
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:1526  | https://doi.org/10.1038/s41598-022-05333-5

www.nature.com/scientificreports

Infection dynamics of COVID‑19 
virus under lockdown 
and reopening
Jakub Svoboda1, Josef Tkadlec2, Andreas Pavlogiannis3, Krishnendu Chatterjee1 & 
Martin A. Nowak2,4*

Motivated by COVID-19, we develop and analyze a simple stochastic model for the spread of disease 
in human population. We track how the number of infected and critically ill people develops over time 
in order to estimate the demand that is imposed on the hospital system. To keep this demand under 
control, we consider a class of simple policies for slowing down and reopening society and we compare 
their efficiency in mitigating the spread of the virus from several different points of view. We find that 
in order to avoid overwhelming of the hospital system, a policy must impose a harsh lockdown or it 
must react swiftly (or both). While reacting swiftly is universally beneficial, being harsh pays off only 
when the country is patient about reopening and when the neighboring countries coordinate their 
mitigation efforts. Our work highlights the importance of acting decisively when closing down and the 
importance of patience and coordination between neighboring countries when reopening.

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus that causes the current pandemic of 
coronavirus disease 2019 (COVID-19). The infection was first identified in December 2019 in Wuhan (China) 
and has since spread globally. By November 2021 more than 250 million people have been tested positive for the 
virus and more than 5 million people have died from complications caused by the virus. The large majority of 
cases result in recovery after mild or no symptoms. The coronavirus pandemic has led to an unprecedented global 
response in quarantine measures, social distancing, travel restrictions and shutting down of economic activity.

The use of mathematics in the study of dynamics of infectious diseases has a long tradition1–13. Mathematical 
epidemiology was immediately applied to the coronavirus pandemic14–16, resulting in an immense amount of 
literature on the subject. As a quick sample, there is ample work on understanding how the disease progresses 
within an individual17–20, how it spreads through the community21–27, and on the effects of various non-phar-
maceutical interventions under varying circumstances28–35. Other work highlighted the difficulties of estimating 
the parameters and the future course of an ongoing epidemic36,37. In contrast, in this work we focus on a simple 
class of policies for closing down and reopening the society throughout the course of a pandemic, thereby com-
plementing the rich literature on covid modelling.

We consider infection dynamics of coronavirus in a population of size N. The population represents a com-
munity (city, state, or a country). Initially, all people are uninfected. Then, we add one (or several) infected 
individuals and follow the stochastic trajectories of viral spread. The process advances in discrete time steps 
that represent days. Individuals are in different states describing their status of being: susceptible (S), exposed 
(E), mildly ill/infectious (I), critically ill (C), and recovered/removed (R), see Fig. 1a. We assume that critical 
cases are hospitalized. The infection spreads whenever a susceptible person comes in contact with an infectious 
person. In this case, the infection is transmitted with probability p (see Fig. 1b). We denote the number of daily 
contacts per person by k0.

We assume that the community has a capacity c of hospital beds to treat the critical cases. When left unregu-
lated, the disease would surge through the community and exceed that capacity c (see Fig. 1c). A country can 
mitigate the spread of the disease by introducing various non-pharmaceutical interventions, such as enforcing 
social distancing or shutting down non-essential businesses. We model such interventions by decreasing the 
number k0 of daily contacts of an individual to a value k < k0 . We call the regime when the interventions are 
put in place a lockdown.
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Here we study the key question of how quickly and how severely a community should lock down, and how 
patient it should be before reopening again. To that end, we consider a simple class of policies characterized by 
three parameters τ, k, d . The parameter τ is the number of critical cases that triggers the community to enter the 
lockdown. It models the cautiousness or agility of the policy. The parameter k is the number of daily contacts 
per person in a lockdown. It models the severity of the policy. Finally, the parameter d is the number of days the 
community needs to spend with critical cases below the trigger threshold τ before the lockdown is lifted. It models 
the patience of the policy. In other words, a policy P(k, τ , d) locks down to k < k0 daily contacts per person once 
the number of critically ill individuals exceeds a given trigger threshold τ , and it reopens to k0 daily contacts 
once the number of critically ill individuals remains under that threshold τ for d consecutive days. We evaluate 
the performance of such policies with respect to several measures. For instance, we consider the peak load Cmax , 
which is the expected number of critical cases at its maximum, and the overflow probability pfail , which is the 
probability that the peak load Cmax exceeds the hospital bed capacity c available to treat the critically ill cases.

