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Precedence-Aware Automated Competitive Analysis
of Real-Time Scheduling

Andreas Pavlogiannis, Nico Schaumberger, Ulrich Schmid , and Krishnendu Chatterjee

Abstract—We consider a real-time setting where an environ-
ment releases sequences of firm-deadline tasks, and an online
scheduler chooses on-the-fly the ones to execute on a single
processor so as to maximize cumulated utility. The competitive
ratio is a well-known performance measure for the scheduler:
it gives the worst-case ratio, among all possible choices for
the environment, of the cumulated utility of the online sched-
uler versus an offline scheduler that knows these choices in
advance. Traditionally, competitive analysis is performed by
hand, while automated techniques are rare and only handle static
environments with independent tasks. We present a quantitative-
verification framework for precedence-aware competitive analysis,
where task releases may depend on preceding scheduling choices,
i.e., the environment can respond to scheduling decisions dynami-
cally. We consider two general classes of precedences: 1) follower
precedences force the release of a dependent task upon the
completion of a set of precursor tasks, while and 2) pairing
precedences modify the characteristics of a dependent task pro-
vided the completion of a set of precursor tasks. Precedences
make competitive analysis challenging, as the online and offline
schedulers operate on diverging sequences. We make a formal
presentation of our framework, and use a GPU-based implemen-
tation to analyze ten well-known schedulers on precedence-based
application examples taken from the existing literature: 1) a
handshake protocol (HP); 2) network packet-switching; 3) query
scheduling (QS); and 4) a sporadic-interrupt setting. Our exper-
imental results show that precedences and task parameters can
vary drastically the best scheduler. Our framework thus sup-
ports application designers in choosing the best scheduler among
a given set automatically.

Index Terms—Competitive analysis, precedence scheduling,
quantitative verification.

I. INTRODUCTION

IN THIS work, we consider competitive analysis of real-
time scheduling of a finite set of firm-deadline tasks on a

single processor, in a discrete-time model. Each task is primar-
ily characterized by its worst-case execution time (WCET),
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a relative deadline, and a utility value here. The environ-
ment releases a possibly infinite sequence of task instances,
called jobs, and in each time slot, a scheduler selects one
time unit of one of the released jobs that are not yet com-
pleted. If a job is completed before the deadline, its utility
is attributed to the system; a job that does not meet its
firm deadline does not harm, but does not add any util-
ity. Firm-deadline tasks arise in various application domains,
e.g., machine scheduling [1], multimedia and video stream-
ing [2], QoS management in bounded-delay data network
switches [3] or networks-on-chip [4], and disk schedul-
ing [5], and scheduling algorithms like Dover [6] have been
designed that work very well even in the presence of severe
overload.

Competitive analysis [7] compares the performance of an
online algorithm A, which processes a sequence of inputs
online (without knowing the future), with what can be achieved
by an optimal offline algorithm C (that does know the future).
In particular, for a given taskset, the competitive ratio is the
worst-case cumulative utility ratio of A versus C over all
admissible job release sequences that can be generated for
that taskset. Hence, competitive analysis is an important com-
ponent in the design of real-time applications: maximizing
the competitive ratio means choosing the scheduler with the
best worst-case performance guarantees for the given applica-
tion. On the other hand, competitive analysis is particularly
cumbersome, as determining the sequence that pushes the
online scheduler to its worst performance is a highly nontrivial
task [8].

Researchers have hence started to use formal methods
to automate the process of determining the competitive
ratio [9]–[13]. In high level terms, the analysis is modeled
as a quantitative verification task, where the implementation
is the online algorithm and the specification is the target
value of the competitive ratio. For a given job sequence,
one computes the ratio of the cumulative utility obtained by
the online algorithm and the offline algorithm in that job
sequence. The analysis determines whether the implementa-
tion satisfies the specification for all job sequences, or whether
there exists a job sequence for which the specification is
violated.

This simple approach breaks in the presence of precedence
relations, which capture dependencies between completed and
released jobs. Consider, for example, the setting of schedul-
ing requests for blocks of a disk issued by different client
processes in an operating system [5]. The requests issued by
a client that reads a file sequentially should be executed in
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first-in first-out (FIFO) order.1 This can be accomplished either
by requesting clients to issue the next request only after the
previous one has been completed, in a stop-and-wait fash-
ion, or else by a precedence-aware disk scheduler that does
not reorder the requests. In general, precedences imply that
scheduling decisions made in the present affect tasks released
in the future, i.e., the environment responds dynamically to
the scheduler. Consequently, when computing the competi-
tive ratio, the online and offline algorithms no longer work
on the same job sequence, but rather on job sequences that
diverge. Unfortunately, existing automated competitive analy-
sis techniques can only handle static environments, where such
precedence dependencies are not expressible. We address this
challenge in this work.

Main Contributions: In this article, we develop a
quantitative-verification framework for the competitive anal-
ysis of real-time schedulers for firm deadline tasks that may
contain nonpreemptible sections and precedences, i.e., future
task releases that depend on preceding scheduling choices.
Starting out from the framework [13], we developed an
approach that can handle two general forms of precedences.

1) Follower Precedences: Condition the release of a spe-
cific task on the completion time of one or more
precursor tasks; they can be used to express sequential
processing requirements. For example, if some interrupt
occurs, a special clean-up job shall be released within
5 to 10 time units after completing the execution of the
interrupt handler job.

2) Pairing Precedences: Dynamically select the actual task
to be executed upon the release of a specific task,
depending on the relation of its release time to the com-
pletion of an earlier task. A simple example is a periodic
server task, which services asynchronous client requests.
The execution time requirement of a job of the server
task depends on whether a client job has been completed
some time before its release or not.

Handling such precedences is challenging, both with respect
to the theoretical formalization and the practical performance.
As we have mentioned above, precedences cause online and
offline algorithms to work on diverging job sequences when
computing the competitive ratio. The formalization challenge
arises in allowing divergence to occur only due to prece-
dences. On the practical side, previous works exploit the fact
that earliest deadline first (EDF) is optimal in nonoverloaded
environments. This allows an efficient encoding of the offline
scheduler, which limits the nondeterminism that has to be
explored by the verification algorithm. In the presence of
precedences, EDF is no longer optimal and full-blown non-
determinism has to be explored. We respond to this challenge
by developing a parallel verification algorithm implemented
in CUDA and executed on a GPU. Experiments with tasksets
shaped along several application examples demonstrate that
our framework computes in a few seconds highly nontrivial
competitive ratios.

1Our example focuses on the application-level interface to the disk subsys-
tem, where blocks are delivered sequentially. The actual disk accesses issued
at lower layers, according to a caching policy, may of course be nonsequential.

Related Work: Sheikh et al. [14] considered the problem
of nonpreemptively scheduling periodic hard real-time tasks
(where all jobs must make their deadlines). Altisen et al. [9]
used games for synthesizing controllers dedicated to
meeting all deadlines in systems with shared resources.
Bonifaci and Marchetti-Spaccamela [10] employed graph
games for automatic feasibility analysis of sporadic real-time
tasks in multiprocessor systems. All these approaches do not
generalize to competitive analysis of tasks with firm deadlines,
however, which were addressed in [11]–[13].

Real-time-systems research on firm-deadline task schedul-
ing essentially started out from [8], and has been generalized
in several directions: Energy consumption [15], [16], impre-
cise computation tasks [17], lower bounds on slack time [18],
and fairness [19]. Maximizing cumulated utility while satis-
fying multiple resource constraints is also the purpose of the
QoS-based resource allocation model (Q-RAM) [20] approach.

