
Lecture Notes for Cryptographic Computing

7. Oblivious Transfer (Active Security)

Lecturers: Claudio Orlandi, Peter Scholl, Aarhus University

October 23, 2023

In this note we discuss how to implement OT protocols which are secure against active adversaries.
First we look at a very generic technique to convert any protocol with passive security into a protocol with

active security, namely the GMW-compiler. We present how this generic technique works by giving a specific
example, namely the passive secure OT protocol from last week (the one based on the “oblivious public key
generation algorithm” OGen that produces public keys that are indistinguishable from real public keys).
Afterwards, we look at a specific construction of efficient OT with active security based on the decisional
Diffie-Helmman assumption (DDH), which is far more practical than the general approach.

1 GMW-Compiler

This is an informal presentation of the GMW-compiler. More details can be found in [Gol04, Section 7.4].

1.1 Tools

We are going to use two tools from CPT: Commitments and Zero-Knowledge Proofs of Knowledge.

Commitments: When a sender S commits to a value x for a receiver R, R should not learn any information
about x (hiding property). At the same time, when (if) S decides to reveal the committed value to R, she
cannot change her mind (binding property). For the sake of concreteness, here is a commitment protocol
based on the discrete logarithm assumption: Let (G, p, g) be a group of prime order p generated by g.

• (Public key generation, run once) R chooses a random h that generates G.

• (Commitment Phase) S wants to commit to a value x ∈ Zp. S chooses a random value r ∈ Zp,
computes c = gxhr and sends c to R.

• (Open Phase) S sends R (x′, r′). If c = gx
′
hr

′
R outputs x′ or ⊥ otherwise.

This commitment scheme is (unconditionally) hiding, because hr is a uniformly random element in G.
The commitment is (computationally) binding assuming that the discrete logarithm problem is hard in G,
because given two openings (x, r), (x′, r′) one can compute the discrete logarithm of h in base g.

Zero-Knowledge: We use ideal ZK-functionalities i.e., a model where parties have access to ideal boxes
which on common input x and private input w from one of the parties outputs R(x,w). Such a box can in
practice be replaced with any of the ZK protocols for NP-complete languages from CPT.

ä Exercise 1. (Zero-Knowledge for NP)

Look at your CPT notes and find a zero-knowledge protocol for your favourite NP language.

1



1.2 The Compiler

Passive Secure OT Protocol. Remember that we can implement passive secure OT using any PKE
scheme (Gen,Enc,Dec,OGen,OGen−1) where one can generate public keys using an oblivious generation
algorithm: Alice sends (pk0, pk1) to Bob where pkb is computed using Gen and pk1−b is computed using
OGen – the assumption is that fake and real public keys are indistinguishable, so intuitively this message
“does not leak information” about b.

In the second message Bob replies ei = Enc(pki,mi) for i = 0, 1 and Alice decrypts eb and learns mb.
Intuitively, Alice does not know the secret key for pk1−b and therefore she cannot learn m1−b (more formally,
the encryption scheme is IND-CPA secure also for obliviously generated keys).1

Attack vs. Passive Protocol. The main problem is that an actively corrupted Alice can sample both
public keys using Gen and learn both messages. Note that since the output of Gen and OGen are indistin-
guishable, Bob has no way of detecting that Alice is cheating.

First Attempt (Add ZK proof). In the first attempt at making the protocol secure against a corrupted
Alice we use an ideal ZK proof to let Alice prove that she generated at least one of the two public keys using
OGen. In other words, after sending (pk0, pk1) to Bob, the parties use the ZK box for the following relation:
the statement is x = (pk0, pk1) and the witness is w = r and the relation R accepts if

(pk0 = OGen(r) ∨ pk1 = OGen(r))

Bob learns the output of the ZK box and, in case the ZK box outputs 1 Bob continues the protocol or aborts
otherwise.

Attack vs. First Attempt. We show that the protocol is not secure yet. The attack is very subtle, and
it involves choosing Alice’s randomness r in a malicious way: Alice can 1) compute pk0 = Gen(sk0), pk1 =
Gen(sk1), 2) set r = OGen−1(pk0) and 3) use r to run the ZK proof.2

Second Attempt (Coin flip into the well). We have seen that Bob cannot let Alice choose her own
randomness. On the other hand, Bob cannot learn Alice’s randomness otherwise the protocol would be
trivially insecure. To solve this apparent dilemma, we use a tool called coin-flipping into the well : The name
comes from the following physical analogy: Bob flips a coin for Alice (so she cannot bias it) by throwing the
coin in a well placed at Alice’s feet (so she can look down) but far from Bob (so he cannot look inside). We
implement this using a commitment scheme Com in the following way:3

1. Alice chooses a random string rA and randomness s for the commitment scheme. She computes
c = Com(rA, s) and sends c to Bob;

2. Bob chooses a random string rB and sends it to Alice;

3. Alice outputs r = rA ⊕ rB and s; Bob outputs (c, rB);

At the end of the protocol r is a uniform random string (since Com is hiding Bob cannot choose rB as
a function of rA) and Alice cannot change the value (since Com is binding Alice cannot at a later point in
time change rA).