We find that the best performing policies are those that quickly transition to a severe lockdown and that are 
patient about reopening. However, when either quick or severe action is not feasible, as is often the case, a country 
can compensate by pressing more along the other dimension. This gives rise to a spectrum of possible policies 
for closing down and reopening the society. At one end of this spectrum, a moderate low-trigger policy ( PML ) 
imposes a gentle lockdown at the first sign of the onset of the disease. At the other end, a severe high-trigger policy 
( PSH ) remains open till the latest moment possible and then imposes a harsh lockdown. We find that, though 
comparable in some regards, those two policies are very different in terms of their long-term behavior and in 
terms of their sensitivity to policies employed by neighboring countries. Specifically, we argue that the moderate 
low-trigger policies are preferable assuming that the countries are able to coordinate and that an efficient vaccine 
is not distributed soon, whereas the severe high-trigger policies are preferable otherwise.

Model
In order to describe the spread of COVID-19, we consider a stochastic, discrete-time, individual-based SIR-like 
model.

Disease progression within an individual.  We consider the following simple model. Initially, a typical 
individual is susceptible (S) and can contract the disease after contact with an infectious individual (see Fig. 1a). 
Immediately upon contracting the disease, an individual becomes exposed (E) and does not yet spread it. Later 
they become infectious (I) as they develop mild condition and then they either recover (R) or become critically ill 
(C). Critical individuals are hospitalized and isolated and they occupy part of the capacity c of the health system. 
Eventually, they either recover or die (R). We assume that recovered individuals acquire immunity. Upon con-
tracting the disease, each transition occurs after a number of days that is given by a corresponding random vari-
able XE→I, XI→R, XI→C, XC→R . For concreteness, we set the values based on the data on COVID-19:17–19,21,38–40 
the pre-infectious period is XE→I = 2 days and the individual recovers from a mild condition upon XI→R = 10 
days. During each of those 10 days, an individual might become critically ill with probability 1% (hence XI→C 
is exponentially distributed with parameter 1% and roughly 10% of cases become critical). The critical cases 
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Figure 1.   The disease spread without an intervention. (a) Two days after being exposed to the disease (E), 
the individual becomes infectious (I) as they develop mild condition. If a critical condition develops (C), the 
individual is hospitalized and isolated. We assume that all surviving individuals (R) acquire immunity. (b) A 
population of N individuals. Each day, an individual meets k other individuals. During a single meeting with 
an infectious person, a susceptible individual contracts a disease with a transmission probability p. (c) Without 
intervention, the disease surges through the community and the critical cases (curve) at its peak Cmax exceed 
the available hospital bed capacity c (dashed lines41,42). Here N = 1000, k = 15, p = 2% , thus the effective 
reproductive rate Re is roughly Re

.
= 2.9.
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recover (or die) after XC→R = 10 more days. In the Supplementary Information, we also consider other choices 
of parameters and other distributions of variables, see Supplementary Figs. 2 and 3.

Disease spread through the population.  We consider a population of N individuals. Each day, each 
individual comes in contact with k0 other individuals (see Fig. 1b). When a susceptible individual (S) meets an 
infectious individual (I), he or she contracts the disease with transmission probability p and becomes exposed 
(E). Note that since we assume that recovered individuals acquire immunity, the disease eventually gets eradi-
cated—at the latest, this happens once everyone is exposed and later recovers. We denote the number of critically 
ill individuals at day t by C(t) and use analogous notation for other conditions. For concreteness41–43 we con-
sider a population of N = 20,000 individuals, a health system capacity of 2.8 beds per 1000 individuals leading 
to c = 56 beds in total, k0 = 15 daily interactions per person, and a transmission probability p = 2% . All in all, 
this gives the epidemiological basic reproductive ratio R0 equal to roughly R0 = k0 · p · XI→R = 2.9.

