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In this document we introduce the Metastar family of graphs and establish formally the fixation probability of mutants
arising uniformly at random on a Metastar. The Metastar family is parametric wrt a small graph of fixed size, and the
fixation probability depends on this fixed graph. We refer to the main article for particular instances of the Metastar
family with specific fixed graphs, which result in Metastar graphs that amplify selection more strongly than Star
graphs, for various fitness values of the invading mutants.

1 Preliminaries

In this section we define formally the Moran Process on graphs, and introduce several definitions and notation that
will help with the exposition of the ideas in this work.

1.1 The Moran Process on Structured Populations

We denote by GN = (VN , EN ) an undirected graph of N vertices, which is connected. Given a vertex u ∈ VN , we
denote by Nh(u) the set of neighbors of u, i.e., the vertices v ∈ VN such that (u, v) ∈ EN . The degree of u is the
number of neighbors of u, i.e., deg(u) = |Nh(u)|. A population of N individuals is spread on the vertices of GN .
Each individual is either a resident or a mutant. Mutants are associated with a fitness advantage r ≥ 1, whereas the
fitness of residents is normalized to 1. A configuration S ⊆ VN of GN is the set of vertices of GN that are occupied
by mutants. The generalized Moran process on GN is a discrete-time random process. Given a configuration Si at
time i, the next configuration at time i+ 1 is determined by the following two events in succession.

1. One individual is chosen at random to reproduce, with probability proportional to its fitness. That is, the proba-
bility to reproduce is r/F(Si) for a mutant, and 1/F(Si) for a resident, where

F(Si) = r · |Si|+N − |Si|

is the total population fitness. Let u be the vertex occupied by the reproducing individual.
2. A neighbor v ∈ Nh(u) is chosen uniformly at random. The individual occupying v dies, and the offspring of

the reproducing individual is placed on v.
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The v-lazy Moran process. Given an undirected graph G = (V,E) and a distinguished node v ∈ V , the v-lazy
Moran process on G is the regular Moran process on G with the following modification. Whenever the reproducing
individual is one that occupies the node v, a biased coin with probability of heads 1/(deg(v) + 1) is flipped, so that

1. if the coin comes up heads, the individual replaces itself (i.e., the population remains unchanged);
2. if the coin comes up tails, the individual replaces one of its neighbors, chosen uniformly at random (as in the

regular Moran process).

Intuitively, the node v is considered a neighbor of itself when it comes to replacing a neighboring individual. We will
often call v the lazy node in this process.

1.2 Fixation Probabilities

The mutants reach fixation in GN if at some time point i we reach Si = V , i.e., all vertices of GN are occupied
by mutants. The mutants reach extinction if at some time point i we reach Si = ∅, i.e., all vertices of GN are
occupied by residents. We denote by ρ(r,GN ) the probability that the mutants reach fixation in the generalized Moran
process starting with a single, uniformly placed mutant onGN . Given a heterogeneous population (where mutants and
residents coexist) spread out on a graph G = (V,E) the Moran process on G almost surely reaches a state where the
mutants either fixate in the population or go extinct. Our interest is on the probability that starting from a state where
a single mutant coexists with N − 1 residents, the mutant eventually fixates. In general, this probability depends on
the node that the mutant occupies initially. We consider two particular scenarios: (i) the initial mutant is placed on a
node chosen uniformly at random, and (ii) the initial mutant is placed on a specific node. To refer to such events, we
rely on the following notation.

• ρ(r,GN ) is the probability that the mutants reach fixation in the generalized Moran process starting from a
single, uniformly placed mutant on GN ;

• ρ(r,GN , v) is the probability that the mutants reach fixation in the v-lazy generalized Moran process starting
with a single, uniformly placed mutant on GN ;

• ρ+(r,GN , v) is the probability that the mutants reach fixation in the v-lazy generalized Moran process starting
with a single mutant placed on v;

• ρ−(r,GN , v) is the probability that the mutants reach extinction in the v-lazy generalized Moran process starting
with a single resident placed on v.

The Clique and Star graphs. The Clique graphKN consists ofN vertices and an edge between each pair of vertices.
The Star graph SN consists of a single root vertex and N − 1 leaf vertices, and an edge between the root and each of
the leaves. It is known that [1]

ρ(r,KN ) =
1− r−1

1− r−N
and ρ(r, SN ) ' 1− r−2

1− r−2N
.

