
ECRYPT.NET	Cloud	Summer	School

Claudio	Orlandi,	Aarhus	University		

Multi-Party	Computation
Part	1

2

Plan	for	the	next 3	hours…
• Part	1:	Secure	Computation with	a	Trusted Dealer

– Warmup:	One-Time	Truth Tables
– Evaluating Circuits	with	Beaver’s trick	
– MAC-then-Compute for	Active	Security

• Part	2:	Oblivious Transfer
– OT:	Definitions	and	Applications
– Passive	Secure	OT	Extension
– OT	Protocols	from	DDH	(Naor-Pinkas/PVW)

• Part	3:	Garbled Circuits
– GC:	Definitions	and	Applications
– Garbling gate-by-gate:	Basic	and	optimizations
– Active	security 101:	simple-cut-and	choose,	dual-execution

Want more?
• Cryptographic Computing	– Foundations
– http://orlandi.dk/crycom
– Programming	&	Theory Exercises
– Will	be happy to	answer questions by	mail!

…also the	reason why I	cannot stay here longer	L

• These slides	(+	references	&	pointers)
– http://orlandi.dk/ecrypt

Secure	Computation

• Privacy
• Correctness
• Input	independence
• …

4

8dx2rru3d0fW2TS

muv6tbWg32flqIo

s1e4xq13OtTzoJc

f(x,y)

x y

z

f(x,y)

x y

What kind	of	Secure Computation?
• Dishonest majority

– The	adversary can corrupt up	to	n-1	participants	(n=2).

• Static Corruptions
– The	adversary chooses which party	is	corrupted before the	protocol

starts.

• Passive	&	Active	Corruptions
– Adversary follows the	protocol vs.	

(aka semi-honest,	honest-but-curious)
– Adversary can behave arbitrarily

(akamalicious,	byzantine)

• No	guarantees of	fairness or	termination
– Security	with	abort

x y

z

6

(𝑟#, 𝑟%) ← 𝐷

rA rB

x y

f(x,y)

Tr
us
te
d
De

al
er

Tr
us
te
d
Pa
rt
y

rA rB

O
nl
in
e	
Ph

as
e

Pr
ep

ro
ce
ss
in
g

• Independent	of	x,y
• Tipically only depends

on	size of	f
• Uses public	key crypto

technology (slower)

• Uses only information	
theoretic tools
(order of	magn.	faster)

7

rA rB

x y

f(x,y)

Part	1:	Secure	Computation with	a	
Trusted Dealer

• Warmup:	One-Time	Truth Tables

• Evaluating Circuits	with	Beaver’s trick	

• MAC-then-Compute for	Active	Security

“The	simplest	2PC	protocol	ever”

9

(𝑟#, 𝑟%) ← 𝐷

rA rB

x y

f(x,y)

“The	simplest	2PC	protocol	ever”	OTTT
(Preprocessing	phase)

1)	Write	the	truth	table	of	the	function	F	
you	want	to	compute

0 1 2 3

0 3 2 2 2

1 3 0 0 4

2 1 0 0 4

3 1 1 4 4

y

x

10

“The	simplest	2PC	protocol	ever”	OTTT
(Preprocessing	phase)

2)	Pick	random	(r,	s),	rotate	rows	and	columns

0 1 2 3

0 1 4 4 1

1 2 2 2 3

2 0 0 4 3

3 0 0 4 1

s=3

r=1

11

“The	simplest	2PC	protocol	ever”	OTTT
(Preprocessing	phase)

3)	Secret	share	the	truth	table	i.e.,

Pick																										at	random,	and	let		

1 4 4 1
2 2 2 3
0 0 4 3
0 0 4 1

= -

T1

T1T2
12

“The	simplest	2PC	protocol	ever”	OTTT
(Online	phase)

u = x + r

v = y + s

, r T2 , s

T2[u,v]

output f(x,y) = T1[u,v] + T2[u,v]

“Privacy”:	
inputs	masked	w/uniform	

random	values

13

Correctness:
by	construction

T1

What	about	active	security?

u = x + r

v = y + s + e1

, r T2 , s

T2[u,v] + e2

14

T1

Is	this cheating?

• v = y + s + e1 = (y+e1) + s = y’ + s
– Input substitution, not cheating according

to the definition!