Policies.  We consider a 3-parameter class of policies that a country can use to mitigate the spread of the 
disease. The policies toggle between two regimes—the default open regime and the temporary lockdown regime 
(see Fig. 2a). The policy P(τ , k, d) can be efficiently described using three parameters τ, k, d that describe how 
soon and severely the policy locks down, and how soon it reopens: 

1.	 Once the number C(t) of critically ill cases exceeds the trigger threshold τ , the policy locks down by reducing 
the number of daily contacts per person from k0 to k.

2.	 Once the number C(t) of critically ill cases remains under the trigger threshold τ for d consecutive days, the 
policy reopens by resetting the number of daily contacts per person back to k0.

The three parameters τ, k, d thus model three natural features of the policy: its “cautiousness”, that is, how easily 
it is triggered into a lockdown; the “severity” of its lockdowns; and its “patience” when reopening, respectively. 
We remark that we chose the number of critically ill people C(t) rather than the number of infectious people I(t) 
since the latter is not so easily accessible to policymakers.

Performance of the policy.  In order to evaluate the performance of a policy, we study the following quan-
tities. Denote by M = max{C(t) | t ≥ 0} the random variable that corresponds to the number of critically ill 
people at their maximum, over the duration of the disease. 
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Figure 2.   Basic policies. (a) Under a policy P(τ , k, d) , the country locks down to k < k0 daily contacts 
whenever the number C(t) of critical cases exceeds a trigger threshold τ . It reopens (to k0 daily contacts) once 
the number of critical cases stays below τ for d consecutive days. (b) We consider four different policies given 
by a combination of a trigger threshold (low trigger τlow = 3 , high trigger τhigh = 12 ) and a lockdown severity 
(severe klow = 1.25 , moderate khigh = 6 ), and common patience d = 10 days. (c) Representative runs under 
the four policies (for 800 days). While with the severe high-trigger policy PSH (top left) all peaks are similar in 
shape, with the moderate low-trigger policy PML (bottom right) all subsequent peaks are much smaller than the 
first one. With the moderate high-trigger policy PMH (top right) the capacity is exceeded and with the severe 
low-trigger policy PSL (bottom left) the disease is quickly eradicated.
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1.	 The (expected) peak load Cmax : that is, the expected number Cmax = E[M] of critically ill people at their 
maximum, over the duration of the disease. This represents the maximum demand on the health system 
(hospital beds).

2.	 The overflow probability pfail : that is, the probability pfail = Pr[M > c] of exceeding the available bed capac-
ity c at some point throughout the course of the disease.

3.	 The total load Call : that is, the total cumulative number of critical cases, over the duration of the disease. This 
can be used to estimate the total number of deaths.

4.	 The total (expected) duration D of the lockdowns: that is, the total expected number of days spent in the 
lockdown regime, until the disease is eventually eradicated within the community.

In the Supplementary Information, we also consider another measure, namely the total (expected) overflow 
of the bed capacity E[

∑
t≥0 max{C(t)− c, 0}] , see Supplementary Fig. 1. In all cases, the lower the quantity 

the better the policy. Hence, we can think of all the quantities as costs of the policy. We note that the first three 
quantities can be viewed as costs related to health of the population. For a fixed lockdown severity k, the fourth 
quantity can be viewed as an economic cost of imposing a lockdown of that severity, since a lockdown reduces 
the economic activity of a community.

Results
We evaluate the performance of the above defined policies. First, we do this for a single country. Later, we do this 
for two neighboring countries. Recall that a policy P(τ , k, d) is given by three parameters: the threshold number 
of critical cases τ that triggers the policy to toggle to lockdown and back (“trigger value”); the number k of daily 
contacts per person during a lockdown (“severity”); and the number d of days required to remain below the 
trigger threshold τ before the society can reopen (“patience”), see Fig. 2a.

