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Abstract. Decomposing a directed graph to its strongly connected com-
ponents (SCCs) is a fundamental task in model checking. To deal with
the state-space explosion problem, graphs are often represented symbol-
ically using binary decision diagrams (BDDs), which have exponential
compression capabilities. The theoretically-best symbolic algorithm for
SCC decomposition is Gentilini et al’s Skeleton algorithm, that uses
O(n) symbolic steps on a graph of n nodes. However, Skeleton uses
Θ(n) symbolic objects, as opposed to (poly-)logarithmically many, which
is the norm for symbolic algorithms, thereby relinquishing its symbolic
nature. Here we present Chain, a new symbolic algorithm for SCC de-
composition that also makes O(n) symbolic steps, but further uses log-
arithmic space, and is thus truly symbolic. We then extend Chain to
ColoredChain, an algorithm for SCC decomposition on edge-colored
graphs, which arise naturally in model-checking a family of systems. Fi-
nally, we perform an experimental evaluation of Chain among other
standard symbolic SCC algorithms in the literature. The results show
that Chain is competitive on almost all benchmarks, and often faster,
while it clearly outperforms all other algorithms on challenging inputs.

Keywords: Binary decision diagrams · Strongly connected components ·
Colored graphs

1 Introduction

Strongly connected components (SCCs) are one of the most elegant and widely
applicable concepts of graph theory. They play a fundamental role in model
checking for LTL and ω-regular properties, as most model-checking tasks reduce
to locating cycles that traverse certain vertices in a graph [26], while strong fair-
ness assumptions typically require an SCC decomposition at hand [21,31]. SCCs
are also a key step to characterizing the attractor properties of systems, such as
bottom SCCs in Markov Chains [2] and maximal end components in Markov De-
cision Processes [12]. From an algorithmic point of view, the simplest approach
to SCC decomposition is by running a forward-backward reachability analysis
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from each vertex, which results in O(n2) time on a graph of n vertices. The cel-
ebrated Tarjan’s algorithm [28], and subsequently Dijkstra’s algorithm [15] and
Kosaraju-Sharir’s algorithm [27] have reduced the complexity down to O(n).

In the everyday practice of model checking, systems are represented as sym-
bolic, rather than explicit graphs. One predominant symbolic representation is
via (reduced/ordered) Binary Decision Diagrams (BDDs) [9], which are found
at the core of many classic and modern model checkers [13,23,19,24,3]. BDDs
can offer exponential compactness of the huge state space typically involved in
the model-checking task, by succinctly encoding symmetries abundant in the
represented system. On the other hand, this symbolic representation gives only
coarse-grained efficient access to the graph. In particular, one can query for the
image and preimage of a set of vertices with respect to the edge relation, which
accounts for one symbolic step. Although the time for performing a symbolic
step may vary, it is typically significantly larger than the time taken to perform
elementary operations (e.g., incrementing a counter). As such, symbolic steps
serve as the complexity measure of symbolic algorithms [8,18,11].

The simplest symbolic algorithm for SCC decomposition is the FwdBwd
algorithm, which computes the SCC of a vertex u as the intersection of its
forward and backward sets (as in the explicit setting). As this results in O(n2)
time complexity, the algorithm is often too slow in practice. The key challenge
towards efficient symbolic SCC algorithms is the seeming difficulty to traverse the
input graph G in a depth-first fashion, which is the technical underpinning of the
O(n)-time explicit SCC algorithms. Nevertheless, a series of improvements have
been made in this direction: (i) a variant of FwdBwd was shown in [30] to run
in time O(δn), where δ is the diameter of G, and only becomes quadratic when
δ = Θ(n), (ii) the LockStep algorithm [7] has complexity O(n log n), while
(iii) the Skeleton algorithm with complexity O(n) is provably optimal [11].
Practical improvements based on heuristics have also been proposed [29,16,31].

One characteristic requirement for symbolic algorithms is that they operate
in logarithmic symbolic space, i.e., they use logarithmically many objects, with
the size of a single symbolic data structure (e.g., a BDD) counting as O(1) [11].
Indeed, without this restriction, an algorithm could extract, and later analyze,
an explicit representation of its input graph, thereby relinquishing its symbolic
nature. Unfortunately, the theoretically optimal Skeleton algorithm uses Θ(n)
space, thereby violating the logarithmic-space requirement. As such, we find that
Skeleton is not truly symbolic, which also has a measurable effect: perhaps
paradoxically, Skeleton is often the slowest algorithm in practice.

1.1 Our Contributions

The Chain algorithm. We present a new algorithm, Chain, for symbolically
computing SCC decompositions. On input graph G with n vertices, Chain takes
time O(

∑
S∈SCCs(G)(δ(S) + 1)) = O(n), where SCCs(G) denotes the SCCs of G

and δ(S) is the diameter of S. It is known that Ω(
∑

S∈SCCs(G)(δ(S)+1)) is also
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a lower bound for the problem [11], thus Chain is optimal. Moreover, Chain
uses O(log n) symbolic data structures, thus being truly symbolic.

It is worth highlighting that Chain offers optimality while also being ar-
guably the simplest among all symbolic SCC decomposition algorithms beyond
FwdBwd. Indeed, Chain simply extends FwdBwd to accept as an argument a
set of vertices K, among which to choose a pivot in the current recursive call. It
is perhaps surprising that such a simple mechanism has been elusive for decades,
as all previous efforts [30,7,17] relied on more elaborate procedures to either re-
duce or refine the O(n2) time bound. That being said, our new mechanism is
somewhat insightful and with a non-trivial complexity analysis.

