
A Framework for Automated Competitive Analysis
of On-line Scheduling of Firm-Deadline Tasks

Krishnendu Chatterjee and Andreas Pavlogiannis
IST Austria (Institute of Science and Technology Austria)

Klosterneuburg, Austria
Email: {krish.chat, pavlogiannis}@ist.ac.at

Alexander Kößler and Ulrich Schmid
Embedded Computing Systems Group

Vienna University of Technology
Vienna, Austria

Email: {koe,s}@ecs.tuwien.ac.at

Abstract—We present a flexible framework for the automated
competitive analysis of on-line scheduling algorithms for firm-
deadline real-time tasks based on multi-objective graphs: Given
a taskset and an on-line scheduling algorithm specified as
a labeled transition system, along with some optional safety,
liveness, and/or limit-average constraints for the adversary, we
automatically compute the competitive ratio of the algorithm
w.r.t. a clairvoyant scheduler. We demonstrate the flexibility
and power of our approach by comparing the competitive ratio
of several on-line algorithms, including Dover , that have been
proposed in the past, for various tasksets. Our experimental
results reveal that none of these algorithms is universally optimal,
in the sense that there are tasksets where other schedulers provide
better performance. Our framework is hence a very useful design
tool for selecting optimal algorithms for a given application.

I. INTRODUCTION

We study the well-known problem of scheduling a sequence
of dynamically arriving real-time task instances with firm
deadlines on a single processor using a novel approach,
namely, automated competitive analysis based on a corre-
sponding multi-objective graph representation. In firm deadline
scheduling, a task instance (a job) that is completed by its
deadline contributes a positive utility value; a job that does
not meet its deadline does not harm, but does not add any
utility. The goal of the scheduling algorithm is to maximize
the cumulated utility. Firm deadline tasks arise in various
application domains, e.g., machine scheduling, multimedia
and video streaming, QoS management in switches and data
networks, and other systems that may suffer from overload [1].

Competitive analysis [2] has been the primary tool for
studying the performance of such scheduling algorithms [3].
In general, it allows to compare the performance of an on-
line algorithm A, which processes a sequence of inputs
without knowing the future, with what can be achieved by
an optimal off-line algorithm C that does know the future (a
clairvoyant algorithm): The competitive factor gives the worst-
case performance ratio of A vs. C over all possible scenarios.

In a seminal paper [3], Baruah et al. proved that no on-
line scheduling algorithm for single processors can achieve
a competitive factor better than 1/4 over a clairvoyant algo-
rithm in all possible job sequences of all possible tasksets.
The proof is based on constructing a specific job sequence,

This work has been supported by the Austrian Science Foundation (FWF)
under the NFN RiSE (S11405 and S11407), FWF Grant P23499-N23, ERC
Start grant (279307: Graph Games), and Microsoft faculty fellows award.

which takes into account the on-line algorithm’s actions and
thereby forces any such algorithm to deliver a sub-optimal
cumulated utility. For the special case of zero-laxity tasksets
of uniform value-density, where utilities equal execution times,
they also provided the on-line algorithm TD1 with competitive
factor 1/4, concluding that 1/4 is a tight bound for this family
of tasksets. In [3], the 1/4 upper bound was also generalized,
by showing that there exist tasksets with importance ratio
k, defined as the ratio of the maximum over the minimum
value-density in the taskset, in which no on-line scheduler can
have competitive factor larger than 1

(1+
√
k)2

. In a subsequent
work [1], the on-line scheduler Dover was introduced, which
provides the performance guarantee of 1

(1+
√
k)2

in any taskset
with importance ratio k, showing that this bound is also tight.

Since the taskset arising in a particular application is usually
known, our paper focuses on the competitive analysis problem
for given tasksets: Rather than from all possible tasksets as
in [3], the job sequences used for computing the competitive
ratio are chosen from a taskset given as an input. There are
two relevant problems for the automated competitive analysis
for a given taskset: (1) The synthesis question asks to find an
algorithm with optimal competitive ratio; and (2) the analysis
question asks to compute the competitive ratio of a given on-
line algorithm. In [4], we studied the synthesis problem and
presented a reduction to a problem in graph games [5], which
we showed to be NP-complete.

In this paper, we consider the analysis problem. More
specifically, we provide a flexible, automated analysis frame-
work that also supports additional constraints on the adversary,
such as sporadicity constraints and longrun-average load. We
show that the analysis problem (with additional constraints)
can be reduced to a multi-objective graph problem, which
can be solved in polynomial time. We also present several
optimizations and an experimental evaluation of our algo-
rithms that demonstrates the feasibility of our approach, which
effectively allows to replace human ingenuity (required for
finding worst-case scenarios) by computing power: Using
our framework, the application designer can analyze differ-
ent scheduling algorithms for the specific tasksets arising in
her/his particular application, and compare their competitive
ratio in order to select the best one.

Detailed contributions and paper organization:

1) In Section II, we define our scheduling problem along
with the relevant additional constraints on the adversary.

2) In Section III, we introduce the labeled transition systems
as a formal model for specifying on-line and off-line al-
gorithms. In Section IV, we present the formal framework
to specify the constraints on the adversary, and argue how
it allows to model a wide variety of constraints. We also
give an overview of all the steps involved in our approach.

3) In Section V, we present the multi-objective graphs
used by our solution algorithm. Multiple objectives are
required to represent the competitive analysis problem
with various constraints.

4) In Section VI, we describe a theoretical reduction of
the competitive analysis problem to solving a multi-
objective graph problem, where the graph is obtained as
a product of the on-line algorithm, an off-line algorithm,
and the constraints specified as automata. Our algorithmic
solution is polynomial in the size of the graph; however,
the product graph can be large for representative tasksets.

5) In Section VII, we present both general and
implementation-specific optimizations, which
considerably reduce the size of the resulting graphs.

6) In Section VIII, we provide competitive ratio analysis
results obtained by our method. More specifically, we
present a comparative study of the performance of several
existing firm deadline real-time scheduling algorithms.
Our results show that, for different tasksets (even with
no constraints), different algorithms achieve the highest
competitive ratio (i.e., there is no universal optimal al-
gorithm). Moreover, even for a fixed taskset and varying
constraints on the adversary, different algorithms achieve
the highest competitive ratio. This highlights the impor-
tance of our framework for selecting optimal algorithms
for specific applications.

Related work: Algorithmic game theory [6] has been ap-
plied to classic scheduling problems since decades, primarily
in economics and operations research, see e.g. [7] for just
one example of some more recent work. It has also been
applied for real-time scheduling of hard real-time tasks in
the past: Besides Altisen et al. [8], who used games for
synthesizing controllers dedicated to meeting all deadlines,
Bonifaci and Marchetti-Spaccamela [9] employed graph games
for automatic feasibility analysis of sporadic real-time tasks in
multiprocessor systems: Given a set of sporadic tasks (where
consecutive releases of jobs of the same task are separated at
least by some sporadicity interval), the algorithms provided
in [9] allow to decide, in polynomial time, whether some
given scheduling algorithm will meet all deadlines. A partial-
information game variant of their approach also allows to
synthesize an optimal scheduling algorithm for a given taskset
(albeit not in polynomial time). As these approaches do not
generalize to competitive analysis of tasks with firm deadlines,
we studied the related synthesis problem in [4].

Regarding firm deadline task scheduling in general, starting
out from [3], classic real-time systems research has studied
the competitive factor of both simple and extended real-time
scheduling algorithms. The competitive analysis of simple

algorithms (see Section VIII for the references) has been ex-
tended in various ways later on: Energy consumption [10], [11]
(including dynamic voltage scaling), imprecise computation
tasks (having both a mandatory and an optional part and
associated utilities) [12], lower bounds on slack time [13],
and fairness [14]. Note that dealing with these extensions
involved considerable ingenuity and efforts w.r.t. identifying
and analyzing appropriate worst case scenarios, which do not
necessarily carry over even to minor variants of the prob-
lem. Maximizing cumulated utility while satisfying multiple
resource constraints is also the purpose of the Q-RAM (QoS-
based Resource Allocation Model) [15] approach.