Precedences have been a natural way to capture task
dependencies in a variety of applications, such as: 1) query
scheduling (QS) [21] and operator-scheduling [22] for stream
processing; 2) scheduling disk requests [5], interrupt-handling
in multitasking operating systems [23]; and 3) network-on-
chip switch scheduling [24].

Paper Organization: In Section II, we describe our model
of firm-deadline scheduling with precedences. Section III
describes the reduction to graphs employed in our framework,
Section IV explains how our competitive analysis works in
detail. In Section V, we present a a parallel implementation of
Madani’s minimum average cycle algorithm [25], and present
our experimental results.

II. MODEL

A. System Model

Firm-deadline scheduling deals with instances (called jobs)
of a set of tasks Ts = {τ1, . . . , τN}, primarily characterized
by their WCET Eti, relative deadline Dli, and utility value
Uti, which are to be scheduled on a single processor. A job
from τi that is released by the environment at time t and com-
pleted by t+Dli contributes Uti to the cumulative utility of the
system; a job that does not meet its deadline does not harm,
but does not add any utility. The goal of a scheduler is to
maximize the cumulated utility. We allow the environment to
respond dynamically to scheduling choices. In particular, the
completion of a set of tasks can:

1) force the release of another task or
2) alter the characteristics of a future task, according to the

precedences specified in Section II-C.
Although the execution time of two jobs of the same

task can be different, depending on their context, we con-
sider it constant to avoid complicating our notation further.
More specifically, like most real-time scheduling research,
we assume that tasks have a WCET and that every job
takes exactly this WCET to complete. Nonwithstanding some
scheduling anomalies [26], this choice typically yields the
worst-case behavior of a real-time scheduler. Since the com-
petitive ratio also studies worst-case behaviors, using the
WCET is also a sound choice for any scheduler that can only
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TABLE I
GLOSSARY OF OUR NOTATION

benefit when a job does not meet its WCET. Our framework
could very easily be extended to explicitly allow for variable
execution times of the tasks, however. To avoid extra unneces-
sary notation, we simply point out here that variable execution
times can be modeled by defining multiple variants of the same
task with different WCETs.

The schedulers we consider have the following
characteristics.

1) Nonrandomized: Although randomization might help for
average performance, it offers no benefit to the compet-
itive ratio, which characterizes worst-case performance.

2) Deterministic: As we analyze practical schedulers, non-
determinism is not allowed in the real-time setting.

3) Bounded-Space: We require that the memory usage of
the scheduler is bounded, i.e., it does not grow arbitrarily
over time. This is only a weak limitation, as all real-time
schedulers we are aware of satisfy this property.

4) No Overhead: We assume that scheduling choices and
context switching are instantaneous and incur no over-
head. Incorporating those algorithm-specific features is
left for future work.

B. Basic Definitions

In this section, we formally introduce our scheduling model
and set up relevant notation. To facilitate comparability of our
approaches and results, our exposition closely follows [12].
For easy reference, we summarize most of our notation in
Table I.

Notation on Sequences: Let X be a finite set. For a finite
sequence x = (x�)�≥1 = (x1, x2, . . . , xk) ∈ X∗ of elements in
X, we let |x| = k. We denote by x� the element in the �th
position of x, and by x(�) = (x1, x2, . . . , x�) the finite prefix
of x up to position �. Given a function f : X → Z (where Z

is the set of integers) and a finite sequence x ∈ X∗, we denote
by f (x) = ∑|x|

�=1 f (x�).
Real-Time Scheduling Setting: We consider a finite set of

tasks Ts = {τ1, . . . , τN}, to be executed on a single pro-
cessor. We assume a discrete notion of real time t = kε,
k ≥ 1, where ε > 0 is both the unit time and the smallest
unit of preemption (called a slot). Since both task releases
and scheduling activities occur at slot boundaries only, all
timing values are specified as positive integers. Every task
τi releases at most countably infinitely many task instances
(called jobs) Ji,j := (τi, j) ∈ Ts × N

+ (where N
+ is the set of

positive integers) over time (i.e., Ji,j denotes that a job of task

Fig. 1. Illustration of a task τ1 = (3, 6, 3, [2, 3]). The task is released at
time 0, and thus has absolute deadline at time 0 + 6 = 6. It is scheduled in
slots 1, 3, and 4, with the notation Ji,j denoting the scheduling of the job of
task τi that was released j time slots ago. We have a single preemption at the
end of slot 2, while the second and third units of the task are nonpreemptible.
The task is completed at the end of slot 5, at which point it confers utility 3
to the system (not shown).

τi is released at time j). Every task τi, is characterized by a
four-tuple τi = (Eti, Dli, Uti, Npi), as illustrated in Fig. 1.

1) Eti ∈ N
+ is the WCET of τi in number of slots.

2) Dli ∈ N is the relative deadline of τi in number of slots.
3) Uti ∈ N is the utility value of τi (rational utility values

can be mapped to integers by proper scaling).
4) Npi = {[l1, l2], . . . , [l2k−1, l2k]}, where l2k ≤ Eti and

l�−1 < l� for all �, are the nonpreemptible sections of
τi. If the l�th unit of job a Ji,j is executed in some slot
t, then the same job must be executed throughout the
interval [t, t + l� − l�−1].

We denote by Dlmax = max1≤i≤N Dli the maximum relative
deadline in Ts, and by Utmax = max1≤i≤N Uti the maximum
utility in Ts. Every job Ji,j needs the processor for Eti slots
exclusively to execute to completion. These slots are not nec-
essarily consecutive, unless specified so by Npi. All tasks have
firm deadlines: only a job Ji,j that completes by time j + Dli
provides utility Uti to the system. A job that misses its dead-
line does not harm but provides zero utility. Dli = 0 is used
for a task that is never scheduled.

The goal of a real-time scheduling algorithm is to maximize
the cumulated utility, which is the sum of Uti times the number
of jobs Ji,j that can be completed by their deadlines, in a
sequence of job releases generated by an adversary.

Job Sequences and Schedules: When generating a job
sequence, the adversary releases at most one new job from
every task in every slot. Formally, the adversary generates an
infinite job sequence σ = (σ �)�≥1 ∈ �∞, where � = 2Ts. If
a task τi belongs to σ�, for some � ∈ N

+, then a (single) new
job Ji,j of task i is released at the beginning of slot �: j = �

denotes the release time of Ji,j, which is the earliest time that
Ji,j can be executed, and di,j = j + Dli denotes its absolute
deadline. We also consider the set of finite job sequences �∗,
which consists of finite prefixes of infinite job sequences.
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An infinite schedule is a sequence π = (π�)�≥1 ∈ �∞,
where � = ((Ts × {0, . . . , Dlmax − 1}) ∪ {⊥}). Intuitively,
π� = (τi, j) signifies that the job Ji,�−j of task τi released
j slots ago is executed in slot �, while π� = ⊥ signi-
fies that no job is executed in slot �. We also consider the
set of finite schedules �∗, which contains finite prefixes
of infinite schedules. Given a finite schedule π , we define
#CompJobsi(π) to be the number of jobs of task Tsi that are
completed by their deadlines in π . The cumulated utility Ut(π)

(also called utility for brevity) achieved in π is defined as
Ut(π) = ∑N

i=1 #CompJobsi(π) · Uti.
Schedulers and Cumulated Utility: A scheduler is a function

A : �∗ → �, i.e., it maps the sequence of job releases σ up to
the current slot to the job that will be executed in the current
slot (or no job at all). Let � = |σ |. If A(σ ) = (τi, j), the
following constraints must be satisfied.