Four example policies.  To illustrate the differences in performance of various policies, we first consider 
four specific policies that all share the patience parameter d = 10 days and that differ in the trigger value τ 
and in the severity k (see Fig. 2b). Specifically, in terms of the trigger value τ , we distinguish low-trigger pol-
icies ( τlow = 3 ) from high-trigger policies (τhigh = 12) . Similarly, in terms of the number k of daily contacts 
in a lockdown, we distinguish severe policies (klow = 1.25) from moderate policies (khigh = 6) . All in all, this 
yields 2× 2 = 4 combinations PSL (severe, low-trigger), PSH (severe, high-trigger), PML (moderate, low-trigger), 
and PMH (moderate, high-trigger). We observe that the policies substantially alter how the number of infected 
and critical cases evolves in time (see Fig. 2c).

To explain the difference, it is instructive to think in terms of the effective reproductive number Re that 
determines whether the number of infected individuals in a population is quickly surging ( Re > 1 ), disappearing 
( Re < 1 ) or changing slowly ( Re ≈ 1 ). Note that Re is not constant in time—it crucially depends on the current 
number k of daily contacts ( Re decreases as k decreases) and also on the percentage x of immune individuals ( Re 
decreases as x increases). In the open society (k large) and with no immune individuals ( x = 0 ) we have R0 > 1 , 
and hence the disease initially spreads quickly.

Severe policies.  Under the two severe policies, the number of cases in time follows the familiar spikes: each 
lockdown is so harsh that as long as it is in place, we have Re < 1 even when x = 0 . Therefore, a few days upon 
imposing the lockdown (the pre-infectious period) the infected cases rapidly drop, then the critical cases drop 
too and the disease can possibly get eradicated in some communities. This happens over a short period of time 
and only a few people acquire immunity ( x ≈ 0 ). When the trigger τ = τhigh is high, the patience of d = 10 days 
is insufficient to eradicate the disease completely, the lockdown is lifted too early, a subsequent spike of similar 
shape is likely, and the whole cycle repeats several times. When the trigger τ = τlow is low, waiting for d = 10 
days will typically suffice to eradicate the disease completely within the community and no subsequent spikes 
occur.

Moderate policies.  Under the two moderate policies, the typical stochastic trajectories are different. The lock-
down is so gentle that when x = 0 , we have Re ≈ 1 . Hence, upon imposing a moderate lockdown, the number of 
ill individuals becomes roughly constant in time. But as time goes by and the individuals progress through the 
disease stages and acquire immunity ( x > 0 ), the value of Re decreases and the disease starts to die out ( Re < 1 ). 
Therefore, compared to the severe policies, the first peak is substantially broader. (However, the taller it is, the 
less apparent this distinction is.) Crucially, if the lockdown is lifted too soon and another outbreak occurs later, 
once the same moderate lockdown is imposed again, the immune subpopulation ( x > 0 ) causes the disease to 
die out right away—in fact, it dies away faster and faster in every subsequent lockdown. Therefore, while the first 
outbreak might require a long lockdown phase, all subsequent outbreaks are dealt with promptly. In a sense, 
when the moderate lockdown is lifted for the first time, the population had already acquired herd immunity 
level for the interaction rate k of the moderate lockdown. This means that when the lockdown is put in place, the 
disease does not spread. However, once the lockdown is lifted and individuals start to interact more frequently, 
the disease could start spreading again. For our parameters, when the trigger τ = τhigh is high, the lockdown is 
not strong enough and the bed capacity is (slightly) exceeded within the first peak. When the trigger τ = τlow is 
low, the critical cases stay safely below the bed capacity. In both cases, the patience d = 10 days is insufficient to 
completely eradicate the disease and subsequent peaks occur—all substantially smaller than the first one.
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How parameters affect the performance.  In order to understand the role of the three parameters (trig-
ger value τ , severity k , patience d ) on each of the four performance measures (peak size Cmax , overflow prob-
ability pfail , total number of critical cases Call , lockdown duration D ), we run exhaustive computer experiments.

