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Abstract

The fixation probability of a single mutant invading a population of residents is among the

most widely-studied quantities in evolutionary dynamics. Amplifiers of natural selection are

population structures that increase the fixation probability of advantageous mutants, com-

pared to well-mixed populations. Extensive studies have shown that many amplifiers exist

for the Birth-death Moran process, some of them substantially increasing the fixation proba-

bility or even guaranteeing fixation in the limit of large population size. On the other hand, no

amplifiers are known for the death-Birth Moran process, and computer-assisted exhaustive

searches have failed to discover amplification. In this work we resolve this disparity, by

showing that any amplification under death-Birth updating is necessarily bounded and

transient. Our boundedness result states that even if a population structure does amplify

selection, the resulting fixation probability is close to that of the well-mixed population. Our

transience result states that for any population structure there exists a threshold r? such

that the population structure ceases to amplify selection if the mutant fitness advantage r is

larger than r?. Finally, we also extend the above results to δ-death-Birth updating, which is a

combination of Birth-death and death-Birth updating. On the positive side, we identify popu-

lation structures that maintain amplification for a wide range of values r and δ. These results

demonstrate that amplification of natural selection depends on the specific mechanisms of

the evolutionary process.

Author summary

Extensive literature exists on amplifiers of natural selection for the Birth-death Moran

process, but no amplifiers are known for the death-Birth Moran process. Here we show

that if amplifiers exist under death-Birth updating, they must be bounded and transient.

Boundedness implies weak amplification, and transience implies amplification for only a

limited range of the mutant fitness advantage. These results demonstrate that amplifica-

tion depends on the specific mechanisms of the evolutionary process.
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Introduction

The evolutionary rate of populations is determined by their ability to accumulate advantageous

mutations [1–5]. Once a new mutant has been randomly generated in a population, its fate is

governed by the dynamics of natural selection and random drift. The most important quantity

in this process is the fixation probability which is the probability that the invading mutant fix-

ates in the population as opposed to being swept away. A classical mathematical framework for

rigorous study of the mutant spread is the discrete-time Moran process [6]. Given a population

of N individuals, at each time step, (1) an individual is chosen randomly for reproduction pro-

portionally to its fitness and (2) an individual dies uniformly at random; then the offspring

of the reproducing individual replaces the dead individual, and the population size remains

constant.

Many evolutionary properties are affected by the spatial arrangement of the population [7–

15]. Evolutionary graph theory represents population structure of size N by a graph (network)

GN [16–22]: each individual occupies a vertex, and neighboring vertices mark sites of spatial

proximity (see Fig 1a). Mutant spread must respect the structure, in that the offspring of a

reproducing individual in one vertex can only move to a neighboring vertex. The Moran pro-

cess on graphs has two distinct variants:

• In the Birth-death Moran process, the death event is conditioned on the Birth event. That is,

first an individual is chosen for reproduction and then its offspring replaces a random neigh-

bor (see Fig 1b).

• In the death-Birth Moran process, the Birth event is conditioned on the death event. That is,

first an individual is chosen for death and then its neighbors compete to fill the vacancy with

their offspring (see Fig 1c).

The fixation probability of the invading mutant is a function of its fitness r, as well as the

graph GN. In alignment with most of the literature, we focus on advantageous mutants, where

r> 1.

The well-mixed population of size N is represented by a complete graph KN. In the Birth-

death Moran process, the fixation probability in the well-mixed population is ρBd(KN, r) =

(1 − 1/r)/(1 − 1/rN) [3]. Under death-Birth updating, the fixation probability is ρdB(KN, r) =

(1 − 1/N) � (1 − 1/r)/(1 − 1/rN−1) [23]. Specifically, as N!1, both the expressions converge to

1 − 1/r.
Amplifiers of natural selection are graphs that increase the fixation probability of the advan-

tageous mutants compared to the well-mixed population [16, 24]. Under Birth-death updating,

many amplifying families of graphs have been constructed, such as the Star graph [25–27], the

Fig 1. Moran process on graphs. a, The spatial structure is represented by a graph. Each vertex represents a site and is occupied either by a resident

(red) with fitness 1 or by a mutant (blue) with relative fitness r> 1. Each edge can be one-way (arrow) or two-way. b, In each step of the Birth-death

process, one individual is sampled for reproduction proportionally to fitness, and then its offspring replaces a random neighbor. c, In each step of the

death-Birth process, a random individual dies and then it is replaced by a neighbor sampled proportionally to fitness.

https://doi.org/10.1371/journal.pcbi.1007494.g001
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Complete Bipartite graph [28] and the Comet graph [29], as well as families that guarantee

fixation in the limit of large population size [16, 30–33]. Extensive computer simulations on

small populations have also shown that many graphs have amplifying properties [34–37].

