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Construction of arbitrarily strong amplifiers of
natural selection using evolutionary graph theory
Andreas Pavlogiannis1, Josef Tkadlec1, Krishnendu Chatterjee1 & Martin A. Nowak 2

Because of the intrinsic randomness of the evolutionary process, a mutant with a fitness

advantage has some chance to be selected but no certainty. Any experiment that searches

for advantageous mutants will lose many of them due to random drift. It is therefore of great

interest to find population structures that improve the odds of advantageous mutants. Such

structures are called amplifiers of natural selection: they increase the probability that

advantageous mutants are selected. Arbitrarily strong amplifiers guarantee the selection of

advantageous mutants, even for very small fitness advantage. Despite intensive research over

the past decade, arbitrarily strong amplifiers have remained rare. Here we show how to

construct a large variety of them. Our amplifiers are so simple that they could be useful in

biotechnology, when optimizing biological molecules, or as a diagnostic tool, when searching

for faster dividing cells or viruses. They could also occur in natural population structures.
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In the evolutionary process, mutation generates new variants,
while selection chooses between mutants that have different
reproductive rates. Any new mutant is initially present at very

low frequency and can easily be eliminated by random drift. The
probability that the lineage of a new mutant eventually takes over
the entire population is called the fixation probability. It is a key
quantity of evolutionary dynamics and characterizes the rate of
evolution1–5.

Consider a population, in which at each time step an individual
is chosen for reproduction with probability proportional to fit-
ness, and the offspring replaces another individual6. In a well-
mixed population, each offspring is equally likely to replace any
individual. If the new mutant has relative fitness r, then its fixa-
tion probability is ð1� 1=rÞ=ð1� 1=rNÞ, where N is the popu-
lation size5. For advantageous mutants, which have r>1, the
fixation probability converges to 1− 1/r in the limit of large
population size.

Population structure can affect evolutionary and ecological
dynamics7–16. In evolutionary graph theory, the structure of a
population is described by a graph17–24: each individual occupies
a vertex; the edges mark the neighboring sites where a reprodu-
cing individual can place an offspring. The edge weights represent
the proportional preference to make such a choice. If each
neighbor is chosen uniformly at random, then the outgoing edges
of every vertex have identical weights. This is modeled by an
unweighted graph. A self-loop represents the possibility that an
offspring does not migrate but instead replaces its parent25. The
classical well-mixed population is described by an unweighted,
complete graph with self-loops.

In general, the fixation probability depends not only on the
graph, but also on the initial placement of the invading
mutants26, 27. The two most natural cases are the following. First,
mutation is independent of reproduction and occurs at all loca-
tions at a constant rate per unit time. Thus, mutants arise with
equal probability in each location. This is called uniform initi-
alization. Second, mutation happens during reproduction. In this
case, mutants are more likely to occur in locations that have a
higher turnover. This is called temperature initialization. Our
approach also allows us to study any combination of the two
cases: some mutants arise spontaneously while others occur
during reproduction.

For a wide class of population structures17, which include
symmetric ones28, the fixation probability is the same as for the
well-mixed population. A population structure is an amplifier if it
exaggerates the fitness difference between the invading mutant
and the resident when compared to the well-mixed
population17, 27, 29. A population structure is an arbitrarily
strong amplifier (for brevity hereafter also called “strong ampli-
fier”) if it ensures a fixation probability arbitrarily close to one for
any advantageous mutant, r > 1. Strong amplifiers can only exist
in the limit of large population size.

Numerical studies30 suggest that for spontaneously arising
mutants and small population size, many unweighted graphs
amplify for some values of r. But for a large population size,
randomly constructed, unweighted graphs do not amplify31.
Moreover, proven amplifiers for all values of r are rare. For
spontaneously arising mutants (uniform initialization): (i) the
Star has fixation probability of ~1− 1/r2 in the limit of large N,
and is thus an amplifier17, 32, 33; (ii) the Superstar (introduced in
ref. 17, see also ref. 34) and the Incubator (introduced in refs.
35, 36), which are graphs with unbounded degree, are strong
amplifiers. The mathematical proofs of these assertions are
intricate37.