The ColoredChain algorithm. We extend Chain to ColoredChain for
computing SCCs on edge-colored graphs, in which edges have colors, and SCCs
are formed by restricting to monochromatic paths. Although a graph of p colors
can be handled in O(pn) time by breaking it to its monochromatic compo-
nents and executing Chain on each of them, ColoredChain handles all colors
simultaneously, thus benefiting from the symbolic compression of the edge re-
lation across multiple colors. A similar approach was followed recently [6], by
extending the standard LockStep algorithm [7] to colored graphs. However,
the corresponding colored LockStep algorithm runs in time O(pn log n), as it
inherits the log n factor from the basic LockStep algorithm.

Experimental evaluation. We implement and evaluate Chain in controlled,
synthetic, and previously-used experimental settings. We find that Chain is
never notably slower than other, standard algorithms, except when compared
to LockStep on a few benchmarks. On the other hand, Chain is measur-
ably faster than all other algorithms on demanding inputs. We further evaluate
ColoredChain on colored Boolean Networks, used recently for the colored
LockStep algorithm [6]. Our results indicate that ColoredChain is consider-
ably faster than LockStep, making it a promising alternative for the analysis
of Boolean networks.

2 Preliminaries

Here we set up our main notation on graphs, SCCs, and symbolic algorithms.

General notation. Given a natural number ` ∈ N, we let [`] = {1, 2, . . . , `}.

Graphs. We consider (directed) graphs G = (V,E), where V is a set of n
vertices and E ⊆ V × V is a set of edges. Given a set X ⊆ V , the restriction
of G on X is the graph G[X] = (X,E ∩ (X × X)). For a vertex v, we let
Pre(v) = {u : (u, v) ∈ E} and Post(v) = {u : (v, u) ∈ E} denote the set of
preimage and image of v under E, respectively. We lift this notation to sets of
vertices X, by letting Pre(X) =

⋃
v∈X Pre(v) and Post(X) =

⋃
v∈X Post(v). A

path from v to u in G is a sequence of vertices P : v = w1, w2, . . . , w` = u such
that, for each i ∈ [`− 1], we have (wi, wi+1) ∈ E. The length of P is |P | = `− 1,
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while a single vertex v serves as a path of length 0. We denote by v  u the
existence of a path from v to u, and call u reachable from v if there is such a
path in G. For a vertex v ∈ V , we let Fwd(v) and Bwd(v) denote the reflexive
transitive closure of Post(v) and Pre(v), respectively. In other words, Fwd(v)
(resp., Bwd(v)) contains the vertices that are reachable from v (resp., can reach
v). Given an additional set X ⊆ V , we let Fwd(v,X) and Bwd(v,X) denote the
forward and backward, respectively, set of v in the graph G[X]. The distance
from v to u is the length of the shortest path v  u, i.e., d(v, u) = minP : v u |P |,
where we take the minimum of an empty set to be ∞. The diameter of a set
X ⊆ V is δ(X) = maxv,u∈X,v u d(v, u), i.e., it is the maximum distance between
any pair of vertices in X, provided that they are connected by a path.

Strongly connected components (SCCs). A set X ⊆ V is strongly con-
nected if, for every two vertices v, u ∈ X, we have v  u. A strongly connected
component (SCC) of G is a maximal strongly connected set S ⊆ V . Given a
vertex v ∈ V , we let SCC(v) denote its SCC. We let SCCs(G) denote the set
of SCCs of G; note that SCCs(G) induces a partitioning on V . A set X ⊆ V is
called SCC-closed if for every S ∈ SCCs(G), we have either S ⊆ X or S∩X = ∅.
In other words, for every v ∈ X, we have SCC(v) ⊆ X. We sometimes call G[X]
SCC-closed, to indicate that X is SCC-closed (in G).

Symbolic operations and complexity measures. We consider that graphs
are represented symbolically using Binary Decision Diagrams (BDDs) [9]. The
symbolic representation suggests that efficient access to the graph can only
be carried out in a coarse-grained way. In particular, given a symbolically-
represented set of vertices X, a symbolic operation on X is either Pre(X) or
Post(X), and serves as the unit of time in measuring the time complexity of
symbolic algorithms. As per standard, we also perform common set operations
such as union, intersection, and difference, and use a specialized function Pick(X)
that returns an arbitrary vertex u ∈ X. This operation is natural in symbolic
SCC algorithms, as typically one needs to identify a specific vertex u in order
to output SCC(u). In alignment with the symbolic time complexity, the sym-
bolic space complexity of an algorithm is measured in number of (symbolic, or
not) objects it uses. As symbolic representations usually allow (in the context
they are designed for) large (and sometimes, even exponential) compression, we
require symbolic algorithms to operate in logarithmic symbolic space [11].

3 The Chain Algorithm

In this section we present the main result of this paper: a new algorithm, called
Chain, that runs in linear time and is truly symbolic (i.e., it uses O(log n)
symbolic memory). In particular, we establish the following theorem.