While the above results hold for the Birth-death Moran process, no amplifiers are known for

the death-Birth Moran process, and computer-assisted search has found that, under death-

Birth updating, most small graphs suppress the fixation probability rather than amplifying it

[35].

Here we prove two negative results on the existence of amplifiers under death-Birth updat-

ing. Our first result states that the fixation probability in any graph is bounded by 1 − 1/(r + 1).

Hence, even if amplifiers do exist, they can provide only limited amplification. In particular,

there are no families of graphs that would guarantee fixation in the limit of large population

size. Our second result states that for any graph GN, there exists a threshold r? such that for all

r� r?, the fixation probability is bounded by ρdB(r, KN). Hence, even if some graphs amplify

for certain values of r, their amplifying property is necessarily transient, and lost when the

mutant fitness advantage r becomes large enough. We note that a companion work [38] identi-

fies transient amplifiers among graphs that have weighted edges. Finally, we also study the

mixed δ-death-Birth Moran process, for δ 2 [0, 1], under which death-Birth and Birth-death

updates happen with rate δ and 1 − δ, respectively [39]. We establish analogous negative results

for mixed δ-updating, for any fixed δ> 0. Note that as δ vanishes (δ! 0), we approach (pure)

Birth-death Moran process for which both universal and super amplifiers exist. We find that

some of those amplifiers are less sensitive to variations in δ than others. In particular, certain

bipartite structures achieve transient amplification for δ as big as 0.5.

Model

The Moran process on graphs

In evolutionary graph theory, a population structure has traditionally been represented by a

graph GN = (V, E), where V is the set of N vertices representing sites and E� V × V is the set

of edges representing neighborships between the sites. We say that GN is undirected when all

edges are two-way, that is, (v, u) is an edge whenever (u, v) is. Since the focus of this work is on

death-Birth updating, we require that there are no self-loops in GN (that is, (u, u) is never an

edge). More generally, a population structure can be represented by a weighted graph. In that

case, every edge (u, v) is assigned a weight wu,v 2 [0, 1] which indicates the strength of interac-

tion from site u to site v. In full generality, we allow for non-symmetric weights (that is, possi-

bly wu,v 6¼ wv,u). The family of unweighted graphs is recovered when we insist that all edges

have weight 1. Even though our primary focus is on unweighted graphs, our results apply to

weighted graphs too. A population of N residents inhabits the graph GN with a single individ-

ual occupying each of the vertices of GN.

In the beginning of the Moran process, one vertex is chosen uniformly at random to host

the initial mutant. The mutant has a fitness advantage r> 1, whereas each of the residents has

fitness normalized to 1. We denote by f(u) the fitness of the individual occupying the vertex

u. From that point on, the process proceeds in discrete time steps, according to one of the two

variants of updating:

1. Under death-Birth (dB) updating, first an individual is selected to die uniformly at ran-

dom. This leaves a vacancy in the corresponding vertex v of GN and one neighbor of v is

randomly chosen to fill it. The probability of choosing a particular neighbor depends on

their fitnesses. Specifically, a neighbor u of v is chosen for reproduction with probability

proportional to f(u) � wu,v, and the selected individual places a copy of itself on v.

Limits on amplifiers of natural selection under death-Birth updating

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007494 January 17, 2020 3 / 13

https://doi.org/10.1371/journal.pcbi.1007494


2. Under Birth-death (Bd) updating, first an individual is selected to reproduce with proba-

bility proportional to its fitness, that is, with probability proportional to f(u) for the indi-

vidual occupying the vertex u. The offspring of u then replaces a random neighbor v of u
with probability proportional to wu,v.

We also consider a combination of dB and Bd updating, which yields the mixed δ-death-Birth

Moran process.

3. Under δ-death-Birth (δ-dB) updating, for δ 2 [0, 1], in each step, the Moran process fol-

lows a dB update with probability δ, and a Bd update with probability 1 − δ. In this nota-

tion, δ = 1 corresponds to pure dB updating, and δ = 0 corresponds to pure Bd updating.

