Multi-Party Computation
Part 1

Claudio Orlandi, Aarhus University
Plan for the next 3 hours...

- **Part 1: Secure Computation with a Trusted Dealer**
 - Warmup: One-Time Truth Tables
 - Evaluating Circuits with Beaver’s trick
 - MAC-then-Compute for Active Security

- **Part 2: Oblivious Transfer**
 - OT: Definitions and Applications
 - Passive Secure OT Extension
 - OT Protocols from DDH (Naor-Pinkas/PVW)

- **Part 3: Garbled Circuits**
 - GC: Definitions and Applications
 - Garbling gate-by-gate: Basic and optimizations
 - Active security 101: simple-cut-and choose, dual-execution
Want more?

• Cryptographic Computing – Foundations
 – http://orlandi.dk/crycom
 – Programming & Theory Exercises
 – Will be happy to answer questions by mail!

...also the reason why I cannot stay here longer 😞

• These slides (+ references & pointers)
 – http://orlandi.dk/ecrypt
Secure Computation

- Privacy
- Correctness
- Input independence
- ...

\(f(x, y) \)

\(x \rightarrow 8dx2r ru3d0fW2TS \)
\(\text{muv6tbWg32flqlo} \)
\(\text{s1e4xq13O}TzoJc \)
What kind of Secure Computation?

• **Dishonest majority**
 – The adversary can corrupt up to n-1 participants (n=2).

• **Static Corruptions**
 – The adversary chooses which party is corrupted before the protocol starts.

• **Passive & Active Corruptions**
 – Adversary follows the protocol vs. (aka semi-honest, honest-but-curious)
 – Adversary can behave arbitrarily (aka malicious, byzantine)

• **No guarantees of fairness or termination**
 – Security with abort
(r_A, r_B) \leftarrow D

f(x, y)
Online Phase

\[r_A \]

\[r_B \]

\[f(x,y) \]

\[x \]

\[y \]

- Independent of \(x,y \)
- Typically only depends on size of \(f \)
- Uses public key crypto technology *(slower)*

- Uses only information theoretic tools *(order of magn. faster)*
Part 1: Secure Computation with a Trusted Dealer

- **Warmup**: One-Time Truth Tables
- Evaluating Circuits with Beaver’s trick
- MAC-then-Compute for Active Security
“The simplest 2PC protocol ever”

\[(r_A, r_B) \leftarrow D\]
“The simplest 2PC protocol ever” OTTT (Preprocessing phase)

1) Write the truth table of the function F you want to compute

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>
“The simplest 2PC protocol ever” OTTT
(Preprocessing phase)

2) Pick random \((r, s)\), rotate rows and columns

\[
\begin{array}{c|cccc}
& 0 & 1 & 2 & 3 \\
\hline
0 & 1 & 4 & 4 & 1 \\
1 & 2 & 2 & 2 & 3 \\
2 & 0 & 0 & 4 & 3 \\
3 & 0 & 0 & 4 & 1 \\
\end{array}
\]
“The simplest 2PC protocol ever” OTTT (Preprocessing phase)

3) Secret share the truth table i.e.,

Pick at random, and let

\[
\begin{array}{cccc}
T1 & 1 & 4 & 4 & 1 \\
T2 & 2 & 2 & 2 & 3 \\
& 0 & 0 & 4 & 3 \\
& 0 & 0 & 4 & 1 \\
\end{array}
\]
"The simplest 2PC protocol ever"

$u = x + r$

$v = y + s$

output $f(x,y) = T1[u,v] + T2[u,v]$

"Privacy": inputs masked w/uniform random values

Correctness: by construction
What about active security?

\[u = x + r \]

\[v = y + s + e_1 \]

\[T_2[u,v] + e_2 \]
Is this cheating?

- \(v = y + s + e_1 = (y + e_1) + s = y' + s \)
 - Input substitution, not cheating according to the definition!