2 The Metastar Family of Selection Amplifiers

In this section we introduce the Metastar family of graphs, and prove a general theorem about the fixation probability
of mutants on the Metastar. The family is parameterized by a small graph of fixed size and naturally, the fixation
probability depends on this parameter. However, because of the structure of the Metastar, it does so in a modular way.

The Metastar family MGm
N(n). Let Gm = (Vm, Em) be any fixed graph of m vertices, and distinguish some v ∈ Vm

as the attachment vertex of Gm. Given some n ∈ N+, we let N(n) = n ·m + 1, and construct the Metastar graph
MGm
N(n) parameterized by Gm as follows.

1. We introduce n copies of Gm, and a new root vertex s.
2. We add an edge between the attachment vertex v of each copy of Gm and the root vertex s.
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and we identify the i-th leaf of MGm
N(n) with the i-th copy of Gm.

2.1 Random Trajectories and the Modified Moran Process on MGm

N(n)

We first introduce some notation that will help with the exposition of the ideas in this section.

1. Given a configuration S, a leaf of MGm
N(n) is called heterogeneous in X if mutants and residents coexist in that

leaf, and homogeneous otherwise. A mutant leaf (resp. resident leaf ) is a homogeneous leaf that contains only
mutants (resp. residents).

2. A trajectory ψ generated by the Moran process on MGm
N(n) is a sequence of events ψ = e0, e1, . . . , ek, where e0

is the vertex of MGm
N(n) that contains the initial mutant, and for 1 ≤ i ≤ k, ei = (ai, bi) is a pair denoting the

vertices ai and bi occupied by the reproducing and dying individuals respectively. Given some i > 0, we denote
by ψi the prefix of ψ up to position i− 1. We let Xi be a random variable that indicates the i-th event of ψ, and
write P [Xi = ei|ψi] to denote the probability that Xi is realized to ei given the trajectory ψi up to position i−1.

3. A modified trajectory π is obtained from a trajectory ψ by removing some events ei = (ai, bi) where ai = s is
the root of MGm

N(n). To contrast with the modified trajectory π, we sometimes refer to ψ as a regular trajectory.

4. We say that a leaf i hits the root s at time t in a trajectory ψ if et = (at, bt) and at is the attachment vertex of
the i-th copy of Gm, and bt is the root s. Similarly, we say that the root s hits leaf i at time t in ψ if et = (at, bt)
and at is the root s and bt is the attachment vertex of the i-th copy of Gm. We also say that a leaf i hits another
leaf j at times (t1, t2) with t1 < t2 if leaf i hits the root at time t1 and the root hits leaf j at time t2, and the root
is not hit again in the interval [t1, t2]. In such a case, we call (t1, t2) a hitting pair. A heterogeneous hit from
leaf i to leaf j occurs at times (t1, t2, t3) if

(a) The root hits leaf i at time t1, and

(b) leaf i hits leaf j at times (t2, t3), and

(c) leaf i is heterogeneous in throughout the interval (t1, t2].

The modified Moran process. The modified Moran process on MGm
N(n) consists of the regular Moran process with the

following modifications:

1. if at any point the root hits a heterogeneous leaf i, then leaf i becomes instantaneously a resident leaf, and
2. if at any point a heterogeneous leaf i hits a leaf j, then leaf j becomes instantaneously a resident leaf.

Observe that every time Item 1 or Item 2 applies, the modified Moran process transitions to a configuration S′ while
the regular Moran process would transition to a configuration S and such that set of vertices occupied by mutants in
X ′ is a subset of the set of vertices occupied by mutants in S. Thus the fixation probability from S is at least as large as
the fixation probability from S′. We will use the modified Moran process on MGm

N(n) to underapproximate the fixation

probability ρ(r,MGm
N(n)).

2.2 The Interference of Heterogeneous Leaves

In this section we prove some useful lemmas regarding the modified Moran process on MGm
N(n). In particular, we show

that every time the root hits a leaf i, or a leaf i hits another leaf j, the involved leaves can be considered homogeneous
whp (Lemma S1 and Lemma S2). Additionally, we show that if the root reproduces in any two times t1 and t2,
with t1 < t2, the root is hit in the interval (t1, t2) whp (Lemma S3). Finally, in Lemma S4 we characterize the
probability that a hitting pair (t1, t2) is such that the individual reproducing in time t1 comes from a mutant leaf, over
the probability that this individual comes from a resident leaf.