1) τi ∈ σ�−j (the job has been released).
2) j < Dli (the job’s deadline has not passed).
3) |{k : k > 0 and π�−k = (τi, j′) and k + j′ = j}| < Eti

(the job has not been completed).
A finite job sequence σ ∈ �∗ yields a schedule A[σ ] =
(A(σ (�)))�≥1 ∈ �∗ for A, i.e., we have A�[σ ] = A(σ (�))

for all �. The cumulated utility of scheduler A on σ is
UtA(σ ) = Ut(A[σ ]). An infinite job sequence σ ∈ �∞ yields
an infinite schedule A[σ ] = (A(σ (�)))�≥1 ∈ �∞.

Our goal is to capture realistic scenarios in which the set of
task instances released in each slot is not completely arbitrary,
but adheres to certain precedences that capture the interaction
of the scheduler with the environment until the current time.

C. Scheduling With Precedences

We allow for two types of generic precedences to be
expressible in our framework: 1) follower and 2) pairing.
To express such precedences, we partition the taskset as
Ts = Tsb ∪ Tsf ∪ Tsp.

1) Tsb is a set of baseline tasks.
2) Tsf is a set of follower tasks, arising in follower

precedences.
3) Tsp is a set of paired tasks, arising in pairing prece-

dences. We consider an injective ground function
f : Tsp → Tsb ∪ Tsf that grounds every paired task to
a baseline or follower task.

We now proceed with an operational description of the
above precedences. Each such precedence fires whenever the
schedule meets certain criteria. When a precedence fires, cer-
tain restrictions are imposed on the adversary regarding future
task releases. Each such precedence holds within a variable
horizon, until it is met; at that point it stops being effective
until the next time it fires. In particular, we have the following
precedences.

1) Pairing Precedences: This type of precedences specifies
that whenever a set of tasks is completed by the scheduler,
then the next release of a certain task modifies the properties
of that task. Formally, each pairing precedence is specified by
a tuple Pair = (τi, [t1, t2], {τl1 , . . . , τlk }), where: 1) τi ∈ Tsp;
2) τl� ∈ Ts; and 3) 1 ≤ t1 ≤ t2 and t2 ≤ ∞. The precedence
fires in the current slot t′ if the following conditions are met.

1) An instance Jl�,j� of some task τl� is completed in the
current slot.

2) An instance Jl�′ ,j�′ of all tasks τl�′ , with �′ �= � has been
completed since the last time Pair was met.

When the precedence fires, a future release of an instance of
f (τi) is paired with τl1 , . . . , τlk , effectively lifting it to a release
of τi instead. That is, provided the precedence fires in slot t′, if
an instance of task f (τi) ∈ Tsb ∪ Tsf is released in the interval
[t′ + t1, t′ + t2], it is lifted to an instance of τi ∈ Tsp. The
precedence is met the first time τi is released in the interval
[t′ + t1, t′ + t2], or at time t′ + t2 if no release of f (τi) occurs in
that interval. A task τi ∈ Tsp can only be released if a pairing
precedence Pair = (τi, [t1, t2], {τl1 , . . . , τlk }) has fired but not
already met.

2) Follower Precedences: This type of precedences speci-
fies that whenever a set of tasks is completed by the scheduler,
then another task has to be released in the system. Formally,
each follower precedence is specified by a tuple Follow =
(τi, [t1, t2], {τl1 , . . . , τlk }), where 1) τi ∈ Tsf ; 2) τl� ∈ Ts; and
3) −∞ ≤ t1 ≤ t2 and t2 < ∞. The criteria for whether the
precedence fires in the current slot t′ are the same as in the
case of pairing precedences. The precedence specifies that if
it fires in slot t′, an instance of task τi has to be released in the
interval [t′+t1, t′+t2]. The precedence is met the first time τi is
released in that interval. A task τi ∈ Tsf can only be released
if a follower precedence Follow = (τi, [t1.t2], {τl1 , . . . , τlk })
has fired but not already met.

Note that t1 ≤ 0 allows to model situations where
the follower task is released before the constraint fires.
Together with a scheduler like EDF∗ which does not sched-
ule already released follower jobs before the preceding
ones have been completed, this allows to model classic
precedence constraints [27] like in sequential disk request
processing [5].

Combinations of Precedences: For each pairing and follower
precedence, the tasks τli are called precursor tasks, and τi is
called the dependent task. Precedences can be combined in
arbitrary ways. For example, a fork in the precedence rela-
tion can be expressed by two precedences with a common
set of precursor tasks, while a join in the precedence rela-
tion can be expressed by two precedences with a common
dependent task.

D. Examples of Precedence-Aware Scheduling

Using the precedences introduced above, one can model a
wide range of the task dependencies that are typically found
in real applications. Here, we present some examples, which
will also guide our experiments in Section V.

Serving Sporadic Interrupts: Many applications contain a
“consumer” task, which is periodically executed, and a spo-
radically executed “producer” task. By sporadic, we mean
nonperiodic tasks with firm deadlines with some minimal
release separation time. If an instance of the producer task
has been completed before the release of the consumer task,
the latter has to do some extra service work. Examples are
a post-processing thread for events signaled by interrupt-
service routines in embedded systems [23] or efficient disk
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scheduling [5]. In our framework, this can be represented by
a producer task τP ∈ Tsb with small EtP, DlP, and large UtP,
and a consumer task that is split into the unpaired version τC ∈
Tsb with moderate EtC, DlC, UtC (representing the situation
where no extra work needs to be done) and a paired version
τ ′

C ∈ Tsp with large Et′C, Dl′C, Ut′C. The pairing precedence is
(τ ′

C, [1,∞], {τP}).
Handshake Protocols (HPs): A natural setting for a follower

precedence is the well-known stop-and-wait acknowledgment
protocol for reliable data communication between two hosts
that share a mutually exclusive communication channel [28].
If host A wants to send a sequence of messages to host B, it
sends a message and waits until an acknowledgment message
has been received from B, before it sends the next message. We
model this using a task τm ∈ Tsb that represents the message
sent from A to B, and a follower task τf ∈ Tsf that repre-
sents the acknowledgment message returned by B. They are
connected by the follower precedence (τf , [δmin, δmax], {τm}),
where [δmin, δmax] is the range of message transmission delays.
The deadlines Dlm and Dlf are chosen in accordance with the
desired timeout for retransmission.

Packet Switching (PS): Network switches schedule incom-
ing packets for some destination node, see [24] for a
network-on-chip application. Packets arrive via different input
links here, and are forwarded to the appropriate output link.
Typically, packets are split into a header fragment and k ≥ 1
data fragments. Since forwarding fragments that are late (e.g.,
due to link congestion) is of no use for many network services,
this can be modeled in our framework as follows: we distin-
guish 1) a nonpreemptible header task τh ∈ Tsb; 2) k − 1 ≥ 0
data fragment tasks τ1, . . . , τk−1 ∈ Tsb; and 3) a last data frag-
ment task τ� ∈ Tsb, all with zero utility. For τ1, . . . , τk−1 ∈ Tsb

and τ� ∈ Tsb, there are also 4) paired tasks τ ′
1, . . . , τ

′
k−1 ∈ Tsp

with zero utility; and 5) a paired task τ ′
� ∈ Tsp with nonzero

utility. Their dependencies are expressed by the pairing prece-
dences (τ ′

1, [1, t], {τh}), (τ ′
i , [1, t], {τ ′

i−1}) for 1 ≤ i ≤ k − 1,
and (τ ′

�, [1, t], {τ ′
k−1}) (for k > 1), resp. (τ ′

�, [1, t], {τh}) (for
k = 1). These precedences model the fact that a packet
can provide value only if all data fragment tasks up to
the last one are paired; note that the value of t can be
used to limit the maximum acceptable fragment separation
time.