• M2[u,v] + e2
– Changes output to z’ = f(x,y) + e2
– Example: f(x,y)=1 iff x=y (e.g. pwd check)
– e2=1 the output is 1 whp (login without pwd!)
• Clearly breach of security!

Force	Bob	to	send	the	right	value
• Problem: Bob	can	send	the	wrong	shares
• Solution: use	MACs	

– e.g.	m=ax+b with	(a,b)ß F

(m,x)

(x’,m’)

(a,b)

Abort if m’≠ax’+b

m=ax+b

OTTT+MAC

u = x + r

v = y + s

T1 , r T2 , s

M[u,v]

If (M[u,v]=A[u,v]*T2[u,v]+B[u,v])
output f(x,y) = T1[u,v] + T2[u,v]

else
abort

17

MA B

Statistical	security	
vs.	malicious	Bob	
w.p.	1-1/|F|

T2[u,v],

“The	simplest	2PC	protocol	ever”	OTTT

• Optimal	communication	complexity	J

• Storage	exponential	in	input	size	L

èRepresent	function	using	circuit	
instead	of truth	table!

18

Part	1:	Secure	Computation with	a	
Trusted Dealer

• Warmup:	One-Time	Truth Tables

• Evaluating Circuits	with	Beaver’s trick	

• MAC-then-Compute for	Active	Security

Circuit	based computation

20

x5 y5
x4 y4

x3 y3
x2 y2

x1 y1

z

Invariant

• For	each	wire	x in	the	circuit	we	have	
– [x]	:=	(xA,	xB)																														//	read	“x	in	a	box”
–Where	Alice	holds	xA
– Bob	holds	xB
– Such	that	xA+xB=x

• Notation	overload:
– x	is	both	the	r-value and	the	l-value	of	x
– use	n(x)	for	name	of	x	and	v(x)	for	value	of	x	when	in	doubt.	
– Then	[n(x)]	=	(xA,xB)	such	that	xA+xB=v(x)

Circuit	Evaluation
(Online	phase)

1) [x]	ß Input(A,x)	:	
– chooses random xB and	send	it	to	Bob
– set	xA=x+xB //	symmetric for	Bob

Alice	only sends a	random bit!	“Clearly”	secure

2)	z	ß Open(A,[z]):														//	zß Open([z])	if	both get output
– Bob	sends	zB
– Alice	outputs	z=zA+zB //	symmetric for	Bob

Alice	should learn z	anyway!	“Clearly”	secure

Circuit	Evaluation
(Online	phase)

2)		[z]ß Add([x],[y])															//	at	the	end	z=x+y
– Alice	computes zA =	xA +	yA
– Bob	computes zB =	xB + yB

– We write [z]	=	[x]	+	[y]

No	interaction!	“Clearly”	secure

“for	free”	:	only a	local addition!

Circuit	Evaluation
(Online	phase)

2a)		[z]ßMul(a,[x])															//	at	the	end	z=a*x
– Alice	computes zA =	a*xA
– Bob	computes zB =	a*xB

2c)		[z]ß Add(a,[x])															//	at	the	end	z=a+x
– Alice	computes zA =	a+xA
– Bob	computes zB =	xB

Circuit	Evaluation
(Online	phase)

3)	Multiplication?		
How	to	compute [z]=[xy]	?

Alice,	Bob	should	compute	
zA + zB =	(xA+xB)(yA+yB)

=	xAyA +	xByA +	xAyB +	xByB

Alice	can	compute	
this Bob	can	compute	this

How	do	we	compute	this?

Circuit	Evaluation
(Online	phase)

3)	[z]ßMul([x],[y]):
1. Get [a],[b],[c] with	c=ab	from	trusted dealer

2. e=Open([a]+[x])
3. d=Open([b]+[y])

4. Compute	[z]	=	[c]	+	e[y]	+	d[x]	- ed
ab	+	(ay+xy)	+	(bx+xy)	- (ab+ay+bx+xy)

Is	this	secure?
e,d are	“one-time-pad”	encryptions	

of	x	and	y	using	a	and	b

Part	1:	Secure	Computation with	a	
Trusted Dealer

• Warmup:	One-Time	Truth Tables

• Evaluating Circuits	with	Beaver’s trick	

• MAC-then-Compute for	Active	Security

Secure	Computation

28

[x5] [y5]
[x4] [y4]

[x3] [y3]
[x2] [y2]

[x1] [y1]

z

+e

w

*

[w]

[w+e]

Active	Security?