3



The following lemma states that once a homogeneous leaf is hit by the root, whp that leaf will evolve independently
of the root until it becomes homogeneous again.
Lemma S1. Let π be a random modified trajectory, and consider that the root hits a leaf i at some time t. The
probability that the i-th leaf is heterogeneous the next time it is hit by the root is O(1/

√
n).

Proof Idea. Since the graph Gm of leaf i has constant size, the expected time for leaf i to reach a homogeneous state
is O(n). On the other hand, the root s will need in expectation Ω(n2) rounds to hit leaf i, as (i) s has n neighbors, and
(ii) s reproduces approximately once every N(n) = Ω(n) rounds. The desired result then follows easily by applying
concentration bounds.

Proof. Let y =
√
n. The event of leaf i being heterogeneous when hit by the root requires that either

(A) leaf i is hit by the root before y reproduction events have occurred locally in the vertices of leaf i, or

(B) leaf i has remained heterogeneous after y reproduction events have occurred locally.

We will show that both events happen with probability O(1/
√
n).

Let X be the random variable that indicates the number of rounds until the root hits leaf i for the first time after
time t. Note that in a random modified trajectory the root reproduces with rate no larger than the rate with which it
reproduces in a random regular trajectory. We lower-bound X by a random variable X ′ which realizes the same event
while assuming that the root is always occupied by a mutant, and the rest of the population consists only of residents,
and additionally π is a random regular trajectory. In particular, we have P [X ≤ α] ≤ P [X ′ ≤ α] for all α, where X ′

is geometrically distributed with rate r/n2, which is an upper bound on the probability of the root reproducing and
hitting leaf i, that is

X ′ ∼ GM(pX) where pX =
r

n2

Let Yy be the random variable that denotes the number of rounds required for y reproduction events to take place in
leaf i after time t. We upper-bound Yy by another random variable Y ′y which realizes the same event while assuming
that leaf i is a resident leaf, and the rest of the population contains only mutants. We have P [Yy ≥ α] ≤ P

[
Y ′y ≥ α

]
for all α, with Y ′y drawn from the negative binomial distribution of receiving y failures with success rate equal to the
probability of choosing an individual to reproduce that does not belong leaf I , that is

Y ′y ∼ NB(y, pY ) where pY =
((n− 1) ·m+ 1) · r

((n− 1) ·m+ 1) · r +m
E[Y ′y ] =

pY · y
1− pY

Var[Y′y] =
pY · y

(1− pY )2
(1)

Since the size of leaf i is constant (recall that m = O(1)), the expected number of local reproduction events that
make leaf i homogeneous is constant (i.e., independent of n). By an easy application of Markov’s inequality, event B
happens with probabilityO(1/

√
n). On the other hand, event A happens with probability P [X < Yy]. Let α = c ·n3/2

where c is a sufficiently large constant, and note that

P [X < Yy] = P [X < Yy ≤ α] + P [X < α < Yy] + P [α ≤ X < Yy] ≤ P
[
Y ′y ≥ α

]
+ P [X ′ ≤ α] (2)

where X ′ ∼ GM(pX) and Y ′y ∼ NB(y, pY ) as defined above. We have

P [X ′ ≤ α] = 1− (1− pX)α = 1−
(

1− r

n2

)c·n3/2

= O(1/
√
n) (3)
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and

P
[
Y ′y ≥ α

]
= P

[
Y ′y − E[Y ′y ] ≥ α− E[Y ′y ]

]
≤ P

[
|Y ′y − E[Y ′y ]| ≥ α− E[Y ′y ]

]
≤ P

|Y ′y − E[Y ′y ]| ≥
α− E[Y ′y ]√

Var[Y′y]
·
√

Var[Y′y]


≤

Var[Y′y](
α− E[Y ′y ]

)2 (4)

where the last inequality is obtained by applying Chebyshev’s inequality (given by the formula
P
[
|X − E[X ]| ≥ k ·

√
Var[X ]

]
≤ 1

k2 , where we substitute k =
α−E[Y ′y ]√

Var[Y′y]
).