In Fig. 3, each row shows a different performance measure (y-axis) as a function of the number k of daily con-
tacts in a lockdown (x-axis). The red dotted vertical line marks the number k⋆ of daily contacts that corresponds 
to Re = 1 (when there are no immune individuals, x = 0 ). Within each row, the left panel shows policies that 
have low patience ( d = 7 days) and the right panel shows policies that have high patience ( d = 70 days). Within 
each panel, the blue curve shows the low-trigger policies ( τlow = 3 ) and the green curve shows the high-trigger 
policies ( τhigh = 12).

Recall that for each performance measure, the lower the value, the better the performance. The effect of the 
trigger value can be seen by comparing the blue and the green curve: since the blue curve is typically lower, 
low-trigger policies are generally better than high-trigger policies. The effect of the lockdown severity can be 
seen by observing the performance curves as k decreases: since the curves decrease at lower k values, severe 
policies are generally better than moderate policies. The effect of the patience can be seen by comparing the left 
and the right panel: since the curves in the right panel are typically lower, patient policies are generally better 
than impatient policies.

There are two exceptions to those rules, both concerning the lockdown duration D : first, we observe that 
when k becomes too large, the duration D decreases. This is due to the fact that the lockdown becomes too weak 
and the disease quickly sweeps through the whole population. Second, we observe that when the patience is low 
and the lockdown is moderate, decreasing the trigger value τ actually leads to more time spent in the lockdown.

Key parameters for different regimes.  Next, for each performance measure, we characterize which of 
the three parameters τ, k, d are key to substantially improving the performance and which of them are marginal.

Let k⋆ be the number of daily contacts that corresponds to Re = 1 when there are no immune individuals 
( x = 0 ). For our parameters, we have k⋆ .

= 5.3.

Peak size Cmax.  We observe that (see Fig. 3a): 

τ:	� The low-trigger policies (blue curve) are consistently better than the high-trigger policies (green curve).
k:	� For both trigger values, Cmax is roughly constant as long as k < k⋆ but then it increases rapidly when k > k⋆

.
d:	� The left and the right panel are comparable.

 Hence, the important insight is to have the severity below a threshold ( k < k⋆ ) and to have the trigger τ low. The 
effects of the patience d and the severity k (given that k < k⋆ ) are marginal.

The intuitive explanation is that when k > k⋆ , the lockdown is so weak that the disease still continues to 
spread, even when the lockdown is put in place. Hence, having k < k⋆ is key. On the other hand, given that k < k⋆ , 
the actual value of k is not that important: when a lockdown is put in place, the peak size (and the moment when 
the peak occurs) have already been essentially determined, since most of the critical cases at the peak are due to 
individuals who have already been infected when the lockdown was put in place. Similarly, the patience d is not 
that important as it affects the number of peaks rather than their size. On the other hand, the trigger value τ is 
key: the nature of the exponential growth and the inherent delay due to pre-infectious period and non-critical 
infection translate the difference in trigger value τ to a difference in peak size Cmax.

Overflow probability pfail.  We observe that (see Fig. 3b): 

τ:	� The low-trigger policies (blue curve) are consistently better than the high-trigger policies (green curve).
k:	� For low-trigger policies, pfail exhibits a threshold behavior with respect to k . For high-trigger policies, pfail 

increases when k < k⋆ and increases rapidly when k > k⋆.
d:	� For high-trigger policies (green curve), increasing the patience d decreases pfail (when k < k⋆).

 Hence, the important insight is, again, to have the severity below a threshold ( k below k⋆ or just very slightly 
above) and to have the trigger τ low. When the trigger τ is high, both decreasing k and increasing d help, but even 
the combined effect is negligible compared to the effect of having τ low.

The intuitive explanation is that, in large populations, most stochastic trajectories are qualitatively similar. 
Hence, even though the peak size is a random variable, it is narrowly concentrated around its average value. 
Thus, whenever the average peak size Cmax slightly exceeds the available bed capacity c , the overflow probability is 
almost 1. And, vice versa, whenever the average peak size Cmax is slightly lower than the available bed capacity c , 
the overflow probability is almost 0. In other words, increasing the bed capacity c typically does not decrease 
pfail—unless we exactly cross from the regime c < pfail to c > pfail , in which case it helps dramatically. In a sense, 
the overflow probability exaggerates the difference between Cmax and c.