Theorem 1. Given a graph G = (V,E) of n nodes Chain computes SCCs(G)
in O(

∑
S∈SCCs(G)(δ(S) + 1)) symbolic time and O(log n) symbolic space.
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Note that O(
∑

S∈SCCs(G)(δ(S) + 1)) = O(n), as SCCs(G) partition G,
while for each S ∈ SCCs(G) we have δ(S) ≤ |S|. It is worth observing that
O(

∑
S∈SCCs(G)(δ(S) + 1)) can, however, be much smaller than n: e.g., over

cliques G, this bound becomes O(1). On the other hand, it is known that
Ω(

∑
S∈SCCs(G)(δ(S)+1)) is also a lower bound for the problem [11], hence The-

orem 1 is tight. As was shown in [11], a more refined analysis of the Skeleton
algorithm also achieves the time bound of Theorem 1. However, Skeleton suf-
fers a linear space bound, and thus is not truly symbolic.

In the following, we first present Chain in detail in Section 3.1. It’s correct-
ness is relatively straightforward, and stated in Section 3.2. On the other hand,
its complexity analysis is more involved, and is presented in Section 3.3.

3.1 Algorithm

Here we present Chain in detail, develop some intuition behind its time com-
plexity, and illustrate its execution on a small example.
Algorithm 1: Chain
Input: A graph G = (V,E), a vertex set K ⊆ V

1 if V = ∅ then return
2 if K 6= ∅ then // Pick a pivot on the chain, if possible
3 v = Pick(K)
4 else
5 v = Pick(V )
6 F = ∅; Last = ∅; Layer = {v}; S = {v}
7 while Layer 6= ∅ do // Compute Fwd(v, V )

8 F = F ∪ Layer
9 Last = Layer

10 Layer = Post(Layer) \ F
11 while Pre(S) ∩ F 6⊆ S do // Compute SCC(v)

12 S = S ∪ (Pre(S) ∩ F )
13 output S
14 Chain (G[F \ S],Last \S) // Recursive call on the forward set
15 Chain (G[V \ F ],Pre(S) \ F ) // Recursive call on the rest

The Chain algorithm. Algorithm 1 presents Chain in pseudocode. The prin-
ciple of operation of the algorithm is, perhaps, surprisingly simple. Given a
G = (V,E) and a pivot vertex v of G, the algorithm computes SCC(v) in two
phases, similarly to the standard FwdBwd algorithm. In particular:

1. The first phase computes Fwd(v, V ) (i.e., the forward set of v in V ) as the
least fixed point F = µX.{v} ∪ Post(X) (loop in Line 7).

2. The second phase outputs SCC(v) by iteratively computing the least fixed
point S = µX.{v} ∪ (Pre(X) ∩ F ) (loop in Line 11).

3. Finally, the computation proceeds recursively on the SCC-closed components
G[F \ S] and G[V \ F ] that partition V \ S (Line 14 and Line 15).
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However, in order to avoid the high complexity, Chain passes along each recur-
sive call the K argument (initially K = ∅). This argument restricts the recursive
call to pick its next pivot v such that v ∈ K; choosing the right set to pass as
K makes the algorithm achieve its tight time complexity.

Conceptually, after Fwd(v, V ) has been computed, the first recursive call
(Line 14) chooses K to be the set of vertices that are of maximum distance
from v (and not in SCC(v), as those are output in Line 13). On the other hand,
the second recursive call (Line 15) chooses K to be the predecessors of SCC(v).
Although the formal complexity analysis is somewhat involved (see Section 3.3),
the key, high-level idea is as follows. When computing Fwd(v, V ), the algorithm
has taken a number of symbolic steps that is proportional to the maximum
distance of a vertex from v. The chain of recursive calls starting in Line 14 and
followed by all recursive calls in Line 15 until Pre(S) ∩ F = ∅, ensures that the
algorithm will output all SCCs, in reverse order, along a maximal path from v
to a vertex in Fwd(v, V ) \ SCC(v). This amortizes the high cost of computing
Fwd(v, V ) in the current call to the cost of outputting these SCCs in future calls,
leading to only a constant factor increase in the overall complexity.

Besides viewing Chain as an augmentation of the FwdBwd algorithm with
a restriction on pivots, the algorithm can also be seen as a simplification of the
Skeleton algorithm [17]. Indeed, the computation of skeletons in the latter
serves the exact purpose to force the recursion to output SCCs in the same
order as in our chain argument above. As we show here, computing skeletons is
redundant: dropping them makes the algorithm simpler, truly symbolic, while
not sacrificing any of its time-complexity guarantees.

Example. Fig. 1 illustrates Chain on a graph G = (V,E) (left). The tree T
(right) represents the recursion of Chain as it outputs SCCs(G). We identify
every vertex of T by a vertex v ∈ V for which SCC(v) is computed in the
corresponding step. We subscript variables of the algorithm with v to denote
their value at that step. E.g., Vv denotes the vertex set in the recursive call that
computed SCC(v), and Fv denotes the forward set computed after the loop of
Line 7 has completed. The edges of T are labeled with the line that performed
the respective recursive call.

The key observation for understanding the complexity of Chain is as follows.
In the first step, the algorithm has paid the high cost of 5 symbolic steps to
compute F1, while its output is a small SCC of 2 vertices. However, the path 1

14−→
6

15−→ 4
15−→ 3 in T forms a chain from vertex 6, which is of maximum distance

from 1, back to vertex 3 that is adjacent to SCC(1). The cost of computing F1

can thus be amortized to outputting the SCCs along this chain (i.e., SCC(3),
SCC(4), SCC(6)), yielding only a linear overhead. As we prove in Section 3.3,
this behavior is not accidental, but guaranteed in every recursive call.