For mutants that arise during reproduction (temperature
initialization), neither the Star nor the Superstar amplify27. The
Star can be modified with self-loops and edge weights to obtain

the Looping Star, which has fixation probability 1− 1/r2 in the
limit of large N both for mutants that arise during reproduction
and for mutants that arise spontaneously. The Looping Star is the
only known amplifier for both uniform and temperature initi-
alization27, but it is not an arbitrarily strong amplifier. In fact, no
strong amplifier for temperature initialization had been known.

In this work we resolve several open questions regarding strong
amplification under uniform and temperature initialization. First,
we show that there exists a vast variety of graphs with self-loops
and weighted edges that are arbitrarily strong amplifiers for both
uniform and temperature initialization. Moreover, many of those
strong amplifiers are structurally simple, therefore they might be
realizable in natural or laboratory setting. Second, we show that
both self-loops and weighted edges are key features of strong
amplification. Namely, we show that without either self-loops or
weighted edges, no graph is a strong amplifier under temperature
initialization, and no simple graph is a strong amplifier under
uniform initialization.

Results
Results overview. Our contribution comes in two parts. First, we
give an explicit construction of a wide range of strong amplifiers.
Second, we identify features of population structures that are
necessary for amplification. See Fig. 1 for the illustration of the
model and Supplementary Table 1 for the summary of our results.

Construction of strong amplifiers. We prove that almost all
families of connected graphs with self-loops can be turned into
arbitrarily strong amplifiers of natural selection by assigning
suitable edge weights. The resulting structures are arbitrarily
strong amplifiers for both types of mutants: those that arise
during reproduction and those that arise spontaneously, or any
combination of the two. Our result proves not only the existence
of those structures, but provides an explicit procedure for their
construction. Note that by assigning small (or even zero) weight
to an edge, we can effectively erase it. Hence, our construction is
particularly interesting for sparse graphs.

The construction first specifies certain subset of vertices that we
call a “hub”. The remaining vertices are split by the hub into a
number of short “branches”. The construction guarantees that the
combined population size of all the branches is much larger than
that of the hub. Therefore, with high probability, the first mutant
arises on a branch.

The weights of all edges are then defined so that each of the
following steps happens with high probability (Fig. 2). First, the
mutants spread on the branch until they reach a vertex that is
connected to the hub. Second, the mutants repeatedly invade the
hub and eventually fixate there. Third, one by one the mutants
spread from the hub to all branches and fixate.

Intuitively, the weight assignment creates a sense of global flow
in the branches, directed toward the hub. This guarantees that the
first two steps happen with high probability. For the third step, we
show that once the mutants fixate in the hub, they are extremely
likely to resist all resident invasion attempts and instead they will
invade and take over the branches one by one thereby fixating on
the whole graph. For more detailed description, see “Methods”
section “Construction of strong amplifiers”.

Simulation results. Note that simple structures such as Stars,
Grids, or Sunflowers can be turned into arbitrarily strong
amplifiers using our construction (Fig. 3). The explicit weight
construction is described in Supplementary Figure 1. In Fig. 3, we
show the results of numerical experiments on the fixation prob-
abilities of advantageous mutants, comparing the weighted
structures to their unweighted counterparts. The experiments
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Fig. 2 Steps to fixation in strong amplifiers. Residents are shown in yellow, mutants in purple. a Our construction partitions a graph into a “hub” (orange)
and a number of “branches” (blue) in such a way that the first mutant appears in one of the branches. The fixation of advantageous mutants is then
reached in three stages. b The mutant lineage reaches the vertex of the branch adjacent to the hub. c, d Next, the mutants place offspring into the hub
several times and eventually fixate there. In the worst case, the initial branch can become all residents again. e, f Finally, the mutants fixate in the branches
one after the other and thereby occupy the whole population

Extinction A new mutant Fixation
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Fig. 1 Evolutionary dynamics in structured populations. Residents (yellow) and mutants (purple) differ in their reproductive rate. a A single mutant appears.
The lineage of the mutant becomes extinct or reaches fixation. The probability that the mutant takes over the population is called “fixation probability”. b
The classical, well-mixed population is described by a complete graph with self-loops. (Self-loops are not shown here.) (c) Isothermal structures do not
change the fixation probability compared to the well-mixed population. d The Star is an amplifier for uniform initialization. e A self-loop means the offspring
can replace the parent. Self-loops are a mathematical tool to assign different reproduction rates to different places. f The Superstar, which has unbounded
degree in the limit of large population size, is a strong amplifier for uniform initialization. Its edges (shown as arrows) are directed which means that the
connections are one-way
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simulate the evolutionary dynamics on each population structure.
We vary the population size and the fitness advantages for the
mutant. For each such case, we simulate the evolutionary
dynamics many times to obtain an accurate value for the average
fixation probability. We observe that although the unweighted
structures have small (or no) amplification properties, our con-
struction turns them into strong amplifiers, where advantageous
mutants fixate with high probability.