II. PROBLEM DEFINITION

Real-time scheduling setting. We consider a finite set of tasks
T = {τ1, . . . , τN}, to be executed on a single processor. We
assume a discrete notion of real-time t = kε, k > 1, where
ε > 0 is both the unit time and the smallest unit of preemp-
tion (called a slot). Since both task releases and scheduling
activities occur at slot boundaries only, all timing values are
specified as positive integers. Every task τi releases countably
many task instances (called jobs) Ji,j := (τi, j) ∈ T × N+

(where N+ is the set of positive integers) over time (i.e., Ji,j
denotes that a job of task i is released at time j). All jobs, of all
tasks, are independent of each other and can be preempted and
resumed during execution without any overhead. Every task τi,
for 1 6 i 6 N , is characterized by a 3-tuple τi = (Ci, Di, Vi)
consisting of its non-zero worst-case execution time Ci ∈ N+

(slots), its non-zero relative deadline Di ∈ N+ (slots) and
its non-zero utility value Vi ∈ N+ (rational utility values
V1, . . . , Vn can be mapped to integers by proper scaling). We
denote with Dmax = max16i6N Di the maximum relative
deadline in T . Every job Ji,j needs the processor for Ci
(not necessarily consecutive) slots exclusively to execute to
completion. All tasks have firm deadlines: only a job Ji,j that
completes within Di slots, as measured from its release time,
provides utility Vi to the system. A job that misses its deadline
does not harm but provides zero utility. The goal of a real-
time scheduling algorithm in this model is to maximize the
cumulated utility, which is the sum of Vi times the number
of jobs Ji,j that can be completed by their deadlines, in a
sequence of job releases generated by the adversary.
Notation on sequences. Let X be a finite set. For an infinite
sequence x = (x`)`>1 = (x1, x2, . . .) of elements in X ,
we denote by x` the element in the `-th position of x, and
denote by x(`) = (x1, x2, . . . , x`) the finite prefix of x up to
position `. We denote by X∞ the set of all infinite sequences
of elements from X . Given a function f : X → Z (where Z is
the set of integers) and a sequence x ∈ X∞, we denote with
f(x, k) =

∑k
`=1 f(x`) the sum of the images of the first k

elements.
Job sequences. When generating a job sequence, the adversary
releases at most one new job from every task in every slot.
Formally, the adversary generates an infinite job sequence σ =
(σ`)`>1 ∈ Σ∞, where Σ = 2T . If a task τi belongs to σ`, for
` ∈ N+, then a (single) new job Ji,j of task i is released
at the beginning of slot `: j = ` denotes the release time

of Ji,j , which is the earliest time Ji,j can be executed, and
di,j = j +Di denotes its absolute deadline.

Admissible job sequences. We present a flexible framework
where the set of admissible job sequences that the adversary
can generate may be restricted. The set J of admissible job
sequences from Σ∞ can be obtained by imposing one or more
of the following (optional) admissibility restrictions:
(S) Safety constraints, which are restrictions that hold in

every finite prefix of a job sequence; e.g., they can be used
to enforce job release constraints such as periodicity or
sporadicity, and to impose temporal workload restrictions.

(L) Liveness constraints, which assert infinite repetition of
certain patterns in a job sequence; e.g., they can be used
to force the adversary to release a certain task infinitely
often.

(W) Limit-average constraints, which restrict the long run
average behavior of a job sequence; e.g., they can be used
to enforce that the average load in the job sequences does
not exceed a threshold.

Schedule. Given an admissible job sequence σ ∈ J , the sched-
ule π = (π`)`>1 ∈ Π∞, where Π = ((T × {0, . . . , Dmax −
1}) ∪ ∅), computed by a real-time scheduling algorithm for
σ, is a function that assigns at most one job for execution to
every slot ` > 1: π` is either ∅ (i.e., no job is executed) or
else (τi, j) (i.e., the job Ji,`−j of task τi released j slots ago
is executed). The latter must satisfy the following constraints:

1) τi ∈ σ`−j (the job has been released),
2) j < Di (the job’s deadline has not passed),
3) |{k : k > 0 and π`−k = (τi, j

′) and k + j′ = j}| < Ci
(the job released in slot `− j has not been completed).

Note that our definition of schedules uses relative indexing in
the scheduling algorithms: At time point `, the algorithm for
schedule π` uses index j to refer to slot `−j. Recall that π(k)
denotes the prefix of length k > 1 of π. We define γi(π, k) to
be the number of jobs of task τi that are completed by their
deadlines in π(k). The cumulated utility V (π, k) (also called
utility for brevity) achieved in π(k) is defined as V (π, k) =∑N
i=1 γi(π, k) · Vi.

Competitive ratio. We are interested in evaluating the per-
formance of deterministic on-line scheduling algorithms A,
which, at time `, do not know any of the σk for k > `
when running on σ ∈ J . In order to assess the performance
of A, we will compare the cumulated utility achieved in the
schedule πA to the cumulated utility achieved in the schedule
πC provided by an optimal off-line scheduling algorithm,
called a clairvoyant algorithm C, working on the same job
sequence. Formally, given a taskset T , let J ⊆ Σ∞ be the
set of all admissible job sequences of T that satisfy given
(optional) safety, liveness, and limit-average constraints. For
every σ ∈ J , we denote with πσA (resp. πσC) the schedule
produced by A (resp. C) under σ. The competitive ratio of the
on-line algorithm A for the taskset T under the admissible
job sequence set J is defined as

CRJ (A) = inf
σ∈J

lim inf
k→∞

1 + V (πσA, k)

1 + V (πσC , k)
(1)

that is, the worst-case ratio of the cumulated utility of the
on-line algorithm versus the clairvoyant algorithm, under all
admissible job sequences. Note that adding 1 in numerator and
denominator simply avoids division by zero issues.
Remark 1. Since, according to the definition of the competitive
ratio CRJ in Equation (1), we focus on worst-case analysis,
we do not consider randomized algorithms (such as Locke’s
best-effort policy [16]). Generally, for worst-case analysis,
randomization can be handled by additional choices for the
adversary. For the same reason, we do not consider scheduling
algorithms that can use the unbounded history of job releases
to predict the future (e.g., to capture correlations).

III. LTSS AS MODELS FOR ALGORITHMS

We will consider both on-line and off-line scheduling al-
gorithms that are formally modeled as labeled transition sys-
tems (LTSs): Every deterministic finite-state on-line scheduling
algorithm can be represented as a deterministic LTS, such
that every input job sequence generates a unique run that
determines the corresponding schedule. On the other hand,
an off-line algorithm can be represented as a non-deterministic
LTS, which uses the non-determinism to guess the appropriate
job to schedule.
Labeled transition systems (LTSs). Formally, a labeled tran-
sition system (LTS) is a tuple L = (S, s1,Σ,Π,∆), where
S is a finite set of states, s1 ∈ S is the initial state, Σ is a
finite set of input actions, Π is a finite set of output actions,
and ∆ ⊆ S ×Σ× S ×Π is the transition relation. Intuitively,
(s, x, s′, y) ∈ ∆ if, given the current state s and input x,
the LTS outputs y and makes a transition to state s′. If the
LTS is deterministic, then there is always a unique output and
next state, i.e., ∆ is a function ∆ : S × Σ → S × Π. Given
an input sequence σ ∈ Σ∞, a run of L on σ is a sequence
ρ = (p`, σ`, q`, π`)`>1 ∈ ∆∞ such that p1 = s1 and for all
` > 2, we have p` = q`−1. For a deterministic LTS, for each
input sequence, there is a unique run.
Deterministic LTS for an on-line algorithm. For our analysis,
on-line scheduling algorithms are represented as deterministic
LTSs. Recall the definition of the sets Σ = 2T , and Π = ((T ×
{0, . . . , Dmax−1})∪∅). Every deterministic on-line algorithm
A that uses finite state space (for all job sequences) can be
represented as a deterministic LTS LA = (SA, sA,Σ,Π,∆A),
where the states SA correspond to the state space of A, and
∆A correspond to the execution of A for one slot. Note that,
due to relative indexing, for every current slot `, the schedule
π` of A contains elements from the set Π, and (τi, j) ∈ π`
uniquely determines the job Ji,`−j . Finally, we associate with
LA a reward function rA : ∆A → N such that rA(δ) = Vi
if the transition δ completes a job of task τi, and rA(δ) = 0
otherwise. Given the unique run ρσ = (δ`)`>1 of LA for the
job sequence σ, where δ` denotes the transition taken at the
beginning of slot `, the cumulated utility in the prefix of the
first k transitions in ρσ is V (ρσ, k) =

∑k
`=1 rA(δ`).