• “Privacy?”
– even	a	malicious	Bob	does	not	learn	anything	J

• “Correctness?”
– a	corrupted	Bob	can	change	his	share	during	any	
“Open”	(both	final	result	or	during	multiplication)	
leading	the	final	output	to	be	incorrect	L

Problem
2)	z	ß Open(A,[z]):
– Bob	sends	zB +e
– Alice	outputs	z=zA+zB +e //	error change output	

distribution	in	way that
cannot be simulated by	
input	substition

Solution:	add MACs
2)	z	ß Open(A,[z]):
– Bob	sends	zB,	mB

– Alice	outputs	
• z=zA+zB if mB =	zB ∆A	+ kA
• “abort”								otherwise

• Solution: Enhance	representation	[x]
– [x]	=	((xA,kA,mA) ,	(xB,	kB,	mB))	s.t.
– mB =	xB ∆A	+	kA	(symmetric	for	mA)
– ∆A,∆B is	the	same	for	all	wires.

Linear	representation

• Given	
– [x]	=	((xA,kAx,mAx)	,	(yB,	kBx,	mBx))	
– [y]	=	((yA,kAy,mAy)	,	(yB,	kBy,	mBy))	
– Compute	[z]	=	(
(zA=xA+yA , kAz=kAx+kAy , mAz=mAx+mAy)	,
(zB=xB+yB ,	 kBz=kBx+kBy , mBz=mBx+mBy)	,)

• And	[z]	is	in	the	right	format	since…	
mBz =	(mBz+mBy)	=	(kAx +	xB∆A)	+	(kAy +	yB∆A)

=	(kAx +	kAy)	+	(xB+yB)∆A =	kAz +	zB∆A

Recap

1. Output	Gates:	
– Exchange	shares	and	MACs	
– Abort	if	MAC	does	not	verify

2. Input	Gates:
– Get a	random [r]	from	trusted dealer
– r	ß Open(A,[r])	
– Alice	sends Bob	d=x-r,	
– Compute [x]=[r]+d

Allows	simulator	to	
extract	x*	=	r+d*

Recap

1. Addition	Gates:	
– Use	linearity	of	representation	to	compute

[z]=[x]+[y]
2. Multiplication	gates:	
– Get	a	random	triple	[a][b][c]	with	c=ab	from	TD.	
– e	ßOpen([a]+[x]),	d	ß Open([b]+[y])
– Compute	[z]	=	[c]	+	a[y]	+	b[x]	- ed

Final	remarks

• Size	of	MACs

• Lazy	MAC	checks

Size of	MACs

1. Each	party	must	store	a	mac/key	pair	for	
each	other	party
– quadratic	complexity!	L
– SPDZ	for	linear	complexity.

2. MAC	is	only	as	hard	as	guessing	key!
kMACs	in	parallel	give	security	1/|F|k
– In	TinyOT F=Z2,	then	MACs/Keys	are	k-bit	strings	
– MiniMACs for	constant	overhead

Lazy MAC	Check

37

[x5] [y5]
[x4] [y4]

[x3] [y3]
[x2] [y2]

[x1] [y1]

z

+e

*

[w+e]

Lazy MAC	Check
1) z	ß PartialOpen(A,[z]):

1. Bob	sends	zB
2. Bob	runs	OutMAC.append(mB)
3. Alice	runs InMAC.append(kA +	zB ∆A)
4. Alice	outputs	z=zA+zB

2)	z	ß FinalOpen(A,[z]):
1. Steps	1-3	as	before
2. Bob	sends	u=H(OutMAC) to	Alice
3. Alice	outputs	 z=zA+zBif u=H(InMAC)
4. “abort”							 otherwise

Recap of	Part	1

• Two protocols “in	the	trusted dealer	model”
– One	Time-Truth Table
• Storage exp(input	size)	L
• Communication O(input	size)	J
• 1	roundJ

– (SPDZ)/BeDOZa/TinyOT online	phase
• Storage linear #number of	AND	gates
• Communication linear	#number of	AND	gates
• #rounds =	depth of	the	circuit

– …and	add enoughMACs to	get active security

39

Recap	of	Part	1

• To	do	secure	computation	is	enough	to	
precompute	enough	random	multiplications!

• If	no	semi-trusted	party	is	available,	we	can	
use	cryptographic	assumption	(next)

40

OT
b m0,	m1

mb