We only consider strongly connected graphs for which, with probability 1 in the long run, the

Moran process leads either to the fixation of the mutant in the population (all vertices are

eventually occupied by mutants) or to the extinction of the mutant (all vertices are eventually

occupied by residents). We denote by ρdB(GN, r), ρBd(GN, r) and ρδ(GN, r) the fixation probabil-

ity under dB, Bd and δ-dB updating, respectively.

Amplifiers

The well-mixed population is modelled by the undirected complete graph KN. When r 6¼ 1, the

fixation probability on KN under Bd updating is [3]

rBdðKN ; rÞ ¼
1 � 1=r
1 � 1=rN

: ð1Þ

Similarly, the fixation probability on KN under dB updating is [23]

rdBðKN ; rÞ ¼ 1 �
1

N

� �

�
1 � 1=r

1 � 1=rN� 1
: ð2Þ

Specifically, as N!1, both the expressions converge to 1 − 1/r when r> 1 and to 0 when

r< 1.

Population structure can affect the fixation probability of invading mutants. Amplifiers are

population structures that exaggerate the effect of selection—they increase the fixation proba-

bility of advantageous mutants and decrease the fixation probability of disadvantageous

mutants. Formally, for fixed r> 1 we say that a graph GN is a Bd (resp., dB) r-amplifier if

ρBd(GN, r) > ρBd(KN, r) (resp., ρdB(GN, r) > ρdB(KN, r)). Conversely, for fixed r 2 (0, 1) we say

that a graph GN is a Bd (resp., dB) r-amplifier if ρBd(GN, r) < ρBd(KN, r) (resp., ρdB(GN, r) <
ρdB(KN, r)). If GN is an r-amplifier for all r> 0, then we say that GN is a universal amplifier. (In

the earlier literature, the word “amplifier” had typically been used to mean “universal ampli-

fier”.) If GN is an r-amplifier for only a limited range of r-values, that is, there exists a threshold

value r? such that GN does not increase the fixation probability for any r> r?, we say that GN is

a transient amplifier. (Note that, in principle, an amplifier could be neither universal nor tran-

sient—it could indefinitely alternate between amplifying and suppressing as r grows larger.) In

this work, we study advantageous mutants (r> 1) and provide upper bounds on their fixation

probability. Our results thus delimit possible behavior of amplifiers and generally of any other

graphs, regardless of how they behave when r< 1.

A renowned example of a universal Bd amplifier is a Star graph SN (of any fixed size N� 3)

which consists of one central vertex connected to each of the N − 1 surrounding leaf vertices.

The fixation probability of an invading mutant with fitness advantage r depends on its initial

placement. When a mutant appears at a leaf, its fixation probability converges to 1 − 1/r2 as

N!1, whereas when a mutant appears at the center, its fixation probability converges to 0.

Limits on amplifiers of natural selection under death-Birth updating
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Averaging over all N possible starting positions we get ρBd(SN, r)!N!1 1 − 1/r2. Effectively,

the Star population structure rescales the fitness of the mutant from r to r2. Under Bd updating,

there also exist population structures that amplify for only some values of r> 1 [40].

Although there are simple formulas for fixation probability on KN under both dB and Bd

updating, there seems to be no similarly simple formula for ρδ(KN, r). One can still use the

standard method [3, 41] to write

rdðKN ; rÞ ¼
1

1þ
PN� 1

k¼1

Qk
i¼1
gi

;

where γi is the bias towards decreasing the number of mutants as opposed to increasing it in

one step, but the right-hand side does not simplify. We have computed ρδ(KN, r) numerically

for various values of N and r and we observed that ρδ(KN, r) is essentially indistinguishable

from the linear interpolation

r̂dðKN ; rÞ ¼ d � rdBðKN ; rÞ þ ð1 � dÞ � rBdðKN ; rÞ ð3Þ

between ρBd(KN, r) and ρdB(KN, r) (see Fig 2a). In fact, the ratio r̂dðKN ; rÞ=rdðKN ; rÞ appears to

be well within 1% of 1, and most of the time even within 0.1% of 1 (see Fig 2b). Therefore, in

δ-dB updating we use r̂dðKN ; rÞ as the baseline comparison, and say that for r> 1 a graph GN

is a δ-dB r-amplifier if rdðGN ; rÞ > r̂dðKN ; rÞ.

