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Abstract

A fundamental question in biology is the following: what is the time scale that is needed for evolutionary innovations?
There are many results that characterize single steps in terms of the fixation time of new mutants arising in populations of
certain size and structure. But here we ask a different question, which is concerned with the much longer time scale of
evolutionary trajectories: how long does it take for a population exploring a fitness landscape to find target sequences that
encode new biological functions? Our key variable is the length, L, of the genetic sequence that undergoes adaptation. In
computer science there is a crucial distinction between problems that require algorithms which take polynomial or
exponential time. The latter are considered to be intractable. Here we develop a theoretical approach that allows us to
estimate the time of evolution as function of L: We show that adaptation on many fitness landscapes takes time that is
exponential in L, even if there are broad selection gradients and many targets uniformly distributed in sequence space.
These negative results lead us to search for specific mechanisms that allow evolution to work on polynomial time scales. We
study a regeneration process and show that it enables evolution to work in polynomial time.
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Introduction

Our planet came into existence 4.6 billion years ago. There is

clear chemical evidence for life on earth 3.5 billion years ago [1,2].

The evolutionary process generated procaria, eucaria and

complex multi-cellular organisms. Throughout the history of life,

evolution had to discover sequences of biological polymers that

perform specific, complicated functions. The average length of

bacterial genes is about 1000 nucleotides, that of human genes

about 3000 nucleotides. The longest known bacterial gene

contains more than 105 nucleotides, the longest human gene

more than 106. A basic question is what is the time scale required

by evolution to discover the sequences that perform desired

functions. While many results exist for the fixation time of

individual mutants [3–15], here we ask how the time scale of

evolution depends on the length L of the sequence that needs to be

adapted. We consider the crucial distinction of polynomial versus

exponential time [16–18]. A time scale that grows exponentially in

L is infeasible for long sequences.

Evolutionary dynamics operates in sequence space, which can

be imagined as a discrete multi-dimensional lattice that arises

when all sequences of a given length are arranged such that

nearest neighbors differ by one point mutation [19]. For constant

selection, each point in sequence space is associated with a non-

negative fitness value (reproductive rate). The resulting fitness

landscape is a high dimensional mountain range. Populations

explore fitness landscapes searching for elevated regions, ridges,

and peaks [20–27].

A question that has been extensively studied is how long does it

take for existing biological functions to improve under natural

selection. This problem leads to the study of adaptive walks on

fitness landscapes [15,20,21,28,29]. In this paper we ask a different

question: how long does it take for evolution to discover a new

function? More specifically, our aim is to estimate the expected

discovery time of new biological functions: how long does it take

for a population of reproducing organisms to discover a biological

function that is not present at the beginning of the search. We will

discuss two approximations for rugged fitness landscapes. We also

discuss the significance of clustered peaks.

We consider an alphabet of size four, as is the case for DNA and

RNA, and a nucleotide sequence of length L. We consider a

population of size N, which reproduces asexually. The mutation

rate, u, is small: individual mutations are introduced and evaluated

by natural selection and random drift one at a time. The

probability that the evolutionary process moves from a sequence i
to a sequence j, which is at Hamming distance one from i, is given

by Pi,j~½Nu=(3L)�ri,j , where ri,j is the fixation probability of

sequence j in a population consisting of sequence i. In the special

case of a flat fitness landscape, we have ri,j~1=N, and

Pi,j~½u=(3L)�. Thus we have an evolutionary random walk,

where each step is a jump to a neighboring sequence of Hamming

distance one.

Results

Consider a high-dimensional sequence space. A particular

biological function can be instantiated by some of the sequences.

Each sequence i has a fitness value fi, which measures the ability of

the sequence i to encode the desired function. Biological fitness

landscapes are typically expected to have many peaks [29–31].
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They can be highly rugged due to epistatic effects of mutations

[32–34]. They can also contain large regions or networks of

neutrality [20,21]. Empirical studies of short RNA sequences have

revealed that the underlying fitness landscape has low peak density

[35]: around 15 peaks in 424 sequences.

