., the second thread now owns knife).

The “meet-over-all paths” operation is set union. Then the question is answered by testing whether
tfork, knifeu P dpx1, 1, 3y, x2, 2, 3yq, i.e., by performing a pair query, and finding out whether the
two threads can start the while loop with each one holding one resource. Alternatively, we can
answer the question by performing a single-source query from x1, 1, 3y and finding out whether
there exists any node in the concurrent graph G in which every thread owns one resource (i.e., its
distance contains tfork, knifeu).

8. EXPERIMENTAL RESULTS

In the current section we report on experimental evaluation of our algorithms, in particular of the
algorithms of Corollary 5.10. We test their performance for obtaining the transitive closure on var-
ious concurrent graphs. We focus on the transitive closure for a fair comparison with the existing
algorithmic methods, which compute the transitive closure even for a single query. Since the con-
tributions of this work are algorithmic improvements for algebraic path properties, we consider the
most fundamental representative of this framework, namely, the shortest path problem. Our com-
parison is done against the standard Bellman-Ford algorithm, which (i) has the best worst-case
complexity for the problem, and (ii) allows for practical improvements, such as early termination.

Basic setup. We outline the basic setup used in all experiments. We use two different sets of bench-
marks, and obtain the controlflow graphs of Java programs using Soot [Vallée-Rai et al. 1999], and
use LibTW [van Dijk et al. 2006] to obtain the tree decompositions of the corresponding graphs. For
every obtained graph G1, we construct a concurrent graph G as a 2-self asynchronous composition
of G1, and then assign random integer weights in the range r´103, 103s, without negative cycles.
Although this last restriction does not affect the running time of our algorithms, it allows for early
termination of the Bellman-Ford algorithm (and thus only benefits the latter). The 2-self composi-
tion is a natural situation arising in practice, e.g. in concurrent data-structures where two threads of
the same method access the data-structure. We note that the 2-self composition is no simpler than
the composition of any two constant-treewidth graphs, (recall that the lower-bound of Section 6 is
established on a 2-self composition).

DaCapo benchmarks. In our first setup, we extract controlflow graphs of methods from the DaCapo
suit [Blackburn 2006]. The average treewidth of the input graphs is around 6. This supplies a large
pool of 120 concurrent graphs, for which we use Corollary 5.10 to compute the transitive closure.
This allows us to test the scalability of our algorithms, as well as their practical dependence on
input parameters. Recall that our transitive closure time complexity isOpn4`εq, for any fixed ε ą 0,
which is achieved by choosing a sufficiently large λ P N and a sufficiently small δ P R when
running the algorithm of Theorem 3.1. We compute the transitive closure for various λ. In practice,
δ has effects only for very large input graphs. For this, we fix it to a large value (δ “ 1{3) which
can be proved to have no effect on the obtained running times. Table II shows for each value of λ,
the percentage of cases for which that value is at most 5% slower than the smallest time (among all
tested λ) for each examined case. We find that λ “ 7 works best most of the time.
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λ 2 3 4 5 6 7 8
% 6 7 16 22 25 57 17

Table II: Percentage of cases for which the transitive closure of the graph G for the given value of λ
is at most 5% slower than the time required to obtain the transitive closure of G for the best λ.

Fig. 10: Time required to compute the transitive closure on concurrent graphs of various sizes. Our
algorithm is run for λ “ 7. TO denotes that the computation timed out after 30 minutes.

Figure 10 shows the time required to compute the transitive closure on each concurrent graph G
by our algorithm (for λ “ 7) and the baseline Bellman-Ford algorithm. We see that our algorithm
significantly outperforms the baseline method. Note that our algorithm seems to scale much better
than its theoretical worst-case bound of Opn4`εq of Corollary 5.10.

Concurrency with locks. Our second set of experiments is on methods from containers of
the java.util.concurrent library that use locks as their synchronization mechanism. The average
treewidth of the input graphs is around 8. In this case, we expand the node set of the concurrent
graph G with the lock set r3s`, where ` is the number of locks used by G1. Intuitively, the i-th value
of the lock set denotes which of the two components owns the i-th lock (the value is 3 if the lock
is free). Transitions to nodes that perform lock operations are only allowed wrt the lock semantics.
That is, a transition to a node of G where the value of the i-th lock is

(1) (Lock aquire): j P r2s, is only allowed from nodes where the value of that lock is 3, and the
respective graph Gj is performing a lock operation on that edge.

(2) (Lock release): 3, is only allowed from nodes where the value of that lock is j P r2s, and the
respective graph Gj is performing an unlock operation on that edge.