3.2 Correctness

We start with the soundness of Chain, i.e., it only outputs SCCs of G.
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V1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
K1 = ∅

F1 = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
S1 = {1, 2}

V6 = {3, 4, 5, 6, 7, 8, 9, 10}
K6 = {6, 10}

F6 = {5, 6}
S6 = {5, 6}

V4 = {3, 4, 7, 8, 9, 10}
K4 = {4, 8}

F4 = {4, 9, 10}
S4 = {4}

V10 = {9, 10}
K10 = {10}

F10 = {9, 10}
S10 = {9, 10}

14

V3 = {3, 7, 8}
K3 = {3}

F (3) = {3, 7, 8}
S(3) = {3}

V8 = {7, 8}
K8 = {8}

F8 = {7, 8}
S8 = {7, 8}

14

15

15

14

Fig. 1. An input graph (left), and the recursive computation of Chain (right).
Lemma 1. In every call of Chain, Line 13 outputs an SCC of G.

Proof. Consider any call to Chain on input G′ = (V ′, E′),K ′, with K ′ ⊆ V ′.
The algorithm first picks a vertex v from either V ′ or K ′, with v ∈ S, where S
is the set outputted in Line 13. It is straightforward to see that, after the loop
in Line 7 has executed, we have F = Fwd(u, V ′), while after the loop in Line 11
has executed, we have S = Fwd(u, V ′)∩Bwd(u, V ′). It suffices to argue that G′
is an SCC-closed subgraph of G, which implies that S = SCC(v).

The statement is true initially, as G′ = G. Now, assuming that the statement
holds on some input G′ = (V ′, E′),K ′ we argue each of G′[F \S] and G′[V ′ \F ],
in Line 14 and Line 15, respectively, is SCC-closed. Indeed, F is closed under
Post operations and thus SCC-closed. As S is an SCC of X, we have that F \S is
also SCC closed. Since F \S, S, and V ′ \F partition V ′, we have that G′[V ′ \F ]
is also SCC-closed. The desired result follows. ut

Lemma 2. Chain outputs every SCC in SCCs(G) exactly once.

Proof. The statement follows from the fact that, in every recursive call on input
G′ = (V ′, E′), the sets F \ S, S, and V ′ \ F partition V ′. ut
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3.3 Complexity Analysis

We now present the (symbolic) time and space complexity analysis of Chain.
For measuring time, we only count the number of Pre(·) and Post(·) operations.

Consider any input G = (V,E), and let T be the recursion tree produced
by the execution of Chain on G, as in Fig. 1. We will use lowercase (resp.,
uppercase) letters to refer to the vertices of G (resp., T ), and we will subscript
the variables of the algorithm with vertices of T (e.g., VA) to refer to variables
in the recursive call associated with the recursive step (at A). T has labeled
directed edges A f−→ B, where f ∈ {14, 15} denotes the line of the recursive call
that made B a child of A in T . Without loss of generality, we consider that every
vertex A of T corresponds to a recursive call with VA 6= ∅.

Main complexity analysis. Consider an edge A 14−→ B in T , and the path
A

14−→ B1
15−→ B2

15−→ . . .
15−→ Bk, where Bk is the first vertex B for which

Pre(SB) \ FB = ∅ in Line 15. Let Levels(A) denote the number of iterations
executing in Line 7, and note that Levels(A) = maxu∈VA

d(vA, u). The crux of
the complexity proof of Chain is the following lemma.

Lemma 3. Levels(A) ≤ δ(SCC(vA)) + 1 +
∑

i∈[k](δ(SCC(vBi)) + 1).

Before we prove Lemma 3, we show how it leads to the complexity of The-
orem 1. Given a vertex A of T , let T (A) denote the running time of Chain on
the subtree of T rooted at A. Let A 14−→ B and A 15−→ C be the children of A,
and the path A 14−→ B1

15−→ B2
15−→ . . .

15−→ Bk as defined above (thus B1 = B).
Then T (A) satisfies the following recurrence.

T (A) ≤

loop in Line 7︷ ︸︸ ︷
Levels(vA) +

loop in Line 11︷ ︸︸ ︷
δ(SCC(vA)) + 1+

Line 14︷ ︸︸ ︷
T (B) +

Line 15︷ ︸︸ ︷
1 + T (C)

≤
∑
i∈[k]

(δ(SCC(vBi
)) + 1) + δ(SCC(vA)) + 1

+ δ(SCC(vA)) + 1 + T (B) + 1 + T (C)
[Lemma 3]

=
∑
i∈[k]

(δ(SCC(vBi
)) + 1) + 2δ(SCC(vA)) + 3 + T (B) + T (C)

For every i iterating in
∑

i∈[k](δ(SCC(vBi)) + 1), the vertex vBi will not
appear in such a sum in any other vertex A′ of T . Indeed assume towards con-
tradiction that for some vertex Bi there are two vertices A 6= A′ and paths

P : A
14−→ B1

15−→ B2
15−→ . . .

15−→ Bi and P ′ : A′
14−→ B′1

15−→ B′2
15−→ . . .