For the purpose of estimating the expected discovery time we

can approximate the fitness landscape with a binary step function

over the sequence space. We discuss two different approximations

(Figure 1). For the first approximation, we consider the scenario

where fitness values below some threshold, fmin, have negligible

contribution; those sequences do not instantiate the desired

function (either not at all or only below the minimum level that

could be detected by natural selection). We approximate the

rugged fitness landscape as follows: if fivfmin then fi~0; if

fi§fmin then fi~1. The set of sequences with fi§fmin constitutes

the target set, and the remaining fitness landscape is neutral.

The second approximation works as follows. Consider the

evolutionary process exploring a rugged fitness landscape where

the goal is to attain a fitness level f �. Local maxima below f � slow

down the evolutionary process to attain f �, because the

evolutionary walk might get stuck in those local maxima. In order

to derive lower bounds for the expected discovery time, the rugged

fitness landscape can be approximated as follows. Let f̂f be the

fitness value of the highest local maximum below f �. Then for

every sequence in a mountain range with a local maximum below

f � we assign the fitness value f̂f . The mountain ranges with local

maxima above f � are the target sequences. Note that the target set

includes sequences that start at the upslope of mountain ranges

with peaks above f �. Thus, again we obtain a fitness landscape

with clustered targets and neutral region, where the neutral region

consists of all sequences whose fitness values have been assigned to

f̂f . The two approximations are illustrated in Figure 1. For

f �~fmin the second approximation generates larger target areas

than the first approximation and is therefore more lenient.

Our key results for estimating the discovery time can now be

formulated for binary fitness landscapes, but they apply to any

type of rugged landscape using one of the two approximations. We

note that our methods can also be applied for certain non-binary

fitness landscapes, and an example of a fitness landscape with a

large gradient arising from multiplicative fitness effects is discussed

in Sections 6 and 7 of Text S1.

We now present our main results in the following order. We first

estimate the discovery time of a single search aiming to find a

single broad peak. Then we study multiple simultaneous searches

for a single broad peak. Finally, we consider multiple broad peaks

that are uniformly randomly distributed in sequence space.

We first study a broad peak of target sequences described as

follows: consider a specific sequence; any sequence within a certain

Hamming distance of that sequence belongs to the target set.

Specifically, we consider that the evolutionary process has

succeeded, if the population discovers a sequence that differs

from the specific sequence in no more than a fraction c of

positions. We refer to the specific sequence as the target center and

c as the width (or radius) of the peak. For example, if L~100 and

c~0:1, then the target center is surrounded by a cloud of

approximately 1018 sequences. For a single broad peak with width

c, the target set contains at least 2cL=(3L) sequences, which is an

exponential function of L. The fitness landscape outside the broad

peak is flat. We refer this binary fitness landscape as a broad peak

landscape. The population needs to discover any one of the target

sequences in the broad peak, starting from some sequence that is

not in the broad peak. We establish the following result.

Theorem 1. Consider a single search exploring a broad peak
landscape with width c and mutation rate u. The following
assertions hold:

N if cv3=4, then there exists L0[N such that for all sequence
spaces of sequence length L§L0, the expected discovery time is

at least exp½(3{4c)
L

16
log

6

4cz3
�;

N if c§3=4, then for all sequence spaces of sequence length L, the
expected discovery time is at most O L3=u

� �
.

Our result can be interpreted as follows (see Theorem S2 and

Corollary S2 in Text S1): (i) If cv3=4, then the expected discovery

time is exponential in L; and (ii) if c§3=4, then the expected

discovery time is polynomial in L. Thus, we have derived a strong
dichotomy result which shows a sharp transition from polynomial

to exponential time depending on whether a specific condition on

c does or does not hold.

For the four letter alphabet most random sequences have

Hamming distance 3L=4 from the target center. If the population

is further away than this Hamming distance, then random drift

will bring it closer. If the population is closer than this Hamming

distance, then random drift will push it further away. This

argument constitutes the intuitive reason that c~3=4 is the critical

threshold. If the peak has a width of less than c~3=4, then we

prove that the expected discovery time by random drift is

exponential in the sequence length L (see Figure 2). This result

holds for any population size, N, as long as 4L
wwN, which is

certainly the case for realistic values of L and N . In the Text S1 we

also present a more general result, where along with a single broad

peak, instead of a flat landscape outside the peak we consider a

multiplicative fitness landscape and establish a sharp dichotomy

result that generalizes Theorem 1 (see Corollary S2 in Text S1).

Remark 1. We highlight two important aspects of our results.