Note that since m = O(1) and r = O(1), by straightforward calculations for the variance in Eq. (1) we obtain

Var[Y′y] =
pY · y

(1− pY )2
=

((n−1)·m+1)·r·
√
n

((n−1)·m+1)·r+m(
m

((n−1)·m+1)·r+m

)2 = O(n5/2).

Similarly for the expected value, we obtain

E[Y ′y ] =
pY · y
1− pY

=

((n−1)·m+1)·r·
√
n

((n−1)·m+1)·r+m
m

((n−1)·m+1)·r+m
= O(n3/2)

and thus
(α− E[Y ′y ])2 = (c · n3/2 −O(n3/2))2 = Ω(n3).

Substituting to Eq. (4), we obtain

P
[
Y ′y ≥ α

]
=≤ O(n5/2)

Ω(n3)
= O(1/

√
n),

and by combining Eq. (3) and Eq. (4) with Eq. (2) we have

P [X < Yy] ≤ P
[
Y ′y ≥ α

]
+ P [X ′ ≤ α] = O(1/

√
n) +O(1/

√
n) = O(1/

√
n).

Hence the probability of event A is O(1/
√
n). By the union bound for events A and B, the probability of at least one

of them occurring is O(1/
√
n) +O(1/

√
n) = O(1/

√
n). The desired result follows.

The following lemma states that when the root hits a leaf, the individual in the root is an offspring that came from a
homogeneous leaf.
Lemma S2. Let π be a random modified trajectory, and consider that at some time t1 the i-th leaf is hit by the root.
Let t2 and t3 be the random variables which indicate that leaf i hits some leaf j at times (t2, t3). The probability that
(t1, t2, t3) is a heterogeneous hit is O(1/

√
n).

Proof Idea. Note that in order for leaf i to hit leaf j, the following two events need to occur in succession.

(A) Leaf i hits the root s, and afterwards

(B) the root s reproduces before it is hit.
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Since there are n leaves, given event A, the probability of event B happening isO(1/n), and thus, in expectation, event
A will need to happen Ω(n) times before B happens. On the other hand, observing event A for Ω(n) times takes long
enough so that leaf i has become homogeneous whp.

Proof. Note that in a random modified trajectory the root reproduces with rate no larger than the rate with which it
reproduces in a random regular trajectory. Let Z be the random variable that counts the number of times leaf i hits
the root in the interval (t1, t2]. We obtain a lower bound on Z by assuming that the root is the only mutant in the
population after it is hit by leaf i (hence the root reproduces with highest possible probability), and π is a random
regular trajectory. In particular, we have P [Z ≤ α] ≤ P [Z ′ ≤ α] for all α, where Z ′ is geometrically distributed with
rate (2 · r)/n, which is an upper bound on the probability that the root reproduces before it is hit again, i.e.

Z ′ ∼ GM(pZ) where pZ =
2 · r
n

Then

P
[
Z ≤

√
n
]
≤ P

[
Z ′ ≤

√
n
]

= 1− (1− pZ)
√
n = O(1/

√
n) (5)

Hence, the probability to observe that (t1, t2, t3) is a heterogeneous when leaf i is chosen for reproduction at most√
n times in the interval (t1, t2] is O(1/

√
n). On the other hand, the probability to observe the desired event when

leaf i is chosen for reproduction at least
√
n times requires that the leaf has remained heterogeneous after at least

√
n

reproduction events have occurred locally. In turn, this event requires that leaf i is hit by the root before it becomes
homogeneous, or it has remained heterogeneous after

√
n reproduction events have occurred locally, given that it has

not been hit by the root. By Lemma S1, the probability that leaf i is hit by the root before it becomes homogeneous
is O(1/

√
n). Finally, since m = O(1), if we condition on the fact that leaf i is not hit by the root before it becomes

homogeneous, the probability that it has remained heterogeneous after it has been chosen for reproduction
√
n times

is O(1/
√
n). The desired result follows.

Lemma S3. Let π be a random modified trajectory, any position t of π. The probability that the root reproduces after
t before it is hit by a leaf is O(1/n).

