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Abstract This paper is devoted to automatic competitive analysis of real-time
scheduling algorithms for firm-deadline tasksets, where only completed tasks
contribute some utility to the system. Given such a taskset T , the competitive
ratio of an on-line scheduling algorithm A for T is the worst-case utility ratio of
A over the utility achieved by a clairvoyant algorithm. We leverage the theory
of quantitative graph games to address the competitive analysis and competitive
synthesis problems. For the competitive analysis case, given any taskset T and
any finite-memory on-line scheduling algorithm A, we show that the competitive
ratio of A in T can be computed in polynomial time in the size of the state space
of A. Our approach is flexible as it also provides ways to model meaningful
constraints on the released task sequences that determine the competitive
ratio. We provide an experimental study of many well-known on-line scheduling
algorithms, which demonstrates the feasibility of our competitive analysis
approach that effectively replaces human ingenuity (required for finding worst-
case scenarios) by computing power. For the competitive synthesis case, we are
just given a taskset T , and the goal is to automatically synthesize an optimal
on-line scheduling algorithm A, i.e., one that guarantees the largest competitive

? Preliminary versions of this paper have appeared in [14,15]

This work has been supported by the Austrian Science Foundation (FWF) under the NFN
RiSE (S11405 and S11407), FWF Grant P23499-N23, ERC Start grant (279307: Graph
Games), and Microsoft faculty fellows award.

Krishnendu Chatterjee · Andreas Pavlogiannis
IST Austria (Institute of Science and Technology Austria)
Klosterneuburg, Austria
E-mail: {krish.chat, pavlogiannis}@ist.ac.at

Alexander Kößler · Ulrich Schmid
Embedded Computing Systems Group
Vienna University of Technology
Vienna, Austria
E-mail: {koe,s}@ecs.tuwien.ac.at



2 Krishnendu Chatterjee et al.

ratio possible for T . We show how the competitive synthesis problem can be
reduced to a two-player graph game with partial information, and establish
that the computational complexity of solving this game is Np-complete. The
competitive synthesis problem is hence in Np in the size of the state space of the
non-deterministic labeled transition system encoding the taskset. Overall, the
proposed framework assists in the selection of suitable scheduling algorithms
for a given taskset, which is in fact the most common situation in real-time
systems design.

Keywords Real-time scheduling · Firm-deadline tasks · Competitive analysis ·
Quantitative graph games

1 Introduction

We study the well-known problem of scheduling a sequence of dynamically
arriving real-time task instances with firm deadlines on a single processor,
by using automatic solution techniques based on graphs and games. In firm-
deadline scheduling, a task instance (a job) that is completed by its deadline
contributes a positive utility value to the system; a job that does not meet its
deadline does not harm, but does not add any utility. The goal of the scheduling
algorithm is to maximize the cumulated utility. Firm-deadline tasks arise in
various application domains, e.g., machine scheduling [24], multimedia and
video streaming [1], QoS management in bounded-delay data network switches
[21] and even networks-on-chip [33], and other systems that may suffer from
overload [29].

Competitive analysis [10] has been the primary tool for studying the perfor-
mance of such scheduling algorithms [4]. It allows to compare the performance
of an on-line algorithm A, which processes a sequence of inputs without know-
ing the future, with what can be achieved by an optimal off-line algorithm C
that does know the future (a clairvoyant algorithm): The competitive factor
gives the worst-case performance ratio of A vs. C over all possible scenarios.

In a seminal paper [4], Baruah et al. proved that no on-line scheduling
algorithm for single processors can achieve a competitive factor better than
1/4 over a clairvoyant algorithm in all possible job sequences of all possible
tasksets. The proof is based on constructing a specific job sequence, which
takes into account the on-line algorithm’s actions and thereby forces any such
algorithm to deliver a sub-optimal cumulated utility. For the special case of zero-
laxity tasksets of uniform value-density (where utilities equal execution times),
they also provided the on-line algorithm TD1 with competitive factor 1/4,
concluding that 1/4 is a tight bound for this family of tasksets. In [4], the 1/4
upper bound was also generalized, by showing that there exist tasksets with
importance ratio k, defined as the ratio of the maximum over the minimum
value-density in the taskset, in which no on-line scheduler can have competitive
factor larger than 1

(1+
√
k)2

. In subsequent work [29], the on-line scheduler Dover
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was introduced, which provides the performance guarantee of 1
(1+
√
k)2

in any
taskset with importance ratio k, showing that this bound is also tight.

Problems considered in this paper. Since the taskset arising in a particular
application is usually known, the present work focuses on the competitive
analysis problem for given tasksets: Rather than from all possible tasksets as in
[4], the job sequences used for determining the competitive ratio are chosen from
a taskset given as an input. Note that this is in fact the most common situation
faced by real-time system designers, which would clearly welcome automatic
techniques in the first place. We hence study the two relevant problems for the
automated competitive analysis for given tasksets:

(1) The competitive analysis question asks to compute the competitive ratio of
a given on-line algorithm.

(2) The competitive synthesis question asks to construct an on-line algorithm
with optimal competitive ratio.

Both question are relevant in online-scheduling settings where the taskset
is known in advance. The competitive analysis problem can determine the
performance of existing schedulers, and help with choosing the one that is best
in the given setting. The competitive synthesis problem can even provide a
scheduler that is optimal by construction in the given setting.

Detailed contributions. Our contributions on each problem are as follows.

Competitive Analysis. Given a taskset T and an on-line scheduling algorithm
A, the competitive analysis question asks to determine the competitive ratio of
A when the arriving jobs are instances of tasks from T . Our respective results
are provided in the following sections:

– In Section 2, we formally define our real-time scheduling problem.
– In Section 3, we provide a formalism for on-line and clairvoyant scheduling

algorithms as labeled transitions systems. We also show how automata
on infinite words can be used to express natural constraints on the set of
released job sequences (such as sporadicity and workload constraints).

– In Sections 4.1 and 4.2, we define graph objectives on weighted multi-graphs
and provide algorithms for solving those objectives.

– In Section 4.3, we present a formal reduction of the competitive analysis
problem to solving a multi-objective graph problem. Section 4.4 describes
both general and implementation-specific optimizations for the above re-
duction, which considerably reduce the size of the obtained graph and thus
make our approach feasible in practice.

– In Section 4.5, we present a comparative study of the competitive ratio of
several existing firm-deadline real-time scheduling algorithms. Our results
show that the competitive ratio of any algorithm varies highly when varying
tasksets, which highlights the usefulness of an automated competitive
analysis framework: After all, our framework allows to replace human
ingenuity (required for finding worst-case scenarios) by computing power, as
the application designer can analyze different scheduling algorithms for the
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specific taskset arising in some application and compare their competitive
ratio.

Competitive Synthesis. Given a taskset T , the competitive synthesis question
asks to construct an on-line scheduling algorithm A with optimal competitive
ratio for T : The competitive ratio of A for T is at least as large as the
competitive ratio of any other on-line scheduling algorithm for T . Our respective
results are presented in Section 5:

– In Section 5.1, we consider a game model (a partial-observation game with
memoryless strategies for Player 1 with mean-payoff and ratio objectives)
that is suitable for the competitive synthesis of real-time scheduling al-
gorithms. The mean-payoff (resp. ratio) objective allows to compute the
cumulated utility (resp. competitive ratio) of the best on-line algorithm
under the worst-case task sequence.

– In Section 5.2, we establish that the relevant decision problems for the
underlying game are Np-complete in the size of the game graph.

– In Section 5.3, we use the game of Section 5.1 to tackle two relevant synthesis
problems for a given taskset T : First, we show that constructing an on-line
scheduling algorithm with optimal worst-case average utility for T is in
Np ∩ coNp in general, and polynomial in the size of the underlying game
graph for reasonable choices of task utility values. Second, we show that
constructing an on-line scheduling algorithm with optimal competitive ratio
for T is in Np. Note that these complexities are with respect to the size
of the constructed algorithm, represented explicitly as a labeled transition
system. As a function of the input taskset T given in binary, all polynomial
upper bounds become exponential upper bounds in the worst case.

Related work: Algorithmic game theory [37] has been applied to classic
scheduling problems since decades, primarily in economics and operations
research, see e.g. [30] for just one example of some more recent work. In the
real-time systems context, mechanism design [40] is an area where game theory
is actually the method of choice: Rather than determining the performance
of a scheduling algorithm resp. finding an optimal one for some given taskset,
i.e., for some given set of rules, which is our goal, the challenge in mechanism
design is to define the rules that allow the system to to achieve certain goals,
e.g., performance, in the presence of rational agents that strive for maximizing
some local benefit.

However, game theory has also been applied to problems that are more
closely related to the one studied in this paper. In particular, Sheikh et. al. [43]
considered the problem of non-preemptively scheduling periodic hard real-time
tasks (where all jobs must make their deadlines), and used an optimal strategy
in the context of non-cooperative games to optimally determine the initial offsets
of all tasks in the periodic schedule. Altisen et al. [2] used games for synthesizing
controllers dedicated to meeting all deadlines in systems with shared resources.
Bonifaci and Marchetti-Spaccamela [9] employed graph games for automatic
feasibility analysis of sporadic real-time tasks in multiprocessor systems: Given
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a set of sporadic tasks (where consecutive releases of jobs of the same task are
separated at least by some sporadicity interval), the algorithms provided in [9]
allow to decide, in polynomial time, whether some given scheduling algorithm
will meet all deadlines. A partial-information game variant of their approach
also allows to synthesize an optimal scheduling algorithm for a given taskset
(albeit not in polynomial time).

A recent work [34] studies the synthesis of schedulers where the task is
to minimize the weighted sum of completion times of the released tasks. It
is shown how the competitive ratio can be approximated in various online
schemes, e.g. for parallel, related, and unrelated machines. We note that our
online setting differs on the objective function that needs to be obtained (i.e.,
maximizing utility vs minimizing completion times).

Regarding firm-deadline task scheduling in general, starting out from [4],
classic real-time systems research has studied the competitive factor of both
simple and extended real-time scheduling algorithms. The competitive analysis
of simple algorithms has been extended in various ways later on: Energy
consumption [3,19] (including dynamic voltage scaling), imprecise computation
tasks (having both a mandatory and an optional part and associated utilities)
[7], lower bounds on slack time [6], and fairness [38]. Note that dealing with
these extensions involved considerable ingenuity and efforts w.r.t. identifying
and analyzing appropriate worst-case scenarios, which do not necessarily carry
over even to minor variants of the problem. Maximizing cumulated utility
while satisfying multiple resource constraints is also the purpose of the Q-RAM
(QoS-based Resource Allocation Model) [41] approach.

Preliminary versions of this work have appeared in [15] (competitive analysis)
and [14] (competitive synthesis). The present paper unifies the two topics in
a common framework, which we develop in more detail. Additionally, we
have extended our experiments to also incorporate the well-known scheduling
algorithms TD1 [4] and Least Laxity First [31]. Finally, we have extended
our competitive synthesis approach to also cover constrained environments
(imposing safety, liveness and limit-average constraints for the generated job
sequences).

2 Problem Definition

We consider a finite set of tasks T = {τ1, . . . , τN}, to be executed on a single
processor. We assume a discrete notion of real-time t = kε, k > 1, where ε > 0
is both the unit time and the smallest unit of preemption (called a slot). Since
both task releases and scheduling activities occur at slot boundaries only, all
timing values are specified as positive integers. Every task τi releases countably
many task instances (called jobs) Ji,j := (τi, j) ∈ T ×N+ (where N+ is the set
of positive integers) over time (i.e., Ji,j denotes that a job of task i is released
at time j). All jobs, of all tasks, are independent of each other and can be
preempted and resumed during execution without any overhead. Every task
τi, for 1 6 i 6 N , is characterized by a 3-tuple τi = (Ci, Di, Vi) consisting of
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its non-zero worst-case execution time Ci ∈ N+ (slots), its non-zero relative
deadline Di ∈ N+ (slots) and its non-zero utility value Vi ∈ N+ (rational utility
values V1, . . . , VN can be mapped to integers by proper scaling). We denote
with Dmax = max16i6N Di the maximum relative deadline in T . Every job
Ji,j needs the processor for Ci (not necessarily consecutive) slots exclusively
to execute to completion. All tasks have firm deadlines: only a job Ji,j that
completes within Di slots, as measured from its release time, provides utility
Vi to the system. A job that misses its deadline does not harm but provides
zero utility. The goal of a real-time scheduling algorithm in this model is to
maximize the cumulated utility, which is the sum of Vi times the number of
jobs Ji,j that can be completed by their deadlines, in a sequence of job releases
generated by the adversary.