Query Scheduling: More complex follower precedences
arise in query-scheduling, e.g., as studied in [21] for data
streams. The goal is to schedule query tasks, which depend
on the results of various predecessor tasks (such as reading
new data, evaluating new data, and processing new requests).
For example, consider a setting where the completion of
either (but not both) τ1 or τ2 leads to the release of τ3
within [1, t] slots in the future. This can be modeled in our
framework by means of three precedences: 1) Follow1 =
(τ3, [1, t], {τ1}); 2) Follow2 = (τ3, [1, t], {τ2}); and 3) Pair =
(τ ′

3, [1, t], {τ1, τ2}), where the ground function maps f (τ ′
3) =

τ3; herein, τ ′
3 is a special task that has Dll = Utl = 0, and is

not precursor of any precedence. Intuitively, 1) and 2) force
the adversary to release τ3 if τ1 or τ2 has been completed by
the scheduler, while 3) avoids the double release of τ3 if both
τ1 and τ2 have been completed.

E. Labeled Transition Systems

Our framework relies on labeled transition systems (LTSs),
as in [12].

Labeled Transition Systems: Formally, a LTS is a tuple L =
(S, s,
,�,�), where S is a finite set of states, s ∈ S is the
initial state, 
 is a finite set of input actions, � is a finite set of
output actions, and � ⊆ S×
×S×� is the transition relation.
Intuitively, (s1, x, s2, y) ∈ � if, given the current state s1 and
input x, the LTS outputs y, and makes a transition to state s2. If
the LTS is deterministic, then there is always a unique output
and next state, i.e., � is a function � : S×
 → S×�. Given
an input sequence α ∈ 
∞, a run of L on α is a sequence
ρ = (p�, α�, q�, β�)�≥1 ∈ �∞ such that p1 = s and for all
� ≥ 2, we have p� = q�−1. For a deterministic LTS, for each
input sequence, there is a unique run.

Safety Automata: A safety automaton is an LTS S =
(S, s,
,∅,�), (i.e., it does not perform any output actions),
with a distinguished set X ⊆ S of rejecting states. The
automaton accepts an infinite sequence α ∈ 
∞ if there is
a corresponding run that does not contain any state from X.

Precedences as Safety Monitors: Each precedence C is spec-
ified as a safety monitor, defined as a safety automaton SC

where the set of input actions is 
 = � ×�. Hence, SC con-
currently keeps track of the tasks released at each slot, and
monitors the scheduling decisions of the real-time scheduler.
Recall that whenever some precedence fires, it has to be met
within [t1, t2] slots, for t2 = ∞ or some some fixed t2 ∈ N

that is specific to the precedence. The safety monitor keeps
track of when C is fired, and enters a rejecting state if C is
fired but not met within [t1, t2] slots. On the other hand, if C
is met, the monitor immediately resets to its initial state and
monitors when C is fired again.

The set of all precedences is monitored by a global safety
monitor S , which runs all safety monitors, SC in parallel, and
enters a rejecting state iff any of SC enters a rejecting state.
In addition, S ensures that a pairing task τi ∈ Tsp is released
only if a pairing precedence Pair = (τi, [t1, t2], {τl1 , . . . , τlk })
has fired and has not already been met. Given a real-time
scheduler A and a global safety monitor S , an infinite job
sequence σ is compatible with S and A, written σ |= A,S if
for every k ≥ 1, the monitor accepts the input (σ (k),A[σ(k))].

Example of Precedences as Monitor Automata: Fig. 2 shows
the monitor automaton for the pairing precedence Pair =
(τ ′

1, [1, 2], {τ }), where τ = (1, 2, V,∅). The starting state is
00, and state ab with a, b ∈ {0, 1} encodes released but not
scheduled jobs of τ : in state 01 (resp. 10), such a job has been
released in the last slot (resp. in the last but one slot), while
state 11 encodes a release in both slots. States f1 and f2 are the
two states where the precedence has fired and can thus be met
by the release of τ ′

1, which brings the automaton back to 00.
The release of τ ′

1 in any other state leads to rejection rej.

F. Competitiveness of Real-Time Schedulers

We are now ready to give a formal definition of the com-
petitive ratio of a real-time scheduler subject to precedences.
Recall that the underlying challenge is to have a definition
that allows divergent job sequences for the online and offline
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Fig. 2. Monitor automaton for the pairing precedence Pair = (τ ′
1, [1, 2], {τ }),

where τ = (1, 2, V, ∅). The starting state is 00. Edges are labeled as Y, x,
where Y ∈ � is a set of tasks released and x ∈ � a job to be scheduled; τ, x
(resp. τ ′

1, x) denotes a set of tasks released that contain τ (resp. τ ′
1), and Y, s

denotes the scheduling of job s of some task other than τ .

scheduler, provided this divergence is the result of the environ-
ment responding dynamically to scheduling decisions. More
specifically, we allow a job to be seen only by the online resp.
offline scheduler iff the job comes from a dependent task in
a precedence that has fired by the corresponding scheduler.
Moreover, if the precedence is a pairing precedence, which
modifies a baseline task, then the corresponding baseline job
must be made available to the other scheduler.

Below we make the above intentions formal, using: 1) the
notion of compatibility of a job sequence with a schedule
and 2) a notion of compatibility between the job sequences
themselves, defined below.

Compatible Job Sequences: Recall the ground function f .
Given a set of tasks X ⊆ Ts, we denote by f (X) = {f (τ ) : τ ∈
X ∩ Tsp}. Two infinite job sequences σ1 and σ2 are called
compatible, denoted by σ1 � σ2, if for every � ∈ N, we have

(
σ�

1 ∪ f (σ �
1 )

)
∩ Tsb =

(
σ�

2 ∪ f
(
σ�

2

))
∩ Tsb. (1)

Informally, the baseline tasks that are either released directly
or occur through their paired tasks coincide in σ1 and σ2.

Competitive Ratio: Given a real-time scheduler A and a set
of precedences expressed as a global safety monitor S , the
competitive ratio of A on the taskset Ts given S is defined as

CR(A) = inf
B,σA,σB :

σA�σB
σA|=A,S
σB|=B,S

lim inf
k→∞

1 + UtA(σA(k))

1 + UtB(σB(k))
(2)

where B ranges over real-time schedulers. In words, the com-
petitive ratio is the smallest ratio of the utilities cumulated by
A over the utilities cumulated by any other real-time scheduler
B on a pair of corresponding job sequences that are compati-
ble with each other and with the precedences specified by the
monitor S .

Note that (2) allows σA and σB to diverge, as a result of the
environment responding dynamically to the divergent schedul-
ing choices of the respective schedulers. At the same time, our

definition allows only for such divergence to happen, e.g., if
a task τ is released for A but not B, then 1) τ is a dependent
task in a precedence that has fired for A and 2) if that prece-
dence is a pairing precedence, the corresponding baseline task
must be released for B.

Remark 1: We have CR(A) ≤ 1, witnessed by taking
B = A.

III. GRAPHS WITH SAFETY AND QUANTITATIVE

OBJECTIVES

In this section, we present algorithms related to safety and
quantitative objectives on graphs. In the next section, we
reduce the competitive analysis problem subject to precedence
constraints to solving for such objectives on the appropri-
ate graphs. Our description again follows [12] as much as
possible.

