
Lecture Notes for Cryptographic Computing

9. Private Set-Intersection

Lecturers: Claudio Orlandi, Peter Scholl, Aarhus University

October 23, 2023

1 Private Set-Intersection

Private Set-Intersection (PSI) is a special case of secure two-party computation which is particularly relevant
in practice, and thefeore worth studying on its own. You can of course use protocols that allow to evaluate
any function (like BeDOZa, garbled circuits, fully-homomorphic encryption, ...) to securely perform PSI,
but due to the nature of the problem some interesting special purpose protocols exist. The main ideas behind
some of these protocols are presented in this note.

PSI is the following problem: two parties (as usual lets call them Alice and Bob) own each a set of
strings and want to compute the intersection between the two sets. In a world without privacy concerns
and where everybody can be trusted Alice would simply send her list to Bob who can then compute the
intersection and give back the result to Alice. Unfortunately the real world is more complicated than that,
and there can be many reasons why Alice and Bob do not want to share their sets with each other (this
could be due to privacy concerns, privacy legislation, intellectual property concerns, etc.). Variants of this
problem appear constantly in real world applications. Some suggested readings about real world scenarios
where PSI has been/could be used: “Syge mister millioner af kroner”1 and “Private Contact Discovery”2,
Enrollment process in Chrome OS3. Another very interesting story about PSI unfolded in 2021. In August
2021 Apple announced a plan to implement PSI techniques to automatically detecting CSAM (Child Sexual
Abuse Material) on iOS devices.4. Towards this goal, they recruited some prominent cryptographers to
design and assess novel PSI protocols suited for this use case. However, the plan was retracted already in
September 2021 due to concerns expressed by advocacy groups and researchers5.

Ideal World. In the rest of the note we compare our cryptographic protocol with an ideal functionality
(trusted third party) which computes the following function: Alice inputs X = {x1, . . . , xm}, Bob inputs
Y = {y1, . . . , yn}. (We always assume that the sets are input in random order – if the elements are presented
in some natural order, this can be used to break the security of some of the protocols below). Alice is
supposed to learn the intersection Z = X ∩ Y . This ideal functionality is left slightly ambigous on purpose,
and you’re asked to reflect upon in in the following:

ä Exercise 1.

Let’s say that Alice is corrupt and wants to learn Bob’s input set. Can you see a way for Alice to
lie about her input in such a way that at the end of the ideal world execution she will learn Bob’s
input? Can you see a way to mitigate the effectiveness of this “attack”, perhaps by changing the ideal

1https://finans.dk/artikel/ECE4113068/Syge-mister-millioner-af-kroner/?ctxref=ext
2https://signal.org/blog/private-contact-discovery/
3https://security.googleblog.com/2021/10/protecting-your-device-information-with.html?fbclid=

IwAR1r1DCE35LBF6kkS6yiQq9ufl-zfZU_lusZgVDXibEuvn345WXK7w00Wb8&m=1
4https://www.apple.com/child-safety/
5https://arxiv.org/pdf/2110.07450.pdf

1

https://finans.dk/artikel/ECE4113068/Syge-mister-millioner-af-kroner/?ctxref=ext
https://signal.org/blog/private-contact-discovery/
https://security.googleblog.com/2021/10/protecting-your-device-information-with.html?fbclid=IwAR1r1DCE35LBF6kkS6yiQq9ufl-zfZU_lusZgVDXibEuvn345WXK7w00Wb8&m=1
https://finans.dk/artikel/ECE4113068/Syge-mister-millioner-af-kroner/?ctxref=ext
https://signal.org/blog/private-contact-discovery/
https://security.googleblog.com/2021/10/protecting-your-device-information-with.html?fbclid=IwAR1r1DCE35LBF6kkS6yiQq9ufl-zfZU_lusZgVDXibEuvn345WXK7w00Wb8&m=1
https://security.googleblog.com/2021/10/protecting-your-device-information-with.html?fbclid=IwAR1r1DCE35LBF6kkS6yiQq9ufl-zfZU_lusZgVDXibEuvn345WXK7w00Wb8&m=1
https://www.apple.com/child-safety/
https://arxiv.org/pdf/2110.07450.pdf


functionality?