Proof. Note that in a random modified trajectory the root reproduces with rate no larger than the rate with which it
reproduces in a random regular trajectory. In a random regular trajectory, the root is chosen for reproduction with rate
at most r/n, whereas it is hit by the leaves with rate at least ε, for some constant ε. Then the probability that the root
is chosen for reproduction before it is hit by a leaf is at most

r
n

r
n + ε

= O(1/n)

Hence the event in consideration occurs with probability O(1/n).

Lemma S4. Let π be a random modified trajectory, and t any position of π. Let t1, t2 be the random variables
that indicate a hitting pair (t1, t2), with t1 > t. Let et1 = (at1 , bt1) and et2 = (at2 , bt2). If at1 and bt2 belong to
homogeneous leaves of different types, then the probability that at1 belongs to a resident leaf is at most 1/(r2 + 1) +
O(1/n).

Proof Idea. The proof is by showing that for any modified trajectory π− up to time t2, and in which a1 belongs to
a resident leaf, if t2 − t1 is “reasonably small”, then there exists a modified trajectory π+ up to time t2 where at1
belongs to a mutant leaf and such that

P [π−]

P [π+]
≤ 1

r2
· (1 +O(1/n))

The modified trajectory π+ is obtained from π− by a form of “mirroring”. In particular, π+ is identical to π−, with
at1 and bt2 swapped, so that if leaf i hits leaf j at times (t1, t2) in π−, then leaf j hits leaf i at times (t1, t2) in π+.
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Proof. Let π− = e−1 , . . . , e
−
t2 be any modified trajectory up to time t2 in which a1 belongs to a resident leaf. Observe

that in every round the root is hit with probability at least ε, for some constant ε > 0. Let γ = − log(1− ε). First we
show that the probability that t2 − t1 − 1 > (1/γ) · log n is O(1/n). Indeed, since (t1, t2) is a hitting pair, the root
is not hit in any e−i for t1 < i < t2, and the probability of this event happening is at most (1 − ε)t2−t1−1. Then, for
t2 − t1 − 1 > (1/γ) · log n, this event happens with probability at most

(1− ε)
1
γ ·logn =

(
1

1− ε

)− 1
γ ·logn

= 2−γ·
1
γ ·logn = 2− logn = O(1/n) (6)

Now assume that t2 − t1 − 1 ≤ (1/γ) · log n. The probability of π− is

P
[
π−
]

=

t2∏
i=1

P
[
Xi = e−i |π

−
i

]
=

(
t1∏
i=1

P
[
Xi = e−i |π

−
i

])
·

(
t2∏

i=t1+1

P
[
Xi = e−i |π

−
i

])

We obtain a modified trajectory π+ by replacing et1 and et2 with e′t1 and e′t2 respectively, where e′t1 = (bt2 , at2) and
e′t2 = (bt1 , at1). Let π+ = e+1 , . . . , e

+
t2 , and then (t1, t2) is a hitting pair in π+, in which the reproducing leaf e+t1 is

mutant.

We have

P
[
π+
]

=

k∏
i=1

P
[
Xi = e+i |π

+
i

]
=

(
t1∏
i=1

P
[
Xi = e+i |π

+
i

])
·

(
t2∏

i=t1+1

P
[
Xi = e+i |π

+
i

])

Since π+
t1 = π−t1 , we have

t1∏
i=1

P
[
Xi = e−i |π

−
i

]
P
[
Xi = e+i |π

+
i

] =
P
[
Xi = e−t1 |π

−
i

]
P
[
Xi = e+t1 |π

+
i

] =
P
[
Xi = et1 |π−t1

]
P
[
Xi = e′t1 |π

−
t1

] =
1

r
(7)

Let f−i and f+i be the fitness of the population right before events e−i and e+i occur, respectively. Since after position
t1 there is one more mutant in π+ than π−, we have f+i = f−i + r − 1 for i ≥ t1. Since f−i = Ω(n), we have

k∏
i=k′+1

f+i
f−i

=

k∏
i=k′+1

(f−i + r − 1)

f−i
≤ (1 +O(1/n))

k−k′+1 ≤ (1 +O(1/n))
(1/γ)·logn+1 ≤ 1 +O(1/n)

thus
k∏

i=k′+1

P
[
Xi = e−i |π

−
i

]
P
[
Xi = e+i |π

+
i

] ≤ 1

r
·

k∏
i=k′+1

f+i
f−i
≤ 1

r
· (1 +O(1/n)) (8)