Most scheduling algorithms (such as EDF, FIFO, DOVER,
TD1) can be represented as a deterministic LTS. An illustration
for EDF is given in the following example (see Appendix
Section F for other examples).

Fig. 1: EDF for T = {τ1, τ2} with D1 = 3, D2 = 2 and
C1 = C2 = 2, represented as a deterministic LTS.

Example 1. Consider the taskset T = {τ1, τ2}, with D1 = 3,
D2 = 2 and C1 = C2 = 2. Figure 1 represents the EDF
(Earliest Deadline First) scheduling policy as a deterministic
LTS for T . Each state is represented by a matrix M , such that
M [i, j], 1 6 i 6 N , 1 6 j 6 Dmax−1, denotes the remaining
execution time of the job of task τi released j slots ago. Every
transition is labeled with a set T ∈ Σ of released tasks as
well as with (τi, j) ∈ Π, which denotes the unique job Ji,`−j
to be scheduled in the current slot `. Released jobs with no
chance of being scheduled are not included in the state space.

The non-deterministic LTS. The clairvoyant algorithm C is
formally a non-deterministic LTS LC = (SC , sC ,Σ,Π,∆C)
where each state in SC is a N × (Dmax − 1) matrix M ,
such that for each time slot `, the entry M [i, j], 1 6 i 6 N ,
1 6 j 6 Dmax − 1, denotes the remaining execution time of
the job Ji,`−j (i.e., the job of task i released j slots ago). For
matrices M , M ′, subset T ∈ Σ of newly released tasks, and
scheduled job P = (τi, j) ∈ Π, we have (M,T,M ′, P) ∈ ∆C
iff M [i, j] > 0 and M ′ is obtained from M by
(1) inserting all τi ∈ T into M ,
(2) decrementing the value at position M [i, j], and
(3) shifting the contents of M by one column to the right.

That is, M ′ corresponds to M after inserting all released tasks
in the current state, executing a pending task for one unit of
time, and reducing the relative deadlines of all tasks currently
in the system. The initial state sC is represented by the zero
N×(Dmax−1) matrix, and SC is the smallest ∆C-closed set of
states that contains sC (i.e., if M ∈ SC and (M,T,M ′, P) ∈
∆C for some T , M ′ and P , we have M ′ ∈ SC). Finally,
we associate with LC a reward function rC : ∆C → N such
that rC(δ) = Vi if the transition δ completes a task τi, and
rC(δ) = 0 otherwise.

IV. ADMISSIBLE JOB SEQUENCES AND OUR APPROACH

In this section we discuss our mechanisms for restricting the
adversary to generate only certain admissible job sequences
and then present our overall approach.

Admissible job sequences. Our framework allows to restrict
the adversary to generate admissible job sequences J ⊆ Σ∞,

which can be specified via different constraints. Since a
constraint on job sequences can be interpreted as a language
(which is a subset of infinite words Σ∞ here), we will use
automata as acceptors of such languages. Since an automaton
is a deterministic LTS with no output, all our constraints will
be described as LTSs with an empty set of output actions. We
allow the following types of contraints:

(S) Safety constraints are defined by a deterministic safety
LTS LS = (SS , sS ,Σ,∅,∆S), with a distinguished
absorbing reject state sr ∈ SS . An absorbing state is
a state that has outgoing transitions only to itself. Every
job sequence σ defines a unique run ρσS in LS , such that
either no transition to sr appears in ρσS , or every such
transition is followed solely by self-transitions to sr. A
job sequence σ is admissible to LS , if ρσS does not contain
a transition to sr. To obtain a safety LTS that does not
restrict J at all, we simply use a trivial deterministic LS
with no transition to sr.

(L) Liveness constraints are defined by a deterministic live-
ness LTS LL = (SL, sL,Σ,∅,∆L), with a distinguished
accept state sa ∈ SL. A job sequence σ is admissible to
LL if ρσL contains infinitely many transitions to sa. For
the case where there are no liveness constraint in J , we
use a LTS LL consisting of state sa only.

(W) Limit-average constraints are defined by a deterministic
weighted LTS LW = (SW , sW ,Σ,∅,∆W) equipped
with a weight function w : ∆W → Zd that assigns a
vector of weights to every transition. Given a threshold
vector ~λ ∈ Qd, where Q denotes the set of all rational
numbers, a job sequence σ and the corresponding run
ρσW of LW , the job sequence is admissible to LW if
lim infk→∞

1
k · w(ρσW , k) 6 ~λ.

Illustrations of admissible job sequences. We now illustrate the
types of constraints that are supported by the above framework
with some examples (see also Appendix Section B).

(S) Safety constraints. Safety constraints restrict the adver-
sary to release job sequences, where every finite prefix
satisfies some property (as they lead to the absorbing
reject state sr of LS otherwise). Some well-known ex-
amples of safety constraints are (i) periodicity and/or
sporadicity constraints, where there are fixed and/or a
minumum time between the release of any two consec-
utive jobs of a given task, and (ii) absolute workload
constraints [17], [18], where the total workload released
in the last k slots, for some fixed k, is not allowed to
exceed a threshold λ. For example, in case of absolute
workload constraints, LS simply encodes the workload
in the last k slots in its state, and makes a transition to
sr whenever the workload exceeds λ.

(L) Liveness constraints. Liveness constraints force the adver-
sary to release job sequences that satisfy some property
infinitely often. For example, they could be used to
guarantee that the release of some particular task τi does
not eventually stall; the constraint is specified by a two-
state LTS LL that visits sa whenever the current job set

includes τi. A liveness constraint can also be used to
prohibit infinitely long periods of overload [3].

(W) Limit-average constraints. Consider a relaxed notion of
workload constraints, where the adversary is restricted
to generate job sequences whose average workload does
not exceed a threshold λ. Since this constraint still allows
“busy” intervals where the workload temporarily exceeds
λ, it cannot be expressed as a safety constraint. To support
such interesting average constraints of admissible job
sequences, where the adversary is more relaxed than
under absolute constraints, our framework explicitly sup-
ports limit-average constraints. Therefore, it is possible
to express the average workload assumptions commonly
used in the analysis of aperiodic task scheduling in soft-
real time systems [19], [20]. Other interesting cases of
limit-average constraints include restricting the average
sporadicity, and, in particular, average energy: ensuring
that the limit-average of the energy consumption is below
a certain threshold is an important concern in modern
real-time systems [10].

Remark 2. While in general constraints are encoded as inde-
pendent automata, it is often possible to encode certain con-
straints directly in the non-deterministic LTS of the clairvoyant
scheduler instead. In particular, this is true when restricting the
limit-average workload, generating finite intervals of overload,
and releasing a particular job infinitely often.

Overall approach for computing CR. Our goal is to determine
the worst-case competitive ratio CRJ (A) for a given on-line
algorithm A. The inputs to the problem are the given taskset
T , an on-line algorithmA specified as a deterministic LTS LA,
and the safety, liveness, and limit-average constraints specified
as deterministic LTSs LS , LL and LW , respectively, which
constrain the admissible job sequences J . Our approach uses
a reduction to a multi-objective graph problem, which consists
of the following steps:

1) Construct a non-deterministic LTS LC corresponding to
the clairvoyant off-line algorithm C. Note that since LC
is non-deterministic, for every admissible job sequence
σ, there are many possible runs in LC , of course also
including the runs with maximum cumulative utility.

2) Take the synchronous product LTS LA×LC×LS×LL×
LW . By doing so, a path in the product graph corresponds
to identically labeled paths in LTSs, and thus ensures that
they agree on the same job sequence σ. This product can
be represented by a multi-objective graph (see Section V).

3) Employ several optimizations in order to reduce the size
of product graph (see Section VI and VII).

4) Determine CRJ (A) by reducing the computation of the
ratio given in Equation (1) to solving a multi-objective
problem on the product graph.

V. GRAPHS WITH MULTIPLE OBJECTIVES

In this section, we define various objectives on graphs and
outline the algorithms to solve them. We later show how
the competitive analysis of on-line schedulers reduces to the
solution of this section.