Similarly as before, we compare our transitive closure time with the standard Bellman-Ford algo-
rithm. Table III shows a time comparison between our algorithms and the baseline method. We
observe that our transitive closure algorithm is significantly faster, and also scales better.

9. CONCLUSIONS

We have considered the fundamental algorithmic problem of computing algebraic path properties
in a concurrent intraprocedural setting, where component graphs have constant treewidth. We have
presented algorithms that significantly improve the existing theoretical complexity of the problem,
and provide a variety of tradeoffs between preprocessing and query times for on-demand analyses.
Moreover, we have proved that further theoretical improvements over our algorithms must achieve
major breakthroughs. An interesting direction of future work is to extend our algorithms to the
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Java method n Topsq Tbpsq

ArrayBlockingQueue: poll 19 19 60
ArrayBlockingQueue: peek 20 20 81
LinkedBlockingDeque: advance 25 29 195
PriorityBlockingQueue: removeEQ 25 32 176
ArrayBlockingQueue: init 26 47 249
LinkedBlockingDeque: remove 26 49 290
ArrayBlockingQueue: offer 26 56 304
ArrayBlockingQueue: clear 28 33 389
ArrayBlockingQueue: contains 32 205 881
DelayQueue: remove 42 267 3792
ConcurrentHashMap: scanAndLockForPut 46 375 2176
ArrayBlockingQueue: next 46 407 3915
ConcurrentHashMap: put 72 1895 ą 8 h

Table III: Time required for the transitive closure on 2-self concurrent graphs extracted from meth-
ods of the java.util.concurrent library. Each constituent graph has n nodes. Topsq and Tbpsq
correspond to our method and the baseline method respectively.

interprocedural setting. However, in that case even the basic problem of reachability is undecidable,
and other techniques and formulations are required to make the analysis tractable, such as context-
bounded formulations and regular approximations of interprocedural paths [Qadeer and Rehof
2005; Bouajjani et al. 2005; Lal and Reps 2009]. The effect of constant-treewidth components in
such formulations is an interesting theoretical direction to pursue, with potential for practical use.

APPENDIX: Formal Pseudocode of Our Algorithms

Here we present formally (in pseudocode) the algorithms that appear in the main part of the paper.
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ALGORITHM 1: Rank
Input: A component C of T , a natural number ` P rλs
Output: A rank tree RG

1 Assign T Ð an empty tree
2 if |C| ¨ δ

2
ď 1 then

3 Assign B Ð
Ť

BPC B and make B the root of T
4 else if ` ą 0 then
5 Assign pX ,Yq Ð SplitpCq
6 Assign B Ð

Ť

BiPX Bi

7 Assign pC1, C2q Ð MergepYq
8 Assign T1 Ð RankpC1, p`` 1q mod λq

9 Assign T2 Ð RankpC2, p`` 1q mod λq
10 Make B the root of T and T1 and T2 its left and right subtree
11 else
12 if |NhpCq| ą 1 then
13 Let B Ð a bag of C whose removal splits C to C1, C2 with |NhpCiq X NhpCq| ď |NhpCq|

2

14 Assign B Ð B

15 Assign T1 Ð RankpC1, p`` 1q mod λq

16 Assign T2 Ð RankpC2, p`` 1q mod λq
17 Make B the root of T and T1 and T2 its left and right subtree
18 else
19 Assign T Ð RankpC, p`´ 1q mod λq
20 end
21 end
22 return T

ALGORITHM 2: ConcurTree
Input: Tree-decompositions Ti “ pVTi , ETiq1ďiďk with root bags pBiq1ďiďk.
Output: A tree decomposition T of the concurrent graph

1 Assign B ÐH

2 Assign T Ð a tree with the single bag B as its root
3 for i P rks do
4 Assign B Ð B Y

´

ś

1ďjăi VTj pBjq ˆBi ˆ
ś

iăjďk VTj pBjq
¯

5 end
6 if none of the Bi’s is a leaf in its respective Ti then
7 for every sequence of bags B11, . . . , B

1
k such that each B1i is a child of Bi in Ti do

8 Assign T 1i Ð ConcurTreepT1pB
1
1q, . . . , TkpB

1
kqq

9 Add T 1i to Ti, setting the root of T 1i as a new child of B
10 end
11 end
12 return T
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ALGORITHM 3: ConcurPreprocess Item 1
Input: Graphs pGi “ Vi, Eiq1ďiďk, a concurrent graph GpV,Eq of Gi’s and a weight function wt : E Ñ Σ