Now the second attempt at the compiled protocol works as follows: Alice and Bob run the “coin-flip into
the well” protocol described above, then Alice generates pkb = Gen(sk) and pk1−b = OGen(r) using the r

1If you are still confused about OGen,OGen−1, just think of a scheme where public keys look like uniform random elements,
such as the ElGamal encryption key.

2Note that we are using OGen−1 on a key generated using Gen, but we argued that if pk = Gen(sk) then OGen(OGen−1(pk)) =
pk. If this was not the case, this would be an easy way of distinguishing the output of Gen and OGen.

3The protocol should remind you of “coin flipping over the phone” from CPT – the only difference here is that the commitment
is never opened.

2



defined by the protocol above. Alice sends (pk0, pk1) to Bob and finally Alice and Bob use the ZK box for
the following relation: the statement is x = (pk0, pk1, c, rB), the witness is w = (r, s) and relation outputs 1
if:

c = Com(r ⊕ rB , s) ∧ (pk0 = OGen(r) ∨ pk1 = OGen(r))

In other words, Alice proves to Bob that at least one of the two public keys was computed using OGen,
using the randomness defined by the coin-flip into the well.

Attack vs. Second Attempt. The “second attempt” is essentially enough for compiling our passive OT
protocol, but in general a third step is needed. Before describing the solution, we present a different OT
protocol which is secure against passive adversaries but not active corruptions using the compiler described
above.4 Here is the modified passive protocol:

1. Alice generates pk1b = Gen(sk1) and pk11−b = OGen(r1) and sends (pk10, pk
1
1) to Bob;

2. Bob computes e10 = Enc(pk10,m0), e11 = Enc(pk11,m1) and sends (e10, e
1
1) to Alice;

3. Alice generates pk2b = Gen(sk2) and pk21−b = OGen(r2) and sends (pk20, pk
2
1) to Bob;

4. Bob computes e20 = Enc(pk20,m0), e21 = Enc(pk21,m1) and sends (e20, e
2
1) to Alice;

5. Alice outputs mb = Dec(sk1, e1b);

The protocol simply runs two copies of the original protocol one after another using the same inputs. It
is easy to see that the protocol is still secure against passively corrupted adversaries (since Alice does not
learn the secret keys corresponding to pk11−b and pk21−b). If we compile the protocol as described in “second
attempt” we get:

1. Run the coin-flip into the well protocol: Alice gets (r, s) and parses r = (r1, r2), Bob gets (c, rB);

2. Alice generates pk11−b = OGen(r1) and sends (pk10, pk
1
1) to Bob;

3. Alice and Bob run a ZK proof where Alice proves that pk10 = OGen(r1) or pk11 = OGen(r1);

4. Bob computes and sends (e10, e
1
1) to Alice;

5. Alice generates pk21−b = OGen(r2) and sends (pk20, pk
2
1) to Bob;

6. Alice and Bob run a ZK proof where Alice proves that pk20 = OGen(r2) or pk21 = OGen(r2);

7. Bob computes and sends (e20, e
2
1) to Alice;

This is clearly insecure, since nothing prevents Alice from learning the secret keys for pk10 and for pk21. In
other words, a cheating Alice can change her input from step 2 to step 5, and therefore learn both messages.

Third and Final Attempt (Commitment to Input). To complete the GMW-compiler, we ask Alice
to commit to her input bit at the beginning of the protocol and to prove that everything she is doing is
consistent with both her input and the randomness she gets from the coin flip box. To fully achieve the
definition of security, we also need Alice to prove that she knows the opening to the commitments (so that
the simulator can extract her input). The final protocol (compiled against corrupted Alice) follows:

1. Alice with input bit b chooses random rA, s, t, computes c = Com(rA, s) and d = Com(b, t). Alice sends
(c, d) to Bob;

4As many other counterexamples you have encountered in your career, this might look very artificial, but there are plenty
of “natural” protocols which suffer from the same vulnerability.

3



2. Alice and Bob engage in a ZK proof where the statement is x = (c, d), the witness is w = (b, rA, s, t)
and R(x,w) = 1 only if:

c = Com(rA, s) ∧ d = Com(b, t)

3. Bob chooses a random rB and sends it to Alice;

4. Alice defines r = rA⊕rB ; Alice chooses a random sk and computes pkb = Gen(sk) and pk1−b = OGen(r);
Alice sends (pk0, pk1) to Bob;

5. Alice and Bob engage in a ZK proof where the statement is x = (c, d, rB , pk0, pk1), the witness is
w = (b, rA, s, t) and R(x,w) = 1 only if:

c = Com(rA, s) ∧ d = Com(b, t) ∧ pk1−b = OGen(rA ⊕ rB)