Implied scale of fitness

Here we are interested in the fixation probability when the population size is large. This leads

us to the study of families of graphs fGNg
1

N¼1
of increasing population size, the fixation proba-

bility of which is taken in the limit of N!1. Graph families can be classified by amplification

strength. Given such a family, the implied scale of fitness for that family [24] is a function isf(r)

Fig 2. Linear interpolation for δ-dB updating. On a complete graph KN, the fixation probability ρδ(KN, r) under δ-dB updating is

essentially indistinguishable from the linear interpolation r̂dðKN ; rÞ between fixation probability under pure dB and pure Bd updating.

a, The x-axis shows δ 2 [0, 1], the y-axis shows the fixation probability ρδ(KN, r) (marks) and the linear interpolation r̂dðKN ; rÞ (lines)

for several pairs (N, r). The marks lie almost exactly on the lines. b, The ratio r̂dðKN ; rÞ=rdðKN ; rÞ is well within 1%, typically even

within 0.1% of 1. The interpolation is exact for N = 2.

https://doi.org/10.1371/journal.pcbi.1007494.g002
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such that

lim inf
N!1

rdBðGN ; rÞ ¼ 1 � 1=isfðrÞ

Specifically, for the family of complete graphs KN we have isf(r) = r, under both dB updating

and Bd updating. We say that the family is (at most) a bounded amplifier if isf(r)� r + c0 for

some constant c0. We say that the family is (at least) a linear amplifier if isf(r)� c1 r + c0 for

some constants c1 > 1, c0. We say that the family is (at least) a quadratic amplifier if isf(r)�
c2 r2 + c1 r + c0 for some constants c2 > 0, c1, c0. For instance, Star graphs are quadratic

amplifiers under Bd updating [3], however they do not amplify under dB updating [23].

Finally, the family is a super amplifier if isf(r) =1 for any r> 1. That is, for any r> 1 we have

ρdB(GN, r)! 1 as N!1 and hence fixation is guaranteed in the limit of large population size

(see Fig 3). The above definitions carry naturally to the δ-dB Moran process, where the implied

scale of fitness is defined such that

lim inf
N!1

rdðGN ; rÞ ¼ 1 � 1=isfðrÞ

Questions

For the Bd Moran process, various results on amplifiers exist. The Star graph is a prominent

example of a graph that is a quadratic amplifier for any r> 1 [25–29] and there exist super

amplifiers, that is, families of graphs that guarantee fixation in the limit of large population

size, for any fixed r> 1 [16, 30–33]. Furthermore, computer simulations on small populations

have shown that many small graphs are amplifiers [34–37]. Given the vast literature on results

under Bd updating, the following questions arise naturally.

Q1: Do there exist universal amplifiers for the dB Moran process?

Q2: Do there exist families that are amplifying for the dB Moran process? More specifically, do

there exist linear, quadratic, or even super amplifiers?

Fig 3. Implied scale of fitness. The implied scale of fitness for several graph families. a, Complete graphs KN, Ring graphs RN, complete Bipartite graphs

B ffiffiffi
N
p

;N�
ffiffiffi
N
p and Star graphs SN. b, Under Birth-death updating, the Star graphs and the Bipartite graphs are quadratic amplifiers, whereas the Ring graphs

are equivalent to Complete graphs. There also exist super amplifiers that guarantee fixation with probability 1 for any r> 1. (To model the limit N!1
we show values for N = 400.) c, Under death-Birth updating, none of Bipartite graphs, Star graphs or Ring graphs amplify selection.

https://doi.org/10.1371/journal.pcbi.1007494.g003
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The first question is concerned with small populations, and asks for a graph that amplifies for

all r> 1. The second question asks for amplification in the limit of large populations.

Results

Here we establish some useful observations about the dB Moran process, and then answer

questions Q1 and Q2.

First, consider the dB Moran process on any (fixed) graph GN. The fixation probability can

be bounded from above in terms of the number of neighbors of the vertex where the initial

mutant has appeared. As a simple example, consider that GN is unweighted and undirected,

and each vertex has precisely d neighbors (e.g. a square lattice where d = 4). Denote by v the

vertex that hosts the initial mutant. We observe that if v is selected for death before any of its d
neighbors then the mutants have just gone extinct. Since this event has probability 1/(d + 1),

the fixation probability is at most 1 − 1/(d + 1) = d/(d + 1), regardless of r. A more refined ver-

sion of this argument, which also accounts for arbitrary graphs, yields the following stronger

bound.