Using Eq. (7) and Eq. (8) we obtain

P [π−]

P [π+]
=

(
t1∏
i=1

P
[
Xi = e−i |π

−
i

]
P
[
Xi = e+i |π

+
i

]) ·( t2∏
i=t1+1

P
[
Xi = e−i |π

−
i

]
P
[
Xi = e+i |π

+
i

]) ≤ 1

r
· 1

r
· (1 +O(1/n)) =

1

r2
· (1 +O(1/n)) (9)

Overall, the probability that at1 belongs to a resident leaf is bounded by the sum of the probabilities of this event
happening when (i) t2 − t1 − 1 > (1/γ) · log n + 1 and (ii) t2 − t1 − 1 ≤ (1/γ) · log n + 1. By Eq. (6), case (i)
happens with probability O(1/n), whereas by Eq. (9) case (ii) happens with probability

1

1 + r2

1+O(1/n)

≤ 1

r2 + 1
+O(1/n)
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Thus the event under consideration happens with probability at most

O(1/n) +
1

r2 + 1
+O(1/n) =

1

r2 + 1
+O(1/n)

The desired result follows.

2.3 A Coupling Argument for the Fixation Probability on MGm

N(n)

In this section we introduce a simple Markov chain Mn and use a coupling argument to argue that the fixation
probability on the Metastar is underapproximated by the probability that a random walk on Mn gets absorbed in a
particular state.

To simplify notation, we let α = ρ−(r,Gm, v) and β = ρ+(r,Gm, v). We define a Markov chainMn = (S, δ) which
consists of the set of states S:

1. si, for 0 ≤ i ≤ n,

2. ηi, for 0 < i < n,

3. θi, for 0 < i < n.

Let z = c/
√
n where c is a large enough constant. The transition probability function δ : S × S → [0, 1] is defined

such that for all 0 < i < n we have:

1. δ(si, ηi) = r2

r2+1 − 2 · z,

2. δ(si, θi) = 1
r2+1 + z,

3. δ(si, si−1) = z,

4. δ(ηi, si+1) = β − z,

5. δ(ηi, si) = 1− β + z,

6. δ(θi, si−1) = α+ z,

7. δ(θi, si) = 1− α− z,

whereas δ(s0, s0) = δ(sn, sn) = 1 (i.e., the states s0 and sn are absorbing).

. . . si−1

ηi−1

θi

si

ηi

θi+1

si+1 . . .

1− α− z

α+ z

β − z

1− β + z

r2

r2+1 − 2 · z

1
r2+1 + z

z

Figure S1: The Markov chainMn.

Intuition. Intuitively, a random walk on Mn starting from state s1 models the modified Moran process on MGm
N(n)

starting from a mutant leaf. Whenever the random walk is on some state si, there are at most n− i resident leaves in
MGm
N(n). A transition to state η corresponds to the event of a mutant leaf hitting a resident leaf. A transition to state θ

corresponds to the event of a resident leaf hitting a mutant leaf.

8



Lemma S5. Consider that at some time t∗ the modified Moran process on MGm
N(n) reaches a configuration St∗ which

contains a mutant leaf. Then the fixation probability on MGm
N(n) is at least the probability that a random walk onMn

starting from state s0 eventually gets absorbed in state sn.

Proof Idea. Let ψ be a fixed trajectory of the modified Moran process of to time t∗, which generates the desired
configuration St∗ . Let Π1 be the modified Moran process on MGm

N(n) starting from St. Similarly, let Π2 be the random
process onMn starting from s1. We couple Π1 and Π2, so that whenever Π2 is on state si ofMn, there are at most
n − i (homogeneous) resident leaves of MGm

N(n) in Π1. We do so by first extending ψ indefinitely, and then using ψ
with some biased coins as the source of randomness for Π2. The correctness of the coupling relies on the following.

1. Lemma S3, which guarantees that when the root hits a leaf j, it has previously been hit by some leaf i, and hence
leaf i hits leaf j.

2. Lemma S2, which guarantees that leaves i and j are homogeneous whp.

3. Lemma S4, which captures the forward bias of leaves i and j being a mutant leaf and resident leaf, respectively.

4. Lemma S1, which guarantees that after being hit, leaf j resolves to a homogeneous state independently, whp.

Proof. We describe the process of associating certain events in ψ with events in Π2. In this process, we will be erasing
some events ei of ψ where the reproducing individual of e1 occupies the root of MGm

N(n). Thus we will be working in
general with a modified trajectory π. Initially, π is identical to ψ.