1. First, when we establish exponential lower bounds for the
expected discovery time, then these lower bounds hold even if the
starting sequence is only a few steps away from the target set.

2. Second, we present strong dichotomy results, and derive
mathematically the most precise and strongest form of the
boundary condition.

Let us now give a numerical example to demonstrate that

exponential time is intractable. Bacterial life on earth has been

around for at least 3.5 billion years, which correspond to 3|1013

hours. Assuming fast bacterial cell division of 20–30 minutes on

average we have at most 1014 generations. The expected discovery

Author Summary

Evolutionary adaptation can be described as a biased,
stochastic walk of a population of sequences in a high
dimensional sequence space. The population explores a
fitness landscape. The mutation-selection process biases
the population towards regions of higher fitness. In this
paper we estimate the time scale that is needed for
evolutionary innovation. Our key parameter is the length
of the genetic sequence that needs to be adapted. We
show that a variety of evolutionary processes take
exponential time in sequence length. We propose a
specific process, which we call ‘regeneration processes’,
and show that it allows evolution to work on polynomial
time scales. In this view, evolution can solve a problem
efficiently if it has solved a similar problem already.
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time for a sequence of length L~1000 with a very large broad

peak of c~1=2 is approximately 1065 generations; see Table 1.

If individual evolutionary processes cannot find targets in

polynomial time, then perhaps the success of evolution is based on

the fact that many populations are searching independently and in

parallel for a particular adaptation. We prove that multiple,

independent parallel searches are not the solution of the problem,

if the starting sequence is far away from the target center. Formally

we show the following result.

Theorem 2. In all cases where the lower bound on the expected
discovery time is exponential, for all polynomials p1(:), p2(:) and
p3(:), for any starting sequence with Hamming distance at least
3L=4 from the target center, the probability for any one out of p3(L)
independent multiple searches to reach the target set within p1(L)
steps is at most 1=p2(L).

If an evolutionary process takes exponential time, then

polynomially many independent searches do not find the target

in polynomial time with reasonable probability (for details see

Figure 1. Approximations of a highly rugged fitness landscape by broad peaks and neutral regions. The figures depict examples of
highly rugged fitness landscapes where the sequence space has been projected in one dimension. (A) Sequences with fitness below some level fmin

are functionally very different to the desired function, and selection cannot act upon them. All other sequences are considered as targets. The fitness
landscape is approximated by a step function: if fivfmin , then fi~0, otherwise fi~1. (B) Local maxima below the desired fitness threshold f � are
known to slow down the evolutionary random walk towards sequences that attain fitness at least f � . We approximate the fitness landscape by broad
peaks and neutral regions by increasing the fitness of every sequence that belongs in a mountain range with fitness below f � to the maximal local

maxima f̂f below f � . Note that the target set starts from the upslope of a mountain range whose peak exceeds f � .
doi:10.1371/journal.pcbi.1003818.g001

Figure 2. Broad peak with different fitness landscapes. For the broad peak there is a specific sequence, and all sequences that are within
Hamming distance cL are part of the target set. The fitness landscape is flat outside the broad peak. (A) If the width of the broad peak is cv3=4, then
the expected discovery time is exponential in sequence length, L. (B) If the width of the broad peak is c§3=4, then the expected discovery time is
polynomial in sequence length, L. (C) Numerical calculations for broad peak fitness landscapes. We observe exponential expected discovery time for
c~1=3 and c~1=2, whereas polynomial expected discovery time for c~3=4.
doi:10.1371/journal.pcbi.1003818.g002
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Theorem S5 in the Text S1). We also show an informal and

approximate calculation of the success probability for M
independent searches, as follows: if the expected discovery time

is exponential (say, d ), then the probability that all M independent

searches fail upto b steps is at least exp {(Mb)=dð Þ (i.e., the

success probability within b steps of any of the searches is at most

1{ exp {(Mb)=dð Þ), when the starting sequence is far away from

the target center. In such a case, one could quickly exhaust the

physical resources of an entire planet. The estimated number of

bacterial cells [36] on earth is about 1030. To give a specific

example let us assume that there are 1024 independent searches,

each with population size N~106. The probability that at least

one of those independent searches succeeds within 1014 genera-

tions for sequence length L~1000 and broad peak of c~1=2 is

less than 10{26.