Notation on sequences. Let X be a finite set. For an infinite sequence
x = (x`)`>1 = (x1, x2, . . .) of elements in X, we denote by x` the element in
the `-th position of x, and denote by x(`) = (x1, x2, . . . , x`) the finite prefix
of x up to position `. We denote by X∞ the set of all infinite sequences of
elements from X. Given a function f : X → Z (where Z is the set of integers)
and a sequence x ∈ X∞, we denote with f(x, k) =

∑k
`=1 f(x

`) the sum of the
images of the first k sequence elements under f .

Job sequences. The released jobs form a discrete sequence, where at each
time point the adversary releases at most one new job from every task. Formally,
the adversary generates an infinite job sequence σ = (σ`)`>1 ∈ Σ∞, where
Σ = 2T . The release of one job of task τi in time `, for some ` ∈ N+, is denoted
by having τi ∈ σ`. Then, a (single) new job Ji,j of task τi is released at the
beginning of slot `: j = ` denotes the release time of Ji,j , which is also the
earliest time that the job Ji,j can be executed, and di,j = j +Di denotes its
absolute deadline.

Admissible Job Sequences. We present a flexible framework, where the set
of admissible job sequences that the adversary can generate may be restricted.
The set J of admissible job sequences from Σ∞ can be obtained by imposing
one or more of the following (optional) admissibility restrictions:

(S) Safety constraints, which are restrictions that have to hold in every finite
prefix of an admissible job sequence; e.g., they can be used to enforce
job release constraints such as periodicity or sporadicity, and to impose
temporal workload restrictions.

(L) Liveness restrictions, which assert infinite repetition of certain job releases
in a job sequence; e.g., they can be used to force the adversary to release a
certain task infinitely often.

(W) Limit-average constraints, which restrict the long run average behavior
of a job sequence; e.g., they can be used to enforce that the average load in
the job sequences does not exceed a threshold.

These three types of constraints will be made precise in the next section
where we formally state the problem definition.
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Schedule. Given an admissible job sequence σ ∈ J , the schedule π = (π`)`>1 ∈
Π∞, where Π = ((T × {0, . . . , Dmax − 1}) ∪ ∅), computed by a real-time
scheduling algorithm for σ, is a function that assigns at most one job for
execution to every slot ` > 1: π` is either ∅ (i.e., no job is executed) or else
(τi, j) (i.e., the job Ji,`−j of task τi released j slots ago is executed). The latter
must satisfy the following constraints:

1. τi ∈ σ`−j (the job has been released),
2. j < Di (the job’s deadline has not passed),
3. |{k : k > 0 and π`−k = (τi, j

′) and k + j′ = j}| < Ci (the job released in
slot `− j has not been completed).

Note that our definition of schedules uses relative indexing in the scheduling
algorithms: At time point `, the scheduling algorithm computing π` uses index
j to refer to slot `− j. Recall that π(k) denotes the prefix of length k > 1 of π.
We define γi(π, k) to be the number of jobs of task τi that are completed by
their deadlines in π(k). The cumulated utility V (π, k) (also called utility for
brevity) achieved in π(k) is defined as V (π, k) =

∑N
i=1 γi(π, k) · Vi.

Competitive ratio. We are interested in evaluating the performance of de-
terministic on-line scheduling algorithms A, which, at time `, do not know any
of the σk for k > ` when running on σ ∈ J . In order to assess the performance
of A, we will compare the cumulated utility achieved in the schedule πA to
the cumulated utility achieved in the schedule πC provided by an optimal
off-line scheduling algorithm, called a clairvoyant algorithm C, working on the
same job sequence. Formally, given a taskset T , let J ⊆ Σ∞ be the set of
all admissible job sequences of T that satisfy given (optional) safety, liveness,
and limit-average constraints. For every σ ∈ J , we denote with πσA (resp. πσC )
the schedule produced by A (resp. C) under σ. The competitive ratio of the
on-line algorithm A for the taskset T under the admissible job sequence set J
is defined as

CRJ (A) = inf
σ∈J

lim inf
k→∞

1 + V (πσA, k)

1 + V (πσC , k)
(1)

that is, the worst-case ratio of the cumulated utility of the on-line algorithm
versus the clairvoyant algorithm, under all admissible job sequences. Note that
adding 1 in numerator and denominator simply avoids division by zero issues.

Remark 1 Since, according to the definition of the competitive ratio CRJ in
Equation (1), we focus on worst-case analysis, we do not consider randomized
algorithms (such as Locke’s best-effort policy [32]). Generally, for worst-case
analysis, randomization can be handled by additional choices for the adversary.
For the same reason, we do not consider scheduling algorithms that can use
the unbounded history of job releases to predict the future (e.g., to capture
correlations).
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3 Modeling Formalisms in Our Framework

In this section, we present the definitions of several types of labeled transition
systems (LTSs). We use LTSs as the modeling formalism for on-line and
clairvoyant scheduling algorithms, as well as for modeling optional constraints
on the released job sequences.

3.1 Labeled Transition Systems

We will consider both on-line and off-line scheduling algorithms that are
formally modeled as labeled transition systems (LTSs): Every deterministic
finite-state on-line scheduling algorithm can be represented as a deterministic
LTS, such that every input job sequence generates a unique run that determines
the corresponding schedule. On the other hand, an off-line algorithm can be
represented as a non-deterministic LTS, which uses the non-determinism to
guess the appropriate job to schedule.

Labeled transitions systems (LTSs). Formally, a labeled transition system
(LTS) is a tuple L = (S, s1, Σ,Π,∆), where S is a finite set of states, s1 ∈ S
is the initial state, Σ is a finite set of input actions, Π is a finite set of
output actions, and ∆ ⊆ S ×Σ × S ×Π is the transition relation. Intuitively,
(s, x, s′, y) ∈ ∆ if, given the current state s and input x, the LTS outputs y
and makes a transition to state s′. If the LTS is deterministic, then there is
always a unique output and next state, i.e., ∆ is a function ∆ : S × Σ →
S × Π. Given an input sequence σ ∈ Σ∞, a run of L on σ is a sequence
ρA = (p`, σ`, q`, π`)`>1 ∈ ∆∞ such that p1 = s1 and for all ` > 2, we have
p` = q`−1. For a deterministic LTS, for each input sequence, there is a unique
run.

Deterministic LTS for an on-line algorithm. For our analysis, on-line
scheduling algorithms are represented as deterministic LTSs. Recall the def-
inition of the sets Σ = 2T , and Π = ((T × {0, . . . , Dmax − 1}) ∪ ∅). Every
deterministic on-line algorithm A that uses finite state space (for all job se-
quences) can be represented as a deterministic LTS LA = (SA, sA, Σ,Π,∆A),
where the states SA correspond to the state space of A, and ∆A corresponds
to the execution of A for one slot. Note that, due to relative indexing, for every
current slot `, the schedule (π`)`>1 of A contains elements π` from the set Π,
and π` = (τi, j) uniquely determines the job Ji,`−j . Finally, we associate with
LA a reward function rA : ∆A → N such that rA(δ) = Vi if the transition δ
completes a job of task τi, and rA(δ) = 0 otherwise. Given the unique run
ρσA = (δ`)`>1 of LA for the job sequence σ, where δ` denotes the transition
taken at the beginning of slot `, the cumulated utility in the prefix of the first
k transitions in ρσA is V (ρσA, k) =

∑k
`=1 rA(δ

`).
Most scheduling algorithms (such as EDF, FIFO, DOVER [29], TD1 [4])

can be represented as a deterministic LTS. An illustration for EDF is given in
the following example.
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{τ1}
(τ1, 1)

{τ1, τ2}
(τ1, 1)

-

{}
(τ1, 2)

{τ2}
(τ1, 2)
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(τ1, 2)

{τ1, τ2}
(τ1, 2)

{}
(τ1, 1)

{τ1}
(τ1, 1)
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(τ1, 1)
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(τ1, 1)

{}
(τ2, 1)

{τ2}
(τ2, 1)

{τ1}
(τ1, 0)

{τ1}
(τ2, 1)

{τ1, τ2}
(τ2, 1)

{}
(τ1, 1)

{τ2}
(τ1, 1)

{τ2}
(τ2, 0)

{τ1, τ2}
(τ2, 0)

Fig. 1 EDF for T = {τ1, τ2} with D1 = 3, D2 = 2 and C1 = C2 = 2, represented as a
deterministic LTS.

Example 1 Consider the taskset T = {τ1, τ2}, with D1 = 3, D2 = 2 and
C1 = C2 = 2. Figure 1 represents the EDF (Earliest Deadline First) scheduling
policy as a deterministic LTS for T . Each state is represented by a matrix
M , such that M [i, j], 1 6 i 6 N , 1 6 j 6 Dmax − 1, denotes the remaining
execution time of the job of task τi released j slots ago. Every transition is
labeled with a set T ∈ Σ of released tasks as well as with (τi, j) ∈ Π, which
denotes the unique job Ji,`−j to be scheduled in the current slot `. Released
jobs with no chance of being scheduled are not included in the state space. For
example, while being in the topmost state, the release of τ1 makes the LTS
take the transition to the leftmost state, where 1 unit of work is scheduled for
the released task, and 1 unit remains, encoded by writing 1 in position (1, 1)
of the matrix M . In the next round, a new release of τ2 will take the LTS to
the middle state, with 2 units of workload in position (1, 1). This is because
the 2nd workload of the first job is scheduled (thus the first job is scheduled to
completion), and the newly released job is not scheduled in the current slot.
Thus all 2 units of workload of the currently released job remain.

All scheduling algorithms considered in this paper have been encoded
similarly to EDF using the matrix M . Some more involved schedulers, such as
DOVER, require some extra bits of information stored in the state.

The non-deterministic LTS. The clairvoyant algorithm C is formally a
non-deterministic LTS LC = (SC , sC , Σ,Π,∆C), where each state in SC is a
N × (Dmax − 1) matrix M . For each time slot `, the entry M [i, j], 1 6 i 6 N ,
1 6 j 6 Dmax − 1, denotes the remaining execution time of the job Ji,`−j
(i.e., the job of task i released j slots ago). For matrices M , M ′, subset
T ∈ Σ of newly released tasks, and scheduled job P = (τi, j) ∈ Π, we have
(M,T,M ′, P ) ∈ ∆C iff M [i, j] > 0 and M ′ is obtained from M by
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1. inserting all τi ∈ T into column 1 of M ,
2. decrementing the value at position M [i, j], and
3. shifting the contents of M by one column to the right, while initializing

column 1 to all 0.

That is, M ′ corresponds to M after inserting all released tasks in the current
state, executing a pending task for one unit of time, and reducing the relative
deadlines of all tasks currently in the system. The initial state sC is represented
by the zero N × (Dmax − 1) matrix, and SC is the smallest ∆C-closed set of
states that contains sC (i.e., if M ∈ SC and (M,T,M ′, P ) ∈ ∆C for some T ,
M ′ and P , we have M ′ ∈ SC). Finally, we associate with LC a reward function
rC : ∆C → N such that rC(δ) = Vi if the transition δ completes a task τi, and
rC(δ) = 0 otherwise.

Remark 2 Note that the size of the above LTSs is the size of the state space
of the corresponding scheduling algorithm. If the input consists of a succinct
description of these algorithms (e.g., as a circuit [22]), then the size of the
corresponding LTS is, in general, exponential in the size of the input. This
state-space explosion is generally unavoidable [16]. In the complexity analysis
of our algorithms, we consider all scheduling algorithms to be given in the
explicit form of LTSs. When appropriate, we will state what the obtained
results imply for the case where the input is succinct.