Lemma 1. Fix r> 1 and let GN be a graph (possibly with directed and/or weighted edges)
with average out-degree d. Then

rdBðGN ; rÞ �
d � r

d � r þ d þ r � 1
:

For large enough r and small (fixed) d, the bound of Lemma 1 coincides with the bound

we obtained with our intuitive argument above. Observe that even when r!1, the lemma

yields an upper-bound on the fixation probability that is strictly less than 1. On the other

hand, under Bd updating, the fixation probability tends to 1 as r!1, regardless of the graph.

Hence we have the following corollary, which states that for all population structures, Bd

updating favors fixation more than dB updating, provided that the fitness advantage is large

enough.

Corollary 1. For any graph GN, there exists some r?, such that for all r> r?, we have ρBd(GN, r)
> ρdB(GN, r).

Amplifiers of the dB Moran process

Here we answer the two questions Q1, Q2. We start with Q1 which asks for the existence of

universal amplifiers under dB updating. We show the following theorem.

Theorem 1 (All dB amplifiers are transient). Fix a non-complete graph GN (possibly with
directed and/or weighted edges). Then there exists r? > 1 such that for all r> r? we have ρdB(GN, r)
< ρdB(KN, r), where KN is the complete graph on N vertices. In particular, we can take r? = 2N2.

Since our baseline for amplifiers is the complete graph KN, Theorem 1 implies that, under

dB updating, every (unweighted) graph is, at best, a transient amplifier. Moreover, the only

graph that may be a universal (that is, non-transient) amplifier is a weighted version of the

complete graph KN. This is in sharp contrast to Bd updating, for which universal amplifiers

exist (e.g., the Star graph [28]).

To sketch the intuition behind Theorem 1, consider again our toy example of an

unweighted undirected graph GN where each vertex has precisely d neighbors. Then the fixa-

tion probability is at most d/(d + 1), regardless of r. On the other hand, Eq 2 implies that the

fixation probability on a complete graph tends to 1 − 1/N as r!1. If d< N − 1, then 1 − 1/N
is strictly more than d/(d + 1), hence the graph GN ceases to amplify in the limit r!1. In

the proof, we use Lemma 1 which applies to possibly weighted, directed, and/or non-regular

graphs and which yields an explicit bound on the threshold r-value r?� 2N2.

Limits on amplifiers of natural selection under death-Birth updating
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Second, we turn our attention to question Q2, which asks for the existence of strong ampli-

fying families. We establish the following theorem, which answers Q2 in negative.

Theorem 2 (All dB amplifiers are bounded). Fix r> 1. Then for any graph GN (possibly with
directed and/or weighted edges) we have rdBðGN ; rÞ � 1 � 1

rþ1
.

In particular, Theorem 2 implies that, under dB updating, the implied scale of fitness of

any graph is at most r + 1. Thus every graph is, at best, a bounded amplifier (see Fig 3b). In

particular, there exist no linear amplifiers, and thus no quadratic amplifiers or super amplifi-

ers. Again, this is in sharp contrast to Bd updating for which super amplifiers exist [16, 30,

31] and, in fact, are abundant [32].

The proof again follows from Lemma 1: for any r> 1, the fraction on the right-hand side of

Lemma 1 is at most the desired 1 − 1/(r + 1), with equality when d!1.

We remark that even though universal amplification is impossible by Theorem 1, some

population structures might achieve a certain level of amplification for a certain range of r-val-

ues. In fact, a companion work [38] presents weighted population structures called Fans that,

in the appropriate limit, amplify selection in a range 1 < r < ð1þ
ffiffiffi
5
p
Þ=2. The extent to which

these structures amplify is well within the bounds provided by Theorem 2 (see Fig 4). It is not

known whether there exist unweighted graphs that provide transient amplification.

Extensions to δ-dB amplifiers

Given the negative answers to questions Q1 and Q2 above, we proceed with studying the δ-dB

Moran process, in which the death-Birth updates are interleaved with the Birth-death updates.

The insight of Corollary 1 is that mutants have a higher fixation probability under Bd updat-

ing, compared to dB updating (given a large enough fitness advantage r). Qualitatively, we

expect that given a fixed population structure under δ-dB updating, the fixation probability

increases as δ decreases. Fig 5 confirms this intuition numerically, for Complete graphs, Ring

graphs and Star graphs.