ä Exercise 2.

Assume Alice and Bob have access to an ideal functionality/trusted third party that computes PSI.
Can they use this to compute other functions, for instance the AND or the blood-type compatibility
function?

2 An Insecure Solution to PSI

We first look at a simple solution for “private” set-intersection which is commonly used in practice. The
word “private” here is in quotes because, as you are asked to think about in the exercise, the proposed
solution is in fact not secure.

The protocol employs a cryptographic hash functions of the formH : {0, 1}∗ → {0, 1}k, that takes as input
a string of any number of bits and produce an output of fixed length. Since cryptographic hash-functions
are “one-way functions”, mapping a string x into H(y) is (unfortunately, and even in legal documents)
sometimes refered to as “one-way encryption”. The intuition behind this is that since H is “one-way” then
the most efficient way of recovering x from y = H(x) is a “brute force attack” i.e., try all possible values
of x′, compute y′ = H(x′), and check if y′ = y. The running time of this attack appears infeasible since
the input of the hash-function are long strings (in fact, strings of any length). However, this intuition is not
accurate.

The Random Oracle Model. In this and some other protocols in this note we will use hash-functions.
When analyzing protocols that use hash-functions it is often useful to resolve to the random oracle heuristic,
which informally says that the hash-function behaves like a truly random function. A random function is a
function R that maps every possible input x into a uniformly random output y. It is important to remember
that a random function is still a function, in the mathematical sense. Therefore, if you give the same input
twice to R you will receive the same output. The function is called “random” because the outputs are
random and completely uncorrelated even if a single input bit has changed. It is important to stress that
cryptographic hash functions are not random functions. It is easy to see that this is not possible, since the
description of a truly random function requires a huge amount of storage, while cryptographic hash functions
can typically be described in few hundreds lines of code.

ä Exercise 3.

Let R : {0, 1}n → {0, 1}m be a truly random function that takes n bits input and outputs m bit output.
How many bits do you need to write down the function?

However, this rough approximation allows a much easier analysis of cryptographic protocols and, in
virtually all practical applications where the random oracle heuristic has been used, no attacks have been
found that exploit the fact that hash functions aren’t truly random. There are however (contrived and
perhaps artificial, but still) counterexamples to this, in the form of protocols that can be proven secure
when instantiated using a random oracle but that are provably insecure when instantiated with any real
hash function. Thus, you will find many researchers in cryptography working hard to achieve the same goal
as some previous researchers did, but without using a random oracle. This, in many cases but not always,
comes with a decrease in the performances of the cryptographic scheme and thus in practice many RO based

2



constructions are used (from cryptocurrencies proof-of-work, to the most commonly used digital signature
schemes, etc.)

2.1 PSI via Hashing

We are now ready to describe a solution often used in practice that unfortunately provides very little security.
Here is the protocol:

Setup: Alice has an input set X = {x1, . . . , xm} and Bob has an input set Y = {y1, . . . , yn}. Both Alice
and Bob have agreed on a hash function H : {0, 1}∗ → {0, 1}k. Alice initializes Z to be the empty set.

A← B: For all j = 1..n, Bob computes bj = H(yj). Bob sends B = {b1, . . . , bn} to Alice.

Output of A: For all i = 1..m, Alice computes ai = H(xi). If ai ∈ B, Alice adds xi to Z.

It is easy to verify that the protocol produces the desired result: it clearly holds that if xi = yj for some
i, j, then H(xi) = H(yj) and therefore the output Z will contain all elements in the intersection of X and Y .
Let’s look at the converse: i.e., can we conclude that Z will only contain the elements in the intersection?
In other words, if H(xi) = H(yj), can we conclude that xi = yj? This might no be true in general, since
there could be a collision in the function i.e., two different inputs for which the function outputs the same
value (and, since the function is shrinking, collisions are guaranteed to exist). However, if we assume that H
behaves like a random function then the probability of two different inputs giving the same output is 2−k,
and therefore the probability of any pair of xi, yj with xi 6= yj giving a collision is less than nm

2k
. Using e.g.,

SHA-256 k = 256 and therefore this probability is so small that one will never observe such collisions.
We now focus on privacy: clearly Bob learns nothing. But what about Alice? Can Alice learn more

information than she is supposed to about the values in Bob’s input?