3.2 Admissible job sequences

Our framework allows to restrict the adversary to generate admissible job
sequences J ⊆ Σ∞, which can be specified via different constraints. Since
a constraint on job sequences can be interpreted as a language (which is a
subset of infinite words Σ∞ here), we will use automata as acceptors of such
languages. Since an automaton is a deterministic LTS with no output, all our
constraints will be described as LTSs with an empty set of output actions. We
allow the following types of constraints:

(S) Safety constraints are defined by a deterministic LTS LS =
(SS , sS , Σ,∅, ∆S), with a distinguished absorbing reject state sr ∈ SS .
An absorbing state is a state that has outgoing transitions only to itself.
Every job sequence σ defines a unique run ρσS in LS , such that either no
transition to sr appears in ρσS , or every such transition is followed solely by
self-transitions to sr. A job sequence σ is admissible to LS , if ρσS does not
contain a transition to sr. To obtain a safety LTS that does not restrict J
at all, we simply use a trivial deterministic LS with no transition to sr.
Safety constraints restrict the adversary to release job sequences, where
every finite prefix satisfies some property (as they lead to the absorbing reject
state sr of LS otherwise). Some well-known examples of safety constraints
are (i) periodicity and/or sporadicity constraints, where there are fixed
and/or a minimum time between the release of any two consecutive jobs
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0

1

2

sr

{}

{τ1}, {τ2}

{}, {τ1}, {τ2}, {τ1, τ2}

{τ1}, {τ2}

{τ1, τ2}

{}

{τ1, τ2}

{}
{τ1}, {τ2}, {τ1, τ2}

Fig. 2 Example of a safety LTS LS that restricts the adversary to release at most 2 units of
workload in the last 2 slots. In state 0, no workload has been released in the last 2 slots, and
thus all task releases are allowed for the next time slot. In state 1, there has been 1 unit of
workload released in the last 2 slots, and thus in the next slot only one task can be released.
If no task is released in the next slot, then we transition back to state 0, to indicate that in
the next time slot any combination of task releases is allowed. In state 2, there have been 2
units of workload released in the last 2 slots, and thus no task release is allowed in the next
slot. If no tasks are released, then the LTS transitions back to state 0, as in the next time
slot any combination of task releases is allowed. If any of the above rules is violated, the
safety LTS transitions to the absorbing state sr, and remains there forever to indicate that
the workload restriction has been violated.

of a given task, and (ii) absolute workload constraints [23,17], where the
total workload released in the last k slots, for some fixed k, is not allowed
to exceed a threshold λ. For example, in the case of absolute workload
constraints, LS simply encodes the workload in the last k slots in its state,
and makes a transition to sr whenever the workload exceeds λ. Figure 2
shows an example of a constraint LTS for the taskset T = {τ1, τ2} with
C1 = C2 = 1 that restricts the adversary to release at most 2 units of
workload in the last 2 slots.

(L) Liveness constraints are modeled as a deterministic LTS LL =
(SL, sL, Σ,∅, ∆L) with a distinguished accept state sa ∈ SL. A job se-
quence σ is admissible to the liveness LTS LL if ρσL contains infinitely many
transitions to sa. For the case where there are no liveness constraint in J ,
we use a LTS LL consisting of state sa only.
Liveness constraints force the adversary to release job sequences that satisfy
some property infinitely often. For example, they could be used to guarantee
that the release of some particular task τi does not eventually stall; the
constraint is specified by a two-state LTS LL that visits sa whenever the
current job set includes τi. A liveness constraint can also be used to prohibit
infinitely long periods of overload [4], by choosing sa as the idle state.
Figure 3 shows an example of a constraint LTS for the taskset T = {τ1, τ2}
that forces the adversary to release τ2 infinitely often.
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sa

{}, {τ1} {τ2}, {τ1, τ2}
{τ2}, {τ1, τ2}

{}, {τ1}

Fig. 3 Example of a liveness LTS LL that forces τ2 to be released infinitely often. Each
time the τ2 is released, the LTS transitions to the accepting state sa to indicate the release
of the desired task. Recall that the accepting condition of LL is that sa needs to be appear
infinitely often in an accepting path, meaning that the task τ2 appears infinitely often.

{}, w = 0

{τ1, τ2}, w = 2

{τ1}, w = 1{τ2}, w = 1

Fig. 4 Example of a limit-average LTS LW that tracks the average workload of jobs released
by the adversary. This is achieved by having the weight function indicate the total workload
released in each time slot. In this case we have C1 = C2 = 1, and the total workload equals
the number of released tasks.

(W) Limit-average constraints are defined by a deterministic weighted LTS
LW = (SW , sW , Σ,∅, ∆W) equipped with a weight function w : ∆W → Zd

that assigns a vector of weights to every transition δW ∈ ∆W . Given a
threshold vector

#»

λ ∈ Qd, where Q denotes the set of all rational numbers,
a job sequence σ and the corresponding run ρσW = (δ`W)`>1 of LW , the
job sequence is admissible to LW if lim infk→∞

1
k · w(ρ

σ
W , k) 6

#»

λ with
w(ρσW , k) =

∑k
i=1 w(δ

`
W).

Consider a relaxed notion of workload constraints, where the adversary is
restricted to generate job sequences whose average workload does not exceed
a threshold λ. Since this constraint still allows “busy” intervals where the
workload temporarily exceeds λ, it cannot be expressed as a safety constraint.
To support such interesting average constraints of admissible job sequences,
where the adversary is more relaxed than under absolute constraints, our
framework explicitly supports limit-average constraints. Therefore, it is
possible to express the average workload assumptions commonly used in
the analysis of aperiodic task scheduling in soft-real-time systems [1,25].
Other interesting cases of limit-average constraints include restricting the
average sporadicity, and, in particular, average energy: ensuring that the
limit-average of the energy consumption is below a certain threshold is
an important concern in modern real-time systems [3]. Figure 4 shows an
example of a constraint LTS for the taskset T = {τ1, τ2} with C1 = C2 = 1,
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which can be used to restrict the average workload the adversary is allowed
to release in the long run.

Remark 3 While, in general, such constraints are encoded as independent
automata, it is often possible to encode certain constraints directly in the
non-deterministic LTS of the clairvoyant scheduler instead. In particular, this
is possible for restricting the limit-average workload, generating finite intervals
of overload, and releasing a particular job infinitely often.

Synchronous product of LTSs. The synchronous product of two LTSs L1 =
(S1, s1, Σ,Π,∆1) and L2 = (S2, s2, Σ,Π,∆2) is an LTS L = (S, s,Σ,Π ′, ∆)
such that:

1. S ⊆ S1 × S2,
2. s = (s1, s2),
3. Π ′ = Π ×Π, and
4. ∆ ⊆ S × Σ × S × Π ′ such that ((q1, q2), T, (q

′
1, q
′
2), (P1, P2)) ∈ ∆ iff

(q1, T, q
′
1, P1) ∈ ∆1 and (q2, T, q

′
2, P2) ∈ ∆2.

The set of states S is the smallest ∆-closed subset of S1 × S2 that contains
s (i.e., s ∈ S, and for each q ∈ S, if there exist q′ ∈ S1×S2, T ∈ Σ and P ∈ Π ′
such that (q, T, q′, P ) ∈ ∆, then q′ ∈ S). That is, the synchronous product of
L1 with L2 captures the joint behavior of L1 and L2 in every input sequence
σ ∈ Σ∞ (L1 and L2 synchronize on input actions). Note that if both L1 and
L2 are deterministic, so is their synchronous product. The synchronous product
of k > 2 LTSs L1, . . . , Lk is defined iteratively as the synchronous product of
L1 with the synchronous product of L2, . . . , Lk.
Overall approach for computing CR. Our goal is to determine the worst-
case competitive ratio CRJ (A) for a given on-line algorithm A. The inputs
to the problem are the given taskset T , an on-line algorithm A specified as a
deterministic LTS LA, and the safety, liveness, and limit-average constraints
specified as deterministic LTSs LS , LL and LW , respectively, which constrain
the admissible job sequences J . Our approach uses a reduction to a multi-
objective graph problem, which consists of the following steps:

1. Construct a non-deterministic LTS LC corresponding to the clairvoyant
off-line algorithm C. Note that since LC is non-deterministic, for every
admissible job sequence σ, there are many possible runs in LC, of course
also including the runs with maximum cumulative utility.

2. Take the synchronous product LTS LA × LC × LS × LL × LW . By doing
so, a path in the product graph corresponds to identically labeled paths
in the LTSs, and thus ensures that they agree on the same job sequence σ.
This product can be represented by a multi-objective graph (as introduced
in Section 4.1).

3. Determine CRJ (A) by reducing the computation of the ratio given in
Equation (1) to solving a multi-objective problem on the product graph.

4. Employ several optimizations in order to reduce the size of product graph
(see Sections 4.3 and 4.4).
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4 Competitive Analysis of On-line Scheduling Algorithms

In this section, we address the competitive analysis problem: Given a taskset, a
LTS LA for the on-line scheduling algorithm, and optional constraint automata
LS , LL, LW for the set of admissible job sequences J , our algorithms compute
the competitive ratio CRJ (A) of A in J . Our presentation is organized as
follows: In Section 4.1, we define qualitative and quantitative objectives on
multi-graphs. In Section 4.2, we provide algorithms for solving these graph
objectives. In Section 4.3, we establish a formal reduction of computing the
competitive ratio CRJ (A) of an on-line scheduling algorithm A to solving for
graph objectives on a suitable multi-graph. In Section 4.4, we describe several
generic optimizations for this reduction that make the reduction practical.
In Section 4.5, we provide the results of an automatic competitive analysis
of a wide range of classic on-line scheduling algorithms, using a prototype
implementation of our framework.

4.1 Graphs with Multiple Objectives

In this subsection, we define various objectives on graphs and outline the
algorithms for solving them. We later show how the competitive analysis of
on-line schedulers reduces to the solution algorithms of this section.
Multi-graphs. A multi-graph G = (V,E), hereinafter called simply a graph,
consists of a finite set V of n nodes, and a finite set of m directed multiple edges
E ⊂ V × V ×N+. For brevity, we will refer to an edge (u, v, i) as (u, v), when
i is not relevant. We consider graphs in which for all u ∈ V , we have (u, v) ∈ E
for some v ∈ V , i.e., every node has at least one outgoing edge. An infinite
path ρ of G is an infinite sequence of edges e1, e2, . . . such that, for all i > 1
with ei = (ui, vi), we have vi = ui+1. Every such path ρ induces a sequence of
nodes (ui)i>1, which we will also call a path when the distinction is clear from
the context, where ρi refers to ui instead of ei. Finally, we denote by Ω the set
of all paths of G.
Objectives. Given a graph G, an objective Φ is a subset of Ω that defines
the desired set of paths. We will consider safety, liveness, mean-payoff (limit-
average), and ratio objectives, and their conjunction for multiple objectives.

Safety and liveness objectives: We consider safety and liveness objectives, both
defined with respect to some subset of nodes X,Y ⊆ V . Given X ⊆ V , the
safety objective, defined as Safe(X) = {ρ ∈ Ω : ∀i > 1, ρi 6∈ X}, represents
the set of all paths that never visit the set X. The liveness objective defined
as Live(Y ) = {ρ ∈ Ω : ∀j∃i > j s.t. ρi ∈ Y } represents the set of all paths
that visit Y infinitely often.

Mean-payoff and ratio objectives: We consider the mean-payoff and ratio ob-
jectives, defined with respect to a weight function and a threshold. A weight
function w : E → Zd assigns to each edge of G a vector of d integers. A
weight function naturally extends to paths, with w(ρ, k) =

∑k
i=1 w(ρ

i). The
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1 2 3
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5

−1, 3

−1,−1

7, 7

6, 6

0,−1

−5, 0

1, 0

9, 9 8, 82, 1

Fig. 5 An example of a multi-graph G.

mean-payoff (or limit-average) of a path ρ is defined as:

MP(w, ρ) = lim inf
k→∞

1

k
· w(ρ, k);

i.e., it is the long-run average of the weights of the path. Given a weight
function w and a threshold vector #»ν ∈ Qd, the corresponding objective is
given as:

MP(w, #»ν ) = {ρ ∈ Ω : MP(w, ρ) 6 #»ν };
that is, the set of all paths such that the mean-payoff of their weights is at
most #»ν (where we consider pointwise comparision for vectors). For weight
functions w1, w2 : E → Nd, the ratio of a path ρ is defined as:

Ratio(w1, w2, ρ) = lim inf
k→∞

#»
1 + w1(ρ, k)
#»
1 + w2(ρ, k)

,

which denotes the limit infimum of the coordinate-wise ratio of the sum
of weights of the two functions; #»

1 denotes the d-dimensional all-1 vector.
Given weight functions w1, w2 and a threshold vector #»ν ∈ Qd, the ratio
objective is given as:

Ratio(w1, w2,
#»ν ) = {ρ ∈ Ω : Ratio(w1, w2, ρ) 6

#»ν }

that is, the set of all paths such that the ratio of cumulative rewards w.r.t
w1 and w2 is at most #»ν .