15−→ B′i

with B′i = Bi. Due to the edge labels, none can be a sub-path of the other, which,
in turn, contradicts the tree structure of T . Given such a vertex Bi, let A(Bi)
denote its unique ancestor in T that appears as vertex A in the path P above.
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The total running time of Chain onG is≤
∑

B∈T (3δ(SCC(vB))+4), obtained by
counting for each vertex B of T (i) the 2δ(SCC(vB))+3 symbolic operations from
its own recursive call, plus (ii) δ(SCC(vB))+1 symbolic operations from the call
at A(B). Hence the total number of symbolic steps is O(

∑
S∈SCCs(G)(δ(S)+1)).

Proof of Lemma 3. We now turn our attention to the proof of Lemma 3.
Consider again the path A 14−→ B1

15−→ B2
15−→ . . .

15−→ Bk of T as defined above.
For simplicity of notation, let vi = vBi

, for i ∈ [k]. Clearly SCC(vi) 6= SCC(vj)
for i 6= j. We start with two simple lemmas.

Lemma 4. For every i ∈ [k], we have KBi 6= ∅.

Proof. The statement holds for i = 1, since otherwise LastA \SA = ∅, implying
that FA \SA = VB1

= ∅, and thus B1 would not be a vertex of T . The statement
also holds for all i > 1, by construction of the path to Bk. ut

Lemma 5. For all i ∈ [k − 1], we have vi ∈ Fwd(vk).

Proof. The lemma follows from the more general statement that vi ∈ Fwd(vi+1).
Indeed, by Lemma 4, we have that vi+1 ∈ Pre(SBi), while SBi = SCC(vi). ut

We call a vertex u critical if it is the first vertex w in a path from vA to vk
in VA, such that w 6∈ SCC(vA). We further call a path u  vk critical if u is a
critical vertex. In the example of Fig. 1, for the first call to Chain, where vA = 1,
vertex 3 is a critical vertex and the path 3→ 4→ 5→ 6 is a critical path. The
following lemma captures the fact that every recursive call Bi is performed on a
vertex set VBi

that is adjacent to SCC(vA).

Lemma 6. For all i ∈ [k], the set VBi has a critical path.

Proof. The proof follows induction on i. For i = 1, we have VB1
= Fwd(vA, VA)\

SCC(vA). Since A
14−→ B1 in T , we have Fwd(vA, VA)\SCC(vA) = VB1

6= ∅, thus
the statement holds for i = 1. Now assume that the statement holds for some
i ≥ 1, and we argue that it holds for i + 1. Take any critical path P : u  vk
in VBi , and assume towards contradiction that P is not a path in VBi+1 (i.e.,
at least one vertex of P is outside VBi+1). Since VBi+1 = VBi \ Fwd(vi, VBi), we
obtain that P has a vertex w with w ∈ Fwd(vi, VBi

), and hence vk ∈ Fwd(vi).
By Lemma 5, we also have vi ∈ Fwd(vk), thus SCC(vi) = SCC(vk), violating
the choices of vi. Thus VBi+1

has a critical path. ut

Specifically for the case i = k, the following is a strengthening of Lemma 6,
showing that SCC(vk) (only a subset of VBk

) is also adjacent to SCC(vA).

Lemma 7. SCC(vk) contains a critical vertex.

Proof. By Lemma 6, we have a critical path u  vk in VBk
. By construction,

(Pre(SCC(vk)) ∩ VBk
) \ SCC(vk) = ∅, thus u ∈ SCC(vk). ut
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Let vk+1 be a critical vertex in SCC(vk), whose existence is guaranteed by
Lemma 7. Given a vertex u ∈ VA, we write `(u) for the distance of u from vA in
VA. Note that Levels(A) = `(v1). Observe that for all u, v ∈ VA, if u ∈ SCC(v)
then `(u) − `(v) ≤ δ(SCC(v)). The following two lemmas relate the distances
`(vi) with the diameters of SCCs, and lead to the proof of Lemma 3.

Lemma 8. We have `(vk+1) ≤ δ(SCC(vA)) + 1.

Proof. By definition, there is a vertex w ∈ Pre(vk+1)∩SCC(vA). We have `(w) ≥
`(vk+1)− 1, while `(w) ≤ δ(SCC(vA)), hence `(vk+1) ≤ δ(SCC(vA)) + 1. ut

Lemma 9. For every i ∈ [k], we have `(vi)− `(vi+1) ≤ δ(SCC(vi)) + 1.

Proof. The statement holds trivially when `(vi) ≤ `(vi+1). Now consider the case
that `(vi) > `(vi+1). If i = k, then by our choice of vk+1, we have vi+1 ∈ SCC(vi),
thus `(vi) − `(vi+1) ≤ δ(SCC(vi)). Now consider that i < k. By construction,
there is a vertex w ∈ SCC(vi) ∩ Post(vi+1). Then `(vi) − `(w) ≤ δ(SCC(vi)),
while `(w) ≤ `(vi+1) + 1, resulting in `(vi)− `(vi+1) ≤ δ(SCC(vi)) + 1. ut

Proof (of Lemma 3).