- \(M_2[u, v] + e_2 \)
 - Changes output to \(z' = f(x, y) + e_2 \)
 - Example: \(f(x, y) = 1 \) iff \(x = y \) (e.g. pwd check)
 - \(e_2 = 1 \) the output is 1 whp (login without pwd!)
 - Clearly breach of security!
Force Bob to send the right value

- **Problem**: Bob can send the wrong shares
- **Solution**: use MACs
 - e.g. $m = ax + b$ with $(a, b) \leftarrow F$

Abort if $m' \neq ax' + b$
output \(f(x,y) = T1[u,v] + T2[u,v] \)
else
abort

Statistical security vs. malicious Bob w.p. \(1 - 1/|F| \)
“The simplest 2PC protocol ever” OTTT

- Optimal communication complexity 😊
- Storage exponential in input size 😞

👉 Represent function using circuit instead of truth table!
Part 1: Secure Computation with a Trusted Dealer

- Warmup: One-Time Truth Tables
- Evaluating Circuits with Beaver’s trick
- MAC-then-Compute for Active Security
Circuit based computation
Invariant

• For each \textit{wire} x in the circuit we have

 – [x] := (x_A, x_B) \quad \text{// read “x in a box”}

 – Where Alice holds x_A

 – Bob holds x_B

 – Such that x_A+x_B=x

• Notation overload:

 – x is both the r-value and the l-value of x

 – use n(x) for name of x and v(x) for value of x when in doubt.

 – Then [n(x)] = (x_A, x_B) such that x_A+x_B=v(x)
Circuit Evaluation
(Online phase)

1) \([x] \leftarrow \text{Input}(A,x) : \)
 - chooses random \(x_B \) and send it to Bob
 - set \(x_A = x + x_B \) \hspace{1cm} // symmetric for Bob

 Alice only sends a random bit! “Clearly” secure

2) \(z \leftarrow \text{Open}(A,[z]) : \)
 - Bob sends \(z_B \)
 - Alice outputs \(z = z_A + z_B \) \hspace{1cm} // symmetric for Bob

 Alice should learn \(z \) anyway! “Clearly” secure
Circuit Evaluation (Online phase)

2) \([z] \leftarrow \text{Add}([x],[y])\) \quad \text{// at the end } z = x + y

- Alice computes \(z_A = x_A + y_A\)
- Bob computes \(z_B = x_B + y_B\)

- We write \([z] = [x] + [y]\)

No interaction! “Clearly” secure

“for free” : only a local addition!
Circuit Evaluation
(Online phase)

2a) \([z] \leftarrow \text{Mul}(a, [x])\)
 \[
 \begin{align*}
 - \text{Alice computes } z_A &= a \times x_A \\
 - \text{Bob computes } z_B &= a \times x_B
 \end{align*}
 \]
 // at the end \(z = a \times x\)

2c) \([z] \leftarrow \text{Add}(a, [x])\)
 \[
 \begin{align*}
 - \text{Alice computes } z_A &= a + x_A \\
 - \text{Bob computes } z_B &= x_B
 \end{align*}
 \]
 // at the end \(z = a + x\)
Circuit Evaluation
(Online phase)

3) Multiplication?

How to compute \([z]=[xy]\) ?

Alice, Bob should compute

\[z_A + z_B = (x_A + x_B)(y_A + y_B) \]

\[= x_A y_A + x_B y_A + x_A y_B + x_B y_B \]

Alice can compute this

Bob can compute this

How do we compute this?
Circuit Evaluation
(Online phase)

3) \([z] \leftarrow \text{Mul}([x],[y])\):

1. Get \([a],[b],[c]\) with \(c=ab\) from trusted dealer

2. \(e=\text{Open}([a]+[x])\)

3. \(d=\text{Open}([b]+[y])\)

4. Compute \([z] = [c] + e[y] + d[x] - ed\)

 \[ab + (ay+xy) + (bx+xy) - (ab+ay+bx+xy)\]
Part 1: Secure Computation with a Trusted Dealer

- Warmup: One-Time Truth Tables
- Evaluating Circuits with Beaver’s trick
- MAC-then-Compute for Active Security
Secure Computation

\[
\begin{align*}
&\text{z}^* \\
&\text{[w] [w+e]} \\
&\text{[w]} \\
&\text{[w]} \\
&\text{[y_5]} \\
&\text{[x_5]} \\
&\text{[y_4]} \\
&\text{[x_4]} \\
&\text{[y_3]} \\
&\text{[x_3]} \\
&\text{[y_2]} \\
&\text{[x_2]} \\
&\text{[y_1]} \\
&\text{[x_1]} \\
\end{align*}
\]
Active Security?