Example 2 Consider the multi-graph shown in Figure 5, with a weight function
of dimension d = 2. Note that there are two edges from node 3 to node 5
(represented as edges (3, 5, 1) and (3, 5, 2)). In the graph we have a weight
function with dimension 2. Note that the two edges from node 3 to node 5
have incomparable weight vectors.

Decision problem. The decision problem we consider is as follows: Given the
graph G, an initial node s ∈ V , and an objective Φ (which can be a conjunction
of several objectives), determine whether there exists a path ρ that starts
from s and belongs to Φ, i.e., ρ ∈ Φ. For simplicity of presentation, we assume
that every u ∈ V is reachable from s (unreachable nodes can be discarded
by preprocessing G in O(m) time). We first present algorithms for each of
safety, liveness, mean-payoff, and ratio objectives separately, and then for their
conjunction.
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4.2 Algorithms for Solving Graphs with Multiple Objectives

We now describe the algorithms for solving the graph objectives introduced in
the last subsection.

Algorithms for safety and liveness objectives. The algorithm for the
objective Safe(X) is straightforward. We first remove the set X of nodes and
then perform an SCC (maximal strongly connected component) decomposition
of G. Then, we perform a single graph traversal to identify the set of nodes
VX which can reach an SCC that contains at least one edge (i.e., it contains
either a single node with a self-loop, or more than one nodes). Note that since
we have removed the set X, we have that VX ∩X = ∅. In the end, we obtain
a graph G = (VX , EX) such that EX = E ∩ (VX × VX). Thus, the objective
Safe(X) is satisfied in the resulting graph, and the algorithm answers yes iff
s ∈ VX . Using the algorithm of [44] for performing the SCC decomposition,
this algorithm requires O(m) time.

To solve for the objective Live(Y ), initially perform an SCC decomposition
of G. We call an SCC VSCC live, if (i) either |VSCC| > 1, or VSCC = {u} and
(u, u) ∈ E; and (ii) VSCC∩Y 6= ∅. Then Live(Y ) is satisfied in G iff there exists
a live SCC VSCC that is reachable from s. This is because every node u in VSCC
can reach every node in VSCC, and thus there is a path u u in VSCC. Since
VSCC is a live SCC, the same holds for nodes u ∈ VSCC ∩ Y . Then a witness
path can be constructed which first reaches some node u ∈ VSCC ∩Y , and then
keeps repeating the path u  u. Using the algorithm of [44] for performing
the SCC decomposition, this algorithm also requires O(m) time.

Algorithms for mean-payoff objectives. We distinguish between the case
when the weight function has a single dimension (d = 1) versus the case when
the weight function has multiple dimensions (d > 1).

Single dimension: In the case of a single-dimensional weight function, a single
weight is assigned to every edge, and the decision problem of the mean-payoff
objective reduces to determining the mean weight of a minimum-weight
simple cycle in G, as the latter also determines the mean-weight by infinite
repetition. Using the algorithms of [27,35], this process requires O(n ·m)
time. When the objective is satisfied, the process also returns a simple
cycle C, as a witness to the objective. From C, a path ρ ∈ MP(w, #»ν ) is
constructed by infinite repetitions of C.

Multiple dimensions: When d > 1, the mean-payoff objective reduces to de-
termining the feasibility of a linear program (LP). For u ∈ V , let IN(u)
be the set of incoming, and OUT(u) the set of outgoing edges of u. As
shown in [45], G satisfies MP(w, #»ν ) iff the following set of constraints on
#»x = (xe)e∈ESCC with xe ∈ Q is satisfied simultaneously on some SCC VSCC
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of G with induced edges ESCC ⊆ E.

xe > 0 e ∈ ESCC∑
e∈IN(u)

xe =
∑

e∈OUT(u)

xe u ∈ VSCC (2)

∑
e∈ESCC

xe · w(e) 6 #»ν

∑
e∈ESCC

xe > 1

The quantities xe are intuitively interpreted as “flows”. The first constraint
specifies that the flow of each edge is non-negative. The second constraint
is a flow-conservation constraint. The third constraint specifies that the
objective is satisfied if we consider the relative contribution of the weight
of each edge, according to the flow of the edge. The last constraint asks
that the preceding constraints are satisfied by a non-trivial (positive) flow.
Hence, when d > 1, the decision problem reduces to solving a LP, and the
time complexity is polynomial [28].
The witness path construction from a feasible solution consists of two steps:
1. Construction of a multi-cycle from the feasible solution; and
2. Construction of an infinite witness path from the multi-cycle.
We describe the two steps in detail. Formally, a multi-cycle is a finite set
of cycles with multiplicityMC = {(C1,m1), (C2,m2), . . . , (Ck,mk)}, such
that every Ci is a simple cycle and mi is its multiplicity. The construction of
a multi-cycle from a feasible solution #»x is as follows. Let E = {e : xe > 0}.
By scaling each edge flow xe by a common factor z, we construct the set
X = {(e, z · xe) : e ∈ E}, with X ⊂ ESCC × N+. Then, we start with
MC = ∅ and apply iteratively the following procedure until X = ∅:
(i) find a pair (ei,mi) = argmin(ej ,mj)∈X mj ,
(ii) form a cycle Ci that contains ei and only edges that appear in X

(because of Equation (2), this is always possible),
(iii) add the pair (Ci,mi) in the multi-cycleMC,
(iv) subtract mi from all elements (ej ,mj) of X such that the edge ej

appears in Ci,
(v) remove from X all (ej , 0) pairs, and repeat.
Since VSCC is an SCC, there is a path Ci  Cj for all Ci, Cj inMC. Given
the multi-cycleMC, the infinite path that achieves the weight at most #»ν is
not periodic, but generated by Algorithm 1. Note that perpetually increasing
` in Line 9 ensures that the contributions of the (finite) intermediate paths
C1  C2, etc. vanish in the limit.

Algorithm for ratio objectives. We now consider ratio objectives, and
present a reduction to mean-payoff objectives. Consider the weight functions
w1, w2 and the threshold vector #»ν =

#»p
#»q as the component-wise division of

vectors #»p , #»q ∈ Nd. We define a new weight function w : E → Zd such that, for
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Algorithm 1: Multi-objective witness
Input: A graph G = (V,E), and a multi-cycle

MC = {(C1,m1), (C2,m2), . . . , (Ck,mk)}
Output: An infinite path ρ ∈ MP(w, #»ν )

1 `← 1
2 while True do
3 Repeat C1 for ` ·m1 times
4 C1  C2

5 Repeat C2 for ` ·m2 times
6 . . .
7 Repeat Ck for ` ·mk times
8 Ck  C1

9 `← `+ 1

10 end

all e ∈ E, we have w(e) = #»q · w1(e)− #»p · w2(e) (where · denotes component-
wise multiplication). It is easy to verify that Ratio(w1, w2,

#»ν ) = MP(w,
#»
0 ), and

thus we solve the ratio objective by solving the new mean-payoff objective, as
described above.
Algorithms for conjunctions of objectives. Finally, we consider the con-
junction of a safety, a liveness, and a mean-payoff objective (note that we
have already described a reduction of ratio objectives to mean-payoff ob-
jectives). More specifically, given a weight function w, a threshold vector
#»ν ∈ Q, and sets X,Y ⊆ V , we consider the decision problem for the objective
Φ = Safe(X) ∩ Live(Y ) ∩MP(w, #»ν ). The procedure is as follows:

1. Initially compute GX from G as in the case of a single safety objective.
2. Then, perform an SCC decomposition on GX .
3. For every live SCC VSCC that is reachable from s, solve for the mean-payoff

objective in VSCC. Return yes, if MP(w, #»ν ) is satisfied in any such VSCC.

If the answer to the decision problem is yes, then the witness consists of a
live SCC VSCC, along with a multi-cycle (resp. a cycle for d = 1). The witness
infinite path is constructed as in Algorithm 1, with the only difference that at
the end of each while loop a live node from Y in the SCC VSCC is additionally
visited. The time required for the conjunction of objectives is dominated by the
time required to solve for the mean-payoff objective. Theorem 1 summarizes
the results of this section.

Theorem 1 Let G = (V,E) be a graph, s ∈ V , X,Y ⊆ V , w : E → Zd, w1,
w2: E → Nd weight functions, and #»ν ∈ Qd. Let Φ1 = Safe(X) ∩ Live(Y ) ∩
MP(w, #»ν ) and Φ2 = Safe(X)∩Live(Y )∩Ratio(w1, w2,

#»ν ). The decision problem
of whether G satisfies the objective Φ1 (resp. Φ2) from s requires
1. O(n ·m) time, if d = 1.
2. Polynomial time, if d > 1.
If the objective Φ1 (resp. Φ2) is satisfied in G from s, then a finite witness
(an SCC and a cycle for single dimension, and an SCC and a multi-cycle for
multiple dimensions) exists and can be constructed in polynomial time.
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Example 3 Consider the graph in Figure 5. Starting from node 1, the
mean-payoff-objective MP(w,

#»
0 ) is satisfied by the multi-cycle MC =

{(C1, 1), (C2, 2)}, with C1 = ((1, 2), (2, 1)) and C2 = ((3, 5), (5, 3)). A solu-
tion to the corresponding LP is x(1,2) = x(2,1) = 1

3 and x(3,5) = x(5,3) = 2
3 ,

and xe = 0 for all other e ∈ E. Procedure 1 then generates a witness path for
the objective. The objective is also satisfied in conjunction with Safe({4}) or
Live({4}). In the latter case, a witness path additionally traverses the edges
(3, 4) and (4, 5) before transitioning from C1 to C2.

Example 4 Consider the same graph of Figure 5, where now instead of a
single weight function of two dimensions, we have two weight functions
w1, w2 : E → Z, of a single dimension each. The first (resp. second) weight
of each edge is with respect to the weight function w1 (resp. w2). The ratio
objective Ratio(w1, w2,−4) is satisfied by traversing the cycle C = ((3, 5), (5, 3))
repeatedly.

4.3 Reduction of Competitive Analysis to Graphs with Multiple Objectives

We present a formal reduction of the computation of the competitive ratio of
an on-line scheduling algorithm with constraints on job sequences to the multi-
objective graph problem. The input consists of the taskset, a deterministic
LTS for the on-line algorithm, a non-deterministic LTS for the clairvoyant
algorithm, and optional deterministic LTSs for the constraints. We first describe
the process of computing the competitive ratio CRJ (A), where J is a set of
job sequences only subject to safety and liveness constraints. We later show
how to handle limit-average constraints.

Reduction for Safety and Liveness Constraints. Given the deterministic
and non-deterministic LTS LA and LC with reward functions rA and rC ,
respectively, and optionally safety and liveness LTS LS and LL, let L =
LA×LC×LS×LL be their synchronous product. Hence, L is a non-deterministic
LTS (S, s1, Σ,Π,∆), and every job sequence σ yields a set of runs R in L,
such that each ρ ∈ R captures the joint behavior of A and C under σ. Note
that for each such ρ the behavior of A is unchanged, but the behavior of C
generally varies due to its non-determinism. Let G = (V,E) be the multi-graph
induced by L, that is, V = S and (M,M ′, j) ∈ E for all 1 6 j 6 i iff there
are i transitions (M,T,M ′, P ) ∈ ∆. Let wA and wC be the weight functions
that assign to each edge of G the reward that the respective algorithm obtains
from the corresponding transition in L. Let X be the set of states in G whose
LS component is sr, and Y the set of states in G whose LL component is
sa. It follows that for all ν ∈ Q, we have that CRJ (A) 6 ν iff the objective
Φν = Safe(X) ∩ Live(Y ) ∩ Ratio(wA, wC , ν) is satisfied in G from the state s1.
As the dimension in the ratio objective (that just takes care of the competitive
ratio) is one, Case 1 of Theorem 1 applies, and we obtain the following:



20 Krishnendu Chatterjee et al.

Lemma 1 Given the product graph G = (V,E) of n nodes and m edges, a
rational ν ∈ Q, and a set of job sequences J admissible for safety and liveness
LTSs, determining whether CRJ (A) 6 ν requires O(n ·m) time.