In our basic model, individual mutants are evaluated one at a

time. The situation of many mutant lineages evolving in parallel is

similar to the multiple searches described above. As we show that

whenever a single search takes exponential time, multiple

independent searches do not lead to polynomial time solutions,

our results imply intractability for this case as well.

We now explore the case of multiple broad peaks that are

uniformly and randomly distributed. Consider that there are m
target centers. Around each target center there is a selection

gradient extending up to a distance cL. Formally we can consider

any fitness function f that assigns zero fitness to a sequence whose

Hamming distance exceeds cL from all the target centers, which in

particular is subsumed by considering the multiple broad peaks

where around each center we consider a broad peak of target set

with peak width c. We establish the following result:

Theorem 3. Consider a single search under the multiple broad
peak fitness landscape of mvv4L target centers chosen uniformly
at random, with peak width at most c for each center and cv3=4.
Then with high probability, the expected discovery time of the target

set is at least (1=m) exp½2L(3=4{c)2�.
Whether or not the function (1=m) exp½2L(3=4{c)2� is

exponential in L depends on how m changes with L. But even if

we assume exponentially many broad peak centers, m, with peak

width cL where cv3=4, we need not obtain polynomial time

(Figure 3 and Theorem S6 in Text S1).

It is known that recombination may accelerate evolution on

certain fitness landscapes [28,37–39], and recombination may also

slow down evolution on other fitness landscapes [40]. Recombi-

nation, however, reduces the discovery time only by at most a

linear factor in sequence length [28,37,38,41,42]. A linear or even

polynomial factor improvement over an exponential function does

not convert the exponential function into a polynomial one.

Hence, recombination can make a significant difference only if the

underlying evolutionary process without recombination already

operates in polynomial time.

What are then adaptive problems that can be solved by

evolution in polynomial time? We propose a ‘‘regeneration

process’’. The basic idea is that evolution can solve a new

problem efficiently, if it is has solved a similar problem already.

Suppose gene duplication or genome rearrangement can give rise

to starting sequences that are at most k point mutations away from

the target set, where k is a number that is independent of L. It is

important that starting sequences can be regenerated again and

again. We prove that Lkz1 many searches are sufficient in order to

find the target in polynomial time with high probability (see

Figure 4 and Section 10 in Text S1). The upper bound, Lkz1,

holds even for neutral drift (without selection). Note that in this

case, the expected discovery time for any single search is still

exponential. Therefore, most of the Lkz1 searches do not succeed

in polynomial time; however, with high probability one of the

searches succeeds in polynomial time. There are two key aspects to

the ‘‘regeneration process’’: (a) the starting sequence is only a small

number of steps away from the target; and (b) the starting

sequence can be generated repeatedly. This process enables

evolution to overcome the exponential barrier. The upper bound,

Lkz1, may possibly be further reduced, if selection and/or

recombination are included.

Discussion

The regeneration process formalizes the role of several existing

ideas. First, it ties in with the proposal that gene duplications and

genome rearrangements are major events leading to the emer-

gence of new genes [43]. Second, evolution can be seen as a

tinkerer playing around with small modifications of existing

sequences rather than creating entirely new ones [44]. Third, the

process is related to Gillespie’s suggestion [29] that the starting

sequence for an evolutionary search must have high fitness. In our

theory, proximity in fitness value is replaced by proximity in

sequence space. However, our results show that proximity alone is

insufficient to break the exponential barrier, and only when

combined with the process of regeneration it yields polynomial

discovery time with high probability. Our process can also explain

the emergence of orphan genes arising from non-coding regions

[45]. Section 12 of the Text S1 discusses the connection of our

approach to existing results.

There is one other scenario that must be mentioned. It is

possible that certain biological functions are hyper-abundant in

sequence space [21] and that a process generating a large number

of random sequences will find the function with high probability.

For example, Bartel & Szostak [46] isolated a new ribozyme from

a pool of about 1015 random sequences of length L~220. While

such a process is conceivable for small effective sequence length, it

cannot represent a general solution for large L.