Multigraphs: A multigraph G = (V, E), hereinafter called
simply a graph, consists of a finite set V of N nodes, and a
finite set of M directed multiple edges E ⊂ V × V × N

+. For
brevity, we will refer to an edge (u, v, i) as (u, v), when i is
not relevant. We consider graphs in which for all u ∈ V , we
have (u, v) ∈ E for some v ∈ V , i.e., every node has at least
one outgoing edge, and let s ∈ V be a distinguished initial
node of G. A finite path ρ of G is a finite sequence of edges
e1, e2, . . . , ek such that for all 1 ≤ i < k with ei = (ui, vi),
we have vi = ui+1. Every such ρ induces a sequence of nodes
(ui)i≥1, which we will also call a path, when the distinction is
clear from the context, and ρi refers to ui instead of ei. Infinite
paths are defined similarly, and we denote by � the set of all
infinite paths of G that start in the distinguished node s.

Objectives: An objective � is a subset of � that defines a
desired set of paths starting in the distinguished node s. Here,
we consider safety, mean-payoff, and ratio objectives.

Safety Objectives: Given a set X ⊆ V , the safety objective
for X is defined as Safe(X) = {ρ ∈ � : ∀i ≥ 1, ρi �∈ X}, i.e.,
it represents the set of all paths that never visit the set X.

Mean-Payoff Objectives: A weight function W : E → Z

assigns to each edge of G an integer weight. A weight function
naturally extends to finite paths, with W(ρ) = ∑k

i=1 W(ρi).
The mean-payoff of an infinite path ρ is defined as

PathMP(W, ρ) = lim inf
k→∞

1

k
· W(ρ(k)) (3)

i.e., it is the long-run average of the weights of the path.
Given a weight function W and a rational threshold λ ∈ Q,
the corresponding mean-payoff objective is given as

MP(W, λ) = {ρ ∈ �: PathMP(W, ρ) ≤ λ}. (4)

In words, MP(W, λ) is the set of all paths such that the mean-
payoff (or limit-average) of their weights is bounded by λ. We
assume without loss of generality that λ ≤ Wmax, where Wmax
is the maximum weight assigned to an edge by W. Indeed, by
definition, the objective cannot be satisfied if λ > Wmax.

Ratio Objectives: Given two W1, W2 : E → N, the ratio of
a path ρ is defined as

PathRatio(W1, W2, ρ) = lim inf
k→∞

1 + W1(ρ(k))

1 + W2(ρ(k))
(5)
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Fig. 3. Graph G with two weight functions W1/W2.

which denotes the limes inferior of the ratio of the sum of
weights of the two functions. Given weight functions W1,
W2 and a rational threshold λ ∈ Q, the corresponding ratio
objective is given as

Ratio(W1, W2, λ) = {ρ ∈ � : PathRatio(W1, W2, ρ) ≤ λ}
(6)

that is, the set of all paths such that the ratio of cumulative
rewards with respect to W1 and W2 is bounded by λ.

Decision Problems: In this work, we consider the following
decision problems on a multigraph G = (V, E).

1) Given a set of nodes X ⊆ V , a weight function
W : E → Z and a rational threshold λ ∈ Q, decide
whether Safe(X) ∩ MP(W, λ) �= ∅, i.e., there exists an
infinite path of G that does not visit any node in X and
has mean-payoff bounded by λ.

2) Given a set of nodes X ⊆ V , two weight functions
W1, W2 : E → Z and a rational threshold λ ∈ Q,
decide whether Safe(X) ∩ Ratio(W1, W2, λ) �= ∅, i.e.,
there exists an infinite path of G that does not visit
any node in X and the ratio of cumulative rewards with
respect to W1 and W2 is bounded by λ.

If the corresponding objective is satisfied, a witness for the
objective is an (ultimately periodic) infinite path ρ.

Example: Consider the weighted graph G in
Fig. 3 with 1 the initial node. The objective
Safe({2})∩ Ratio(W1, W2, (2/5)) is not satisfied, as
the only periodic infinite path with ratio bounded by
(2/5) is ρ1 = 1, 2, 3, 3 . . . However, this path violates
the safety constraint. On the other hand, the objective
Safe({2}) ∩ Ratio(W1, W2, (3/5)) is satisfied, as wit-
nessed by the infinite path ρ2 = 1, 4, 5, 4, 5, . . . with
PathRatio(W1, W2, ρ2) = (1/2).

Solutions to the Decision Problems: We now turn our
attention to the algorithms for solving each of the two deci-
sion problems. We first describe the approach to the safety
with mean-payoff objective, and afterwards show how to
reduce safety with ratio objectives to safety with mean-payoff
objectives.

Safety With Mean-Payoff: Consider a Safe(X) ∩ MP(W, λ)

objective, and let Wmax be the maximum weight assigned by
W. We solve the decision problem for the objective as follows.

1) For every x ∈ X, we remove all edges of G outgo-
ing from x, and insert a single self-loop edge (x, x). In
addition, we assign weight Wmax + 1 to (x, x).

2) We remove all nodes that are not reachable from s.
3) For every two nodes u, v, we remove all multiple edges

(u, v, i) ∈ E except the one with the smallest weight.
4) We solve the minimum-mean cycle (MMC) problem on

the modified graph G′ = (V, E′) with modified weight
function W ′, using a standard algorithm, e.g., [25], [29].
We return True iff the MMC has mean weight at most λ.

Lemma 1: The above process returns True iff Safe(X) ∩
MP(W, λ) is satisfied in G.

Safety With Ratio: Consider a Safe(X) ∩ Ratio(W1, W2, λ)

objective, and let λ = p/q, for an irreducible fraction p/q. We
construct a new weight function W : E → Z, where for every
edge e ∈ E, we have

W(e) = p · W1(e) − q · W2(e). (7)

It is easy to verify that Safe(X) ∩ Ratio(W1, W2, p/q) =
Safe(X) ∩ MP(W, 0), and thus we have a reduction to the
safety with mean-payoff objective.

Since the MMC on a graph with n nodes and m′ edges
(without multiplicities) can be solved in O(n · m′) time [25],
[29], we arrive at the following lemma.

Theorem 1: Consider a multigraph G = (V, E) with n
nodes and m edges. The 1) safety with mean-payoff and
2) safety with ratio objectives on G can be solved in O(m +
n · m′) time, where m′ is the number of edges in G without
multiplicities.

IV. COMPETITIVE ANALYSIS

In this section we show how to compute the competitive
ratio of a real-time scheduler A subject to follower and pairing
precedences, as defined in (2).