ä Exercise 4.

How can Alice break the protocol e.g., learn more information than she is allowed to from the ideal
world? Consider both the case of passive corruptions and active corruptions.

3 PSI from Diffie-Hellman

The protocol in this section overcomes the issue of the hashing-based protocol, and is based on the same prin-
ciples as Diffie-Hellman Key-Exchange. We start with a very short recap on Diffie-Hellman Key-Exchange.

3.1 Diffie-Hellman Key-Exchange

As you know the DH protocol is typically defined over a group G of prime order p generated by some element
g, where the decisional Diffie-Hellman (and therefore also the discrete logarithm and the computational
Diffie-Hellman problems) is believed to be hard, namely given (g, gα, gβ , gγ) for random α, β ← Zp, it is
hard to tell whether γ = α · β or γ is also a random value in Zp. The DH protocol proceeds as follows:

Setup: Both parties agree on a group (G, p, g) of order p generated by p, where the discrete logarithm prob-
lem (and typically other problems such as the computational or decisional Diffie-Hellman problems)
is believed to be hard.

A→ B: Alice picks a random number α← Zp, she computes A = gα and sends A to Bob.

A← B: Bob picks a random number β ← Zp, he computes B = gβ and sends B to Alice.

Finish: Alice outputs KA = Bα and Bob outputs KB = Aβ

3



It turns out that, because of the properties of exponentiation, the values output by Alice and Bob are
the same, since:

KA = Bα = (gβ)a = gαβ = (gα)β = Aβ = KB

From an abstract point of view, the reason why the DH protocol works is because it can be seen as
a combination of two commutative functions. In mathematics an operation is called commutative if the
result does not depend on the order of its operands. For instance, x+ y = y + x and therefore we say that
addition is commutative. We can also talk about commutative functions: say we have a family of functions
fi(x) indexed by some parameters i. In our case, fi(x) = xi. Then it is easy to see that for all x ∈ G,
fβ(fα(x)) = fα(fβ(x)) = xα·β . This is a more abstract way of writing down the DH protocol.

Already in the 1980s Adi Shamir (the “S” in RSA) noticed that some cryptographic functions such as
DH enjoyed commutative properties, and that this can be used for interesting applications, in a paper titled
“On the Power of Commutativity in Cryptography”. The main idea here is that the DH protocol can be
modified for the goal of checking if two group elements x and y are equal.

To check if two elements x, y are the same Alice can pick a random function α, and send a = fα(x) to
Bob. Given this, Bob picks a random function β, compute b = fβ(a) and send it back to Alice. At the same
time, Bob also sends c = fβ(y) to Alice. Now with this information Alice can compute d = fα(c) and check
if d = b.

It now holds that if x = y then c = d since

d = fα(c) = fα(fβ(y)) = fβ(fα(x)) = fβ(a) = b

and, since the functions are 1-1, the other direction holds as well i.e., if c = d then x = y (this is due to
the fact that we work in a prime order group).

We discuss privacy after showing the entire PSI protocol.

4 PSI Protocol

The above idea can be used to construct a PSI protocol. This protocol appeared for the first time in 1986
in a paper by Catherine Meadows titled “A More Efficient Cryptographic Matchmaking Protocol for Use in
the Absence of a Continuously Available Third Party”. Note that since we want to be able to run a PSI
protocol between sets of strings (not group elements), we will use a hash function H : {0, 1}∗ → G which
maps strings of arbitrary length into elements of the group G. Also here we model H as a random oracle.
We are now ready to describe the protocol:

Setup: Alice has input X = {x1, . . . , xm}. Bob has input Y = {y1, . . . , yn}. Both parties agree on a group
(G, p, g). Both parties agree on a hash function H : {0, 1}∗ → G which maps strings of arbitrary length
into group elements as described above.