Multi-graphs. A multi-graph G = (V,E), hereinafter called
simply a graph, consists of a finite set V of n nodes, and a
finite set of m directed multiple edges E ⊂ V × V × N+.
For brevity, we will refer to an edge (u, v, i) as (u, v), when
i is not relevant. We consider graphs in which for all u ∈ V ,
we have (u, v) ∈ E for some v ∈ V , i.e., every node has at
least one outgoing edge. An infinite path ρ of G is an infinite
sequence of edges e1, e2, . . . such that for all i > 1 with
ei = (ui, vi), we have vi = ui+1. Every such path ρ induces
a sequence of nodes (ui)i>1, which we will also call a path,
when the distinction is clear from the context, and ρi refers
to ui instead of ei. Finally, we denote with Ω the set of all
paths of G.

Objectives. Given a graph G, an objective Φ is a subset of Ω
that defines the desired set of paths. We will consider safety,
liveness, mean-payoff (limit-average), and ratio objectives, and
their conjunction for multiple objectives.

Safety and liveness objectives. We consider safety and liveness
objectives, both defined with respect to some subset of nodes
X,Y ⊆ V . Given X ⊆ V , the safety objective defined as
Safe(X) = {ρ ∈ Ω : ∀i > 1, ρi 6∈ X}, represents the set
of all paths that never visit the set X . The liveness objective
defined as Live(Y) = {ρ ∈ Ω : ∀j∃i > j s.t. ρi ∈ Y }
represents the set of all paths that visit Y infinitely often.

Mean-payoff and ratio objectives. We consider the mean-
payoff and ratio objectives, defined with respect to a weight
function and a threshold. A weight function w : E → Zd as-
signs to each edge of G a vector of d integers. A weight func-
tion naturally extends to paths, with w(ρ, k) =

∑k
i=1 w(ρi).

The mean-payoff of a path ρ is defined as:

MP(w, ρ) = lim inf
k→∞

1

k
· w(ρ, k);

i.e., it is the long-run average of the weights of the path.
Given a weight function w and a threshold vector ~ν ∈ Qd,
the corresponding objective is given as:

MP(w,~ν) = {ρ ∈ Ω : MP(w, ρ) 6 ~ν};

that is, the set of all paths such that the mean-payoff (or limit-
average) of their weights is at most ~ν (where we consider
pointwise comparision for vectors). For weight functions w1,
w2 : E → Nd, the ratio of a path ρ is defined as:

Ratio(w1, w2, ρ) = lim inf
k→∞

~1 + w1(ρ, k)

~1 + w2(ρ, k)
,

which denotes the limit infimum of the coordinate-wise ratio
of the sum of weights of the two functions; ~1 denotes the d-
dimensional all-1 vector. Given weight functions w1, w2 and
a threshold vector ~ν ∈ Qd, the ratio objective is given as:

Ratio(w1, w2, ~ν) = {ρ ∈ Ω : Ratio(w1, w2, ρ) 6 ~ν}

that is, the set of all paths such that the ratio of cumulative
rewards w.r.t w1 and w2 is at most ~ν.

Example 2. Consider the multi-graph shown in Figure 2 with
a weight function of dimension d = 2. Note that there are two
edges from node 3 to node 5 (represented as edges (3, 5, 1)

and (3, 5, 2)). In the graph we have a weight function with
dimension 2. Note that the two edges from node 3 to node 5
have incomparable weight vectors.

1 2 3

4

5

−1, 3

−1,−1

7, 7

6, 6

0,−1

−5, 0

1, 0

9, 9 8, 8
2, 1

Fig. 2: An example of a multi-graph G.

Decision problem. The decision problem we consider is as
follows: Given the graph G, an initial node s ∈ V , and an
objective Φ (which can be a conjunction of several objectives),
determine if there exists a path ρ that starts from s and belongs
to Φ, i.e., ρ ∈ Φ. For simplicity of presentation, we assume
that every u ∈ V is reachable from s (unreachable nodes
can be discarded by preprocessing G in O(m) time). We first
present algorithms for each of safety, liveness, mean-payoff,
and ratio obejctives separately, and then for their conjunction.

Algorithms for safety and liveness objectives.
1) (Safety objectives). The algorithm for the objective

Safe(X) is straightforward. We first remove the set X
of nodes, and iteratively remove nodes without outgoing
edges. In the end, we obtain a graph G = (VX , EX) such
that X ∩ VX = ∅, and every node in VX has an edge to
a node in VX . Thus, in the resulting graph, the objective
Safe(X) is satisfied, and the algorithm answers yes iff
s ∈ VX . The algorithm requires O(m) time.

2) (Liveness objectives). To solve for the objective Live(Y),
initially perform an SCC (maximal strongly connected
component) decomposition of G. We call an SCC VSCC
live, if (i) either |VSCC| > 1, or VSCC = {u} and (u, u) ∈
E; and (ii) VSCC∩Y 6= ∅. Then Live(Y) is satisfied in G
iff there exists a live SCC VSCC that is reachable from s
(since every node in a live SCC can be visited infinitely
often). Using for example the algorithm of [21] for the
SCC decomposition also requires O(m) time.

Algorithms for mean-payoff objectives. We distinguish be-
tween the case when the weight function has a single dimen-
sion (d = 1) versus the case when the weight function has
multiple dimensions (d > 1).

1) (Single dimension). In the case of a single-dimensional
weight function, a single weight is assigned to every edge,
and the decision problem of the mean-payoff objective
reduces to determining the mean weight of a minimum-
weight simple cycle in G, as the latter also determines the
mean-weight by infinite repetition. Using the algorithms
of [22], [23], this process requires O(n ·m) time. When
the objective is satisfied, the process also returns a simple
cycle C, as a witness to the objective. From C, a path
ρ ∈ MP(w,~ν) is constructed by infinite repetitions of C.

2) (Multiple dimensions). When d > 1, the mean-payoff
objective reduces to determining the feasibility of a linear
program (LP). For u ∈ V , let IN(u) be the set of
incoming, and OUT(u) the set of outgoing edges of u. As
shown in [5], [24], G satisfies MP(w,~ν) iff the following
set of constraints on ~x = (xe)e∈ESCC with xe ∈ Q is
satisfied simultaneously on some SCC VSCC of G with
induced edges ESCC ⊆ E.

xe > 0 e ∈ ESCC∑
e∈IN(u)

xe =
∑

e∈OUT(u)

xe u ∈ VSCC (2)

∑
e∈ESCC

xe · w(e) 6 ~ν∑
e∈ESCC

xe > 1

The quantities xe are intuitively interpreted as ”flows”.
The first constraint specifies that the flow of each
edge is non-negative. The second constraint is a flow-
conservation constraint. The third constraint specifies that
the objective is satisfied if we consider the relative contri-
bution of the weight of each edge, according to the flow
of the edge. The last constraint asks that the preceding
constraints are satisfied by a non-trivial (positive) flow.
Hence, when d > 1, the decision problem reduces to
solving a LP, and the time complexity is polynomial [25].

Witness construction. The witness path construction from
a feasible solution consists of two steps: (A) Construc-
tion of a multi-cycle from the feasible solution; and
(B) Construction of an infinite witness path from the
multi-cycle. We describe the two steps in detail. Formally,
a multi-cycle is a finite set of cycles with multiplicity
MC = {(C1,m1), (C2,m2), . . . , (Ck,mk)}, such that
every Ci is a simple cycle and mi is its multiplicity. The
construction of a multi-cycle from a feasible solution ~x
is as follows. Let E = {e : xe > 0}. By scaling each
edge flow xe by a common factor z, we construct the
set X = {(e, z · xe) : e ∈ E}, with X ⊂ ESCC × N+.
Then, we start with MC = ∅ and apply iteratively
the following procedure until X = ∅: (i) find a pair
(ei,mi) = arg min(ej ,mj)∈X mj , (ii) form a cycle Ci that
contains ei and only edges that appear in X (because of
Equation (2), this is always possible), (iii) add the pair
(Ci,mi) in the multi-cycle MC, (iv) subtract mi from
all elements (ej ,mj) of X such that the edge ej appears
in Ci, (v) remove from X all (ej , 0) pairs, and repeat.
Since VSCC is an SCC, there is a path Ci Cj for all
Ci, Cj in MC. Given the multi-cycle MC, the infinite
path that achieves the weight at most ~ν is not periodic,
but generated by Procedure 1.

Algorithm for ratio objectives. We now consider ratio ob-
jectives, and present a reduction to mean-payoff objectives.
Consider the weight functions w1, w2 and the threshold vector
~ν = ~p

~q as the component-wise division of vectors ~p, ~q ∈ Nd.