/* Construct the partial expansion G of G */

1 Assign V Ð V

2 Assign E Ð E

3 Create a map wt : E Ñ Σ
4 Assign wtÐ wt
5 foreach u1 P

ś

ipVi Y tKuq do
6 Let u P V such that u Ă u1

7 Assign V Ð V Y
 

u1, u2
(

8 Assign E Ð E Y
 

pu1, uq, pu, u2
q
(

9 Set wtpu1, uq Ð 1

10 Set wtpu, u2
q Ð 1

11 end
12 return G “ pV ,Eq and wt

ALGORITHM 4: ConcurPreprocess Item 2

Input: A tree-decomposition T “ TreepGq “ pVT , ET q and the partial expansion G “ pV ,Eq

/* Construct the tree-decomposition T of G */

1 Assign V T ÐH

2 foreach bag B P VT do
3 Assign B Ð B foreach u P B do
4 foreach u P V such that u Ă u do
5 Assign B Ð B Y

 

u1, u2
(

6 end
7 end
8 Assign V T Ð V T Y tBu
9 end

10 return T “ pV T , ET q
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ALGORITHM 5: ConcurPreprocess Item 3

Input: The partial expansion tree-decomposition T “ pV T , ET q, and weight function wt
/* Local distance computation */

1 foreach partial node u do
2 Create two maps FWDu,BWDu : Bu Ñ Σ

3 for v P Bu do
4 Assign FWDupvq Ð wtpu, vq
5 Assign BWDupvq Ð wtpv, uq
6 end
7 end
8 foreach bag B of T in bottom-up order do
9 Assign d1 Ð the transitive closure of GrBs wrt wtB

10 foreach u, v P B do
11 if Lvpvq ď Lvpuq then
12 Assign BWDupvq Ð d1pv, uq
13 Assign FWDupvq Ð d1pu, vq
14 end
15 end
16 end
17 foreach bag B of T in top-down order do
18 Assign d1 Ð the transitive closure of GrBs wrt wtB
19 foreach u, v P B do
20 if Lvpvq ď Lvpuq then
21 Assign BWDupvq Ð d1pv, uq
22 Assign FWDupvq Ð d1pu, vq
23 end
24 end
25 end

ALGORITHM 6: ConcurPreprocess Item 4

Input: The partial expansion tree-decomposition T “ pV T , ET q and maps FWDu,BWDu : Bu Ñ Σ for
every partial node u

/* Ancestor distance computation */
1 foreach node u P V do
2 Create two maps FWD`u ,BWD`u : VT pBuq Ñ Σ
3 end
4 foreach bag B of T in DFS order starting from the root do
5 Let B

1
be the parent of B

6 foreach node u P B X V such that B is the root of u do
7 foreach v P VT pBuq do
8 Assign FWD`u pvq Ð

À

xPBXB
1

FWDupxq b wt`px, vq

9 Assign BWD`u pvq Ð
À

xPBXB
1

BWDupxq b wt`pv, xq

10 end
11 end
12 end
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ALGORITHM 7: ConcurQuery Single-source query
Input: A source node u P V
Output: A map A : V Ñ Σ that contains distances of vertices from u

1 Create a map A : V Ñ Σ
2 for v P V do
3 Assign Apvq Ð 0
4 end
5 for every bag B of T in BFS order starting from Bu do
6 for x, v P B X V do
7 if Lvpvq ď Lvpxq then
8 Assign Apvq Ð Apvq ‘Apxq b FWDxpvq
9 end

10 end
11 end
12 return A

ALGORITHM 8: ConcurQuery Pair query
Input: Two nodes u, v P V
Output: The distance dpu, vq

1 Let B Ð the LCA of Bu and Bv in T
2 Assign dÐ 0

3 for x P B X V do
4 Assign dÐ d‘ FWD`u pxq b BWD`v pxq
5 end
6 return d

ALGORITHM 9: ConcurQuery Partial pair query

Input: Two partial nodes u, v P V , at least one of which is strictly partial
Output: The distance dpu, vq

1 if both u and v are strictly partial then
2 return FWDu1pv2q
3 else if u is strictly partial then
4 return BWD`v pu

1
q

5 else
6 return FWD`u pv

2
q

7 end
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with Asynchronous Communication (FSTTCS).
Ahmed Bouajjani, Javier Esparza, and Tayssir Touili. 2003. A Generic Approach to the Static Analysis of Concurrent Pro-

grams with Procedures. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL).

Patricia Bouyer, Uli Fahrenberg, Kim G. Larsen, Nicolas Markey, and Jiřı́ Srba. 2008. Infinite Runs in Weighted Timed
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