Since 0 6 CRJ (A) 6 1, the problem of determining the competitive ratio
reduces to finding v = sup{ν ∈ Q : Φν is satisfied in G}. Because this value
corresponds to the ratio of the corresponding rewards obtained in a simple cycle
in G, it follows that v is the maximum of a finite set, and can be determined
exactly by an adaptive binary search.
Reduction for Limit-Average Constraints. Finally, we turn our attention
to additional limit-average constraints and the LTS LW . We follow a similar
approach as above, but this time including LW in the synchronous product,
i.e., L = LA × LC × LS × LL × LW . Let wA and wC be weight functions
that assign to each edge e ∈ E in the corresponding multi-graph a vector of
d + 1 weights as follows. In the first dimension, wA and wC are defined as
before, assigning to each edge of G the corresponding rewards of A and C. In
the remaining d dimensions, wC is always 1, whereas wA equals the value of
the weight function w of LW on the corresponding transition. Let

#»

λ be the
threshold vector of LW . It follows that for all ν ∈ Q, we have that CRJ (A) 6 ν
iff the objective Φν = Safe(X) ∩ Live(Y ) ∩ Ratio(wA, wC , (ν,

#»

λ )) is satisfied in
G from the state s that corresponds to the initial state of each LTS, where
(ν,

#»

λ ) is a d+ 1-dimension vector, with ν in the first dimension, followed by
the d-dimension vector

#»

λ . As the dimension in the ratio objective is greater
than one, Case 2 of Theorem 1 applies, and we obtain the following:

Lemma 2 Given the product graph G = (V,E) of n nodes and m edges, a
rational ν ∈ Q, and a set of job sequences J admissible for safety, liveness,
and limit average LTSs, determining whether CRJ (A) 6 ν requires polynomial
time.

Again, since 0 6 CRJ (A) 6 1, the competitive ratio is determined by an
adaptive binary search. However, this time CRJ (A) is not guaranteed to be
realized by a simple cycle (the witness path in G is not necessarily periodic, see
Algorithm 1), and is only approximated within some desired error threshold
ε > 0.
Adaptive Binary Search. We employ an adaptive binary search for the
competitive ratio in the interval [0, 1], which works as follows: The algorithm
maintains an interval [`, r] such that ` 6 CRJ (A) 6 r at all times, and exploits
the nature of the problem for refining the interval according to the following
rules: First, if the current objective ν ∈ [`, r] (typically, ν = (`+r)/2) is satisfied
in G, i.e., Lemma 1 answers “yes” and provides the current minimum cycle C
as a witness, the value r is updated to the ratio ν′ of the on-line and off-line
rewards in C, which is typically less than ν. This allows to reduce the current
interval for the next iteration from [`, r] to [`, ν′], with ν′ 6 ν, rather than [`, ν]
(as a simple binary search would do). Second, since CRJ (A) corresponds to the
ratio of rewards on a simple cycle in G, if the current objective ν ∈ [`, r] is not
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satisfied in G, the algorithm assumes that CRJ (A) = r (i.e, the competitive
ratio equals the right endpoint of the current interval), and tries ν = r in the
next iteration. Hence, as opposed to a naive binary search, the adaptive version
has the advantages of (i) returning the exact value of CRJ (A) (rather than an
approximation), and (ii) being faster in practice.

Remark 4 Lemma 1 and Lemma 2 give polynomial upper bounds for the com-
plexity of determining the competitive ratio of an online scheduling algorithm
A given as a LTS LA. If, instead, A is given in some succinct form using a
description which is polylogarithmic in the number of states (e.g., as a cir-
cuit [22]), then the corresponding upper bounds become exponential in the size
of the description of A.

4.4 Optimized Reduction

In Section 4.3, we established a formal reduction from determining the com-
petitive ratio of an on-line scheduling algorithm in a constrained adversarial
environment to solving multiple objectives on graphs. In this section, we present
several optimizations for this reduction that significantly reduce the size of the
generated LTSs.
Clairvoyant LTS reduction. Recall the clairvoyant LTS LC with reward
function rC from Section 3, which non-deterministically models a scheduler.
For our optimization, we encode the off-line algorithm as a non-deterministic
LTS L′C = (S′C , s

′
C , Σ,∅, ∆′C) with reward function r′C that lacks the property

of being a scheduler, as information about released and scheduled jobs is lost.
However, it preserves the property that, given a job sequence σ, there exists a
run ρσC in LC iff there exists a run ρ̂σC in L′C with V (ρσA, k) = V (ρ̂σA, k) for all
k ∈ N+. That is, there is a bisimulation between LC and L′C that preserves
rewards.

Intuitively, the clairvoyant algorithm need not partially schedule a job, i.e.,
it will either discard it immediately, or schedule it to completion. Hence, in
every release of a set of tasks T , L′C non-deterministically chooses a subset
T ′ ⊆ T to be scheduled, as well as allocates the future slots for their execution.
Once these slots are allocated, L′C is not allowed to preempt those in favor of a
subsequent job. For the reward, we use r′C =

∑
τi∈T ′ Vi.

The state space S′C of L′C consists of binary strings of length Dmax. For
a binary string B ∈ S′C, we have B[i] = 1 iff the i-th slot in the future is
allocated to some released job, and s′C =

#»
0 . Informally, the transition relation

∆′C is such that, given a current subset T ⊆ Σ of newly released jobs, there
exists a transition δ from B to B′ only if B′ can be obtained from B by
non-deterministically choosing a subset T ′ ⊆ T , and for each task τi ∈ T ′

allocating non-deterministically Ci free slots in B.
By definition, |S′C | 6 2Dmax . In laxity-restricted tasksets, however, we can

obtain an even tighter bound: Let Lmax = maxτi∈T (Di − Ci) be the maximum
laxity in T , and I : S′C → {⊥, 1, . . . , Dmax − 1}Lmax+1 denote a function such
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that I(B) = (i1, . . . , iLmax+1) are the indexes of the first Lmax + 1 zeros in B.
That is, ij = k iff B[k] is the j-th zero location in B, and ij = ⊥ if there are
less than j free slots in B.
Claim The function I is bijective.

Proof Fix a tuple (i1, . . . , iLmax+1) with ij ∈ {⊥, 1, . . . , Dmax − 1}, and let
B ∈ S′C be any state such that I(B) = (i1, . . . , iLmax+1). We consider two cases.

1. If iLmax+1 = ⊥, there are less than Lmax + 1 empty slots in B, all uniquely
determined by (i1, . . . , ik), for some k 6 Lmax.

2. If iLmax+1 6= ⊥, then all ij 6= ⊥, and thus any job to the right of iLmax+1

would have been stalled for more than Lmax positions. Hence, all slots to
the right of iLmax+1 are free in B, and B is also unique.

Hence, I(B) always uniquely determines B, as desired.

For x, k ∈ N+, denote with Perm(x, k) = x · (x − 1) . . . (x − k + 1) the
number of k-permutations on a set of size x. Claim 4.4 immediately implies
the following Lemma 3:

Lemma 3 Let T be a taskset with maximum deadline Dmax, and
Lmax = maxτi∈T (Di − Ci) be the maximum laxity. Then, |S′C | 6
min(2Dmax ,Perm(Dmax, Lmax + 1)).

Hence, for zero and small laxity environments [4], as they typically arise in
high-speed network switches [21] and in NoCs [33], S′C has polynomial size in
Dmax. This affects the parameter n in Lemma 1 and Lemma 2.
Clairvoyant LTS generation. We now turn our attention to efficiently
generating the clairvoyant LTS L′C as described in the previous paragraph.
There is non-determinism in two steps: Both in choosing the subset T ′ ⊆ T of
the currently released tasks for execution, and in allocating slots for executing
all tasks in T ′. Given a current state B and T , this non-determinism leads to
several identical transitions δ to a state B′. We have developed a recursive
algorithm called ClairvoyantSuccessor (Algorithm 2) that generates each such
transition δ exactly once.

The intuition behind ClairvoyantSuccessor is as follows: It is well-known that
the earliest deadline first (EDF) policy is optimal for scheduling job sequences
where every released task can be completed [18]. By construction, given a job
sequence σ1, L′C non-deterministically chooses a job sequence σ2, such that for
all `, we have σ`2 ⊆ σ`1, and all jobs in σ2 are scheduled to completion by L′C.
Therefore, it suffices to consider a transition relation ∆′C that allows at least
all possible choices that admit a feasible EDF schedule on every possible σ2,
for any generated job sequence σ1.

In more detail, ClairvoyantSuccessor is called with a current state B, a
subset of released tasks T and an index k, and returns the set B of all possible
successors of B that schedule a subset T ′ ⊆ T , where every job of T ′ is executed
later than k slots in the future. This is done by extracting from T the task τ
with the earliest deadline, and proceeding as follows: The set B is obtained by
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Algorithm 2: ClairvoyantSuccessor
Input: A set T ⊆ T , state B, index 1 6 k 6 Dmax

Output: A set B of successor states of B

1 if T = ∅ then return {B};
2 τ ← argminτi∈T Di, C ← execution time of τ
3 T ′ ← T \ {τ}

// Case 1: τ is not scheduled
4 B ← ClairvoyantSuccessor(T ′, B, k)

// Case 2: τ is scheduled
5 F ← set of free slots in B greater than k
6 foreach F ⊆ F with |F | = C do
7 B′ ← Allocate F in B
8 k′ ← rightmost slot in F
9 B′ ← ClairvoyantSuccessor(T ′, B′, k′)

// Keep only non-redundant states
10 foreach B′′ ∈ B′ do
11 if B′′[1] = 1 and knapsack(B′′, T ) then
12 B ← B ∪ {B′′}
13 end
14 end
15 end
16 return B

constructing a state B′ that considers all the possible ways to schedule τ to the
right of k (including the possibility of not scheduling τ at all), and recursively
finding all the ways to schedule T \ {τ} in B′, to the right of the rightmost slot
allocated for task τ .

Finally, we exploit the following two observations to further reduce the
state space of L′C . First, we note that as long as there are some unfinished jobs
in the state of L′C (i.e., at least one bit of B is one), the clairvoyant algorithm
gains no benefit by not executing any job in the current slot. Hence, besides the
zero state #»

0 , every state B must have B[1] = 1. In most cases, this restriction
reduces the state space by at least 50%.

Second, observe that for every two scheduled jobs J and J ′, the clairvoyant
scheduler will never have to preempt J for J ′ and vice versa. Given a state
B, we call a contiguous segment of zeros in B which is surrounded by ones a
gap. We call a gap between positions [i1, i2] of B admissible if there exists a
multiset X of tasks from T such that

∑
τi∈X Ci = i2 − i1 + 1. Observe that if

state B contains a gap which is not admissible, then the clairvoyant scheduler
produces a schedule in which either
1. no job is scheduled in some round, while there is some already released job
J which will be scheduled in the future, or

2. two jobs J and J ′ are such that each one preempts the other.
It is straightforward that in both cases, the clairvoyant scheduler can obtain the
same utility by producing another schedule in which none of the above cases
occur. Hence, a state can be safely discarded if it contains a non-admissible gap.
This reduces to solving a knapsack problem [26], where the size of the knapsack
is the length of the gap, and the set of items is the whole taskset T (with
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multiplicities). We note that the problem has to be solved on identical inputs
a large number of times, and techniques such as memoization are employed to
avoid multiple evaluations of the same input.

These two improvements were found to reduce the state space by a factor
up to 90% in all examined cases (see Section 4.5 and Table 5). In fact, despite
the non-determinism, in all reported cases the generation of LC was done in
less than a second.
On-line LTS reduction. Typically, simple on-line scheduling algorithms do
“lazy dropping” of unsuccessful jobs, where such a job is dropped only when
its deadline passes. An obvious improvement for reducing the size of the state
space of the LTS is to implement some early dropping: Store only those jobs
that could be scheduled, at least partially, under some sequence of future task
releases. We do so by first creating the LTS naively, and then iterating through
its states. For each state s and job Ji,j in s with relative deadline Di, we
perform a depth-limited search originating in s for Di steps, looking for a state
s′ reached by a transition that schedules Ji,j . If no such state is found, we
merge state s to s′′, where s′′ is identical to s without job Ji,j .

4.5 Experimental Results

We have implemented a prototype of our automated competitive ratio analysis
framework, and applied it in a comparative case study.

Our implementation has been done in Python 2.7 and C, and uses the
lp_solve [8] package for linear programming solutions. All experiments were
run on a standard desktop computer with a 3.2GHz CPU and 4GB of RAM
running Debian Linux.