Specifically, in Fig. 3a, we consider Star graphs SN with N= 10,
20, …, 500. For the unweighted Star, there is an exact formula for
fixation probability under both uniform and temperature
initialization32. The values for weighted Star were computed by
numerically solving large systems of linear equations.

In Fig. 3b, we consider n ´ n and n ´ ðnþ 1Þ Grid graphs of
sizes N ¼ 9; 12; 16; 20; ¼ ; 100. In order to avoid boundary
conditions, the grid “wraps around” that is the vertices in the first
row are connected to the vertices in the last row and the same
holds for columns. The unweighted Grid with N vertices is
isothermal so the fixation probability under both uniform and
temperature initialization is given by ð1� 1=rÞ=ð1� 1=rNÞ.

In Fig. 3c, we consider Sunflower graphs. An n-centered
Sunflower graph is a graph consisting of a well-mixed population
of size n in the center and n surrounding petals, which are
well-mixed population themselves. Each petal is connected with
all its vertices to a unique vertex from the center. Specifically, we
consider n-centered Sunflower graphs where all petals have the
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Fig. 3 Almost any topology can be turned into a strong amplifier. We illustrate the construction using the topology of a Star (a), a Grid (b), and a Sunflower
(c). The hub is shown in orange, the branches in blue. Thin edges are assigned negligibly small (or zero) weights. For each graph, we compare the fixation
probability of the unweighted (lines) and the weighted version (dots) as function of the population size, N for uniform initialization (for temperature
initialization, see Supplementary Figure 2). A Sunflower graph consists of a well-mixed population of size n in the center surrounded by n petals, which are
local well-mixed populations. Each petal is connected to a unique vertex of the center. For details, see Supplementary Note 1, Section 6
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same size (either n− 1 or n− 2). The total population size is
N ¼ 6; 9; 12; 16; ¼ ; 182.

Recall that strong amplifiers can only exist in the limit of large
population size. The above simulations illustrate that our weight
assignment substantially increases the fixation probability even
for graphs with small population size. An illustration of a wide
variety of strong amplifiers for different topologies is presented in
Fig. 4.

Necessary conditions for amplification. Our main result shows
that a large variety of population structures can provide strong
amplification. A natural follow-up question concerns the features
of population structures under which amplification can emerge.
We complement our main result by proving that both weights
and self-loops are essential for strong amplification. Thus, we
establish a strong dichotomy. Without either weights or self-
loops, no graph can be a strong amplifier under temperature
initialization, and no simple graph can be a strong amplifier
under uniform initialization. On the other hand, if we allow both
weights and self-loops, strong amplification is ubiquitous.

Under temperature initialization, we prove that on every graph
without self-loops (but possibly with weighted edges), the fixation
probability is at most 1� 1=ðr þ 1Þ. Similarly, on every graph
without weighted edges (but possibly with self-loops), the fixation
probability is at most 1� 1=ð4r þ 2Þ. Hence, if the population
structure lacks either self-loops or weights, strong amplification
under temperature initialization is impossible.

Under uniform initialization, we prove two analogous results
for families of graphs that have bounded degree. Here, a family
fG1;G2; ¼ g of graphs has bounded degree if there exists a
constant c such that every vertex of every graph in the family has
at most c adjacent edges. An example of bounded degree graphs
are Grid graphs: every vertex in a rectangular Grid of any size has
degree at most 4 (or 8 for Moore neighborhood). We prove that

on every graph without self-loops (but possibly with weighted
edges), the fixation probability is at most 1� 1=ðcþ cr2Þ.
Similarly, on every graph without weighted edges (but possibly
with self-loops), the fixation probability is at most 1� 1=ð1þ rcÞ.
It follows that with either of the two restrictions, there exist no
strong amplifiers under uniform initialization.