A. Schedulers as Labeled Transition Systems

Schedulers as LTSs: For our analysis, real-time schedulers
are represented as deterministic LTSs. Recall the definition of
the sets � = 2Ts and � = ((Ts × {0, . . . , Dlmax − 1}) ∪ {⊥}).
Every real-time scheduler A that uses finite state space can be
represented as a deterministic LTS LA = (SA, sA, �,�,�A),
where the states SA correspond to the state space of A, and
�A corresponds to the execution of A in one slot. Note that,
due to relative indexing, for every current slot �, the schedule
π� of A contains elements from the set �, and (τi, j) ∈ π�

uniquely determines the job Ji,�−j. Finally, we associate with
LA a reward function rA : �A → N such that rA(δ) = Uti if
the transition δ completes a job of task τi, and rA(δ) = 0 oth-
erwise. Given the unique run ρσ = (δ�)�≥1 of LA for the job
sequence σ , where δ� denotes the transition taken at the begin-
ning of slot �, the cumulated utility in the prefix of the first k
transitions in ρσ is Ut(ρσ , k) = ∑k

�=1 rA(δ�).
The Nondeterministic LTS: We model all real-time sched-

ulers B as a nondeterministic LTS LN = (SN , sN , �,�,�N )

where each state in SN is a N × (Dlmax − 1) matrix M,
such that for each time slot t, the entry M[i, j], 1 ≤ i ≤ N,
1 ≤ j ≤ Dlmax−1, denotes the remaining execution time of the
job Ji,t−j (i.e., the job of task i released j slots ago). In addition,
the state encodes the last-job index (ι, κ) of the previously
executed job, i.e., it indexes the entry of M that contains the
job that was executed in the previous round. This information
helps the scheduler to respect nonpreemptible sections. For
matrices M, M′, subset T ∈ � of newly released tasks, and
scheduled job P = (τi, j) ∈ �, we have (M, T, M′, P) ∈ �N
iff: 1) M[i, j] > 0 and 2) if the last-job index (ι, κ) is such
that κ is in one of the intervals of Npι, then (i, j) = (ι, κ).
The new matrix M′ and new last-job index is obtained by
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1) inserting all τi ∈ T into M;
2) decrementing the value at position M[i, j];
3) shifting the contents of M one column to the right;
4) updating the last-job index to (i, j + 1).
That is, M′ corresponds to M after inserting all released

tasks in the current state, executing a pending task for one
unit of time, and reducing the relative deadlines of all tasks
currently in the system. The initial state sN is represented
by the zero N × (Dmax − 1) matrix, and SN is the smallest
�N -closed set of states that contains sN (i.e., if M ∈ SN
and (M, T, M′, P) ∈ �N for some T , M′, and P, we have
M′ ∈ SN ). Finally, we associate with LN a reward function
rN : �N → N such that rN (δ) = Uti if the transition δ

completes a task τi, and rN (δ) = 0 otherwise.

B. Computing the Competitive Ratio

We are now ready to describe the computation of the com-
petitive ratio of a real-time scheduler subject to precedences.

Synchronous Product: Recall the notion of job sequence
compatibility σ1 � σ2 from Section II-F. It is straightforward
to express compatibility as a compatibility safety automaton
S� = (S�, s�, � × �,∅,��), which, in each step, checks
whether (1) is satisfied. Consider the following.

1) A real-time scheduler A represented as an LTS LA =
(SA, sA, �,�,�A).

2) The nondeterministic LTS LN = (SN , sN , �,�,�N ).
3) A global safety monitor S = (SC, sC, � × �,∅,�C).
4) The compatibility safety automaton S� = (S�, s�, � ×

�,∅,��).
We define the safety product automaton of A, LN , S , and S�
as the nondeterministic safety automaton P = (SP , sP , � ×
�,∅,�P ). The set of states is SP = SA×SN ×SC ×SC ×S�,
and the initial state is sP = (sA, sN , sC, sC, s�). A state of P
is rejecting if any of its last three components are rejecting.
In words, given an input pair of job sequences (σA, σN ) ∈
�∞×�∞, the safety product automaton P runs in parallel LA
and LN , so that the corresponding LTS produces a schedule
A[σA] and a set of schedules N [σN ]. In addition, P runs S�
on the pair (σA, σN ) to ensure that the two job sequences
are compatible. Finally, P runs two copies of S , on inputs
(σA,A(σA)) and (σN ,N (σN )), respectively, to ensure that
the precedences are met for each job sequence.

Formally, we have (s1
P , (x1, x2), s2

P ) ∈ �P , where si
P =

(si
A, si

N , si
C, si

C, si
�) for each i ∈ {1, 2}, if there exist y1, y2 ∈

� such that the following conditions hold.
1) (s1

A, x1, s2
A, y1) ∈ �A.

2) (s1
2, x2, s2

N , y2) ∈ �N .
3) (s1

C, (x1, y1), s2
C), (s1

C, (x2, y2), s2
C) ∈ �C.

4) (s1
�, (x1, x2), s2

�) ∈ ��.
Finally, we associate with P a pair-reward function rP =

(rA, rN ) : �P → Z × N such that rP (s1, (x1, x2), s2) =
(r1, r2), where

r1 = rA
(

s1
A, x1, s2

A, y1

)
, for y1 s.t.

(
s1
A, x1, s2

A, y1

)
∈ �A

r2 = max
y2 :

(
s1
N ,x2,s2

N ,y2
)∈�N

rN
(

s1
N , x2, s2

N , y2

)
. (8)

Remark 2: Consider an input (σ1, σ2) and an infinite run ρ

of P on (σ1, σ2). If P accepts (σ1, σ2), for every k ≥ 1, we
have

rP (σ1(k), σ2(k)) =
(

UtA(σ1(k)), sup
B

UtB(σ2(k))

)

(9)

i.e., the first component of rP corresponds to the cumu-
lated utility of the real-time scheduler A on the job sequence
σ1(k), whereas the second component of rP corresponds to
the maximum cumulated utility of any real-time scheduler B.

Computing the Competitive Ratio: Given a taskset Ts =
Tsb ∪ Tsf ∪ Tsp, a real-time scheduler A represented as an
LTS LA and a set of precedences, we construct: 1) the non-
deterministic LTS LN ; 2) the global safety monitor S; and
3) the compatibility safety automaton S�. Afterwards, we
construct the safety product automaton P with a set of reject-
ing states X. The automaton naturally induces a multigraph
G = (V, E) where V = SP is the set of states of P and E
corresponds to the transitions of P . Given a threshold λ ≤ 1,
we decide whether CR(A) ≤ λ by solving for the objec-
tive Safe(X) ∩ Ratio(W1, W2, λ), where rP = (W1, W2) is the
reward function of the safety product automaton. Remark 2
and Theorem 1 lead to the following lemma.

Lemma 2: Given a rational threshold λ ≤ 1, deciding
whether CR(A) ≤ λ can be done in O(m + n · m′) time,
where 1) n = |SP |; 2) m = |�P |; and 3) m′ is the number
of states u, v ∈ SP such that (u, (x1, x2), v) ∈ �P , for some
x1, x2 ∈ �.

Exact Computation of the Competitive Ratio: Lemma 2
shows how to decide whether the competitive ratio is below
a given rational threshold. Since we are dealing with integer
weights, the exact competitive ratio is a rational number, and
thus can be computed exactly by performing a binary search
for λ on the interval [0, 1] [as, by Remark 1, CR(A) ≤ 1].
Observe that, since utilities are integer values, if we write λ as
an irreducible fraction p/q, then q ≤ n ·Utmax, where n = |SP |
and Utmax is the maximum utility in the taskset. The minimum
distance between two rational values with denominator at most
q is at least 1/(q · (q − 1)). Thus, the binary search terminates
in O(q(q − 1)) = O(log(n · Utmax)) iterations.

Theorem 2: The competitive ratio CR(A) can be computed
in O((m + n · m′) · log(n · Utmax)) time, where 1) n = |SP |;
2) m = |�P |; and 3) m′ is the number of states u, v ∈ SP
such that (u, (x1, x2), v) ∈ �P , for some x1, x2 ∈ �.

The polynomial upper bound of Theorem 2 is in terms of
the size of the product automaton P . In terms of the size of a
succinct description of P , which is typically polylogarithmic in
the number of states (e.g., as a circuit [30]), the corresponding
complexity upper bounds become exponential.