Fig 4. Transient amplifiers under death-Birth updating. A companion work [38] identified certain weighted graphs

that are transient dB-amplifiers. a, The Fan graph FN,ε with N blades is a weighted graph obtained from a Star graph

S2N+1 by pairing up the 2N leaves and rescaling the weight of each edge coming from the center to ε< 1. b, The

implied scale of fitness of a large Fan (here N = 101 and ε = 10−5, values computed by numerically solving the

underlying Markov chain). If r is small enough then the Fan amplifies selection under dB updating. The level of

amplification is well within the scope allowed by Theorem 2 (shaded region). For comparison, we again show the

implied scale of fitness for the Complete, Bipartite, Star, and Ring graphs (N = 400).

https://doi.org/10.1371/journal.pcbi.1007494.g004
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The two extremes of the δ-dB Moran process are the pure Bd (δ = 0) and pure dB (δ = 1)

Moran processes. It is known that under Bd updating, both universal amplifiers and super

amplifiers exist. On the other hand, we have shown here that under pure dB updating, any

amplification is inevitably transient and bounded. The next two natural questions are to inves-

tigate whether universal or strong amplifiers exist for small values of δ 2 (0, 1), for which the

process is heavily biased towards Bd updating. Perhaps surprisingly, we answer both questions

in negative. Concerning universality, we show the following theorem.

Theorem 3 (All δ-dB amplifiers are transient). Fix a non-complete graph GN on N vertices
(possibly with directed and/or weighted edges) and δ 2 (0, 1]. Then there exists r? > 1 such that
for all r> r? we have rdðGN ; rÞ < r̂dðKN ; rÞ, where KN is the complete graph on N vertices.

Theorem 3 is a δ-dB analogue of Theorem 1. It implies that, compared to the baseline given

by a weighted average r̂dðKN ; rÞ between ρdB(KN, r) and ρBd(KN, r), every unweighted graph

is at best a transient amplifier, and a weighted graph can only be a universal amplifier if it is

a weighted version of the complete graph KN. Hence for any positive δ> 0, no matter how

small, universal amplification is impossible among unweighted graphs.

Next, we turn our attention to the limit of large N, and ask whether strong amplification is

possible for the δ-dB Moran process. We show the following theorem.

Theorem 4 (All δ-dB amplifiers are at most linear). Fix r> 1 and δ 2 (0, 1]. Then for any
graph GN (possibly with directed and/or weighted edges) we have rdðGN ; rÞ � 1 � 1

ðr=dÞþ1
.

Theorem 4 implies that for fixed δ> 0, no matter how small, no better than linear amplifi-

ers exist. In particular, there are no quadratic amplifiers and no super amplifiers. For δ! 1

(pure dB updating), the bound coincides with the one given in Theorem 2. For δ! 0 (pure Bd

updating), the bound becomes vacuous (it simplifies to ρBd(G, r)� 1) which is in alignment

Fig 5. Fixation probability under δ-dB updating. Three different graphs on N = 10 vertices: a Complete graph, b Ring graph, c Star graph. For

each δ 2 {0, 0.25, 0.5, 0.75, 1} we show the fixation probability under δ-dB updating as a function of r. For reference, we show the Complete graph

again in panels b, c (thick faint lines). On the latter two graphs, the dependence of the fixation probability on δ is more pronounced and not

roughly linear as is the case for the Complete graph. Due to the isothermal theorem [16], the Complete graph and the Ring have the same fixation

probability under Bd updating (δ = 0). The Star graph is an amplifier under Bd updating and also a δ-dB r-amplifier for small δ and r > 1 (e.g. for

δ = 0.2 and r = 2 we have rdðS10; rÞ > 0:494 > 0:491 > r̂dðK10; rÞ) but ceases to be an amplifier for large δ (e.g. for δ = 0.5 and r = 2 we have

rdðS10; rÞ < 0:37 < 0:47 < r̂dðK10; rÞ).

https://doi.org/10.1371/journal.pcbi.1007494.g005
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with the existence of quadratic and super amplifiers under (pure) Bd updating. The proofs of

Theorems 3 and 4 rely on a δ-analogue of Lemma 1.