Discussion
Prior to our finding, strong amplifiers of natural selection have
been elusive. Only very few examples of strong amplifiers have
been described for spontaneously arising mutants. No strong
amplifiers have been known for mutants that arise during
reproduction. But here we show that many population structures
can be turned into arbitrarily strong amplifiers, for both types of
mutants, by choosing suitable edge weights. Consequently, there
exists an unlimited variety of population structures that are
strong amplifiers of natural selection (Fig. 4). We present an
algorithm for their construction. We note that our structures can
be remarkably simple.

It is now conceivable that amplifiers of natural selection could
be built in the lab. Modern microfluidics technology is capable of
building population structures (or, so called “metapopulations”),
which control the topology of interactions and migration38–40.
These metapopulations are typically arranged in microscale pat-
ches of habitat, and migration flows between neighboring patches
are created asymmetrically, using one-way barriers such us fun-
nels41. Most realized topologies are simple, e.g., forming two-
dimensional grids. Our work is the first to show that even such
simple structures can lead to strong amplification by controlling
the migration rates between patches.

Amplifiers of natural selection could become important tools
for in vitro evolution42–45, because they can greatly boost the
ability to find advantageous mutants. Amplifiers could aid the
discovery of optimized protein or nucleotide sequences for any

b

dc

a

Fig. 4 Infinite variety of strong amplifiers. Many topologies can be turned into arbitrarily strong amplifiers (Wheel (a), Triangular grid (b), Concentric
circles (c), and Tree (d)). Each graph is partitioned into hub (orange) and branches (blue). The weights can be then assigned to the edges so that we obtain
arbitrarily strong amplifiers. Thick edges receive large weights, whereas thin edges receive small (or zero) weights
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medical or industrial purpose. They could also be a highly sen-
sitive diagnostic tool for screening populations of replicating cells
or viruses for the presence of faster growing (pathological) var-
iants. Amplifiers should be especially useful in situations where
the rate-limiting step is the discovery and evaluation of margin-
ally advantageous mutants.

Some naturally occurring population structures could be
amplifiers of natural selection. For example, the germinal centers
of the immune system might constitute amplifiers for the affinity
maturation process of adaptive immunity46. Habitats of animals
that are divided into multiple islands with a central breeding
location could potentially also act as amplifiers of selection. Our
theory helps to identify those structures in natural settings.

Our study also establishes structural features that are necessary
for amplification. For example, under temperature initialization,
amplification cannot arise from the topology alone, but crucially
depends on the migration rates between neighboring sites.
Similarly, any search for natural amplifiers must focus on struc-
tures where the effect of self-loops is present, meaning that the
offspring of reproducing individuals occasionally remains local
and does not migrate to neighboring locations.

Most of the research in the field, including the current work,
has focused on the populations that evolve according to the
standard birth–death updating. An interesting direction for future
research is to study if similar results can be achieved for
death–birth updating.

Methods
Here we describe the basic model and outline the mathematical methods. Further
details are given in Supplementary Note 1.

Model. Population structure is captured by a graph G with N vertices and directed
edges that are possibly weighted and include self-loops. The vertices represent
individuals, the edges represent interactions (Fig. 1). The weight of an edge between
vertices i and j is denoted by wij , and captures the rate at which vertex i interacts
with j. Alternatively, the rates can be captured by allowing multiple edges between

vertices, in which case the structure is modeled by an unweighted multigraph. The
degree of a vertex is the number of edges adjacent to it.

Individuals are of two types: residents with fitness 1 and (advantageous)
mutants with fitness r > 1. The fitness of individual occupying vertex i is denoted by
fi.

The population evolves according to birth–death updating. In each step, one
individual is chosen for reproduction randomly and proportionally to its fitness,
and then one of the adjacent edges is chosen randomly and proportionally to the
edge weight. The selected individual produces a copy of itself (birth) and sends this
copy along the selected edge to replace the individual at the other end of the edge
(death). That is, individual i is selected for reproduction with probability fi=

P
j fj

and its adjacent edge ði; i′Þ is then selected with probability wii′=
P

j wij. The
individual at vertex i′ then becomes the same type as individual at vertex i. Note
that due to different degrees and weights, an edge between individuals i and i′ can
be used more frequently in direction “from i to i′” than in direction “from i′ to i”.