Our theory has clear empirical implications. The regeneration

process can be tested in systems of in vitro evolution [47]. A

Table 1. Numerical data for discovery time in flat fitness landscapes.

r~1 c~
1

3
c~

1

2
c~

3

4

L~102 1:02:1018 7:36:107 183

L~103 5:89:10170 1:28:1065 2666

Numerical data for the discovery time of broad peaks with width c~1=3,1=2, and 3=4 embedded in flat fitness landscapes. First the discovery time is computed for
small values of L as shown in Figure 2(C). Then the exponential growth is extrapolated to L~100 and L~1000, respectively. We show the discovery times for c~1=2,
and 1=3. For c~3=4 the values are polynomial in L.
doi:10.1371/journal.pcbi.1003818.t001
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starting sequence can be generated by introducing k point

mutations in a known protein encoding sequence of length L. If

these point mutations destroy the function of the protein, then the

expected discovery time of any one attempt to find the original

sequence should be exponential in L. But only polynomially many

searches in L are required to find the target with high probability

in polynomially many steps. The same setup can be used to

explore whether the biological function can be found elsewhere in

sequence space: the evolutionary trajectory beginning with the

starting sequence could discover new solutions. Our theory also

highlights how important it is to explore the distribution of

biological functions in sequence space both for RNA [20,21,35,46]

and in the protein universe [48].

In summary, we have developed a theory that allows us to

estimate time scales of evolutionary trajectories. We have shown

that various natural processes of evolution take exponential time as

function of the sequence length, L. In some cases we have

established strong dichotomy results for precise boundary condi-

tions. We have proposed a mechanism that allows evolution in

polynomial time scales. Some interesting directions of future work

are as follows: (1) Consider various forms of rugged fitness

landscapes and study more refined approximations as compared to

Figure 3. The search for randomly, uniformly distributed targets in sequence space. (A) The target set consists of m random sequences;
each one of them is surrounded by a broad peak of width up to cL. The figure shows a pictorial illustration where the L-dimensional sequence space
is projected onto two dimensions. From a randomly chosen starting sequence outside the target set, the expected discovery time is at least

(1=m) exp½2L(3=4{c)2�, which can be exponential in L. (B) Computer simulations showing the average discovery time of m~100, 150, and 200
targets, with c~1=3. We observe exponential dependency on L. The discovery time is averaged over 200 runs. (C) Success probability estimated as
the fraction of the 200 searches that succeed in finding one of the target sequences within 104 generations. The success probability drops
exponentially with L. (D) Success probability as a function of time for L~42, 45, and 48. (E) Discovery time for a large number of randomly generated

target sequences. Either m~2L=3z2 or m~4L=3 sequences were generated. For b~0 and b~3 the target set consists of balls of Hamming distance 0
and 3 (respectively) around each sequence. The figure shows the average discovery time of 100 runs. As expected we observe that the discovery time
grows exponentially with sequence length, L.
doi:10.1371/journal.pcbi.1003818.g003

Figure 4. Regeneration process. Gene duplication (or possibly some
other process) generates a steady stream of starting sequences that are
a constant number k of mutations away from the target. Many searches
drift away from the target, but some will succeed in polynomially many

steps. We prove that Lkz1 searches ensure that with high probability
some search succeed in polynomially many steps.
doi:10.1371/journal.pcbi.1003818.g004
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the ones we consider; and then estimate the expected discovery

time for the refined approximations. (2) While in this paper we

characterize the difference between exponential and polynomial

for the expected discovery time, more refined analysis (such as

efficiency for polynomial time, like cubic vs quadratic time) for

specific fitness landscapes using mechanisms like recombination is

another interesting problem.

Materials and Methods

Our results are based on a mathematical analysis of the

underlying stochastic processes. For Markov chains on the one-

dimensional grid, we describe recurrence relations for the

expected hitting time and present lower and upper bounds on

the expected hitting time using combinatorial analysis (see Text

S1 for details). We now present the basic intuitive arguments of

the main results.

Markov chain on the one-dimensional grid
For a single broad peak, due to symmetry we can interpret the

evolutionary random walk as a Markov chain on the one-

dimensional grid. A sequence of type i is i steps away from the

target, where i is the Hamming distance between this sequence and

the target. The probability that a type i sequence mutates to a type

i{1 sequence is given by ui=(3L). The stochastic process of the

evolutionary random walk is a Markov chain on the one-dimensional

grid 0,1,:::,L.