A→ B:

1. Alice picks a random number α← Zp;
2. For all i = 1..m Alice computes ai = H(xi)

α;

3. Alice sends A = {a1, . . . , am} to Bob;

A← B

1. Bob picks a random number β ∈ Zp;
2. For all j = 1..n Bob computes bj = H(yj)

β ;

3. For all i = 1..m Bob computes ci = aβi ;

4. Bob sends B = {b1, . . . , bn} and C = {c1, . . . , cm} to Alice;

Finish:

4



1. Initialize Z = ∅;

2. For all j = 1..n Alice computes dj = bαj .

3. For all i = 1..m such that there is a j = 1..n such that ci = dj , Alice adds xi to Z;

4. Alice outputs Z;

We first look at the correctness of the protocol. We first argue that if xi = yj then ci = dj and therefore
all elements in the intersection are in fact included in the output. This can be seen as follows:

ci = aβi = H(xi)
αβ = H(yj)

αβ = bαj = dj

We now argue that the output contains only the elements that are in the intersection. That is, if xi 6= yj
then ci 6= dj . Using the same argument as in the hashing-based protocol, when H is a random oracle with
overwhelming probability we get that gi = H(xi) 6= H(yj) = gj . As we argued in the previous section,

exponentiation with the parameters we have chosen is a 1-1 function so gi 6= gj implies gαβi 6= gαβj .
The privacy of the protocol follows from the (generalized) DDH assumption, since we can assume that

the random oracle H outputs uniformly random group elements in G. More in detail, we can simulate the
view of Bob by picking uniformly random group elements ai by picking a different αi for each i and letting
ai = H(xi)

αi to simulate the message in the first round. Assume that Bob knows the set X, then essentially
distinguishing between the real protocol and the simulated execution corresponds to distinguishing between
the tuples

(H(x1), . . . ,H(xm), H(x1)α, . . . ,H(xm)α)

and
(H(x1), . . . ,H(xm), H(x1)α1 , . . . ,H(xm)αn)

which is an instance of the DDH problem. Some remarks: at the beginning we degined the DDH using the
more classical formulation e.g., distinguishing between (g, ga, gb, gab) and (g, ga, gb, gc) but by setting h = gb

this can be rewritten as distinguishing between (g, h, gb, hb) and (g, h, gb, hc) e.g., whether the second two
elements are the first two elements raised to the same or different exponents. Moreoever, in the classical
definition of DDH there are only two base elements (g, h) but the generalized version with more base elements
can be shown to be equivalent.

ä Exercise 5.

Think adversarially! Can you break the security of this protocol with an active attack?

5 PSI from Additively Homomorphic Encryption

We now look at a different way of performing PSI which uses an additively homomorphic encryption (AHE),
for instnace Pailler that we have studied in a previous note. We actually don’t care exactly which AHE is
being used, as long as it is possible to compute linear functions in the encrypted domain. We will assume
also that the message space of the AHE is Zp for a prime p and that there is a natural encoding of the
elements in the sets X and Y into Zp. Note that in Pailler the message space is actually ZN with N being
the product of two large primes. However such a modulo is “almost” a prime in the sense that one can
pretty much pretend that N is a prime, and if you find any element which is not invertible modulo N then
you found a non-trivial factor of N which is assumed to be hard by the factoring assumption. Thus, we can
for simplicity assume that we work modulo a prime number.

We use the notation (Gen,Enc,Dec,Eval) where (pk, sk)← Gen(1k) generates the key pair, c← Encpk(x; r)
encrypts a message x ∈ Zp into c using randomness r (if the randomness is omitted we assume it is chosen
uniformly at random), c∗ ← Evalpk(f, c1, . . . , cm) evaluates some linear function f in the encrypted domain

5



on ciphertexts ci ← Encpk(xi) and x∗ ← Decsk(c∗) retrieves the message f(x1, . . . , xm) or gives some abort
symbol ⊥. Here, by linear function, we mean that f(x1, . . . , xm) is of the form (f0 +

∑m
i=1 fixi) for some

values (f0, . . . , fm).
Recall that an AHE scheme should be correct (you can encrypt, perform evaluations in the encrypted

domain and then decrypt the right result) IND-CPA secure (encryptions hide their content) and circuit-
private (it is possible to simulate c∗ above having only access to f(x1, . . . , xm)). See the note on homomorphic
encryption for more details.