Levels(A) = `(v1) =
∑
i∈[k]

(`(vi)− `(vi+1)) + `(vk+1) [algebra]

≤
∑
i∈[k]

(`(vi)− `(vi+1)) + δ(SCC(vA)) + 1 [Lemma 8]

≤
∑
i∈[k]

(δ(SCC(vi)) + 1) + δ(SCC(vA)) + 1 [Lemma 9]

ut

Space complexity. Finally, we address the O(log n) symbolic-space complexity
of Theorem 1. Chain uses O(1) symbolic sets in each recursive call. To achieve
the O(log n) bound, it suffices to first follow the recursive call between Line 14
and Line 15 with the smaller graph input. This results in O(log n) pending re-
cursive calls at any step of the execution, leading to storing O(log n) symbolic
sets overall. Note that this requires a function Count(X) that returns the size
of a symbolically represented set X. This is not a problem: BDDs are equipped
with such operations, and their complexity is only linear in the size of the rep-
resentation of X, even though X might be exponentially large.

4 Extension to Colored Graphs

In this section we turn our attention to colored graphs, where the edge relation
is parameterized by colors, and SCCs are formed with respect to monochromatic
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components of the graph. Each edge color stands for a different binary relation,
and all colors together allow to superpose several graphs on top of each other.
Although each monochromatic graph could be represented in isolation, this su-
perpositioning allows for an efficient symbolic representation, especially when
the edge relations are highly similar. In turn, this asks for efficient symbolic al-
gorithms that are able to exploit similarities between colors. Our study of this
setting is inspired by the recent extension of LockStep to colored graphs [6].

4.1 Edge-Colored Graphs

Here we lift some of our graph notation from Section 2 to the colored setting.

Colored graphs. An edge-colored graph G = (V,C,E) consists of a set of n
vertices V , a set of p colors C, and an edge relation E ⊆ V ×C×V . Given a color
c ∈ C, we let Gc = (V,Ec) be the projection of G on c, where Ec = E∩(V ×{c}×
V ) restricts the edge relation to color c. Given two vertices v, u ∈ V , we write
v

c
 u to denote that there is a path v  u in Gc, and say that u is c-reachable

from v in G. A colored vertex set is a set X ⊆ V ×C. The restriction of G on X is
the colored graph G[X] = (V ′, C ′, E′), where (i) V ′ = {v : ∃c ∈ C. (v, c) ∈ X)},
(ii) C ′ = {c : ∃v ∈ V . (v, c) ∈ X}, and (iii) E′ = {(u, c, v) : (u, c), (v, c) ∈ X}.
Given such a set X, we let Pre(X) = {(u, c) : ∃(v, c) ∈ X. (u, c, v) ∈ E}, and
Post(X) = {(u, c) : ∃(v, c) ∈ X. (v, c, u) ∈ E}. We call a set V ⊆ V ×C degenerate
if for all c ∈ Colors, we have |V∩(V ×{c})| ≤ 1, i.e., V has at most one vertex per
color. Given a degenerate set V, we let Fwd(V) = {(v, c) : ∃(u, c) ∈ V and u c

 
v}, i.e., it is the set of colored vertices reached by each colored vertex in V. We
similarly let Bwd(V) = {(v, c) : ∃(u, c) ∈ V and v c

 u}. Note that for degenerate
sets, Fwd (Bwd) is the transitive closure of Post (Pre). Further, given a colored
vertex set X, we let Fwd(V, X) (resp., Bwd(V, X)) be the set of colored vertices
reached by (resp., reaching) each colored vertex in V in the subgraph G[X].

Colored SCCs. Given a colored graph G = (V,C,E), a c-colored SCC of G
is a pair S = (R, c) ⊆ V × {c} such that R is an SCC of Gc. Given a vertex
v ∈ V and a color c ∈ C, we write SCC(v, c) for the SCC of v in Gc. We let
SCCs(G) denote the set of SCCs of G, and observe that SCCs(G) partitions
V × C. A set X ⊆ V × C is SCC-closed if for every color c ∈ C, the set
X ∩ (V × {c}) is SCC closed in Gc. Given an SCC-closed set X, we will also
call G[X] SCC-closed. Given a degenerate set V, we write SCC(V) for the set of
SCCs {(R, c) : (v, c) ∈ V and R = SCC(v) in Gc}.

Symbolic operations. Similarly to the non-colored setting, we use symbolic
operations Pre(X) and Post(X) on sets X ⊆ V ×C, which incur a unit time cost.
We further perform unions, intersections and differences on subsets of V ×C, and
use a specialized operation Pick(X) that returns an arbitrary pair (v, c) ∈ X.
Finally, we consider at our disposal a function Pivots(X), that acts on sets
X ⊆ V × C and returns a maximal degenerate subset of X containing one pair
(v, c) per color c appearing in X. This operation can be performed by combining
Pick with basic set operations, and has also appeared in other works [6].
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4.2 The ColoredChain Algorithm

Here we present our extension of Chain for handling edge colored graphs.
Algorithm 2: ColoredChain
Input: A graph G = (V,C,E), two colored vertex sets X,K ⊆ V × C,

1 if X = ∅ then return
2 V = Pivots (K ∪ (X \ (V × Colors(K))) // A degenerate set of pivots
3 F = ∅; Last = ∅; Layer = V; S = V
4 while Layer 6= ∅ do // Compute Fwd(V, X)

5 F = F ∪ Layer
6 Last = Layer∪ (Last \(V × Colors(Layer)))
7 Layer = Post(Layer) \ F
8 while Pre(S) ∩ F 6⊆ S do // Compute SCC(V)
9 S = S ∪ (Pre(S) ∩ F )