Whenever Π2 transitions to some state ηi or θi, this will correspond to some leaf j of MGm
N(n) being hit by the root in

π. Then we will refer to leaf j as the active leaf while in ηi or θi. In particular, an active leaf in ηi is one that is hit
with a mutant and was a resident leaf in the last round, whereas an active leaf in θi is one that is hit with a resident,
and was a homogeneous mutant leaf in the last round.

1. Starting from s1, we scan π from left to right until we find the first occurrence in π where some leaf j becomes
heterogeneous. Let E1 be the event that the root reproduces before it is hit, and by Lemma S3, we have P [E1] ≤
z. If E1 does not hold, we flip a coin with probability of heads z − P [e1], and let E2 be the event that the coin
comes up heads. We make Π2 take the transition s1 → s0 if either E1 or E2 hold. Note that the second event is
conditioned on the failure of the first (i.e., we assign P [E2|E1] = 0), thus E1 and E2 are disjoint, and hence their
union occurs with probability

P [E1] + P [E2] = z

Now assume that both E1 and E2 fail. Since E1 does not occur, the leaf j is turned heterogeneous by a hitting
pair (t, t′), and let et = (at, bt), et′ = (at′ , bt′). Let E3 be the event that at belongs to a resident leaf, and by
Lemma S4,

P [E3] ≤ 1

r2 + 1
+ z

If E3 does not hold, we flip a coin with probability of heads z − P [E3], and let E4 be the event that the coin
comes up heads. We make Π2 take the transition s1 → θ1 if either E3 or E4 occurs. Additionally, we mark leaf j
as the active leaf in θ1. Finally, we make Π2 take the transition s1 → η1 if none other transition has been taken,
i.e. with probability

1−
(

1

r2 + 1
+ z

)
=

r2

r2 + 1
− z

and mark leaf j as the active leaf in η1. Additionally, we erase event et′ from π.
2. While in state ηi with active leaf j, let E1 be the event that leaf j is hit by the root at some time t before it

becomes homogeneous, and by Lemma S1, we have P [E1] ≤ z. If E1 occurs, we erase the event et from π.
If E1 does not occur, let E2 be the event that the j-th leaf becomes a resident leaf the next time it becomes
homogeneous. Since this leaf has been hit with a mutant, we have P [E2] = 1− β. Finally, if neither E1 nor E2
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hold, we flip a coin with probability of heads z−P [E1], and let E3 be the event that the coin comes up heads. We
make Π2 take the transition ηi → si if any of the events E1, E2 and E3 occurs, which happens with probability

P [E1] + P [E2] + P [E3] = 1− β + z

and make Π2 take the transition ηi → si+1 otherwise, i.e. with probability β − z.
3. While in state θi with active leaf j, let E1 be the event that leaf j is hit by the root at some time t before it

becomes heterogeneous, and by Lemma S1, we have P [E1] ≤ z. If E1 does not occur, let E2 be the event that
the j-th leaf becomes a resident leaf the next time it becomes homogeneous. Since this leaf has been hit with a
resident and was a homogeneous mutant leaf before, we have P [E2] = α. Finally, if neither E1 nor E2 hold, we
flip a coin with probability of heads z − P [E1], and let E3 be the event that the coin comes up heads. We make
Π2 take the transition θi → si−1 if any of the events E1, E2 and E3 occurs, which happens with probability

P [E1] + P [E2] + P [E3] = α+ z

and make Π2 take the transition θi → si otherwise, i.e. with probability 1− α− z.
4. While in state si, let j be the last active leaf (i.e., the leaf that was active the last time Π2 was in either a state
ηi′ or θi′ ), and t1 the position in π that turned leaf j heterogeneous. Let t2 be the first time after t1 such that π
has a hitting pair (t2, t3), and E1 the event that (t1, t2, t3) constitutes a heterogeneous hit. By Lemma S2, we
have P [E1] ≤ z. If E1 occurs, we erase from π the event et3 . If E1 does not occur, let E2 be the event that the
root reproduces at some time t4 > t1 and it is not hit in the interval (t1, t4). By Lemma S3, we have P [E2] ≤ z.
If E2 occurs, we erase from π the event et4 . If neither E1 nor E2 occurs, we flip a coin with probability of
heads z − P [E1]− P [E2], and let E3 be the event that the coin comes up heads. We make Π2 take the transition
si → si−1 if either E1 or E2 occurs, which happens with probability