Procedure 1: Multi-objective witness
Input: A graph G = (V,E), and a multi-cycle

MC = {(C1,m1), (C2,m2), . . . , (Ck,mk)}
Output: An infinite path ρ ∈ MP(w,~ν)

1 `← 1
2 while True do
3 Repeat C1 for ` ·m1 times
4 C1 C2

5 Repeat C2 for ` ·m2 times
6 . . .
7 Repeat Ck for ` ·mk times
8 Ck C1

9 `← `+ 1
10 end

We define a new weight function w : E → Zd such that for
all e ∈ E, we have w(e) = ~q · w1(e) − ~p · w2(e) (where ·
denotes component-wise multiplication). It is easy to verify
that Ratio(w1, w2, ~ν) = MP(w,~0), and thus we solve the
ratio objective by solving the new mean-payoff objective, as
described above.

Algorithms for conjunctions of objectives. Finally, we consider
the conjunction of a safety, a liveness, and a mean-payoff
objective (note that we have already described a reduction of
ratio objectives to mean-payoff objectives). More specifically,
given a weight function w, a threshold vector ~ν ∈ Q, and
sets X,Y ⊆ V , we consider the decision problem for the
objective Φ = Safe(X)∩ Live(Y)∩MP(w,~ν). The procedure
is as follows:

1) Initially compute GX from G as in the case of a single
safety objective.

2) Then, perform an SCC decomposition on GX .
3) For every live SCC VSCC that is reachable from s, solve

for the mean-payoff objective in VSCC. Return yes, if
MP(w,~ν) is satisfied in any such VSCC.

If the answer to the decision problem is yes, then the witness
consists of a live SCC VSCC, along with a multi-cycle (resp.
a cycle for d = 1). The witness infinite path is constructed as
in Procedure 1, with the only difference that at end of each
while loop a live node from Y in the SCC VSCC is additionally
visited. The time required for the conjunction of objectives is
dominated by the time required to solve for the mean-payoff
objective. Figure 2 provides a relevant example.

Example 3. Consider the graph in Figure 2. Starting from
node 1, the mean-payoff-objective MP(w,~0) is satisfied by
the multi-cycle MC = {(C1, 1), (C2, 2)}, with C1 =
((1, 2), (2, 1)) and C2 = ((3, 5), (5, 3)). A solution to the cor-
responding LP is x(1,2) = x(2,1) = 1

3 and x(3,5) = x(5,3) = 2
3 ,

and xe = 0 for all other e ∈ E. Procedure 1 then generates a
witness path for the objective. The objective is also satisfied in
conjuction with Safe({4}) or Live({4}). In the latter case, a
witness path additionally traverses the edges (3, 4) and (4, 5)
before transitioning from C1 to C2.

Theorem 1 summarizes the results of this section.

Theorem 1. Let G = (V,E) be a graph, s ∈ V , X,Y ⊆ V ,
w : E → Zd, w1, w2 E → Nd weight functions, and ~ν ∈ Qd.
Let Φ1 = Safe(X)∩Live(Y)∩MP(w,~ν) and Φ2 = Safe(X)∩
Live(Y) ∩ Ratio(w1, w2, ~ν). The decision problem of whether
G satisfies the objective Φ1 (resp. Φ2) from s requires

1) O(n ·m) time, if d = 1.
2) Polynomial time, if d > 1.

If the objective Φ1 (resp. Φ2) is satisfied in G from s, then a
finite witness (an SCC and a cycle for single dimension, and
an SCC and a multi-cycle for multiple dimensions) exists and
can be constructed in polynomial time.

VI. REDUCTION

We present a formal reduction of the computation of the
competititve ratio of an on-line scheduling algorithm with
constraints on job sequences to the multi-objective graph
problem. The input consists of the taskset, a deterministic LTS
for the on-line algorithm, and optional deterministic LTSs for
the constraints.
Reduction. We first describe the process of computing the
competitive ratio CRJ (A) where J is a set of job sequences
only subject to safety and liveness constraints. We later show
how to handle limit-average constraints.

Given the deterministic and non-deterministic LTS LA
and LC with reward functions rA and rC , respectively, and
optionally safety and liveness LTS LS and LL, let L = LA×
LC×LS×LL be their synchronous product (refer to Appendix
Section A for the formal definition of synchronous product).
Hence, L is a non-deterministic LTS (S, s1,Σ,Π,∆), and
every job sequence σ yields a set of runs R in L, such that
each ρ ∈ R captures the joint behavior of A and C under σ.
Note that for each such ρ the behavior of A is unchanged, but
the behavior of C generally varies, due to non-determinism.
Let G = (V,E) be the multi-graph induced by L, that is,
V = S and (M,M ′, j) ∈ E for all 1 6 j 6 i iff there are i
transitions (M,T,M ′, P) ∈ ∆. Let wA and wC be the weight
functions that assign to each edge of G the reward that the
respective algorithm obtains from the corresponding transition
in L. Let X be the set of states in G whose LS component is
sr, and Y the set of states in G whose LL component is sa.
It follows that for all ν ∈ Q, we have that CRJ (A) 6 ν iff
the objective Φν = Safe(X) ∩ Live(Y) ∩ Ratio(wA, wC , ν) is
satisfied in G from the state s1. As the dimension in the ratio
objective is one, Case 1 of Theorem 1 applies, and we obtain
the following:

Lemma 1. Given the product graph G = (V,E) of n nodes
and m edges, a rational ν ∈ Q, and a set of job sequences J
admissible to safety and liveness LTSs, determining whether
CRJ (A) 6 ν requires O(n ·m) time.

Since 0 6 CRJ (A) 6 1, the problem of determining
the competitive ratio reduces to finding v = sup{ν ∈
Q : Φν is satisfied in G}. Because this value corresponds
to the ratio of the corresponding rewards obtained in a simple
cycle in G, it follows that v is the maximum of a finite set,
and can be determined exactly by an adaptive binary search
(see Appendix Section C and Algorithm 2 for details).

Finally, we turn our attention to limit-average constraints
and the LTS LW . We follow a similar approach as above,
but this time including LW in the synchronous product, i.e.,
L = LA × LC × LS × LL × LW . Let wA and wC be weight
functions that assign to each edge e ∈ E in the corresponding
multi-graph a vector of d + 1 weights as follows. In the first
dimension, wA and wC are defined as before, assigning to
each edge of G the corresponding rewards of A and C. In the
remaining d dimensions, wC is always 1, whereas wA equals
the value of the weight function w of LW on the corresponding
transition. Let ~λ be the threshold vector of LW . It follows that
for all ν ∈ Q, we have that CRJ (A) 6 ν iff the objective
Φν = Safe(X) ∩ Live(Y) ∩ Ratio(wA, wC , (ν,~λ)) is satisfied
in G from the state s that corresponds to the initial state of
each LTS, where (ν,~λ) is a d + 1-dimension vector, with ν
in the first dimension, followed by the d-dimension vector ~λ.
As the dimension in the ratio objective is greater than one,
Case 2 of Theorem 1 applies, and we obtain the following:

Lemma 2. Given the product graph G = (V,E) of n nodes
and m edges, a rational ν ∈ Q, and a set of job sequences
J admissible to safety, liveness, and limit average LTSs,
determining whether CRJ (A) 6 ν requires polynomial time.

Again, since 0 6 CRJ (A) 6 1, the competitive ratio is
determined by an adaptive binary search (similar to Algo-
rithm 2 in the Appendix). However, this time CRJ (A) is not
guaranteed to be realized by a simple cycle (the witness path
in G is not necessarily periodic, see Procedure 1), and is only
approximated within some desired error threshold ε > 0.

VII. OPTIMIZED REDUCTION

In Section VI, we have established a formal reduction from
determining the competitive ratio of an on-line scheduling
algorithm in a constrained adversarial environment to solving
multiple objectives on graphs. In the current section, we
present several optimizations in this reduction that significantly
reduce the size of the generated LTSs.
Clairvoyant LTS. Recall the clairvoyant LTS LC with reward
function rC from Section III that non-deterministically models
a scheduler. Now we encode the off-line algorithm as a
non-deterministic LTS L′C = (S′C , s

′
C ,Σ,∅,∆′C) with reward

function r′C that lacks the property of being a scheduler,
as information about released and scheduled jobs is lost.
However, it preserves the property that, given a job sequence
σ, there exists a run ρσC in LC iff there exists a run ρ̂σC in L′C
with V (ρσA, k) = V (ρ̂σA, k) for all k ∈ N+. That is, there is a
bisimulation between LC and L′C that preserves rewards.