In our case study, five well-known scheduling policies, namely, EDF (Earliest
Deadline First), LLF (Least Laxity First), SRT (Shortest Remaining Time), SP
(Static Priorities), and FIFO (First-in First-out), as well as some more elaborate
algorithms that provide non-trivial performance guarantees, in particular,
DSTAR [5], TD1 [4], and DOVER [29], were analyzed under a variety of tasksets
(with and without additional constraints on the adversary). In addition, for
TD1, we constructed a series of task sets according to the recurrence relation
given in [4], which confirms its worst-case competitive ratio of 1/4. All our
on-line scheduler implementations use the same tie-breaking rules, namely, (i)
favor lower-indexed tasks (in T ) over higher-indexed ones, and (ii) favor smaller
deadlines over larger ones (and (i) has higher precedence over (ii)).
Varying tasksets without constraints. The algorithm DOVER was proved
in [29] to have optimal competitive factor, i.e., optimal competitive ratio under
the worst-case taskset. However, our experiments reveal that this performance
guarantee is not universal, in the sense that DOVER is outperformed by other
schedulers for specific tasksets. Interestingly, this observation applies to all
on-line algorithms examined: As shown in Figure 6, even without constraints
on the adversary, there are tasksets in which every chosen scheduling algorithm
outperforms all others, by achieving the highest competitive ratio for the
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Fig. 6 The competitive ratio of the examined algorithms in various tasksets under no
constraints. Every examined algorithm is optimal in some taskset, among all others.

A1
(k = 6)

A2
(k = 5)

A3
(k = 4)

A4
(k = 3)

A5
(k = 2)

A6
(k = 4)

A7
(k = 5)

τ1 τ2 τ3 τ4 τ1 τ2 τ1 τ2 τ3 τ1 τ2 τ3 τ1 τ2 τ3 τ1 τ2 τ3 τ1 τ2 τ3

Ci 1 4 1 3 2 2 2 1 1 1 2 1 2 1 1 2 6 1 1 2 1
Di 2 6 3 4 3 2 2 5 5 2 3 6 3 1 3 2 6 1 5 2 1
Vi 3 2 3 3 5 1 1 2 2 3 2 1 9 6 3 1 10 2 5 4 1

Table 1 The tasksets used to generate Figure 6.
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Fig. 7 Restricting the absolute workload generated by the adversary typically increases
the competitive ratio, and can vary the optimal scheduler. On the left, the performance of
each scheduler is evaluated without restrictions: FIFO, SP behave best. When restricting
the adversary to at most 2 units of workload in the last 3 rounds, FIFO and SP become
suboptimal, and are outperformed by other schedulers.

particular taskset. This sensitivity of the optimally performing on-line algorithm
on the given taskset makes our automated analysis framework a very interesting
tool for the application designer.

Table 1 lists the tasksets A1-A7 used for Figure 6. The task indices, hence
their order in Table 1, reflect their static priorities (with τ1 having highest
priority); they are used by the SP scheduler, as well as for tie breaking by other
schedulers. Along with each tasket, its importance ratio k =

maxτi∈T {Vi/Ci}
minτi∈T {Vi/Ci} is

shown [4].
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1.5 1 0.8 0.6 0.4 0.3 0.1 0.078 0.05

FIFO X X X X X X
SP X X X
SRT X X X X X X

Table 2 Columns show the mean workload restriction. The check-marks indicate that
the corresponding scheduler is optimal for that mean workload restriction, among the six
schedulers we examined. We see that the optimal scheduler can vary as the restrictions are
tighter, and in a non-monotonic way. LLF, EDF, DSTAR and DOVER were not optimal in
any case and hence not mentioned.

τ1 τ2 τ3

Ci 1 1 1
Di 1 2 1
Vi 3 3 1

τ1 τ2 τ3

Ci 2 5 5
Di 7 5 6
Vi 3 2 1

Table 3 Taskset of Figure 7 (left) and Table 2 (right).

Taskset η Taskset Comp. Ratio

C1 2 {1, 1} 1
C2 3 {1, 2, 3} 1/2
C3 3.1 {1, 3, 7, 13, 19} 7/25
C4 3.2 {1, 3, 7, 13, 20, 23} 1/4
C5 3.3 {1, 3, 7, 14, 24, 33} 1/4
C6 3.4 {1, 3, 7, 14, 24, 34} 1/4

Table 4 Competitive ratio of TD1.

Fixed taskset with varying constraints. We also analyzed fixed tasksets
under various constraints (such as sporadicity or workload restrictions) for
admissible job sequences. Figure 7 shows some experimental results for workload
safety constraints, which again reveal that, depending on particular workload
constraints, we can have different optimal schedulers. The same was observed
for limit-average constraints: As Table 2 shows, the optimal scheduler can vary
highly and non-monotonically with stronger limit-average workload restrictions.
The tasksets for both experiments are shown in Table 3.

Competitive Ratio of TD1.We also analyzed the performance of the on-line
scheduler TD1 for zero laxity tasksets with uniform value-density k = 1 (i.e.,
Ci = Di = Vi for each task τi). Following [4], we constructed a series of tasksets
parametrized by some positive real η < 4, which guarantee that the competitive
ratio of every on-line scheduler is upper bounded by 1

η . Given η, each taskset
consists of tasks τi such that Ci is given by the following recurrence, as long as
Ci+1 > Ci.

(i) C0 = 1 (ii) Ci+1 = η · Ci −
i∑

j=0

Cj
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Taskset N Dmax
Size (nodes) Time (s)

Clairv. Product Mean Max

B01 2 7 19 823 0.04 0.05
B02 2 8 26 1997 0.39 0.58
B03 2 9 34 4918 10.02 15.21
B04 3 7 19 1064 0.14 0.40
B05 3 8 26 1653 0.66 2.05
B06 3 9 34 7705 51.04 136.62
B07 4 7 19 1711 2.13 6.34
B08 4 8 26 3707 13.88 34.12
B09 4 9 44 10 040 131.83 311.94
B10 5 7 19 2195 5.73 16.42
B11 5 8 32 9105 142.55 364.92
B12 5 9 44 16 817 558.04 1342.59

Table 5 Scalability of our approach for tasksets of various sizes N and Dmax. For each
taskset, the size of the state space of the clairvoyant scheduler is shown, along with the
mean size of the product LTS, and the mean and maximum time to solve one instance of the
corresponding ratio objective.

In [4], TD1 was shown to have competitive factor 1
4 , and hence a competitive

ratio that approaches 1
4 from above, as η → 4 in the above series of tasksets.

Table 4 shows the competitive ratio of TD1 in our constructed series of tasksets.
Each taskset is represented as a set {Ci : 1 6 i 6 n}, where each Ci is given
by the above recurrence, rounded up to the next integer. We indeed see that
the competitive ratio drops until it stabilizes to 1

4 . Note that, thanks to our
optimizations, the zero-laxity restriction allowed us to process tasksets where
Dmax is much higher than for the tasksets reported in Table 5: The results of
Table 4 were produced in less than a minute overall.

Running Times. Table 5 summarizes some key parameters of our various
tasksets, and gives some statistical data on the observed running times in
our respective experiments. Even though the considered tasksets are small,
the very short running times of our prototype implementation reveal the
principal feasibility of our approach. We believe that further application-specific
optimizations, augmented by abstraction and symmetry reduction techniques,
will allow to scale to larger applications.

5 Competitive Synthesis of On-line Scheduling Algorithms

In this section, we show how the powerful framework of graph games [36,42]
can be utilized for the synthesis of optimal real-time scheduling algorithms.
As opposed to the the analysis problem considered in the previous sections
(which can be viewed as a 1-player game of the adversary against a given
scheduling algorithm), we now have to consider a two-player game between
the (sought) optimal on-line algorithm (Player 1) and the adversary (Player 2).
Our presentation is organized as follows:
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– In Section 5.1, we introduce a suitable two-player partial-information game
with mean-payoff and ratio objectives. Player 1 will represent the online
algorithm, whereas Player 2 will represent both the adversary (which
chooses the job sequence) and the clairvoyant algorithm (which knows the
job sequence in advance). We use a partial-information setting to model
that Player 1 is oblivious to the scheduling choices of Player 2, but Player 2
knows the scheduling choices of Player 1 for deciding which future jobs to
release. The mean-payoff and ratio objectives model directly the worst-case
utility and competitive ratio problems, respectively.

– In Section 5.2, we establish that the relevant decision problems for our
game are Np-complete in the size of the game graph.

– In Section 5.3, we study the decision problems relevant for two particular
synthesis questions: In synthesis for worst-case average utility, the goal
is to automatically construct an on-line scheduling algorithm with the
largest possible worst-case average utility for a given taskset. In competitive
synthesis, we construct an on-line scheduling algorithm with the largest
possible competitive ratio for the given taskset. The complexity results for
our graph game reveal that the former problem is in Np∩coNp, whereas
the latter is in Np. These complexities are wrt the size of the constructed
algorithm, represented explicitly as a labeled transition system. As a function
of the input taskset T given in binary, all polynomial upper bounds become
exponential upper bounds in the worst case. The solution to the competitive
synthesis . Hence the algorithm for obtaining the optimal scheduler comes
in two steps. The first step reduces the problem to the relevant partial-
information game and is found in Theorem 5 of Section 5.3. The second
step is solving the partial-information game, and is found in Theorem 3 of
Section 5.2.

5.1 Partial-Information Mean-Payoff and Ratio Games

We first introduce a two-player partial-information game on graphs with mean-
payoff and ratio objectives.

Notation on Graph Games. A partial-observation game (or simply a game)
is a tuple G = 〈S,Σ1, Σ2, δ,OS ,OΣ〉 with the following components:

State space: The set S is a finite set of states.
Actions: Σi (i = 1, 2) is a finite set of actions for Player i.
Transition function: Given the current state s ∈ S, an action α1 ∈ Σ1 for

Player 1, and an action α2 ∈ Σ2 for Player 2, the transition function
δ : S × Σ1 × Σ2 → S gives the next (or successor) state s′ = δ(s, α1, α2).
A shorter form to denote a transition is to write the tuple (s, α2, α1, s

′);
note that α2 is listed before α1 to stress that fact that Player 2 chooses its
action before Player 1.

Observations: The set OS ⊆ 2S is a finite set of observations for Player 1
that partition the state space S. This partition uniquely defines a function
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obsS : S → OS , which maps each state to its observation obsS(s) in a way
that ensures s ∈ obsS(s) for all s ∈ S. In other words, the observation
partitions the state space according to equivalence classes. Similarly, OΣ is
a finite set of observations for Player 1 that partitions the action set Σ2,
and analogously defines the function obsΣ . Intuitively, Player 1 will have
partial observation, and can only obtain the current observation of the state
(not the precise state but only the equivalence class the state belongs to)
and current observation of the action of Player 2 (but not the precise action
of Player 2) to make her choice of action.

Plays. In a game, in each turn, first Player 2 chooses an action, then Player 1
chooses an action, and given the current state and the joint actions, we obtain
the next state according to the transition function δ.

A play in G is an infinite sequence of states and actions P = s1, α1
2, α

1
1,

s2, α2
2, α

2
1, s3, α3

2, α
3
1, s4 . . . such that, for all j > 1, we have δ(sj , αj1, α

j
2) = sj+1.

The prefix up to sn of the play P is denoted by P(n) and corresponds to the
starting state of the n-th turn. The set of plays in G is denoted by P∞, and
the set of corresponding finite prefixes is denoted by Prefs(P∞).
Strategies. A strategy for a player is a recipe that specifies how to extend
finite prefixes of plays. We will consider memoryless deterministic strategies
for Player 1 (where its next action depends only on the current state, but not
on the entire history) and general history-dependent deterministic strategies
for Player 2. A strategy for Player 1 is a function π : OS × OΣ → Σ1 that,
given the current observation of the state and the current observation on the
action of Player 2, selects the next action. A strategy for Player 2 is a function
σ : Prefs(P∞) → Σ2 that, given the current prefix of the play, chooses an
action. Observe that the strategies for Player 1 are both observation-based
and memoryless; i.e., depend only on the current observations (rather than the
whole history), whereas the strategies for Player 2 depend on the history. A
memoryless strategy for Player 2 only depends on the last state of a prefix. We
denote by ΠM

G , ΣG , ΣM
G the set of all observation-based memoryless Player 1

strategies, the set of all Player 2 strategies, and the set of all memoryless Player 2
strategies, respectively. In sequel, when we write “strategy for Player 1”, we
consider only observation-based memoryless strategies. Given a strategy π and
a strategy σ for Player 1 and Player 2, and an initial state s1, we obtain a
unique play P(s1, π, σ) = s1, α1

2, α
1
1, s

2, α2
2, α

2
1, s

3, . . . such that, for all n > 1,
we have σ(P(n)) = αn2 and π(obsS(sn), obsΣ(αn2 )) = αn1 .
Objectives. Recall that, for the graphs with multiple objectives from Sec-
tion 4.1, an objective is a set of paths. Here we extend this notion to games:
An objective of a game G is a set of plays that satisfy some desired properties.
For the sake of completeness, we present here the relevant definitions for mean
payoff and ratio objectives with 1-dimensional weight functions.