P [E1] + P [E2] + P [E3] = z

If none of E1, E2 and E3 occur, we scan π to the right from position t1, and find the next hitting pair (t, t′), and
let et = (at, bt), et′ = (at′ , bt′). Note that at and bt′ necessarily belong to homogeneous leaves. Let E4 be the
event that at belongs to a resident leaf, and by Lemma S4 we have

P [E4] ≤ 1

r2 + 1
+ z

If E4 does not occur, we flip a coin with probability of heads z−P [E4], and let E5 be the event that the coin comes
up heads. We make Π2 take the transition si → θi if either E4 or E5 occurs, which happens with probability

P [E4] + P [E5] =
1

r2 + 1
+ z

Additionally, we mark leaf j as the active leaf in θi. Finally, we make Π2 take the transition si → ηi if none
other transition has been taken, i.e. with probability

1−
(

1

r2 + 1
+ z + z

)
=

r2

r2 + 1
− 2 · z

and mark leaf j as the active leaf in ηi. Additionally, we erase event et′ from π.

The desired result follows directly from the coupling process.

The following lemma establishes the forward bias on the Markov chainMn, i.e. given a current state si, the ratio of
the probabilities of transitioning to state si+1 over transitioning to state si−1.
Lemma S6. For any 0 < i < n, let xsi be the probability that a random walk onMn starting from state si transitions
to state si+1 before it transitions to state si−1. We have

xsi
1− xsi

=

r2

r2+1 · β − z ·
(

r2

r2+1 + β − z
)

1
r2+1 · α+ z · r2+2

r2+1
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Proof. Given that a random walk is in state si (resp. ηi, βi), 0 < i < n, let xsi (resp. xηi , xβi ) be the probability that
the walk transitions to si+1 before it transitions to si−1. Then we have the following system

xsi = ( r2

r2+1 − z) · xηi + 1
r2+1 · xβi

xηi = β − z + (1− β + z) · xsi
xβi = (1− α− z) · xsi

 =⇒ xsi =

(
r2

r2+1 − z
)
· (β − z)

1−
(
r2

r+1 − z
)
· (1− β + z)− 1

r2+1 · (1− α− z)

=⇒ xsi
1− xsi

=

r2

r2+1 · β − z ·
(

r2

r2+1 + β − z
)

1
r2+1 · α+ z · r2+2

r2+1

The desired result follows.

The following theorem captures the fixation probability on the metastar family.
Theorem S1. Let Gm be a fixed graph and v the attachment vertex of Gm. Denote p = ρ(r,Gm, v) and α =
ρ−(r,Gm, v) and β = ρ+(r,Gm, v). The fixation probability of a single mutant placed uniformly at random on
MGm
N(n) is

ρ
(
r,MGm

N(n)

)
≥ p · 1− r−2 · (α/β)

1− (r−2 · (α/β))n
· (1 + o(1)) (10)

Proof. First, note that a mutant placed uniformly at random on MGm
N(n) will be placed in a leaf with probability 1 −

O(1/n). Then ρ
(
r,MGm

N(n)

)
is lowerbounded by the probability of that mutant fixating in the initial leaf, times the

probability that the mutants fixate in MGm
N(n) starting from a mutant leaf. The former event occurs with probability

p = ρ(r,Gm, v). By Lemma S5, the probability of the latter event is lowerbounded by the probability φ that a random
walk onMn starting from s1 will result in sn. Let xsi be the probability that a random walk onMn starting from
state si transitions to state si+1 before it transitions to state si−1, and γ =

xsi
1−xsi

. Using Lemma S6, the probability
that a random walk ofMn from s1 will get absorbed in sn is

φ =
1∑n−1

i=0

(
1−xsi
xsi

)i =
1∑n−1

i=0 γ
−i

=
1− γ−1

1− γ−n
=

1− r−2 · (α/β)

1− (r−2 · (α/β))n
· (1 + o(1))

The desired result follows.
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