10 output S
11 ColoredChain (G[F \ S], F \ S,Last \S)
12 ColoredChain (G[X \ F ], X \ F,Pre(S) \ F )

The ColoredChain algorithm. Algorithm 2 presents ColoredChain in
pseudocode. The algorithm takes as input an edge-colored graph G = (V,C,E),
as well as two colored vertex sets X and K (initially X = V ×Colors and K = ∅).
In words, the current and future recursive steps will compute the colored SCCs
of G that are subsets of X. The set K serves the same purpose as in the basic
Chain algorithm, i.e., to restrict the set of vertices over which we select pivots
in the current recursive call, towards the linear-time properties of the algorithm.
The algorithm starts by selecting a degenerate set of pivots V in Line 2, with
the goal to output each SCC(v, c), for (v, c) ∈ V in the current recursive step.
The pivot set is constructed to contain one pair (v, c) for every color c present
in X. If c is also present in K, then the algorithm selects a pivot (v, c) ∈ K,
otherwise, it chooses an arbitrary pivot from X. The algorithm then computes
SCC(V) as Fwd(V, X) ∩ Bwd(V, X), similarly to the non-colored case (where
V is simply a non-colored vertex). In the i-th iteration of the loop of Line 4,
the variable Last contains the vertices (u, c) that have maximum distance ≤ i
from (v, c) ∈ V . As these maximal distances might converge at different lengths
for different colors, extra care is taken in Line 6 to maintain the converged
colors in the next iteration. Finally, the algorithm outputs SCC(V) (Line 10),
and proceeds recursively on the disjoint subsets F \ S and X \ F (Line 11 and
Line 12). The K argument is passed on each recursive call in the same way as in
the Chain algorithm, so that, in effect, the time taken to compute F is amortized
by the time to output colored SCCs in subsequent recursive calls (where now the
amortization also takes place among colors). Observe that, in the special case of
p = 1 color, ColoredChain operates identically to Chain.

Correctness and complexity. Due to the similarity of ColoredChain to
Chain, we will only sketch the main arguments for its correctness and complex-
ity. The key observation for correctness is that each recursive call processes an
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SCC-closed subgraph of G. Indeed, given an SCC-closed colored vertex set X, for
any vertex (v, c) ∈ X, we have SCC(v, c) = Fwd({(v, c)}, X)∩Bwd({(v, c)}, X).
Hence S = SCC(V) in Line 10. As F ∪ S is closed under Post operations and S
is an SCC of X, we have F \ S (and thus also X \ F ) is SCC closed.

The complexity of ColoredChain is O(
∑

S∈SCCs(G)(δ(S) + 1)) = O(pn),
as every vertex v belongs to exactly one SCC(v, c) for each color c ∈ C. This
bound follows from amortizing the number of iterations of the loop in Line 4
to the diameter of a color that converges last in the loop. Observe that the
computation on the remaining colors comes “for free”. This is the benefit of
treating all colors symbolically (as opposed to each monochromatic graph Gc

separately). The same observation holds for the while loop in Line 8.

5 Experiments

In this section we report our experimental evaluation of the new algorithms
Chain and ColoredChain on three classes of benchmarks. We compared their
performance to the standard algorithms FwdBwd [30], LockStep [7] (and its
recent colored variant [6]) and Skeleton [17]. Our experiments were run on a
Linux machine with 2.4GHz CPU speed and 60GB of memory (using 1 core).

5.1 Experiments on Synthetic Benchmarks

To better illustrate the behavior of the various algorithms, we start with a con-
trolled setting of synthetic benchmarks.

Setup.We performed a controlled experiment on product graphs Gi
k = Lk−i×Ci,

where Lj (resp, Cj) denotes a line graph (resp., cycle graph) of size 2j . This setup
follows [4]. Observe that Gi

k has 2k−i SCCs, of size (and diameter) 2i each. Our
implementation is in C++ and based on the Sylvan BDD library [14]. Recall
that the behavior of each algorithm depends on the non-determinism involved
in the Pick operation, that returns an arbitrary vertex of a given vertex set.
Sylvan returns the vertex with the smallest (binary encoded) ID. We generated
two variants of this setting: one in which vertex IDs follow an incremental order
in each graph component, and one in which they are uniformly random.

Results. Fig. 2 shows the number of symbolic steps per algorithm, for graphs
Gi

10, i ∈ {0} ∪ [10]. When the vertex encoding follows sequential IDs (left),
FwdBwd exhibits its worst-case Θ(n2) performance on graphs with many SCCs
(i.e., small i) as it repeatedly Pick’s pivots with large forward sets. As i increases,
the number of SCCs decreases, and FwdBwd eventually terminates in the first
call (for i = 10). On the other hand, the other algorithms exhibit almost iden-
tical, O(n) performance. In particular, every recursive call of LockStep Pick’s
a vertex v whose backward set equals SCC(v); thus the algorithm convergences
in a number of steps that is proportional to δ(SCC(v)), leading to Θ(n) perfor-
mance. Finally, after the first call, Skeleton and Chain output SCCs in the
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Fig. 2. Experimental results on product graphs Gi
10 = L10−i × Ci.

reverse order of FwdBwd, performing in each step a number of symbolic steps
that is proportional to the diameter of the SCC, like LockStep.