The state of the process is given by vector ðx1; x2; ¼ ; xNÞ, where xi= 1
represents that the individual occupying vertex i is a mutant and xi= 0 for a
resident. The process starts with a single mutant on one vertex and stops either
when all the individuals become mutants (fixation) or residents (extinction)
(Fig. 1a).

Initialization scheme. In the beginning, the position of the single mutant can be
chosen either uniformly at random (uniform initialization, U) or proportionally to
the temperature of the vertex (temperature initialization, T). The temperature th of
vertex h is defined as

th ¼
X

i

wihP

j
wij ð1Þ

and corresponds to how frequently each vertex is being replaced by reproduction
events happening in the neighboring vertices.

Amplifiers. The probability of fixation for a single mutant with relative fitness r
appearing on graph G according to initialization scheme U (or T) is denoted by
ρðG; r;UÞ (or ρðG; r;TÞ).

Denoting by KN the complete graph on N vertices, we have

ρ KN ; r;Uð Þ ¼ ρ KN ; r;Tð Þ ¼ 1� 1=r
1� 1=rN

! 1� 1=r ð2Þ

as N ! 1. Graphs for which the fixation probability is greater than this for any
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Fig. 5 Details of steps to fixation. a Assigning different weights to edges and self-loops changes the frequency with which each edge is used in each
direction. Thicker arrows indicate edges that are used more frequently. b Our weight assignment creates a global sense of flow in the branches, directed
toward the hub. The hub itself is almost isothermal and evolves fast. c Three stages to fixation illustrated on a single branch and the connecting vertex in
the hub. After fixating on the hub at the end of Stage 2 (hub becomes dark orange), mutants spread to all the branches and fixate on the whole graph
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r > 1 are called unif-amplifiers or temp-amplifiers based on the initialization
scheme.

The most well-known unif-amplifiers are Star graphs SN (see Fig. 1d) for which
ρðSN ; r;UÞ ! 1� 1=r2>1� 1=r as N ! 1. However, Star graphs are not temp-
amplifiers, since ρðSN ; r;TÞ ! 0.

We are interested in the behavior for large population sizes. A sequence of
graphs G1;G2; ¼ of increasing size is called a strong unif-amplifier if, in the limit,
the fixation probability under uniform initialization tends to 1 for arbitrary, fixed
r > 1 (that is, if for any r > 1, we have limi!1 ρðGi; r;UÞ ! 1). Strong temp-
amplifiers are defined analogously, requiring that limi!1 ρðGi; r;TÞ ! 1.

Fundamental questions. Despite the rich interest in amplifiers of natural selection,
many basic questions have remained unanswered. The fundamental open questions
are the following.

First, are there strong amplifiers for temperature initialization? More generally,
are there population structures that function as strong amplifiers for both uniform
and temperature initialization?

Second, similarly to the Star, does there exist a graph without self-loops and/or
without weights that is an amplifier for temperature initialization, achieving
fixation probability at least 1− 1/r2 for large N?

Third, are there simple structures, such as graphs with bounded degree, that are
strong amplifiers for uniform initialization?

Construction of strong amplifiers. In our positive result, we answer the first
fundamental question by proving that almost every family of graphs of increasing
population size can be turned into a strong amplifier (both strong unif-amplifier
and strong temp-amplifier) by allowing self-loops and assigning weights to edges.
Self-loops are natural. They indicate that the offspring can replace the parent25.
The standard Moran process is given by a complete graph with self-loops.

In the proof47, we start by defining a subset of vertices called a hub and
partitioning the remaining vertices into subsets called branches in such a way that
each branch connects to the hub. The partitioning has the property that the hub is
larger than each branch individually, but smaller than all of them combined. Such a
partitioning is possible for all graphs that have diameter polynomially smaller than
N (i.e., the distance between every pair of nodes is at most N1�ε, where ε> 0 is fixed
and independent of N).

Once we construct the partitioning with the required properties, we proceed by
assigning weights in such a way that, intuitively, (i) in each branch, there is a sense
of global flow directed toward the hub; and (ii) the hub is isothermal and evolves
faster than the rest of the graph. The success of the construction then relies on the
following two principles.

