ECRYPT.NET Cloud Summer School

Mi-Party Computation
Part 1

Claudio Orlandi, Aarhus University

Plan for the next 3 hours...

* Part 1: Secure Computation with a Trusted Dealer
— Warmup: One-Time Truth Tables
— Evaluating Circuits with Beaver’s trick
— MAC-then-Compute for Active Security
* Part 2: Oblivious Transfer
— OT: Definitions and Applications
— Passive Secure OT Extension
— OT Protocols from DDH (Naor-Pinkas/PVW)
* Part 3: Garbled Circuits
— GC: Definitions and Applications
— Garbling gate-by-gate: Basic and optimizations
— Active security 101: simple-cut-and choose, dual-execution

Want more?

* Cryptographic Computing — Foundations
— http://orlandi.dk/crycom
— Programming & Theory Exercises
— Will be happy to answer questions by mail!

...also the reason why | cannot stay here longer ®

* These slides (+ references & pointers)
— http://orlandi.dk/ecrypt

Secure Computation

X Y
8dx2rru3dOfW2TS
i) —_—

- muv6tbWg32flglo
"=
sled4xql130tTzolc

>

Privacy
Correctness
Input independence

What kind of Secure Computation?

* Dishonest majority
— The adversary can corrupt up to n-1 participants (n=2).

Static Corruptions

— The adversary chooses which party is corrupted before the protocol
starts.

Passive & Active Corruptions
— Adversary follows the protocol vs.

— Adversary can behave arbitrarily

No guarantees of fairness or termination
— Security with abort

Alied paisnil

)
\J

~
&
<

N

1a|eaq paisnJl

f(x,y)

* Independent of x,y
* Tipically only depends
- . on size of f

.« Uses public key crypto
g technology (slower)

Al AA

0

=
V)
)
Q
O
O
Q
Q
S

a

e Uses only information
theoretic tools
(order of magn. faster)

Online Phase

Part 1: Secure Computation with a
Trusted Dealer

* Warmup: One-Time Truth Tables
* Evaluating Circuits with Beaver’s trick

e MAC-then-Compute for Active Security

“The simplest 2PC protocol ever”

“The simplest 2PC protocol ever” OTTT
(Preprocessing phase)

1) Write the truth table of the function F
you want to compute

X
w N = O
iR W WO
RO O N| =
&~ O O NN
bbb NV W

10

“The simplest 2PC protocol ever” OTTT

(Preprocessing phase)
2) Pick random (r, s), rotate rows and columns

s=3
. >
0 1 2 3
0 |1 4 4 1
1 |2 2 2 3
r=1
2 |0 0 4 3
3 |0 0 4 1
v 11

“The simplest 2PC protocol ever” OTTT
(Preprocessing phase)

3) Secret share the truth table i.e.,

T]

Pick at random, and let

T2 . Il

RiWiWwikF

i IND

O OiINIF
O OiINIP

12

“The simpl | “Privacy”:
inputs masked w/uniform

random values

11

v=y+s

T2[u,v]

Correctness:
by construction

output f(x,y) = T1[u,v] + T2[u,v]

13

td

What about active security?

M

u=x-+r

v=y+ts+el

<€

T2[u,v] + e2

T]
£

14

s this cheating?

*v=y+s+tel =(ytel)+s=y +s

— Input substitution, not cheating according
to the definition!

* M2[u,v] + e2
— Changes output to z’ = f(x,y) + e2
— Example: f(x,y)=1 iff x=y (e.g. pwd check)
— e2=1 the output is 1T whp (login without pwd!)

* Clearly breach of security!

Force Bob to send the right value

* Problem: Bob can send the wrong shares

e Solution: use MACs
— e.g. m=ax+b with (a,b) < F

Abort if mZax’+b

OTTT+MAC

u=x-tr

If (M[u,v]=A[u,v]*T2[u,v]+B[u,v]) o :
output f(x,y) = T1[uv] + T2[u,v] Statistical security
else vs. malicious Bob

abort w.p. 1-1/|F|

T2[u,v], M[u,V]

<€

“The simplest 2PC protocol ever” OTTT

e Optimal communication complexity ©
* Storage exponential in input size ®

=» Represent function using circuit
instead of truth table!

18

Part 1: Secure Computation with a
Trusted Dealer

* Warmup: One-Time Truth Tables
* Evaluating Circuits with Beaver’s trick

e MAC-then-Compute for Active Security

Circuit based computation

X3 Y2

X Y1
i

0

c
D

Invariant

* For each wire x in the circuit we have
— [X] = (x,, Xg) // read “x in a box”
— Where Alice holds x,
— Bob holds xg
— Such that x,+xz=x

* Notation overload:
— xis both the r-value and the I-value of x
— use n(x) for name of x and v(x) for value of x when in doubt.
— Then [n(x)] = (xa,Xg) such that x,+xg=V(x)

Py

Circuit Evaluation
‘ (Online phase)

1) [x] € Input(A,x):
— chooses random x; and send it to Bob

Alice only sends a random bit! “Clearly” secure

2) z € Open(A,[z]):
— Bobsends z;
— Alice outputs z=z,+z,

Alice should learn z anyway! “Clearly” secure

b

2 Circuit Evaluation
‘ (Online phase)

2) [z]€< Add([x],[y])
— Alice computes z, = x, + y,
— Bob computes 7; = x; + y;
— We write [z] = [x] + [v]

No interaction! “Clearly” secure

“for free” : only a local addition!