Intuitively, the clairvoyant algorithm need not partially
schedule a task, i.e., it will either discard it immediately, or
schedule it to completion. Hence, in every release of a set of
tasks T , L′C non-deterministically chooses a subset T ′ ⊆ T
to be scheduled, as well as allocates the future slots for their
execution. Once these slots are allocated, L′C is not allowed
to preempt those in favor of a subsequent job.

The state space S′C of L′C consists of binary strings of length
Dmax. For a binary string B ∈ S′C , we have B[i] = 1 iff the
i-th slot in the future is allocated to some released job, and

s′C = ~0. Informally, the transition relation ∆′C is such that,
given a current subset T ⊆ Σ of released jobs, there exists a
transition δ from B to B′ only if B′ can be obtained from
B by non-deterministically choosing a subset T ′ ⊆ T , and
for each task τi ∈ T ′ allocating non-deterministically Ci free
slots in B. Finally, set r′C =

∑
τi∈T ′ Vi.

By definition, |S′C | 6 2Dmax . In laxity-restricted tasksets,
we can obtain an even tighter bound. Let Lmax =
maxτi∈T (Di − Ci) be the maximum laxity in T , and I :
S′C → {⊥, 1, . . . , Dmax − 1}Lmax+1 a function such that
I(B) = (i1, . . . , iLmax+1) are the indexes of the first Lmax+1
zeros in B. That is, ij = k iff B[k] is the j-th zero location
in B, and ij = ⊥ if there are less than j free slots in B.

Claim 1. The function I is bijective.

Proof. Fix a tuple (i1, . . . , iLmax+1), and let B ∈ S′C be any
state such that I(B) = (i1, . . . , iLmax+1). We consider two
cases.

1) If iLmax+1 = ⊥, there are less than Lmax +1 empty slots
in B, all uniquely determined by (i1, . . . , ik), for some
k 6 Lmax.

2) If iLmax+1 6= ⊥, then all ij 6= ⊥, and thus any job to the
right of iLmax+1 would have been stalled for more than
Lmax positions. Hence, all slots to the right of iLmax+1

are free in B, and B is also unique.
Hence, I(B) always uniquely determines B, as desired.

For x, k ∈ N+, denote with Perm(x, k) = x·(x−1) . . . (x−
k + 1) the number of k-permutations on a set of size x.

Lemma 3. Let T be a taskset with maximum deadline Dmax,
and Lmax = maxτi∈T (Di − Ci) be the maximum laxity.
Then, |S′C | 6 min(2Dmax ,Perm(Dmax, Lmax + 1)).

Hence, for zero and small laxity environments [3], as
e.g. arising in wormhole switching in NoCs [26], S′C has
polynomial size in Dmax (also see Appendix Section E for
zero-laxity tasksets with large Dmax).
Clairvoyant LTS generation. We now turn our attention on
efficiently generating the clairvoyant LTS L′C as described
in the previous paragraph. There is non-determinism in two
steps: both in choosing the subset T ′ ⊆ T of the currently
released tasks for execution, and in allocating slots for exe-
cuting all tasks in T ′. Given a current state B and T , this
non-determinism leads to several identical transitions δ to
a state B′. We have developed a recursive algorithm called
ClairvoyantSuccessor (Algorithm 1) that generates each such
transition δ exactly once.

The intuition behind ClairvoyantSuccessor is as follows. It
has been shown that the earliest deadline first (EDF) policy
is optimal in scheduling job sequences where every released
task can be completed [27]. By construction, given a job
sequence σ1, L′C non-deterministically chooses a job sequence
σ2, such that for all `, we have σ`2 ⊆ σ`1, and all jobs in
σ2 are scheduled to completion by L′C . Therefore, it suffices
to consider a transition relation ∆′C that allows at least all
possible choices that admit a feasible EDF schedule on every
possible σ2, for any generated job sequence σ1.

In more detail, ClairvoyantSuccessor is called with a current
state B, a subset of released tasks T and an index k, and
returns the set B of all possible successors of B that schedule
a subset T ′ ⊆ T , and every job of T ′ is executed later than k
slots in the future. This is done by extracting from T the task
τ with the earliest deadline, and proceeding as follows: The
set B is obtained by constructing a state B′ that considers all
the possible ways to schedule τ to the right of k (including the
possibility of not scheduling τ at all), and recursively finding
all the ways to schedule T \ {τ} in B′, to the right of the
rightmost slot allocated for task τ .

Finally, we exploit the following two observations to further
reduce the state space of L′C . First, we note that as long as
there is some load in the state of L′C (i.e., at least one bit
of B is one), the clairvoyant algorithm gains no benefit by
not executing any job in the current slot. Hence, besides the
zero state ~0, every state B must have B[1] = 1. In most
cases, this restriction reduces the state space by at least 50%.
Second, it follows from our claims on the off-line EDF policy
of the clairvoyant scheduler that for every two scheduled jobs
J and J ′, it will never have to preempt J for J ′ and vice
versa. A consequence of this is that, for every state B and
every continuous segment of zeros in B that is surrounded by
ones (called a gap), the gap must be able to be completely
filled with some jobs that start and end inside the gap. This
reduces to solving a knapsack problem [28] where the size of
the knapsack is the length of the gap, and the set of items
is the whole taskset T (with multiplicities). We note that the
problem has to be solved on identical inputs a large number
of times, and techniques such as memoization are employed
to avoid multiple evaluations of the same input.

These two improvements were found to reduce the state
space by a factor up to 90% in all examined cases (see
Section VIII and Table II), and despite the non-determinism,
in all reported cases the generation of LC was done in less
than a second.

On-line state space reduction. Typically, most on-line schedul-
ing algorithms do “lazy dropping” of the jobs, where a job
is dropped only when its deadline passes. To keep the state-
space of the LTS small, it is crucial to only store those jobs
that have the possibility of being scheduled, at least partially,
under some sequence of future task releases. We do so by first
creating the LTS naively, and then iterating through its states.
For each state s and job Ji,j in s with relative deadline Di, we
perform a depth-limited search originating in s for Di steps,
looking for a state s′ reached by a transition that schedules
Ji,j . If no such state is found, we merge state s to s′′, where
s′′ is identical to s without job Ji,j .

Algorithm 1: ClairvoyantSuccessor
Input: A set T ⊆ T , state B, index 1 6 k 6 Dmax

Output: A set B of successor states of B

1 if T = ∅ then return {B};
2 τ ← arg minτi∈T Di, C ← execution time of τ
3 T ′ ← T \ {τ}
// Case 1: τ is not scheduled

4 B ← ClairvoyantSuccessor(T ′, B, k)
// Case 2: τ is scheduled

5 F ← set of free slots in B greater than k
6 foreach F ⊆ F with |F | = C do
7 B′ ← Allocate F in B
8 k′ ← rightmost slot in F
9 B′ ← ClairvoyantSuccessor(T ′, B′, k′)

// Keep only non-redundant states
10 foreach B′′ ∈ B′ do
11 if B′′[1] = 1 and knapsack(B′′, T) then
12 B ← B ∪ {B′′}
13 end
14 end
15 end
16 return B

VIII. EXPERIMENTAL RESULTS

We have implemented our approach for automated compet-
itive ratio analysis, and applied it to a range of case studies:
four well-known scheduling policies, namely, EDF (Earliest
Deadline First), SRT (Shortest Remaining Time), SP (Static
Priorities), and FIFO (First-in First-out), as well as some
more elaborate algorithms that provide non-trivial performance
guarantees, in particular, DSTAR [29] and DOVER [1] (see
also TD1 [3] in Appendix Section E), are analyzed under a
variety of tasksets. Our implementation is done in Python and
C, and uses the lp solve [30] package for linear programming
solutions. All experiments are run on a standard 2010 com-
puter with a 3.2GHz CPU and 4GB of RAM running Linux.