First, the weights create a sense of global flow. The weight assignment in the
branches guarantees that every edge is used more frequently in the direction
toward the hub than in the direction away from the hub. Moreover, by assigning
suitable weights to the self-loops, we achieve that edges closer to the hub are used
more frequently then edges further away from the hub. See Fig. 5a for a small
numerical illustration. These two facts imply that a mutant arising in a branch will
propagate toward the hub and repeatedly try to invade it.

Second, there is an important asymmetry between mutants and residents on a
well-mixed population. For large population size N, the fixation probability of a
single mutant with fitness r > 1 invading a well-mixed population of N residents
tends to the positive constant 1− 1/r. On the other hand, the probability that a
single resident takes over a large well-mixed population of advantageous mutants is
~r−N, i.e., exponentially small in N. The weight assignment within the hub makes
the hub behave approximately like a well-mixed population. Therefore, once the
mutants fixate in the hub, they are extremely likely to resist the upcoming invasion
attempts of the residents.

With these two principles in mind, we can informally argue as follows. Since the
hub occupies only a small portion of the graph, the first mutant most likely appears
in some branch. We focus on that branch and the hub (see Fig. 5b) and prove that
due to the biased flow toward the hub, the mutants spread all the way to the hub
(see Fig. 5c, Stage 1). Once in the hub, the mutants have a constant chance to fixate
there. If the first invading mutant lineage fails in the hub, another such lineage will
be generated from the branch. Eventually, the mutants take over the hub (see
Fig. 5c, Stage 2). From that point on, it is extremely unlikely that the residents
could win the hub back. In order to fixate on the branch, the mutants have to
proceed against the natural direction of the flow, which is, in absolute terms, fairly
improbable. However, the alternative of residents taking over the hub is much
more improbable. Thus, with high probability, the mutants will succeed in fixating
on the branch (see Fig. 5c, Stage 3). Similarly, they fixate on all the other branches.

For details, see Supplementary Note 1, Section 5, and the references therein.

Necessary conditions for amplification. In our negative results, we answer the
second and the third fundamental question by proving that both self-loops and
weighted edges are essential for existence of strong amplifiers.

First, in order to address the second fundamental question, we consider
temperature initialization on an arbitrary graph.

In order to prove that self-loops are necessary features for strong amplification,
we consider a graph without self-loops (possibly with weighted edges). Then, given
any possible starting position i of the mutant, we find that the probability, pi, that

the mutant is replaced by one of its resident neighbors before it reproduces even
once equals pi ¼ ti=ðti þ rÞ, where ti is the temperature of vertex i. Therefore, the
fixation probability starting from a state with single mutant at vertex i is at most
1� ti=ðti þ rÞ. Taking all possible starting positions into account, we establish an
upper bound 1� 1=ðr þ 1Þ on the fixation probability using Cauchy–Schwarz
inequality. This implies that without self-loops, strong amplification under
temperature initialization is not possible.

In order to prove that weighted edges are also necessary, we consider an
unweighted graph (possibly with self-loops). We argue similarly and establish an
upper bound 1� 1=ð4r þ 2Þ on the fixation probability. Thus, the second
fundamental question is answered in negative.

Second, in order to address the third fundamental question, we consider
uniform initialization on graphs with bounded degree. As above, we first consider a
graph without self-loops (possibly with weighted edges). Given any such graph G,
we single out a subset Vh of vertices with high temperature that we call hot vertices.
Formally, Vh consists of vertices that are replaced by at least one of their neighbors
with rate at least 1/c, where c is the constant that bounds the degree. We prove that
the subset Vh is large (namely, Vh

�
�

�
� � N=c) and that the fixation probability

starting from a single hot vertex is small (namely, smaller than rc=ð1þ rcÞ).
Accounting of all hot vertices, we establish that ρðG; r;UÞ � 1� 1=ðcþ cr2Þ. The
case of unweighted graphs (that possibly have self-loops) follows similarly, by
noticing that under bounded degree, all vertices are sufficiently hot. The bound we
obtain is ρðG; r;UÞ � 1� 1=ð1þ rcÞ. Altogether, this answers the third
fundamental question in negative. For details, see Supplementary Note 1, Section 4,
and the references therein.

Data and code availability. The data sets generated and analyzed during the
current study and the related computer code are available in the Figshare48

repository, https://doi.org/10.6084/m9.figshare.6323240.v1.
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