Total critical cases Call.  We observe that (see Fig. 3c): 

τ:	� When impatient (left panel), the low-trigger policies (blue curve) are consistently better than the high-trigger 
policies (green curve).
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Figure 3.   Performance of low-trigger and high-trigger policies. The four performance measures: (a) average 
peak size Cmax , (b) overflow probability pfail , (c) total critical cases Call , and (d) lockdown duration D ( 105 runs). 
In each panel, we vary the number k of daily contacts (x-axis) and consider the performance (cost) of the low-
trigger policies ( τlow = 3 , blue) and of the high-trigger policies ( τhigh = 12 , green), when the patience parameter 
is low ( d = 7 days, left column) and high ( d = 70 , right column). The dotted red line shows the number k⋆ of 
daily contacts that corresponds to the effective reproductive rate Re equal to 1 (when no individuals have yet 
recovered). Generally speaking, it is beneficial to have the trigger value τ low (blue curves are below green ones), 
to impose severe rather than moderate lockdown (all curves are increasing functions of k for k ≤ k⋆ ), and to be 
patient (the curves in the right panels are lower). For Cmax and pfail , the key is to have the trigger value τ low. 
For Call and D , the key is to have the patience d high.
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k:	� For impatient high-trigger policies (green curve in the left panel), Call is roughly constant unless k is small.
d:	� Increasing the patience d decreases Call.

 Hence, the important insight is to have the patience d high. In order to achieve comparable results with low 
patience, one has to have a low trigger τ and a very severe lockdown.

The intuitive explanation is that high patience d is key because it decreases the chance of a premature reopen-
ing and thereby reduces the number of times a lockdown has to be put in place. With a sufficiently high patience, 
the disease gets eradicated within the community upon completing the first peak. With low patience d (and, thus, 
many peaks), the only way to avoid many critical cases is to make sure each peak is small. This requires a low 
trigger value τ and severe lockdown k every time the trigger value is reached. As a final remark, note that when 
impatient and high-trigger, the lockdowns have to be extremely severe to help even a little: this is the only way 
to get at least some hope that the disease gets eradicated by the short time the lockdown will be lifted.

Total lockdown duration D.  Since a severe lockdown is very different from a moderate lockdown, here we focus 
our comparison on only those lockdowns that have the same severity. We observe that (see Fig. 3d): 

τ:	� When impatient (left panel), low-trigger policies (blue curve) are better assuming k is small, otherwise 
high-trigger policies (green curve) are better. When patient (right panel), low- and high-trigger policies 
are comparable.

d:	� Increasing the patience d decreases D.

 Hence, for severe lockdowns ( k < k⋆ ), the important insight is, again, to have the patience d high. In those cases, 
the effect of the trigger value is marginal.

The intuitive explanation for severe lockdowns of fixed severity k < k⋆ is that the key to minimizing the total 
lockdown duration is to minimize the probability q of a subsequent outbreak (that would occur if the lockdown 
were lifted too early). Since in a severe lockdown, the numbers of infected and exposed individuals decay expo-
nentially ( k < k⋆ ), there are two ways to decrease q (and thereby D ) by a constant factor: either to increase the 
patience by a constant number of days, or to decrease the trigger value τ by a constant factor. The former is less 
costly, so in this case having high patience is the single most important aspect.

Summary.  Here we summarize three findings from the above paragraphs. First, any successful policy must 
impose lockdowns that restrict the number k of daily contacts under the threshold k⋆ . Second, in terms of 
minimizing either the peak size Cmax or the overflow probability pfail , it is crucial to employ a policy with low 
trigger threshold τ . Third, in terms of minimizing either the total number Call of critical cases or the lockdown 
duration D , it is crucial to employ policies with high patience d. The precise optimal value of patience depends 
on the severity of the lockdown and on the trigger threshold τ.