Varying tasksets without constraints. The algorithm DOVER
was proved in [1] to have optimal competitive factor, i.e.,
optimal competitive ratio under the worst-case taskset. How-
ever, our experiments reveal that this performance guarantee
is not universal, in the sense that DOVER is outperformed
by other schedulers for specific tasksets. This observation
applies to all on-line algorithms examined: As shown in
Figure 3, even without constraints on the adversary, for every
scheduling algorithm, there are tasksets in which it achieves
the highest competitive ratio among all others. Note that this
high variability of the optimal on-line algorithm across tasksets
makes our automated analysis framework an interesting tool
for the application designer.

Fixed taskset with varying constraints. We also consider fixed
tasksets under various constraints (such as sporadicity or
workload restrictions) for admissible job sequences. Figure 4
shows our experimental results for workload safety constraints,
which again reveal that, depending on workload constraints,
we can have different optimal schedulers. Finally, we consider
limit-average constraints and observe that varying these con-
straints can also vary the optimal scheduler for a fixed taskset:

Fig. 3: The competitive ratio of the examined algorithms in various tasksets under no constraints; the tasksets A1-A6 are
available in the Appendix Section D. Every examined algorithm is optimal in some taskset, among all others.

Fig. 4: Restricting the absolute workload generated by the
adversary typically increases the competitive ratio, and can
vary the optimal scheduler. On the left, the performance of
each scheduler is evaluated without restrictions: FIFO, SP
behave best. When restricting the adversary to at most 2
units of workload in the last 3 rounds, FIFO and SP become
suboptimal, and are outperformed by other schedulers. The
taskset is available in the Appendix Section D.

1.5 1 0.8 0.6 0.4 0.3 0.1 0.078 0.05

fifo X X X X X X
sp X X X
srt X X X X X X

Table I: Columns show the mean workload restriction. The
check-marks indicate that the corresponding scheduler is
optimal for that mean workload restriction, among the six
schedulers we examined. We see that the optimal scheduler
can vary as the restrictions are tighter, and in a non-monotonic
way. EDF, DSTAR and DOVER were not optimal in any
case and hence not mentioned. The taskset is available in the
Appendix Section D.

As Table I shows, the optimal scheduler can vary highly
and non-monotonically with stronger limit-average workload
restrictions.

Running times. Table II summarizes some key parameters
of our various tasksets, and gives some statistical data on
the observed running times in our respective experiments.
Even though the considered tasksets are small, the very short
running times of our prototype implementation reveal the

Name N Dmax Size (nodes) Time (s)
Clairv. Product Mean Max

set B01 2 7 19 823 0.04 0.05
set B02 2 8 26 1997 0.39 0.58
set B03 2 9 34 4918 10.02 15.21
set B04 3 7 19 1064 0.14 0.40
set B05 3 8 26 1653 0.66 2.05
set B06 3 9 34 7705 51.04 136.62
set B07 4 7 19 1711 2.13 6.34
set B08 4 8 26 3707 13.88 34.12
set B09 4 9 44 10040 131.83 311.94
set B10 5 7 19 2195 5.73 16.42
set B11 5 8 32 9105 142.55 364.92
set B12 5 9 44 16817 558.04 1342.59

Table II: Scalability of our approach for tasksets of various
sizes N and Dmax. For each taskset, the size of the state space
of the clairvoyant scheduler is shown, along with the mean size
of the product LTS, and the mean and maximum time to solve
one instance of the corresponding ratio objective.

principal feasibility of our approach. We believe that further
application-specific optimizations, augmented by abstraction
and symmetry reduction techniques, will allow to scale to
larger applications.

IX. CONCLUSIONS

We presented a flexible framework for automatically ana-
lyzing the competitive ratio of on-line scheduling algorithms
for an input firm-deadline taskset, which also supports various
forms of constraints for admissible job sequences. Our exper-
imental results demonstrate that it allows to solve small-sized
problem instances efficiently. Moreover, they highlight the
importance of our fully automated approach, as there is neither
a “universally” optimal algorithm for all tasksets (even in the
absence of additional constraints) nor an optimal algorithm
for different constraints in the same taskset. Thanks to the
flexibility of our approach, it can be extended in various ways
(multiple processors, algorithm-specific constraints like energy
restrictions, more general deadlines, etc.). Part of our future
research will be devoted to incorporating such features. We
will also study abstraction and symmetry reduction techniques
that will allow our approach to scale to larger instances.

REFERENCES

[1] G. Koren and D. Shasha, “Dover: An optimal on-line scheduling algo-
rithm for overloaded uniprocessor real-time systems,” SIAM J. Comp.,
1995.

[2] A. Borodin and R. El-Yaniv, Online Computation and Competitive
Analysis. Cambridge University Press, 1998.

[3] S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier,
D. Shasha, and F. Wang, “On the competitiveness of on-line real-time
task scheduling,” Real-Time Syst., 1992.

[4] K. Chatterjee, A. Kößler, and U. Schmid, “Automated analysis of real-
time scheduling using graph games,” in HSCC’13, 2013.

[5] Y. Velner, K. Chatterjee, L. Doyen, T. A. Henzinger, A. Rabinovich, and
J.-F. Raskin, “The complexity of multi-mean-payoff and multi-energy
games,” CoRR, 2012.

[6] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani, Algorithmic
Game Theory. Cambridge University Press, 2007.

[7] E. Koutsoupias, “Scheduling without payments,” in SAGT’11, 2011.
[8] K. Altisen, G. Gößler, and J. Sifakis, “Scheduler modeling based on the

controller synthesis paradigm,” Real-Time Systems, 2002.
[9] V. Bonifaci and A. Marchetti-Spaccamela, “Feasibility analysis of spo-

radic real-time multiprocessor task systems,” Algorithmica, 2012.
[10] H. Aydin, R. Melhem, D. Mossé, and P. Mejı́a-Alvarez, “Power-aware

scheduling for periodic real-time tasks,” IEEE Trans. Comput., 2004.
[11] V. Devadas, F. Li, and H. Aydin, “Competitive analysis of online real-

time scheduling algorithms under hard energy constraint,” Real-Time
Syst., 2010.

[12] S. K. Baruah and M. E. Hickey, “Competitive on-line scheduling of
imprecise computations,” IEEE Trans. Comput., 1998.

[13] S. K. Baruah and J. R. Haritsa, “Scheduling for overload in real-time
systems,” IEEE Trans. Comput., 1997.

[14] M. A. Palis, “Competitive algorithms for fine-grain real-time schedul-
ing,” in RTSS’04, 2004.

[15] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek, “A resource
allocation model for qos management,” in RTSS’97, 1997.

[16] C. D. Locke, “Best-effort decision-making for real-time scheduling,”
Ph.D. dissertation, CMU, Pittsburgh, PA, USA, 1986.

[17] S. J. Golestani, “A framing strategy for congestion management,” IEEE
J.Sel. A. Commun., vol. 9, 1991.

[18] R. Cruz, “A calculus for network delay. I. network elements in isolation,”
IEEE Trans. Information Theory, vol. 37, no. 1, 1991.

[19] L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard
real-time systems,” in RTSS’98, 1998.

[20] J. R. Haritsa, M. J. Carey, and M. Livny, “On being optimistic about
real-time constraints,” in PODS’90, 1990.

[21] R. Tarjan, “Depth-first search and linear graph algorithms,” SIAM
Journal on Computing, 1972.

[22] R. M. Karp, “A characterization of the minimum cycle mean in a
digraph,” Discrete Mathematics, 1978.

[23] O. Madani, “Polynomial value iteration algorithms for deterministic
MDPs,” in UAI’02, 2002.

[24] K. Chatterjee, L. Doyen, T. A. Henzinger, and J.-F. Raskin, “Generalized
mean-payoff and energy games.” in FSTTCS, 2010.

[25] L. G. Khachiyan, “A polynomial algorithm in linear programming,”
Doklady Akademii Nauk SSSR, vol. 244, 1979.

[26] Z. Lu and A. Jantsch, “Admitting and ejecting flits in wormhole-switched
networks on chip.” IET Computers & Digital Techniques, vol. 1, 2007.

[27] M. L. Dertouzos, “Control robotics: The procedural control of physical
processes,” in IFIP Congress, 1974.

[28] R. Karp, “Reducibility among combinatorial problems,” in Complexity
of Computer Computations. Springer US, 1972.

[29] S. Baruah, G. Koren, B. Mishra, A. Raghunathan, L. Rosier, and
D. Shasha, “On-line scheduling in the presence of overload,” in
FOCS’91, 1991.