V. IMPLEMENTATION AND EXPERIMENTS

In this section, we report on a prototype implementation
and experimental evaluation of our framework. It has been
implemented in Python and C, with the most performance-
critical part written in CUDA 9 for parallelization on a GPU.
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A. Parallel Minimum Mean Cycle

Prototype implementations of existing frameworks such
as [13] are usually written in convenient programming lan-
guages, such as Python, which tend to be slow. Whereas a C
implementation of performance-critical parts already allows a
substantial speedup, it was not sufficient for handling the very
large graphs generated already by relatively small examples
with precedences in our setting.

We therefore implemented the most crucial step of our
automatic competitive analysis, namely, finding a MMC in
a weighted graph, in CUDA for execution on a GPU.
More specifically, we parallelized Madani’s sequential value
iteration algorithm [25], which consists of three phases.

1) Initialization: For each node s ∈ V , the algorithm
maintains:

1) a value val(s) ∈ Z, which gives the cumulative weight
of the minimum weight path starting from s found so
far;

2) the optimal edge ec(s) ∈ V , which gives the direct
successor of s on the current minimum weight path;

3) a backwards edge (“super-edge” in [25]) se(s) =
(o, k, ω), where o ∈ V is the origin of the current mini-
mum length path, k is its length, and ω its weight (which
also defines the weight of the super-edge from o to s).

Two instances (old and new) of these array data structures are
needed, which are used alternatingly by the value iteration.
For the first iteration, in the old array, all val(s) are set to 0
and ec(s) to an arbitrary outgoing edge from s.

2) First Round: The first round consists of n value itera-
tions, where val′(s) (in the new array) of each node s ∈ V is
first initialized to val′(s) = val(s)+W(s, ec(s)), where W(s, t)
is the weight of the edge (s, t). This is performed by one pro-
cessor per node s in a CUDA compute kernel. Then, another
CUDA compute kernel with one processor per edge is used to
update

val′(s) = min
t∈out(s)

(val(s), val(t) + W(s, t)) (10)

where out(s) is the out-neighbors of node s. If val′(s) < val(s),
the edge choice is updated to

ec′(s) = argmint∈out(s)(val(s), val(t) + W(s, t)). (11)

When all processors have completed an iteration, the new and
old arrays switch places for the next one.

3) Second Round: This round is identical to the first round,
except that each value iteration contains another step at the
end. It maintains the super-edges se(s) and detects cycles, and
is performed by a CUDA compute kernel with one processor
per node: Each node s just sets, in the new data array

se′(s) = (se(t).o, (se(t).k) + 1, se(t).ω + W(s, t)) (12)

where t = ec(s). If a node s that just set se(s)′ finds that
se′(s).o = s, it has detected a cycle. If it has a smaller mean
weight than the previously best MMC, it becomes the new
MMC. In the initialization phase, the MMC is set to the weight
of the smallest self-loop. All self-loops can then be removed
from the graph, as none of those can appear in a longer MMC.

Although we did not engineer the performance of our
implementation in any way, e.g., by analyzing thread diver-
gence and improving synchronization, it already provided a
speedup of up to two orders of magnitude over a sequential
implementation.

B. Online Algorithms

We implemented ten scheduling algorithms from the
literature.

Earliest Deadline First (EDF): This classic algorithm
schedules the job with the earliest absolute deadline [31]. Our
implementation breaks ties based on the lowest task identifier.

Earliest Deadline First (EDF∗): This variant of EDF explic-
itly handles precedences by modifying deadlines. As in [27],
jobs are scheduled in the order of their the active deadlines
using EDF. The active deadline of a released job Ji,� of τi

is set to the minimum of the nominal absolute deadline and
the absolute deadline of any of its dependent jobs Jj,� of τj.
Since the on-line algorithm does not know the release times of
any future Jj,� when Ji,� is released, our EDF∗ conservatively
assumes that they are all released together with Ji,�.

First-In First-Out: This classic algorithm always schedules
the job with the earliest release time. Ties are broken according
to the lowest task identifier.

Static Priorities (SPs): This algorithm assigns fixed priori-
ties to tasks, and schedules the job of the task with the highest
priority [31]. In all our experiments, tasks with lower identi-
fier have higher priority. In the case of multiple pending jobs
of the same task, our implementation favors the job with the
earliest release time.

Dynamic Priorities (DPs): This is a precedence-aware
version of SP, where all precursor tasks for a precedence con-
straint have priority over tasks without this property. Jobs from
tasks with elevated priority are ordered by higher base prior-
ity and, in case of jobs from the same task, by earlier release
times.

Smallest Remaining Time (SRT): This algorithm schedules
the job with the smallest remaining workload. Ties are broken
first by the earlier absolute deadline.

Profit Density (PD): This algorithm is based on [21], and
schedules the job with the highest PD, where PD is defined
as the utility of the task divided by the remaining workload
of the job. We have made the algorithm precedence-aware,
by increasing the PD of a precursor task if a dependent
task with a currently not met precedence has a higher
Specifically, if Utd (resp. Etd) is the value (resp. workload)
of the dependent task instance and Utp (resp. Etp) the value
(resp. remaining workload) of the precursor task instance
considered for scheduling, then the PD of this instance is
max(Utp/Etp, [Utp + Utd/Etp + Etd]).

Smallest Slack Time (SST): This algorithm, also known
as least-laxity first, is taken from [32]. It schedules the job
with the SST, which is defined as the relative deadline minus
the remaining workload. Ties are broken first by lower task
identifiers and then by earlier release times.

D-Over (Dover): This algorithm, taken from [6], behaves
like EDF in underloaded conditions, and has additional rules
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TABLE II
SIX TASKSETS WITH PRECEDENCES. PRIMED TASKS ARE THE PAIRED

VERSIONS OF THE CORRESPONDING UN-PRIMED TASKS

involving the pending jobs’ utility values for handling peri-
ods of overload. Dover is known to be optimal in terms of
competitiveness for independent tasksets.

D-Star (D∗): This algorithm, which has been described
in [33], is an early predecessor of Dover. It also behaves like
EDF in underloaded conditions, and employs some utility-
based rules (shaped along the competitive analysis presented
in [8]) in periods of overload.

C. Tasksets

The tasksets used in our experiments have been shaped
along the applications presented in Section II-C; the descrip-
tions below will hence be kept brief. The parameters of the
particular tasks and the precedences in these tasksets are listed
in Table II.

Packet Switching: This models the behavior of a simple
switch [24], for two different packets. Each packet consists
of a nonpreemptible precursor task τ1 (resp. τ3) that repre-
sents the header fragment, and a dependent task τ ′

2 (resp. τ ′
4)

that represents the data fragment. Header tasks have zero util-
ity. Utility is only gained if the header fragment is scheduled
before the data fragment. This is modeled using one pairing
precedence for each packet, where the unpaired version τ2
(resp. τ4) of the dependent task has utility zero.

Handshake Protocols: This models a stop-and-wait data
communication protocol on a serial bus, for two different
packets. A precursor task τ1 (resp. τ2) models the sending
of a payload message, while a follower task τ3 represents the
acknowledgment (which is the same for both τ1 and τ2) that
is released one unit of time after completion of the respec-
tive precursor task. We use two versions HP and HP’ of this
taskset.

Sporadic Interrupt (SI): This models a periodic worker task
that responds to an occasionally occurring event, e.g., in disk

scheduling [5] or interrupt handling [23]. The interrupt is rep-
resented by a short precursor task τ1, while the worker task is
a longer dependent task in a pairing precedence: the unpaired
version τ2 represents idling, whereas the paired version τ ′

2 rep-
resents the processing of a preceding interrupt. We use two
versions SI and SI’ of this taskset.