Even though universal amplification and super amplification are impossible for any δ> 0

due to Theorems 3 and 4, some population structures do achieve reasonable levels of amplifi-

cation for various combinations of r and δ. Specifically, we consider Star graphs, Bipartite

graphs, and Ring graphs of fixed size N = 10 and N = 100 and show how strongly they amplify,

depending on the fitness advantage r of the initial mutant and on the portion δ of dB updates

(see Fig 6). We make several observations. First, when δ is small enough, both Star graphs and

Bipartite graphs do amplify selection, for a certain range of r> 1. Interestingly, large Bipartite

graphs are less sensitive to variations in δ than Star graphs, and for small r> 1 they maintain

amplification even for δ almost as big as 0.5. On the other hand, if δ is small enough, Star

graphs tend to achieve stronger amplification than Bipartite graphs. Second, for any of the six

population structures and any fixed r, increasing δ diminishes any benefit that the population

structure provides to advantageous mutants. Specifically, there appears to be no regime (r, δ)

where a ring graph would amplify selection. This observation is consistent with Corollary 1.

Discussion

In this work, we have investigated the existence of amplifiers for the death-Birth (dB)

Moran process. We have shown that such amplifiers, if they exist, must be both transient

and bounded. Transience means that any population structure can amplify selection only in a

Fig 6. Strength of amplification in terms of r and δ. a, Star graphs, b, complete Bipartite graphs with smaller part of size
ffiffiffiffi
N
p

, and c, Ring graphs, of

size either N = 10 (top row) or N = 100 (bottom row). For each of the six graphs, we plot the ratio rdðGN ; rÞ=r̂dðKN ; rÞ as a function of the fitness

advantage r (x-axis) and the portion of dB-updates δ (y-axis). Red (blue) color signifies that the population structure amplifies (suppresses) selection for

the given regime (r, δ). Green curves denote regimes where the ratio equals 1. When r = 1, the fixation probability equals 1/N regardless of δ and the

population structure. By Theorem 3, all δ-amplifiers are transient, hence the “horizontal” green curves eventually hit the x-axis for r large enough.

Plotted values were obtained by numerically solving the underlying Markov chain for every r 2 {1, 1.025, . . ., 3} and δ 2 {0, 0.025, . . ., 1}.

https://doi.org/10.1371/journal.pcbi.1007494.g006
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limited range r 2 (1, r?) of relative fitness values r of the mutant. Boundedness means that even

when a population structure does amplify selection for a fixed r> 1, it can do so only to a lim-

ited extent. In particular, quadratic amplification which is achieved by the Star graphs under

Birth-death (Bd) updating is impossible to achieve under dB updating. As a consequence,

there are no super amplifiers under dB updating. These results are in sharp contrast to the Bd

Moran process, for which amplifiers and super amplifiers have been constructed repeatedly

[16, 28, 31, 33], and, in fact, can be abundant [35]. Our findings suggest that the existence

of amplifiers is sensitive to specific mechanisms of the evolutionary process, and hence their

biological realization depends on which process captures actual population dynamics more

faithfully.

Note that the situation is more favorable in the broader family of weighted population

structures. Under Bd updating, super amplifiers are abundant [32], and under dB updating,

transient amplifiers have recently been constructed in a companion work [38]. It remains to

be seen whether transient amplification can be achieved by unweighted structures.

To reconcile the apparent discrepancy in the results of the two processes, we have also

investigated the mixed δ-dB Moran process, which combines dB and Bd updating. On one

hand, we have extended our boundedness and transience results to δ-dB updating. Specifically,

our results imply that for any fixed δ> 0, any amplification is necessarily transient and that

there are no quadratic amplifiers or super amplifiers under δ-dB updating. In this sense, the

case of the (pure) Bd updating is singular. On the other hand, when δ is small, some population

structures that amplify for the pure Bd updating (δ = 0) maintain reasonable level of amplifica-

tion under δ-dB updating, for a wide range of fitness advantages r. Specifically, we find that

suitable Bipartite graphs are less sensitive to variations in δ than the Star graphs, and maintain

amplification for δ as big as 0.5, when r is close to 1.

There is an interesting connection to the situation of evolutionary games on graphs. There,

the desirable population structures are those that promote cooperation. It is known that under

any δ-dB updating for δ> 0, population structures can promote cooperation [39], whereas for

pure Bd updating, no regular structure that promotes cooperation exists [42]. Therefore, in the

setting of games, the desirable structures exist for all δ> 0, whereas in our setting of constant

selection, the desirable structures (strong and/or universal amplifiers) exist only in the regime

δ = 0. In both settings, the case of pure Birth-death updating appears to be a singular one.
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