For mean-payoff objectives, we will consider a reward function w : S ×
Σ1 × Σ2 × S → Z that maps every transition to an integer reward. The
reward function naturally extends to plays: For k > 1, the sum of the rewards
in the prefix P(k + 1) is defined as w(P, k) =

∑k
i=1 w(s

i, αi2, α
i
1, s
′i). The
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mean-payoff of a play P is then

MP(w,P) = lim inf
k→∞

1

k
· w(P, k).

In the case of ratio objectives, we will consider two reward functions
w1 : S × Σ1 × Σ2 × S → N and w2 : S × Σ1 × Σ2 × S → N that map every
transition to a non-negative valued reward. Using the same extension of reward
functions to plays as before, the ratio of a play P is defined as:

Ratioinf(w1, w2,P) = lim inf
k→∞

#»
1 + w1(P, k)
#»
1 + w2(P, k)

.

Decision problems. Analogous to Section 4.1, we define the relevant decision
problems on games. Formally, given a game G , a starting state s1, reward
functions w,w1, w2 and a threshold ν ∈ N, the decision problem for the mean
payoff objective is to decide whether

sup
π∈ΠMG

inf
σ∈ΣG

MP(w,P(s1, π, σ)) > ν.

Similarly, the decision problem for the ratio objective is to decide whether

sup
π∈ΠMG

inf
σ∈ΣG

Ratio(w1, w2,P(s1, π, σ)) > ν.

Remark 5 Note that the decision problems of the graph game problem are
defined over the supπ∈ΠMG , taking all possible memoryless strategies into ac-
count. This corresponds to all possible on-line scheduling strategies, whereas
the multi-graph problem arising in the competitive analysis problem considered
in the previous sections explicitly used the fixed deterministic strategy for the
on-line scheduler only.

Perfect-information Games. Games of complete-observation (or perfect-
information games) are a special case of partial-observation games where
OS = {{s} | s ∈ S} and OΣ = {{α2} | α2 ∈ Σ2}, i.e., every individual state
and action is fully visible to Player 1, and thus she has perfect information.
For perfect-information games, for the sake of simplicity, we will omit the
corresponding observation sets from the description of the game. The following
theorem for perfect-information games with mean-payoff objectives follows
from the results of [20,46,11,27].

Theorem 2 (Complexity of perfect-information mean-payoff games [20,46,11,
27]). The following assertions hold for perfect-information games with initial
state s1 and reward function w : S ×Σ1 ×Σ2 × S → Z:

1. (Determinacy). We have

supπ∈ΠMG infσ∈ΣG MP(w,P(s1, π, σ))

= infσ∈ΣG supπ∈ΠMG MP(, w,P(s1, π, σ))

= infσ∈ΣMG supπ∈ΠMG MP(w,P(s1, π, σ)).
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2. Whether supπ∈ΠMG infσ∈ΣG MP(w,P(s1, π, σ)) > ν can be decided in Np ∩
coNp, for a rational threshold ν.

3. The computation of the optimal value v∗ =
supπ∈ΠMG infσ∈ΣG MP(w,P(s1, π, σ)) and an optimal memoryless
strategy π∗ ∈ ΠM

G such that v∗ = infσ∈ΣG MP(w,P(s1, π∗, σ)) can be done
in time O(n ·m ·W ), where n is the number of states, m is the number
of transitions, and W is the maximum value of all the rewards (i.e., the
algorithm runs in pseudo-polynomial time, and if the maximum value W
of rewards is polynomial in the size of the game, then the algorithm is
polynomial).

Sketch of the Algorithm. The complexity of Item 3 of Theorem 2 is obtained
in [11]. Here we outline a simple algorithm for solving the same problem in
time O(n4 ·m · log(n/m) ·W ), as found in [46]. The algorithm operates in two
steps. First, we compute for every node u ∈ S the maximum mean payoff v(u)
that Player 1 can ensure in any play that starts from u. This is achieved by the
standard value-iteration procedure executed for Θ(n2 ·W ) iterations. Hence,
the time required for this step is O(n2 ·m ·W ). Note that at this point v(s1)
gives the mean payoff achieved by an optimal strategy π∗ ∈ ΠM

G , but not the
strategy itself. Since an optimal memoryless strategy is guaranteed to exist,
this strategy can be computed by a binary search on the actions of Player 1.
Given a node u ∈ S, we denote by Σ1(u) the set of actions available to Player 1
on u. In the second step, we iteratively pick a node u ∈ S which has more than
one available actions for Player 1, and a set X ⊂ Σ1(u) which contains half
of the actions of Player 1 on u. We let G ′ be the modified game where the
actions for Player 1 on node u is the set X, and recompute the value v′(u) in
G ′. If v′(u) = v(u), we repeat the process on G ′. Otherwise, we construct a
new game G ′′ which is identical to G , but such that the available actions for
Player 1 on node u is the set Σ1(u) \X. We repeat the process on G ′′.

5.2 Complexity Results

In this section, we establish the complexity of the decision problems arising in
partial-observation games with mean-payoff and ratio objectives. In particular,
we will show that for partial-observation games with memoryless strategies for
Player 1 all the decision problems are Np-complete.
Transformation. We start with a simple transformation that will allow us
to technically simplify our proof. In our definition of games, every action was
available for the players in every state for simplicity. We will now consider
restricted games where, in certain states, some actions are not allowed for a
player. The transformation of such restricted games to games where all actions
are allowed is as follows: We add two absorbing dummy states (with only a
self-loop), one for Player 1 and the other for Player 2, and assign rewards in a
way such that the objectives are violated for the respective player. For example,
for mean-payoff objectives with threshold ν > 0, we assign reward 0 for the
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only out-going (self-loop) transition of the Player 1 dummy state, and a reward
strictly greater than ν for the self-loop of the Player 2 dummy state; in the
case of ratio-objectives we assign the reward pairs similarly. Given a state s, if
Player 1 plays an action that is not allowed at s, we go to the dummy Player 1
state; and if Player 2 plays an action that is not allowed, we go to the Player 2
dummy state. Obviously, this is a simple linear time transformation. Hence,
for technical convenience, we can assume in the sequel that different states
have different sets of available actions for the players. We first start with the
hardness result.

Lemma 4 The decision problems for partial-observation
games with mean-payoff objectives and ratio objectives, i.e.,
whether supπ∈ΠMG infσ∈ΣG MP(w,P(s1, π, σ)) > ν (respectively
supπ∈ΠMG infσ∈ΣG Ratio(w1, w2,P(s1, π, σ)) > ν), are Np-hard in the
strong sense.

Proof We present a reduction from the 3-SAT problem, which is Np-hard in the
strong sense [39]. Let Ψ be a 3-SAT formula over n variables x1, x2, . . . , xn in
conjunctive normal form, withm clauses c1, c2, . . . , cm consisting of a disjunction
of 3 literals (a variable xk or its negation xk) each. We will construct a game
graph GΨ as follows:
State space: S = {sinit} ∪ {si,j | 1 6 i 6 m, 1 6 j 6 3} ∪ {dead}; i.e., there is

an initial state sinit, a dead state dead, and there is a state si,j for every
clause ci and literal j of ci.

Actions: The set of actions applicable for Player 1 is {true, false,⊥}, the possible
actions for Player 2 are {1, 2, . . . ,m} ∪ {⊥}.

Transitions: In the initial state sinit, Player 1 has only one action ⊥ available,
Player 2 has actions {1, 2, . . . ,m} available, and given action 1 6 i 6 m,
the next state is si,1. In all other states, Player 2 has only one action ⊥
available. In states si,j , Player 1 has two actions available, namely, true and
false. The transitions are as follows:
– If the action of Player 1 is true in si,j , then (i) if the j-th literal in ci is
xk, then we have a transition back to the initial state; and (ii) if the
j-th literal in ci is xk (negation of xk), then we have a transition to
si,j+1 if j ∈ {1, 2}, and if j = 3, we have a transition to dead.

– If the action of Player 1 is false in si,j , then (i) if the j-th literal in ci is
xk (negation of xk), then we have a transition back to the initial state;
and (ii) if the j-th literal in ci is xk, then we have a transition to si,j+1

if j ∈ {1, 2}, and if j = 3, we have a transition to dead.
In state dead both players have only one available action ⊥, and dead is a
state with only a self-loop (transition only to itself).

Observations: First, Player 1 does not observe the actions of Player 2 (i.e.,
Player 1 does not know which action is played by Player 2). The observation
mapping for the state space for Player 1 is as follows: The set of observations
is {0, 1, . . . , n} and we have obsS(sinit) = obsS(dead) = 0 and obsS(si,j) = k
if the j-th variable of ci is either xk or its negation xk, i.e., the observation
for Player 1 corresponds to the variables.
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Ψ = (x3 ∨ x4 ∨ x5)
c1

∧ · · · ∧ (x1 ∨ x4 ∨ x6)
cm

Player 1

Player 2

...

c1

cm

obsS(·) = 4 sinit

x3x4x5

x1x4x6

dead

true

false

false

true

false

true

true

false

true

false

false

true

Fig. 8 Illustration of the construction of a game from a 3-SAT formula.

A pictorial description is shown in Fig 8. The intuition for the above con-
struction is as follows: Player 2 chooses a clause from the initial state sinit,
and an observation-based memoryless strategy for Player 1 corresponds to a
non-conflicting assignment to the variables. Note that Player 1 strategies are
observation-based memoryless; hence, for every observation (i.e., a variable),
it chooses a unique action (i.e., an assignment) and thus non-conflicting as-
signments are ensured. We consider GΨ with reward functions w,w1, w2 as
follows: w2 assigns reward 1 to all transitions; w and w1 assigns reward 1 to all
transitions other than the self-loop at state dead, which is assigned reward 0.
We ask the decision questions with ν = 1. Observe that the answer to the
decision problems for both mean-payoff and ratio objectives is “Yes” iff the
state dead can be avoided by Player 1 (because if dead is reached, then the
game stays in dead forever, violating both the mean-payoff as well as the ratio
objective). We now present the two directions of the proof.

Satisfiable implies dead is not reached: We show that if Ψ is satisfiable, then
Player 1 has an observation-based memoryless strategy π∗ to ensure that dead
is never reached. Consider a satisfying assignment A for Ψ , then the strategy π∗
for Player 1 is as follows: Given an observation k, if A assigns true to variable
xk, then the strategy π∗ chooses action true for observation k, otherwise it
chooses action false. Since the assignment A satisfies all clauses, it follows that
for every 1 6 i 6 m, there exists si,j such that the strategy π∗ for Player 1
ensures that the transition to sinit is chosen. Hence the state dead is never
reached, and both the mean-payoff and ratio objectives are satisfied.

If dead is not reached, then Ψ is satisfiable: Consider an observation-based
memoryless strategy π∗ for Player 1 that ensures that dead is never reached.
From the strategy π∗ we obtain an assignment A as follows: if for observation
k, the strategy π∗ chooses true, then the assignment A chooses true for variable
xk, otherwise it chooses false. Since π∗ ensures that dead is not reached, it
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means for every 1 6 i 6 m, that there exists si,j such that the transition to
sinit is chosen (which ensures that ci is satisfied by A). Thus since π∗ ensures
dead is not reached, the assignment A is a satisfying assignment for Ψ .

Thus, it follows that the answers to the decision problems are “Yes” iff Ψ is
satisfiable, and this establishes the Np-hardness result.