Query Scheduling: This represents a more complex moni-
toring application, following [21]. The completion of one or
two queries, modeled as tasks τ1 and τ2, triggers the release
of two supervisor/monitor tasks: τ3 is the result of a follower
precedence on the completion of τ1, whereas τ4 is triggered by
a follower precedence on the completion of both τ1 and either
τ2 or τ3. An additional pairing precedence makes sure that
only one job of τ4 is released if both τ2 and τ3 are completed.

D. Results

We have performed our experiments on the tasksets and
real-time schedulers listed above, on an Intel Core i7-5820K-
based computer (1.2 GHz) with 32 GB RAM, equipped with
an EVGA GeForce GTX Titan SuperClocked 12 GB GPU
(3072 cores, 1.1 GHz). The results on the competitive ratio
are shown in Fig. 4. We discuss our findings in terms of the
competitive ratio of each scheduler, as well as the running
times of our analysis in each setting.

Competitive Ratio: Our findings are as follows.
1) There is no universally best algorithm, for any type of

precedence: As the results for SI resp. SI’ and HP resp.
HP’ reveal, for both follower and pairing precedences,
just changing some task parameters changes the best
online algorithm.

2) Precedence-aware online algorithms, such as PD and
EDF∗ do not always outperform nonprecedence-aware
ones. For example, in HP’, the nonprecedence-aware
algorithm SP is the best. Nevertheless, PD is the best
in challenging tasksets, such as PS, where it is the only
algorithm that provides a nonzero competitive ratio, and
even has competitive ratio of 1 in that taskset.

3) Algorithms that rely on a “latest start time notification,”
such as Dover and D∗, are particularly harmed by the
presence of nonpreemptible sections. The adversary can
release jobs in such a way that the latest start time
interrupt for high value jobs occurs while the algorithm
is in a nonpreemptible section. This is clearly visible
in the zero competitive ratio of these algorithms for the
taskset PS.

Running Times: Overall, for all tasksets and all schedulers in
our experiments, it took about 280 s to generate all LTSs, and
about 1600 s to compute the competitive ratios. Thus, all 60
scheduling scenarios (six tasksets times ten schedulers) were
handled in about 31 min. The largest graph (with 380048 nodes
and 4805645 edges) was constructed for D∗ on the taskset PS;
most other graphs consisted of at most a few thousand nodes
and edges, with the parallel runtime to find the MMC being
only a few seconds.

Scalability: To get a better understanding of the complex-
ity of our approach and the effect of our parallelization of
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Fig. 4. Competitive ratio of each scheduler on each studied taskset. Fractions show the exact value.

Fig. 5. Scalability plot on the tasksets of Table III.

TABLE III
SIX TASKSETS USED IN OUR SCALABILITY EXPERIMENTS. EACH OF THE

SIX TASKSETS {Tsi}i CONSISTS OF UP TO SIX TASKS {τi}i . FOR EACH

i ∈ {1, 3, 5} WE HAVE A PRECEDENCE Follow(τi, [1, 1], {τi+1}). COLUMNS

ARE LABELED AS τi, Uti . ENTRIES FOR A TASK τi CORRESPOND TO

(Eti, Dli). AN ENTRY (−, −) DENOTES THAT THE TASK IS NOT PRESENT

IN THE RESPECTIVE TASKSET

Madani’s algorithm, we have performed some simple scal-
ability experiments, using the tasksets of Table III. Fig. 5
shows the maximum time taken for computing the competitive
ratio on each taskset. Timeout was set to 105 s. As stated in
Section IV-B, although the running time is polynomial in the
state-space of the corresponding LTSs, it is typically expo-
nential in taskset parameters, such as number of tasks and
maximum deadline. This exponential dependency is clearly
visible in Fig. 5. We also observe that the speedup increases

for more demanding tasksets, since the parallel implementation
of Madani’s algorithm can better utilize the specific architec-
ture of the GPU and the CUDA compute kernels. Naturally,
this speedup is bounded by the machine cores.

Scalability Optimizations: Here, we discuss here some
optimizations that can lead to further scalability. Besides
increasing parallelization, we identify four different ways for
doing so below. The first two are related to modeling choices,
while the latter two deal with algorithmic optimizations.

1) Limiting the Preemption Points: The state space of both
LTSs LA and LB decreases considerably with fewer
preemption points in the tasks. Hence, scalability can
be improved by incorporating longer no-preemption
sections.

2) Sporadicity of Task Releases: In our framework, an
instance of a task may be released in every slot. In actual
applications, task releases are expected to be much more
sporadic, which reduces the scheduling choices in every
step. Sporadicity restrictions can be easily encoded in
our framework using the global safety monitor S , which
will result in significant size reduction for both the
online LTS LA and offline LTS LB.

3) Short Witnesses: In our experiments, although the prod-
uct graphs have hundreds of thousands of nodes, the
length of the cycle that witnesses the competitive ratio
is always in the order of tens of nodes. This sug-
gests parameterizing the underlying MMC problem by
the length of the witness cycle, and developing new
algorithms that look for small witnesses more efficiently.

4) Limiting Nondeterminism: Recall the nondeterminism
LTS LB that models all possible schedulers. We can
aggressively reduce its size by identifying scheduling
choices that are always suboptimal. For example, con-
sider the case where a job Ji,j has been released, and
the corresponding task τi is not a precursor task in any
precedence. Then the scheduler does not benefit from

Authorized licensed use limited to: Aarhus University. Downloaded on October 30,2020 at 11:26:34 UTC from IEEE Xplore.  Restrictions apply. 



3992 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 11, NOVEMBER 2020

staying idle in any slot, as long as Ji,j is not com-
pleted (or its deadline passes). Hence, the corresponding
states of LB can be pruned away, thereby reducing the
size of the graph over which the competitive ratio is
computed.

Optimizations in 1) and 2) are particularly useful when
small differences between the competitiveness of various
schedulers are not that important. For example, the practitioner
can start with a coarse-grained modeling of the scheduling set-
ting, where preemption points are few and tasks arrive very
sporadically. Running our framework on this model will create
a first approximation of the behavior of each scheduler, and
might allow for disregarding schedulers that perform poorly,
leaving a smaller pool of schedulers to choose from. In a
refinement step, preemption points and sporadicity restrictions
are refined, to further distinguish between the remaining sched-
ulers, and so on. The process stops when the granularity of the
model suffices to make a confident choice of the scheduler.

VI. CONCLUSION

In this work, we provided the foundations for the automated
competitive analysis of real-time scheduling algorithms for
firm-deadline tasks with precedence constraints. We defined
the competitive ratio in this setting, despite the fact that the
online and offline algorithms work on diverging job sequences,
and showed how the various components of our framework
can be implemented using LTSs. We developed a parallel
version of Madani’s MMC finding algorithm using CUDA
on a GPU. Finally, we performed an experimental evalua-
tion of ten scheduling algorithms on tasksets capturing various
precedence-aware application examples. Our findings confirm
the importance of a framework for automated competitive
analysis for the design of a particular application, since the
choice of the best algorithm for a given taskset and its
precedences cannot be done manually.

In future work, we will explore extensions of our framework
to also compute additional algorithm-specific performance
measures, such as the number of context switches, schedul-
ing overheads, or energy consumption, which could then be
traded against the competitiveness ratio of a scheduler.
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