Two countries.  Some interaction among communities is inevitable. While the inter-community interaction 
can be limited by closing borders between countries and imposing quarantine upon entry, it can not be com-
pletely disregarded. We study how the policies perform in the environment where different communities might 
employ different policies.

To model this, we consider two communities Country 1 and Country 2 that experience the onset of the dis-
ease at the same time. Occasionally, individuals from different countries meet. Namely, we assume that for each 
individual, a small portion q ∈ (0, 1) of their interactions are with individuals in the other country.

We consider two very different policies and study how their performance depends on the policy employed 
by the neighboring country and on the interaction rate q between the two countries (see Fig. 4).

Specifically, we consider a moderate low-trigger policy PML = P(τ = 3, k = 6, d = 54) and a severe high-
trigger policy PSH = P(τ = 12, k = 1.25, d = 27) . The parameters τ and k are chosen such that both policies 
have the same probability 10% of exceeding the US hospital bed capacity within their first peak. The parameter d 
is chosen such that, on average, 90% of the critical cases occur within the first peak. In other words, the policy 
reopens when it expects that 90% of all the critical cases have already been hospitalized.

When both countries employ the same policy, the performance is essentially the same as for a larger coun-
try employing that policy. Also, in the limit q → 0 the two countries do not interact and the performance of a 
country is independent of the policy of the neighbor (this remains true for q < 10−5 ). However, when q is non-
negligible, one country uses PML (“PML-country”) and the other one uses PSH (“PSH-country”), the two policies 
clash. Specifically, we make the following observations about the overflow probability pfail and the average peak 
size Cmax (see Fig. 4): 

1.	 For q small, the green curve increases as q increases: note that the infectious subpopulation of the neighbor-
ing PML-country is non-negligible for an extended period of time (at least throughout the first broad peak). 
Thus, as q increases, the individuals in the PSH-country get repeatedly infected due to interactions with 
the PML-country. Most such new infections cause a new spike for the PSH-country. Each such spike might 
exceed the previously largest peak and/or the available capacity. (Moreover, each such spike leads to new 
critical cases and it has to be contained by another lockdown phase so it is costly in terms of Call and D too.) 
This effect is visible for interaction rates as small as q = 10−4.

2.	 For q large, the blue and green curve decrease as q increases: two countries employing different policies typi-
cally reach their peaks at a different point in time. Thus, when one country is peaking, the other country likely 
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Figure 4.   Two countries. (a) When two countries interact with a positive rate q they might reinfect each 
other. Here q = 5 · 10−4 , and the countries employ different policies: PML (blue) and PSH (yellow). (b) 
A 90% percentile: on any given day, 90% of the runs are below the respective curves ( 105 runs). (c–f) The 
performance of a PML policy against a PSH policy (blue), PSH vs. PML (green), PML vs. PML (yellow) and PSH vs. 
PSH (red), averaged over 104 runs. We vary the interaction rate q on a log-scale and measure: (c) the overflow 
probability pfail (95% confidence intervals are shaded); (d) the expected peak size Cmax ; (e) the total number Call 
of critical cases; and (f) the lockdown duration D . A country employing PSH does great when its neighbor 
employs PSH (red) but bad when the neighbor employs PML (green). A country employing PML does comparably 
well, regardless of whether the neighbor employs PML (yellow) or PSH (blue).
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has fewer infectious individuals and an interaction with that country will help alleviate the size of the peak 
in the first country. This, in turn, decreases the maximum peak load Cmax and the overflow probability pfail . 
This effect is visible roughly for q > 10−3 (blue curve), resp. q > 10−1 (green curve).

3.	 The yellow and the red curves are roughly constant, except that the yellow curve goes down in terms of the 
overflow probability when q is large: when two neighboring countries employ the same policy, the extra 
occasional mixing due to interacting individuals makes both countries behave in a slightly more average way. 
This does not change the expected size of the peak, and hence Cmax is constant, regardless of the interaction 
rate q . However, this process of “averaging out” does make the extreme behavior, such as overflowing of the 
available hospital capacity, somewhat less likely. This effect of diminished overflow probability is observed 
for two PML countries when q > 10−2.