The idea of the protocol (which was first presented by Freedman, Nissim, and Pinkas in their paper
“Efficient private matching and set intersection”), is the following: Alice encodes her set X as a polynomial
Q(α) =

∏m
i=1(xi − α) in Zp. Let (q0, . . . , qm) be these coefficients of the polynomial i.e., Q(α) =

∑m
i=0 qiα

i.
Then Alice can use the AHE to send encryptions of the coefficients to Bob, who can then in turn evaluate
the polynomial on all elements of his set Y in the encrypted domain (note that this is a linear function from
Bob’s perspective since he can compute the powers of the elements in Y in the cleartext). Now, for any
y ∈ Y , the result will be 0 iff y ∈ X. To avoid leaking any information when the result is not 0, this can be
randomized further. In fact we let Bob, for each y ∈ Y , send two ciphertexts to Alice: one which contains
r ·Q(y), which is 0 iff y ∈ X (which Alice can use to check if there is a match) and then a second one which
contains s ·Q(y) + y, which is y when the first one was 0 and a random value otherwise (which Alice can use
to find out which value is matching). We describe the full protocol now:

Setup: Alice has input X = {x1, . . . , xm} ∈ Zp. Bob has input Y = {y1, . . . , yn} ∈ Zp. Both parties agree
on an AHE scheme (Gen,Enc,Dec,Eval). Alice defines a polynomial Q(α) =

∏m
i=1(xi−α) =

∑m
i=0 qiα

i.

A→ B:

1. Alice generates (pk, sk)← Gen(1k);

2. For all i = 0..m Alice computes ai = Encpk(qi);

3. Alice sends {pk, a0, . . . , am} to Bob;

A← B

1. For all j = 1..n Bob picks random numbers ri, si ∈ Z∗p;
2. For all j = 1..n Bob defines two linear functions

fj(x0, . . . , xm) = rj · (
n∑
j=0

xi · (yj)i)

and

gj(x0, . . . , xm) = yj + sj · (
n∑
j=0

xi · (yj)i)

3. For all j = 1..n Bob computes bj = Evalpk(fj , a0, . . . , am);

4. For all j = 1..n Bob computes cj = Evalpk(gj , a0, . . . , am);

5. Bob sends B = {b1, . . . , bn} and C = {c1, . . . , cn} to Alice;

Finish:

1. Initialize Z = ∅;

2. For all j = 1..n Alice checks if Decsk(bj) = 0. If so, Alice adds zj = Decsk(cj) to Z.

3. Alice outputs Z;

6



We first look at the correctness of the protocol. We first argue that if yj ∈ X then Decsk(bj) = 0 and
Decsk(cj) = yj . The first follows since, thanks to the correctness of the underlying AHE, Alice obtains

fj(q0, . . . , qm) = rj · (
m∏
i=1

(xi − y))

which is 0 since y ∈ Y implies (xi − y) = 0 for some i. Similarly, the second decryption leads to yj since
thanks to the correctness of the AHE Alice obtains

gj(q0, . . . , qm) = yj + sj · (
m∏
i=1

(xi − y))

We now argue that the output contains only the elements that are in the intersection. That is, if y 6∈ X
then the decryption of cj does not return 0. This follows simply due to the fact that in the field Zp a
polynomial of degree m has exactly m roots, so since all m elements in X are roots of Q and y 6∈ X, y can’t
be a root.

We now discuss privacy: the privacy of Alice’s set is protected by the IND-CPA property of the AHE
scheme. In particular the view of Bob can simply be simulated by sending a bunch of encryptions of 0 instead
of the ciphertexts a0, . . . , am in the first round. An adversary that can distinguish can be turned into an
adversary against the IND-CPA property of the AHE scheme.

Privacy for Bob is protected by circuit privacy of the AHE scheme. In particular the view of Alice can be
simulated (having access to her input/output X/Z) in the following way: for each value z ∈ Z a random j is
picked and (bj , cj) is simulated by producing a fresh pair of encryptions of (0, z). For all other j’s, the pair
(bj , cj) is simulated by producing two encryptions of random values. This produces the same distribution
as the values that Alice obtains by decrypting these ciphertexts the real protocol thanks to correctness (for
the pairs corresponding to a z ∈ Z) or thanks to the choices of rj , sj on Bob’s side (for all other pairs). Any
adversary that can distinguish the simulated view from the real protocol can be immediately turned into an
attacker versus the circuit hiding property of the AHE scheme.