When the vertex encoding follows random IDs (right), every recursive call
of FwdBwd and LockStep Pick’s a pivot whose first component is roughly
in the middle of the line segment that is processed in that call. Hence the two
algorithms have similar performance, which follows Θ(n log n) behavior for large
lines (i.e., when i is small). On the other hand, Skeleton and Chain spend
O(

∑
S∈SCCs(G)(δ(S) + 1)) symbolic steps. Naturally, for larger lines, the two

algorithms spend more steps for computing the forward sets of their pivots, a
cost that is amortized in later recursive calls by a constant factor. Observe,
however, that Skeleton pays a larger constant factor, as the construction of
skeletons requires the forward sets to also be traversed backwards. This results in
Skeleton having the worst performance relative to the other algorithms when
the number of SCCs decreases (i.e., as i gets larger), as there are fewer recursive
calls to amortize the high cost of skeleton computation. Finally, we remark that
for small and large i, Skeleton constructs (in expectation) Θ(n) BDDs, hence
this is a family of graphs exposing the non-symbolic nature of the algorithm.

5.2 Experiments on Uncolored Graphs

To better understand the performance of the various algorithms in the wild, we
continue with their evaluation on standard model-checking benchmarks.

Setup. We considered benchmarks from the following categories:

– 1-safe Petri Net models from MCC, the Model Checking Contest [22].
– DiVinE models from BEEM, the Benchmark of Explicit Models [25].

In order to create equal experimental circumstances for all models, we used the
language-independent model checker LTSmin [19] to generate the disjunctively
partitioned symbolic transition relations for all these models. As symbolic rep-
resentation, we chose the multi-core BDD package Sylvan [14]. We implemented
all four algorithms of the previous section inside LTSmin. We disregarded graphs
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Fig. 3. Experimental results on PNML and DiVinE models.
of size < 104, as such graphs are handled more efficiently by explicit algorithms.
This led to a pool of 101 benchmarks. We measured the average time (across
three runs) each algorithm took on each benchmark, while discarding the over-
head due to state-space generation.

Results. Fig. 3 shows the running times of Chain against Skeleton,
LockStep and FwdBwd. Compared to the only other theoretically optimal
algorithm Skeleton, Chain is almost always somewhat faster, with the excep-
tion of one benchmark on which Chain is an order of magnitude faster. When
compared to LockStep, we find the two algorithms to be incomparable, with
Chain being slower on some benchmarks but faster on others. Indeed, we ex-
pect that LockStep behaves adequately in most practical scenarios, while its
log n slowdown (as demonstrated in Section 5.1) is witnessed only rarely. Finally,
we find that Chain is measurably and consistently equally-or-better performing
than FwdBwd.

5.3 Experiments on Colored Graphs

Finally, we turn our attention to colored graphs. We used models of discrete
control systems representing Biological Genetic Networks [20]. In high level, a
Boolean Network (BN) is defined by a set of Boolean variables X = {x1, . . . , xk}
and update functions of the form xi := ϕi, where each ϕi is a Boolean com-
bination over variables X. State updates are performed by nondeterministic
applications of the functions ϕi. In Colored Boolean Networks (CBNs), un-
interpreted function symbols are used to represent uncertainty. For instance,
x1 := x2 ∧ f(x3, x4) represents that x1 has a positive dependence on x2 and an
unknown dependence on x3 and x4. A single color corresponds to an assignment
of Boolean functions to the uninterpreted function symbols. The set of colors is
further restricted by constraints representing biological knowledge. This setting
is inspired by its use to evaluate the recently introduced colored LockStep [6].

Setup. We implemented our new ColoredChain-algorithm in Scala, using
JavaBDD (wrapping the classical BDD package BuDDy) with recommended
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Fig. 4. Experimental results on colored graphs from AEON models (seconds).

settings. We also reimplemented colored LockStep from [6] (without prepro-
cessing) and FwdBwd in Scala/JavaBDD. We used the CBNs coming from the
GINsim Boolean network database [10], represented in the AEON format that
supported the experiments in [6], accessed at [1]. We focused on benchmarks
with np ≥ 104, as the rest were run in < 0.2s by all algorithms. We remark that
most of these CBNs generate huge graphs; for the purposes of our evaluation,
we timed our experiments within 1h, which yielded a pool of 9 benchmarks.

Results. Fig. 4 shows the running time of each of the three algorithms. Perhaps
surprisingly, LockStep is consistently the slowest and by a large margin. On the
other hand, ColoredChain was always considerably faster than LockStep,
and consistently the fastest algorithm overall. The two exceptions are on the
CBNs 5_param_g2a and 27_068, where FwdBwd finished first in 2s and 1032s
(as opposed to 4s and 1114s for ColoredChain). On the other hand, FwdBwd
was considerably slower than ColoredChain in some CBNs (e.g., 20_049).
Although a wider experimental setting is required for conclusive results, our
evaluation indicates that ColoredChain is very effective in handling CBNs.

6 Conclusion

We have introduced Chain, a new, truly symbolic, and time-optimal algorithm
for SCC decomposition. The simplicity of Chain makes it theoretically elegant,
while our experimental evaluation demonstrates a potential for practical im-
pact. Some opportunities for future research include introducing saturation tech-
niques [31] to Chain, as well as specializing it to the computation of bottom
SCCs, which have received special attention [5].
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material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.
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