This leads to an interesting phenomenon resembling a social dilemma44,45. Consider two countries with a non-
negligible interaction rate q > 10−3 . First, if either of the two countries primarily cares about keeping the overflow 
probability low then that country would employ the policy PML rather than the policy PSH , no matter which 
policy the other country is using (indeed blue is below red and yellow is below green). Second, given that one 
country uses the policy PML , the other country will use the policy PML too (yellow is below green). In terms of 
the overflow probability alone, this is an acceptable outcome (red and yellow are comparable) but in terms of the 
total number of critical cases Call , this is undesirable: by employing the policy PML rather than PSH , both countries 
increase the total number of their critical cases (and, possibly, deaths) by an order of magnitude.

Discussion
Motivated by the COVID-19 pandemic, we studied a simple stochastic model of a disease progression in a popu-
lation of interacting individuals. We focused on a 3-parameter family of policies that can be used to mitigate 
the disease spread and evaluated the performance of those policies with respect to several measures, such as the 
number of critical cases at its maximum or the probability that this number exceeds the available hospital bed 
capacity. The three parameters describing the policies correspond to the agility when closing down, the severity of 
the lockdown, and the patience when reopening. We identified which parameters are important in which regime 
and explained why some policies are performing better than others. We note that understanding the dynamics 
of periodic lockdown is important in case the virus escapes vaccination or for future epidemics.

We highlight two different types of realistic policies, called moderate low-trigger ( PML ) and severe high-trigger 
( PSH ). With both policies, the probability pfail of ever exceeding the available hospital beds is kept below a speci-
fied threshold (here arbitrarily set to 10%), but the two policies are very different: the PSH policy is characterized 
by imposing a harsh, short lockdown (“severe”) at the last moment possible (“high-trigger”), whereas the PML 
policy is proactive and imposes gentle, longer lockdowns (“moderate”) at the first signal of an approaching 
outbreak (“low-trigger”).

Due to the above differences, both policies have their advantages and disadvantages. The PSH policy minimizes 
the total number of critically ill cases and the total amount of time spent in lockdown. However, the lockdowns 
are severe and the society is more susceptible to any subsequent outbreaks. To avoid such recurring outbreaks, 
the authorities must be patient when reopening and any neighboring countries must coordinate when releasing 
their measures. The PML policy maintains its moderate lockdown for substantially longer but its performance 
is substantially more robust with respect to how soon the society reopens and with respect to what policies are 
employed by the neighboring countries. Moreover, upon completing the first lockdown phase, all subsequent 
lockdowns (if any) are shorter and involve substantially fewer critical cases than the first phase. Thus, the PML 
policy can be seen as minimizing the long-term risks under the pessimistic scenario that an ultimate long-term 
solution (such as a majority of the population being vaccinated) is not achieved any time soon. On the other 
hand, the PSH policy is optimistic about the future and optimizes the short-term performance.

Our setup is intentionally simplified in many regards such as the disease progression within an individual, the 
disease spread throughout the population, and the class of policies we consider for closing down and reopening. 
We highlight four possible extensions worth pursuing in subsequent work. First, regarding the disease progres-
sion within an individual, one can distinguish more types of individuals (e.g. those who require only hospital 
beds and those who moreover require ventilation) and lift the assumption that the individuals acquire lifelong 
immunity. We note that our model already implicitly includes asymptomatic carriers, since those are equivalent 
to individuals who developed a mild condition and then recovered. Second, regarding the disease spread in a 
population, one can consider a population structure, e.g. described by a graph whose edge weights determine the 
daily pairwise transmission probabilities. This would allow one to investigate the effects of localized interventions 
such as contact tracing. Third, one can consider more complicated policies, e.g. policies that allow for a gradual 
reopening or policies that, when deciding whether and how much to reopen, take into account additional infor-
mation, such as the situation in the neighboring countries and/or the outcomes of testing done earlier. Fourth, 
on top of considering the health viewpoint, one can incorporate the economic viewpoint by introducing an 
appropriate notion of economic cost of a lockdown of varying degree of severity.
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