The basic recurrence relation
Consider a Markov chain on the one-dimensional grid, and let

H(j,i) denote the expected hitting time from i to j. The general

recurrence relation for the expected hitting time is as follows:

H(j,i)~1zPi,iz1H(j,iz1)zPi,i{1H(j,i{1)zPi,iH(j,i); ð1Þ

for jvivL, with boundary condition H(j,j)~0. The interpreta-

tion is as follows. Given the current state i, if i=j, at least one

transition will be made to a neighboring state i’, with probability

Pi,i’, from which the hitting time is H(j,i’).

Intuition behind Theorem 1
Theorem 1 is derived by obtaining precise bounds for the

recurrence relation of the hitting time (Equation 1). Consider that

Pk,k{1w0 for all jvkƒi (i.e., progress towards state j is always

possible), as otherwise j is never reached from i. We show (see Lemma

2 in the Text S1) that we can write H(j,i) as a sum,

H(j,i)~
PL{j{1

n~L{i bn, where bn is the sequence defined as:

(i) b0~
1

PL,L{1

;

(ii) bn~
1zPL{n,L{nz1bn{1

PL{n,L{n{1
for nw0:

ð2Þ

The basic intuition obtained from Equation 2 is as follows: (i) If
PL{n,L{nz1

PL{n,L{n{1
§l, for some constant lw1, then the sequence bn

grows at least as fast as a geometric series with factor l. (ii) On the

other hand, if
PL{n,L{nz1

PL{n,L{n{1

ƒ1 and PL{n,L{n{1§a for some

constant aw0, then the sequence bn grows at most as fast as an

arithmetic series with difference 1=a. From the above case analysis

the result for Theorem 1 is obtained as follows: If cv
3

4
, then for all

cLvnv

3z4c

8
L, we have

PL{n,L{nz1

PL{n,L{n{1
§l for some lw1, and

hence the sequence bn grows geometrically for a linear length in L.

Then, H(cL,i)§l
3{4c

8
L for all states iwcL (i.e., for all sequences

outside of the target set). This corresponds to case 1 of Theorem 1.

On the other hand, if c§
3

4
, then it is

PL{n,L{nz1

PL{n,L{n{1
ƒ1, and case 2 of

Theorem 1 is derived (for details see Corollary 2 in Text S1).

Intuition behind Theorem 2
The basic intuition for the result is as follows: consider a single

search for which the expected hitting time is exponential. Then for

the single search the probability to succeed in polynomially many

steps is negligible (as otherwise the expectation would not have

been exponential). In case of independent searches, the indepen-

dence ensures that the probability that all searches fail is the

product of the probabilities that every single search fails. Using the

above arguments we establish Theorem 2 (for details see Section 8

in Text S1).

Intuition behind Theorem 3
For this result, it is first convenient to view the evolutionary walk

taking place in the sequence space of all sequences of length L, under

no selection. Each sequence has 3L neighbors, and considering that a

point mutation happens, the transition probability to each of them is
1

3L
. The underlying Markov chain due to symmetry has fast mixing

time, i.e., the number of steps to converge to the stationary

distribution (the mixing time) is O(L log L). Again by symmetry

the stationary distribution is the uniform distribution. If cv
3

4
, then

from Theorem 1 we obtain that the expected time to reach a single

broad peak is exponential. By union bound, if mvv4L, the

probability to reach any of the m broad peaks within O(L log L) steps

is negligible. Since after the first O(L log L) steps the Markov chain

converges to the stationary distribution, then each step of the process

can be interpreted as selection of sequences uniformly at random

among all sequences. Using Hoeffding’s inequality, we show that with

high probability, in expectation
exp 2:(3=4{c)2:L
� �

m
such steps are

required before a sequence is found that belongs to the target set.

Thus we obtain the result of Theorem 3 (for details see Section 9 in

Text S1).

Remark about techniques
An important aspect of our work is that we establish our results

using elementary techniques for analysis of Markov chains. The

use of more advanced mathematical machinery, such as

martingales [49] or drift analysis [50,51], can possibly be used

to derive more refined results. While in this work our goal is to

distinguish between exponential and polynomial time, whether

the techniques from [49–51] can lead to a more refined

characterization within polynomial time is an interesting direc-

tion for future work.

Supporting Information

Text S1 Detailed proofs for ‘‘The Time Scale of Evolutionary

Innovation.’’

(PDF)
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