Py

%\ Circuit Evaluation
(Online phase)

2a) [z] €< Mul(a,[x])
— Alice computes z, = a*x,
— Bob computes z; = a*x;

2¢c) [z]€< Add(a,[x])
— Alice computes z, = a+x,

— Bob computes z; = x;

™
3) Multiplication?
How to compute [z]=[xy] ?

Circuit Evaluation
(Online phase)

How do we compute this?

Alice, Bob should compute
Zp+ 2p = (Xa) (Ya+Ye)

Alice can compute
this

Bob can compute this

Py

Circuit Evaluation
\ .
(Online phase)

3) [z] < Mul([x],[y]):
1. Get[a],[b],[c] with c=ab from trusted dealer <}:| g

2. ezOpen([a]+[X]) e,d are ”onlg-?i,r;ses-i?cli’:incryptions]
3. d:Open([b]+[y]) i of xand y using a and b

4. Compute [z] = [c] + e[y] + d[X] - ed
ab + (ay+xy) + (bx+xy) - (ab+ay+bx+xy)

Part 1: Secure Computation with a
Trusted Dealer

* Warmup: One-Time Truth Tables
* Evaluating Circuits with Beaver’s trick

 MAC-then-Compute for Active Security

Secure Computation

[x.] [yil

5 e
%5 [x2] [y.] %é{
oy [xs] [ysl =
[léjj [xs] [yal %
%{ [xs] [ys] %
LJ (ﬁ L
NG ARNAER
N2 C 1 il
. 2)
B @ .
.‘a« +a
<€
A [w+e]
(O
. =)

28

Active Security?

* “Privacy?”

— even a malicious Bob does not learn anything ©

* “Correctness?”

— a corrupted Bob can change his share during any
“Open” (both final result or during multiplication)
leading the final output to be incorrect ®

Problem
2) z € Open(A,[z]):

— Bobsends z;
— Alice outputs z=z,+z;

Solution: add MACs
2) z € Open(A,[z]):

— Bobsends zz; mg
— Alice outputs
* Z=7,+Z4 if mg=125A,+k,

e “gbort” otherwise

e Solution: Enhance representation [x]
— [X] = ((Xa koymyu), (Xg kg mp))s.t.
— Mg = X5 A, + k, (Symmetric for m,)

— A, Ag is the same for all wires.

Linear representation

e Given

— [X] = ((XArkAXImAx) ’ (yB; kBXI me))

— [yl = ((yaKaypmay), (Ve Kgy Mgy))

— Compute [z] = (
(Za=XatYa Knz=KaxtKay , Ma=Mptmpy,),
(2g=Xp+Ys Kg,=KpytKp, , Mp,=mpg+mg,),)

 And [z] is in the right format since...
Mg, = (Mg, +Mp) = (Ka + XgA4) + (K, + Vplp)

= (kp, + kAy) + (Xg+yp)Ap = Ky, + 250,

Recap

&y
g
i

1. Output Gates:

2.

Exchange shares and MACs
Abort if MAC does not verify

Input Gates:
Get a random [r] from trusted dealer

r < Open(A,[r])
Alice sends Bob d=x-r,
Compute [x]=[r]+d

>’ 2 |

Allows simulator to

extract x* = r+d*

Recap

1. Addition Gates:

— Use linearity of representation to compute
[z]=[x]+[y]
2. Multiplication gates:
— Get arandom triple [a][b][c] with c=ab from
— e € Open([a]+[x]), d € Open([b]+[y])
— Compute [z] = [c] + a[y] + b[x] - ed

3
> 2

Final remarks

e Size of MACs

* Lazy MAC checks

Size of MACs

1. Each party must store a mac/key pair for
each other party

— quadratic complexity! ®
— SPDZ for linear complexity.

2. MAC is only as hard as guessing key!
k MACs in parallel give security 1//F[*

— In TinyOT F=Z,, then MACs/Keys are k-bit strings
— MiniMACs for constant overhead

P

(

.
!x

Lazy MAC Check

[x.] [yil

5 e
%5 [x2] [y.] %é{
e [xs] [ysl o
[léjj [xs] [yal %
%{ [xs] [ys] %
LJ (ﬁ L
NG ARNAER
P AR
%
.‘a« +e
<€
[w+e]

37

Lazy MAC Check

1) z € PartialOpen(A,[z]):

Bob sends z;

Bob runs OutMAC.append(myg)

Alice runs INMAC.append(k, + z5 A,)

Alice outputs z=z,+z;

< FinalOpen(A,[z]):

Steps 1-3 as before

Bob sends u=H(OutMAC) to Alice

Alice outputs z=z,+zif u=H(InMAC)
“abort” otherwise

2)

P w NP Ns N R

Recap of Part 1

* Two protocols “in the trusted dealer model”

— One Time-Truth Table
 Storage exp(input size) ®
 Communication O(input size) ©
* 1 round ©

— (SPDZ)/BeD0OZa/TinyOT online phase

» Storage linear #number of AND gates
 Communication linear #number of AND gates
* #rounds = depth of the circuit

— ...and add enough MACs to get active security

Recap of Part 1

* To do secure computation is enough to
precompute enough random multiplications!

* |f no semi-trusted party is available, we can
use cryptographic assumption (next)

40