ä Exercise 6.

Think adversarially! Can you break the security of this protocol with an active attack?

6 PSI from Oblivious Pseudorandom Function

Another common approach to PSI is to use an oblivious pseudorandom function or OPRF. The idea was
first presented by Freedman, Ishai, Pinkas, and Reingold in “Keyword search and oblivious pseudorandom
functions”. You know that a pseudorandom function F is a function that, using an uniformly random key
K, produces outputs that are indistinguishable from a random function R. In other words, an adversary
having oracle access to either FK(·) (for an uniformly random, secret K) or R(·) can’t tell the difference with
non-negligible probability. An OPRF is a special case of secure two-party computation where Alice inputs
x, Bob inputs K, and Alice learns a = FK(x) while Bob learns nothing. Given an OPRF, one can do PSI in
the following way: Alice and Bob run m OPRF protocols. In each Alice inputs a different xi ∈ X while Bob
always inputs K. Thus, Alice learns the evaluation of the PRF ai = FK(xi) for all the elements in her set.
Due to the security of the PRF, this gives her no information about the values that the PRF would return
on any other input. Now Bob sends the evaluation of the PRF on all of the elements of his set, that is for
all yj ∈ Y Bob sends bj = FK(bj). Now Alice can find the intersection looking for pairs (i, j) with ai = bj .
If the output of the PRF is large enough, since the outputs are random, the probability of collisions when
the inputs are different is negligible.

Here is the protocol description:

7



Setup: Alice has input X = {x1, . . . , xm}. Bob has input Y = {y1, . . . , yn}. Both parties agree on a PRF
F : {0, 1}k × {0, 1}k → {0, 1}k and an OPRF protocol π.

A↔ B:

1. Bob picks a random PRF key K.

2. For all i = 0..m Alice and Bob run the OPRF protocol π, where Alice inputs xi ∈ X and Bob
inputs K. At the end Alice learns ai = FK(xi) and Bob learns nothing;

A← B

1. For all j = 1..n Bob computes bj = FK(yj);

2. Bob sends B = {b1, . . . , bn} to Alice;

Finish:

1. Initialize Z = ∅;

2. For each pair (i, j) ∈ [m]× [n] such that ai = bj , add xi to Z.

3. Alice outputs Z;

We first look at the correctness of the protocol. We first argue that if xi = yj then ai = bj . This easily
follows since the PRF is a function, so it returns the same output on the same input, and that the OPRF
protocol π is correct so ai is indeed the correct value. We now argue that the output contains only the
elements that are in the intersection. That is, if xi 6= yj then ai 6= bj with overwhelming probability. This
follows the argument that we have already made several times in the notes: since the PRF behaves like a
random function, the probability of collisions is negligible in k.

We now discuss privacy: the privacy of Alice’s set is protected by the security of the OPRF protocol
π, which guarantees that Bob learns nothing (in other words, the view of the protocol π can be simulated
having access only to Bob’s input).

Privacy for Bob follows from the pseudorandomness of the PRF. Since Alice does not know the key K,
and a PRF is indistinguishable from a random function, all outputs of the PRF on inputs that she hasn’t
queried herself look uniformly random. More precisely the view of Alice is simulated by picking bj = ai for
every xi ∈ Z and bj uniformly at random for all other j.

ä Exercise 7.

Think adversarially! Can you break the security of this protocol with an active attack?

7 OPRF from OT

You can of course implement the OPRF protocol π above combining your favourite PRF and your favourite
secure two-party computation protocol. For instance, you could implement OPRF by evaluating AES inside
a garbled circuit, or using BeDOZa, fully-homomorphic encryption, etc.

However there is a singificant amount of research designing PRF functions for which very efficient OPRF
protocols exist. In fact:

ä Exercise 8.

The PSI protocol based on DH can actualy be slightly modified to become a special case of the OPRF
based protocol described above. Can you see why?

8



Hint 1: The underlying PRF FK(x) is H(x)K

Hint 2: The OPRF protocol is constructed by having Alice “blind” her input by sending ai = H(x)α.