[30] M. Berkelaar, K. Eikland, and P. Notebaert, lpsolve : Open source
(Mixed-Integer) Linear Programming system, version 5.0.0.0, May 2004.

APPENDIX

A. Synchronous product of LTSs

We present the formal definition of synchronous product of
two LTSs. We consider two LTSs L1 = (S1, s1,Σ,Π,∆1) and
L2 = (S2, s2,Σ,Π,∆2). The synchronous product of L1 and
L2 is an LTS L = (S, s,Σ,Π′,∆) such that:

1) S ⊆ S1 × S2,
2) s = (s1, s2),
3) Π′ = Π×Π, and
4) ∆ ⊆ S × Σ × S × Π′ such that

((q1, q2), T, (q′1, q
′
2), (P1, P2)) ∈ ∆ iff (q1, T, q

′
1, P1) ∈

∆1 and (q2, T, q
′
2, P2) ∈ ∆2.

The set of states S is the smallest ∆-closed subset of S1×S2

that contains s (i.e., s ∈ S, and for each q ∈ S, if there exist
q′ ∈ S1 × S2, T ∈ Σ and P ∈ Π′ such that (q, T, q′, P) ∈ ∆,
then q′ ∈ S). That is, the synchronous product of L1 with
L2 captures the joint behavior of L1 and L2 in every input
sequence σ ∈ Σ∞ (L1 and L2 synchronize on input actions).
Note that if both L1 and L2 are deterministic, so is there
synchronous product. The synchronous product of k > 2 LTSs
L1, . . . , Lk is defined iteratively as the synchronous product
of L1 with the synchronous product of L2, . . . , Lk.

B. Examples of constraint LTSs

Figures 5, 6 and 7 show examples of constraint LTSs for
a taskset T = {τ1, τ2} with C1 = C2 = 1.

0

1

2

sr

{}

{τ1}, {τ2}

{}, {τ1}, {τ2}, {τ1, τ2}

{τ1}, {τ2}

{τ1, τ2}

{}
{τ1, τ2}

{}
{τ1}, {τ2}, {τ1, τ2}

Fig. 5: Example of a safety LTS LS that restricts the adversary
to at most 2 units of workload in the last 2 rounds.

sa

{}, {τ1} {τ2}, {τ1, τ2}
{τ2}, {τ1, τ2}

{}, {τ1}

Fig. 6: Example of a liveness LTS LL that forces τ2 to be
released infinitely often.

C. Adaptive Binary Search

Algorithm AdaptiveBinarySearch (Algorithm 2) imple-
ments an adaptive binary search for the competitive ratio in the

{}, w = 0

{τ1, τ2}, w = 2

{τ1}, w = 1{τ2}, w = 1

Fig. 7: Example of a limit-average LTS LW that tracks the
average workload of jobs released by the adversary.

interval [0, 1]. The algorithm maintains an interval [`, r] such
that ` 6 CRJ (A) 6 r at all times, and exploits the nature
of the problem for refining the interval as follows: First, if
the current objective ν ∈ [`, r] (typically, ν = (` + r)/2) is
satisfied in G i.e., Lemma 1 answers “yes” and provides the
current minimum cycle C as a witness, the value r is updated
to the ratio ν′ of the on-line and off-line rewards in C, which is
typically less than ν. This allows to reduce the current interval
for the next iteration from [`, r] to [`, ν′], with ν′ 6 ν, rather
than [`, ν] (as a simple binary search would do). Second, since
CRJ (A) corresponds to the ratio of rewards on a simple cycle
in G, if the current objective ν ∈ [`, r] is not satisfied in G,
the algorithm assumes that CRJ (A) = r (i.e, the competitive
ratio equals the right endpoint of the current interval), and tries
ν = r in the next iteration. Hence, as opposed to a naive binary
search, the adaptive version has the advantages of (i) returning
the exact value of CRJ (A) (rather than an approximation),
and (ii) being faster.

Algorithm 2: AdaptiveBinarySearch
Input: Graph G = (V,E) and weight functions wA, wC
Output: minC∈G

wA(C)
wC(C)

1 `← 0, r ← 1, ν ← (`+r)
2

2 while True do
3 Solve G for obj. Φν and find min simple cycle C
4 ν1 ← wA(C), ν2 ← wC(C)
5 if ν = v1

v2
then

6 return ν
7 else
8 if ν > v1

v2
then

9 r ← ν1
ν2

, ν ← (`+r)
2

10 else
11 `← ν, r ← min

(
ν1
ν2
, r
)

, ν ← r

12 end
13 end
14 end

D. Tasksets used in the reported experiments

Table III lists the tasksets A1-A6 used for Figure 3, Table IV
gives the tasksets used in the experiments reported in Figure 4
and Table I. In all cases, tasks are ordered by their static
priorities, which determine the SP scheduler, as well as the

Name Ci Di Vi Name Ci Di Vi

set A1 1 2 3 set A4 1 2 3
k = 6 4 6 2 k = 3 2 3 2

1 3 3 1 6 1
3 4 3 set A5 2 2 1

set A2 2 3 5 k = 4 6 6 10
k = 5 2 2 1 1 1 2
set A3 2 2 1 set A6 1 5 5
k = 4 1 5 2 k = 5 2 2 4

1 5 2 1 1 1

Table III: Tasksets of Figure 3

Ci Di Vi

1 1 3
1 2 3
1 1 1

Ci Di Vi

2 7 3
5 5 2
5 6 1

Table IV: Taskset of Figure 4 (left) and Table I (right).

way ties are broken by other schedulers. In Table III, along
with each tasket, its importance ratio k is shown, defined as

k = max
τi,τj∈T

Vi/Ci
Vj/Cj

E. Competitive ratio of TD1

We have also considered the performance of the online
scheduler TD1 in zero laxity tasksets with uniform value-
density (i.e., for each task τi, we have Ci = Di = Vi).
Following [3], we have constructed a series of tasksets param-
eterized by some positive real η < 4, which guarantee that the
competitive ratio of every online scheduler is upper bounded
by 1

η . Given η, each taskset consists of tasks τi such that Ci
is given by the following recurrence, as long as Ci+1 > Ci.

(i) C0 = 1 (ii) Ci+1 = η · Ci −
i∑

j=0

Cj

In [3], TD1 was shown to have competitive factor 1
4 , and

hence a competitive ratio that approaches 1
4 from above, as

η → 4 in the above series of tasksets. Table V shows the
competitive ratio of TD1 in this series of tasksets. Each taskset
is represented as a set {Ci}, where each Ci is given by the
above recurrence, rounded up to the first integer. We indeed
see that the competitive ratio drops until it stabilizes to 1

4 .
Finally, note that the zero-laxity restriction allows us to

process tasksets where Dmax is much higher than what we
report in Table II. The results of Table V were produced in
less than a minute in total.

Name η Taskset Comp. Ratio
set C1 2 {1, 1} 1
set C2 3 {1, 2, 3} 1/2
set C3 3.1 {1, 3, 7, 13, 19} 7/25
set C4 3.2 {1, 3, 7, 13, 20, 23} 1/4
set C5 3.3 {1, 3, 7, 14, 24, 33} 1/4
set C6 3.4 {1, 3, 7, 14, 24, 34} 1/4

Table V: Competitive ratio of TD1

F. Examples of on-line schedulers as LTSs

We now present more examples of on-line schedulers rep-
resented as deterministic LTSs. Consider the taskset T =
{τ1, τ2} with D1 = 3, D2 = 2 and C1 = C2 = 1 already
used for the EDF example in Figure 1. Figure 8 shows the
EDF, SP, FIFO, and SRT policies represented as deterministic
LTSs.

(a)

(b)

(c)

Fig. 8: The SP (a), FIFO (b) and SRT (c), on-line scheduling
algorithms for the taskset T = {τ1, τ2} with D1 = 3, D2 = 2
and C1 = C2 = 1, represented as LTSs.

	Introduction
	Problem Definition
	LTSs as Models for Algorithms
	Admissible Job Sequences and Our Approach
	Graphs with Multiple Objectives
	Reduction
	Optimized Reduction
	Experimental Results
	Conclusions
	References
	Appendix
	Synchronous product of LTSs
	Examples of constraint LTSs
	Adaptive Binary Search
	Tasksets used in the reported experiments
	Competitive ratio of TD1
	Examples of on-line schedulers as LTSs