The Np upper bounds.We now present the Np upper bounds for our decision
problems. Recall that according to our definitions of strategies, the polynomial
witness for the decision problem is a memoryless strategy (i.e., if the answer
to the decision problem is “Yes”, then there is a witness memoryless strategy
π for Player 1). Such a strategy π can be guessed in polynomial time. Once
the memoryless strategy is guessed and fixed, we need to show that there is a
polynomial-time verification procedure:

Mean-payoff objectives: Once the memoryless strategy for Player 1 is fixed, the
game problem reduces to a 1-player game where there is only Player 2. The
verification problem hence reduces to the path problem in directed graphs
analyzed and shown to be solvable in polynomial time by Theorem 1 in
Section 4.1.

Ratio objectives: Again, once the memoryless strategy for Player 1 is fixed,
the game problem reduces to a decision problem on directed graphs. The
same reduction from ratio objectives to mean-payoff objectives introduced
in Section 4.1 can be applied. Theorem 1 hence gives a polynomial-time
verification algorithm for our ratio objectives.

We summarize the result in the following theorem.

Theorem 3 The decision problems for partial-observation
games with mean-payoff objectives and ratio objectives, i.e.,
whether supπ∈ΠMG infσ∈ΣG MP(w,P(s1, π, σ)) > ν respectively
supπ∈ΠMG infσ∈ΣG Ratio(w1, w2,P(s1, π, σ)) > ν, are Np-complete.

Remark 6 The Np-completeness of Theorem 3 also holds with the following
extensions on objectives:

1. The reward functions w, w1, w2 map to d-dimensional vectors of rewards,
and the decision problems are with respect to a threshold vector #»ν .

2. Player 2 must also satisfy a conjunction of Safe(X) and Live(Y ) objectives
(see Section 4.1).

The result holds, as the Np-hardness follows from the proof of Theorem 3 by
taking d = 1, X = ∅ and Y = S. The Np-membership follows similarly to that
used in the proof of Theorem 3, by guessing a memoryless strategy for Player 1.
The problem reduces to satisfying a conjunction of objectives in a multi-graph
here, and Item 2 of Theorem 1 provides the required polynomial time bound.
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5.3 Reduction of Competitive Synthesis to a Graph Game

We now turn our attention to competitive synthesis problems in the real-
time scheduling context. More specifically, given a taskset T , we consider two
particular synthesis questions:

1. In synthesis for the worst-case average utility, the goal is to construct an
on-line scheduling algorithm that has the largest worst-case average utility
possible. Recall the notation V (ρσA, k) for the cumulative utility in the first
k time slots of an on-line scheduling algorithm A with schedule ρσA under
the released job sequence σ. Formally, the task is to construct an on-line
scheduling algorithm A such that, for any online-scheduling algorithm A′,

inf
σ∈J

lim inf
k→∞

1

k
V (ρσA, k) > inf

σ∈J
lim inf
k→∞

1

k
V (ρσA′ , k),

where J is the set of admissible job sequences.
2. In competitive synthesis, the task is to construct an on-line scheduling

algorithm with the largest possible competitive ratio. That is, we are
looking for an on-line algorithm A such that, for any on-line algorithm A′,
we have CRJ (A) > CRJ (A′), where CRJ (A) is the competitive ratio of
algorithm A under the set J of admissible job sequences (see Equation (1)
in Section 2 for the definition of CRJ ).

As in the competitive analysis case of Section 4, it suffices to consider only
on-line scheduling algorithms encoded as LTSs (see Remark 1). In the following,
we consider that J = Σω, that is, there are no restrictions on the released job
sequences. In Remark 7 below, we outline how the results can be extended to
additional safety, liveness, and limit-average automata constraining J (see also
Section 3.2). Finally, we conclude with a note on the worst-case utility ratio,
namely the worst-case limiting average utility of the best online algorithm over
the worst-case limiting average utility achievable by a clairvoyant algorithm
(for possibly different job sequences).
Synthesis for worst-case average utility. Given a taskset, we can compute
the worst-case average utility that can be achieved by any on-line scheduling
algorithm. For this, we construct a non-deterministic finite-state LTS LG =
(SG , sG , Σ,Π,∆G ) with an associated reward function rG that can simulate
all possible on-line algorithms. Such an LTS has already been introduced
in Section 3 for the clairvoyant algorithm. Note that the latter implements
memoryless strategies, as all required history information is encoded in the
state.

We can interpret such a non-deterministic LTS as a perfect-information
graph game G = 〈SG , Σ1, Σ2, δ〉, where Σ1 (the actions of Player 1) correspond
to the output actions Π in LG , and Σ2 (the actions of Player 2) correspond
to the input actions Σ in LG . That is, Player 2 (the adversary) chooses the
released tasks, while Player 1 chooses the actual transitions in δ actually taken.

Thus, we indeed have a perfect-information game, and every memoryless
strategy for Player 1 corresponds to a scheduling algorithm and vice-versa (i.e.,
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every scheduling algorithm is a memoryless strategy of Player 1 in the game
G ). The weight function w for the mean-payoff objective of G is identical to
the reward function rG , and the start state s1 is the initial state sG of LG . The
worst-case utility of a given on-line algorithm, corresponding to a memoryless
strategy π ∈ ΠM

G , is hence

inf
σ∈ΣG

MP(w,P(s1, π, σ))

and the worst-case utility of the optimal on-line algorithm is given by

sup
π∈ΠMG

inf
σ∈ΣG

MP(w,P(s1, π, σ)). (3)

Using the results of Theorem 2, we obtain the following theorem.

Theorem 4 The following assertions hold:

1. Whether there exists an on-line algorithm with worst-case average utility at
least ν can be decided in Np ∩ coNp in general; and if Vmax is bounded
by the size of the non-deterministic LTS, then the decision problem can be
solved in polynomial time.

2. An on-line algorithm with optimal worst-case average utility can be con-
structed in time O(|SG | ·m · Vmax), where |SG | (resp. m) is the number of
states (resp. transitions) of the non-deterministic LTS LG .

Competitive Synthesis. Given a taskset and a rational ν ∈ Q, the com-
petitive synthesis problem asks to determine whether there exists an on-line
scheduling algorithm that achieves a competitive ratio of at least ν, and
to determine the optimal competitive ratio ν∗. Recall the non-deterministic
LTS LG = (SG , sG , Σ,Π,∆G ) and reward function rG in the synthesis
for the worst-case average utility. For solving the competitive synthesis
problem, we construct a partial-observation game GCR as follows: GCR =
〈SG × SG , Σ1, Σ2 × Σ1, δ,OS ,OΣ〉, where Σ1 = Π and Σ2 = Σ. Intuitively,
we construct a product game with two components, where Player 1 only ob-
serves the first component (the on-line algorithm) and makes the choice of the
transition α1 ∈ Σ1 there; Player 2 is in charge of choosing the input α2 ∈ Σ2

and also the transition α′1 ∈ Σ1 in the second component (the clairvoyant
algorithm). However, due to partial observation, Player 1 does not observe the
choice of the transitions of the clairvoyant algorithm.

Formally, the appropriate transition and the observation mapping are
defined as follows:

(i) Transition function δ : (SG × SG )×Σ1 × (Σ2 ×Σ1)→ (SG × SG ) with

δ((s1, s2), α1, (α2, α
′
1)) = (δ(s1, α1, α2), δ(s2, α

′
1, α2)).

(ii) The observation for states for Player 1 maps every state to the first
component, i.e., obsS((s1, s2)) = s1, and the observation for actions for
Player 1 maps every action (α2, α

′
1) of Player 2 to its first component α2

as well (i.e., the input from Player 2), i.e., obsΣ((α2, α
′
1)) = α2.
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The two reward functions needed for solving the ratio objective in the
game are defined as follows: The reward function w1 gives reward according
to rG applied to the transitions of the first component. The reward function
w2 assigns the reward according to rG applied to the transitions of the second
component. Note that this construction ensures that we compare the utility of
an on-line algorithm (transitions of the first component chosen by Player 1)
and an off-line algorithm (chosen by Player 2 using the second component)
that operate on the same input sequence.

It follows that an on-line algorithm with competitive-ratio at least ν exists
iff supπ∈ΠMG infσ∈ΣG Ratio(w1, w2,P(s1, π, σ)) > ν, where s1 = (sG , sG ) is the
start state derived from the LTS LG . By Theorem 3, the decision problem is
in Np in the size of the game GCR. Since the strategy of Player 1 can directly
be translated to an on-line scheduling algorithm, the solution of the synthesis
problem follows from the witness strategy for Player 1. We hence obtain:

Theorem 5 For the class of scheduling problems defined in Section 2, the
decision problem of whether there exists an on-line scheduler with a competitive
ratio at least a rational number ν is in Np in the size of the LTS constructed
from the scheduling problem.

Finally, finding the optimal competitive ratio ν∗ (and a schedul-
ing algorithm ensuring it) is possible by searching for sup{ν ∈ Q :
the answer to the decision problem is yes}.

Remark 7 Using the reduction of Theorem 5 together with Remark 6, we obtain
that the competitive synthesis problem in the presence of safety, liveness, and
limit-average constraints specified as constrained automata is in Np in the size
of the synchronous product of the corresponding LTSs.

Synthesis for worst-case utility ratio. We conclude our considerations
regarding synthesis with the worst-case utility ratio problem, namely, deter-
mining the worst-case limiting average utility of the best online algorithm over
the worst-case limiting average achievable by a clairvoyant algorithm. In sharp
contrast to the competitive ratio, the job sequences used by the on-line and
off-line algorithm for computing this utility ratio may be different. Formally, we
are interested in determining an online scheduling algorithm A that maximizes
the following expression:

UR = lim inf
k→∞

infσ∈J V (ρσA, k)

infσ∈J V (ρσC , k)
. (4)

The numerator of UR corresponds to the synthesis for the worst case average
utility problem, whose solution is given by Equation (3) in the respective game.
Similarly, the denominator is given by the following objective in the same game:

inf
σ∈ΠG

sup
π∈ΣG

MP(w,P(s1, π, σ)). (5)
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Herein, the input sequence is fixed (by choosing a strategy for Player 1)
before the job sequence is fixed (by choosing a strategy for Player 2, possibly
non-memoryless). According to the determinacy guaranteed by Theorem 2,
Equations (3) and (5) are equal, hence UR = 1: The worst case average utility
of the optimal online and the clairvoyant algorithm coincide.

Remark 8 (Complexity with respect to the taskset) Theorem 4 and Theorem 5
establish complexity upper bounds for the synthesis for worst-case utility, and
competitive synthesis problems as a function of the size of the non-deterministic
LTS LG . In general, the size of LG is exponential in the bit representation
of the taskset T . Hence, if the input to our algorithms is the taskset T , the
polynomial upper bounds of Theorem 4 and Theorem 5 translate to exponential
upper bounds in the size of T .

Remark 9 (Memory of the synthesized scheduler) The memory-space require-
ment of the synthesized scheduler is upper-bounded by O(C

N ·(Dmax−1)
max ), where

N is the number of tasks, Dmax the maximum task deadline and Cmax is the
maximum execution time. This holds since the state of the online scheduler
is an N × (Dmax − 1) matrix, where each entry of the matrix denotes the
remaining execution time of a job.

6 Conclusions

We presented a flexible framework for the automated competitive analysis
and competitive synthesis of real-time scheduling algorithms for firm-deadline
tasksets using graph games. For competitive analysis, scheduling algorithms
are specified as (deterministic) labeled transition systems. The rich formalism
of automata on infinite words is used to express optional safety, liveness and
limit-average constraints in the generation of admissible job sequences. Our
prototype implementation uses an optimized reduction of the competitive
analysis problem to the problem of solving certain multi-objectives in multi-
graphs. Our comparative experimental case study demonstrates that it allows
to solve small-sized tasksets efficiently. Moreover, our results clearly highlight
the importance of a fully automated approach, as there is neither a “universally”
optimal algorithm for all tasksets (even in the absence of additional constraints)
nor an optimal algorithm for different constraints in the same taskset. For
competitive synthesis, we introduced a partial observation game with mean-
payoff and ratio objectives. We determined the complexity of this game, and
showed that it can be used to solve the competitive synthesis problem.

Future work will be devoted to adding additional constraints to the schedul-
ing algorithms, like energy constraints. In order to scale-up to larger tasksets,
we will also investigate advanced techniques for further reducing the size of the
underlying (game) graphs. Finally, the core computational step in our frame-
work is that of computing mean-payoff objectives in the underlying graphs.
Developing faster algorithms for mean-payoff objectives for special graphs is
an active area of research [13,12]. Whether the structure of our graphs can be



Title Suppressed Due to Excessive Length 39

exploited to yield faster algorithms for our framework is an interesting future
direction.
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