Hint 3: Now Bob can apply his PRF on this value by computing ci = aβi
Hint 4: At this point the only difference is that in the finish phase of the DH based protocol Alice
computes dj = bαj and then checks if dj = ci, while to follow the OPRF template Alice would have

to “unblind” ci by computing ei = c
1/α
i = H(xi)

β , aka the output of the PRF using Bob’s key on her
input, and then check whether ei = ci. Since we work in a prime order group it makes no difference
whether you raise one side by α or the other by 1/α.

A different and convenient way to implement a (weak) OPRF protocol is using Oblivious Transfer (OT).
(The reason for the “weak” will be apparent shortly). Thanks to recent progress in the area of OT extension
(see project suggestions), OT is nowadays considered a very cheap primitive, and it can be used to get very
efficient PSI protocols too.

Remember that OT is a protocol where Alice inputs a bit b, Bob inputs two strings x0, x1, then Alice
learns xb and Bob learns nothing.

Here is an OT-friendly PRF construction: the key K is in fact composed of 2k random strings of length
k each i.e., K = {(K0

i ,K
1
i )}i∈k. To evaluate the PRF a = FK(x) one simply hashes together all the pieces

of the key that correspond to the bits of x i.e., a = H(Kx1
1 ,Kx2

2 , . . . ,Kxk

k ). If we assume that H is a random
oracle, it is easy to argue that as long as the adversary lacks even a single element of the key, the output
of the PRF for all inputs who correpond to that part of the key are unknown and uniformly random in the
view of the adversary i.e., assume the adversary does not have K0

7 , then the output of the PRF for each
input x such that the 7-th bit of x is 0 is unknown and random in the view of the adversary.

This PRF is clearly OT friendly: to perform a (weak) OPRF Alice and Bob run k instances of OT. In
each OT Alice uses a bit of x as input and Bob inputs the two corresponding keys. E.g., in the first OT
Alice inputs x1 and Bob K0

1 ,K
1
1 and Alice learns Kx1

1 . Now Alice can compute the evaluation of the PRF
by hashing all of these strings together. Note that this is a weak OPRF since Alice learns more than the
output of the PRF, namely she also learns some of the components of the key. This means in particular that
this OPRF protocol can only be used once for each PRF key. Consider an Alice that uses the all-0 string in
the first execution, and the all-1 string in the second execution. Now Alice knows the entire PRF key and
there is no security left.

This means that we can only use this OPRF protocol in a special case of PSI where the set of Alice is
composed of a single element. Sometimes this sepcial case of PSI is called “Private Set Membership” (PSM)
since it allows Alice with input x to learn whether x ∈ Y for a set Y owned by Bob. Others call it “Private
Keyword Search”.

It is of course possible to go from PSM to PSI again, simply by running a different PSM protocol for
each element in Alice’s set. However doing increases the communication complexity: in the OPRF-based
protocol Bob sends n PRF evaluations b1, . . . , bn. If we repeat the protocol for each element in Alice’s set
then Bob must send m · n PRF evaluations which is much larger.

One idea which is used in many modern PSI protocols based on OT is the following (we only describe
the idea informally): Alice first maps her set X of size m into a larger set X ′ of size M . Each element in X ′

is either an element of X or some empty element. This mapping is done using a method known as “Cuckoo
hashing” which we will not describe further, but you just need to know that this method is not cryptographic
and uses no private information. At the same time Bob maps his set Y of size n into M smaller sets of size
N . Call them Y1, . . . , YM . Bob also uses some form of hashing. The two kind of hashing used by Alice and
Bob guarantee that if some x ∈ X is equal to some y ∈ Y , and say x is mapped in position ` in X ′, then y
is mapped into the set Y`. Now Alice and Bob perform M PSM protocols where Alice inputs the elements
of X ′ and Bob uses the sets Y1, . . . , YM . Now the number of PRF evaluation that Bob sends to Alice are
MN . We said that M > m and N < n, but using the right parameters it is possible to make sure that
NM << nm.

9


	Private Set-Intersection
	An Insecure Solution to PSI
	PSI via Hashing

	PSI from Diffie-Hellman
	Diffie-Hellman Key-Exchange

	PSI Protocol
	PSI from Additively Homomorphic Encryption
	PSI from Oblivious Pseudorandom Function
	OPRF from OT