- “Privacy?”
 - even a malicious Bob does not learn anything 😊

- “Correctness?”
 - a corrupted Bob can change his share during any “Open” (both final result or during multiplication) leading the final output to be incorrect 😞
Problem

2) $z \leftarrow \text{Open}(A,[z])$:

- Bob sends $z_B + e$
- Alice outputs $z = z_A + z_B + e$
 \hspace{1cm} // error change output distribution in way that cannot be simulated by input substitution
Solution: add MACs

2) $z \leftarrow \text{Open}(A,[z])$:

- Bob sends z_B, m_B
- Alice outputs

 - $z=z_A+z_B$ if $m_B = z_B \Delta_A + k_A$

 - “abort” otherwise

Solution: Enhance representation $[x]$

- $[x] = ((x_A, k_A, m_A), (x_B, k_B, m_B))$ s.t.
- $m_B = x_B \Delta_A + k_A$ (symmetric for m_A)
- Δ_A, Δ_B is the same for all wires.
Linear representation

• Given
 – \([x] = ((x_A, k_{Ax}, m_{Ax}) , (y_B, k_{Bx}, m_{Bx}))\)
 – \([y] = ((y_A, k_{Ay}, m_{Ay}) , (y_B, k_{By}, m_{By}))\)
 – Compute \([z] = (\)
 \((z_A=x_A+y_A , \quad k_{Az}=k_{Ax}+k_{Ay} , \quad m_{Az}=m_{Ax}+m_{Ay})\),
 \((z_B=x_B+y_B , \quad k_{Bz}=k_{Bx}+k_{By} , \quad m_{Bz}=m_{Bx}+m_{By})\),\)

• And \([z]\) is in the right format since...
 \[m_{Bz} = (m_{Bz}+m_{By}) = (k_{Ax} + x_B\Delta_A) + (k_{Ay} + y_B\Delta_A) \]
 \[= (k_{Ax} + k_{Ay}) + (x_B+y_B)\Delta_A = k_{Az} + z_B\Delta_A \]
Recap

1. Output Gates:
 – Exchange shares and MACs
 – Abort if MAC does not verify

2. Input Gates:
 – Get a random \([r]\) from trusted dealer
 – \(r \leftarrow \text{Open}(A,[r])\)
 – Alice sends Bob \(d=x-r\),
 – Compute \([x]=[r]+d\)

Allows simulator to extract \(x^* = r+d^*\)
1. Addition Gates:
 - Use linearity of representation to compute
 \[z = x + y \]

2. Multiplication gates:
 - Get a random triple \([a][b][c]\) with \(c = ab\) from
 - \(e \leftarrow \text{Open}([a]+[x]), \ d \leftarrow \text{Open}([b]+[y])\)
 - Compute \([z] = [c] + a[y] + b[x] - ed\)
Final remarks

- Size of MACs
- Lazy MAC checks
Size of MACs

1. Each party must store a mac/key pair for each other party
 – quadratic complexity! 😞
 – SPDZ for linear complexity.

2. MAC is only as hard as guessing key!
 \(k \) MACs in parallel give security \(1/|F|^k \)
 – In TinyOT \(F=\mathbb{Z}_2 \), then MACs/Keys are \(k \)-bit strings
 – MiniMACs for constant overhead
Lazy MAC Check

\[z^* \]

\[+e \]
Lazy MAC Check

1) $z \leftarrow \text{PartialOpen}(A,[z])$:
 1. Bob sends z_B
 2. Bob runs $\text{OutMAC.append}(m_B)$
 3. Alice runs $\text{InMAC.append}(k_A + z_B \Delta_A)$
 4. Alice outputs $z = z_A + z_B$

2) $z \leftarrow \text{FinalOpen}(A,[z])$:
 1. Steps 1-3 as before
 2. Bob sends $u = H(\text{OutMAC})$ to Alice
 3. Alice outputs $z = z_A + z_B$ if $u = H(\text{InMAC})$
 4. “abort” otherwise
Recap of Part 1

• Two protocols “in the trusted dealer model”
 – One Time-Truth Table
 • Storage $\exp(\text{input size})$
 • Communication $O(\text{input size})$
 • 1 round
 – (SPDZ)/BeDOZa/TinyOT online phase
 • Storage linear $\#\text{number of AND gates}$
 • Communication linear $\#\text{number of AND gates}$
 • $\#\text{rounds} = \text{depth of the circuit}$
 – ...and add enough MACs to get active security
Recap of Part 1

• To do secure computation is enough to precompute enough random multiplications!

• If no semi-trusted party is available, we can use cryptographic assumption (next)