6. Bob sends (e0, e1) to Alice where ei = Enc(pki,mi);

7. Alice outputs mb = Dec(sk, eb);

We prove that the protocol is secure against an actively corrupted Alice by constructing a simulator.
Remember that in the hybrid model the simulator simulates all calls to the ZK box. In other words, every
time Alice inputs something to the ZK box the simulator learns w. The simulator uses the corrupted A as
a subroutine and works as follows:

1. S receives (c, d) from A;

2. S receives w = (b, rA, s, t) from A;

3. S sends random rB to A;

4. S receives (pk0, pk1) from A;

5. S receives w′ = (b′, r′A, s
′, t′) from A;

6. If w′ 6= w or pk1−b 6= OGen(rA⊕ rB) abort. Otherwise the simulator inputs b to the ideal functionality
and learns mb;

7. The simulator computes eb = Enc(pkb,mb) and e1−b = Enc(pk1−b, 0) and outputs the view for Alice

(b, t, r, s, rB , e0, e1)

We informally argue that the view is indistinguishable from the view of a corrupted party in the real protocol.
Note that there are only two differences between the real protocol and the simulation:

1. The simulation aborts if w′ 6= w while the real protocol continues as long as Com(b′, t′) = Com(b, t)
and Com(r′A, s

′) = Com(rA, s). But if this happens then we can use A to break the binding property
of Com (thus reaching a contradiction);

2. In the simulation e1−b = Enc(pk1−b, 0) while in the protocol e1−b = Enc(pk1−b,m1−b); If the distin-
guisher succeeds then we can break the IND-CPA security of Enc in the following way:

(a) Receive pk from the IND-CPA challenger;

(b) Query the IND-CPA challenger with messages m1−b and 0 and receive a challenge ciphertext e∗;

(c) Construct a simulated view where rB = rA ⊕ OGen−1(pk) and e1−b = e∗ and feed it to the
distinguisher: if the distinguisher thinks the view is from a real protocol, guess 0 in the IND-CPA
game; if the distinguisher thinks the view is simulated, guess 1 in the IND-CPA game;

4



ä Exercise 2.

“Compile” Bob’s side of the protocol as well and argue security against a malicious Bob – write both
the protocol and the simulator and argue that the joint distributions of the view of corrupted Bob and
output of honest Alice are indistinguishable.

Final Considerations. The GMW compiler is a very useful theoretical tool: it allows to take any passive
secure protocol and turn it into an actively secure one. Moreover, all the tools used can be based on one-
way functions only, which are the minimal assumption for cryptography. All you need to construct ZK
protocols are commitments, and the next exercise shows that you can securely implement commitments
using pseudorandom generators (which in turn can be constructed based on any one-way function).

ä Exercise 3. (Commitment from Pseudorandom Generators)

This is a beautiful result by Naor who shows how to construct a secure commitment scheme based on
a pseudorandom generator G : {0, 1}n → {0, 1}3n. The protocol is the following:

Commit Phase: Alice wants to commit to a bit b.

• Bob send a random string y ∈ {0, 1}3n to Alice.

• Alice picks a random seed s ∈ {0, 1}n and computes c = G(s) ⊕ b · y (that is, c = G(s) if
b = 0 and c = G(s)⊕ y otherwise.

Open Phase: Alice sends b, s to Bob, who accepts iff c = G(s)⊕ b · y.

Is this commitment hiding? Why? Is this binding? Why?

Unfortunately, in most cases the GMW-compiler leads to very inefficient protocols. In some cases it is
possible to use to use ZK proofs that are efficient for special languages (such as the ZK proofs for discrete
logarithm-based statements that you have seen in CPT) – this require the protocol designer to choose tools
which are well compatible with each other.

2 Efficient Active Secure OT

In this section we look at a specific OT protocol based on the DDH assumption, with security against active
attacks. The protocol still follows the general blueprint of generating two public-keys in such a way that
Alice only learns the secret key for one of them, but this time to make sure that Alice does not learn both
keys even if she is actively corrupted we ask that the two keys must be generated in a correlated way.

2.1 Active OT from ElGamal

We will start by applying the GMW paradigm to the simple OT protocol based on the ElGamal encryption
scheme which we have seen in the notes for OT with passive security. We will exploit the specific properties
of keys in the ElGamal encryption scheme to greatly simplify the GMW-compiler in this special case, thus
resulting in an overall reasonably efficient protocol which does not require to use generic ZK-proofs, but only
very efficient ZK-proofs. Then, we will see some further optimizations and look at some ways in which one
might argue that the ZK-proofs might in fact not be necessary after all.

The following protocol uses the ideas first introduced in [BM89,NP01]. The protocol follows the blueprint
of the simple passive secure protocol i.e., the receiver Alice sends two public keys to the receiver Bob who

5



encrypts his messages under the two keys. However, since we want active security and we do not trust the
receiver Alice not to learn both secret keys, we introduce an additional round in which the sender Bob sends
some random challenge ∆ to the receiver. Now the receiver Alice needs to generate two public keys whose
product is equal to ∆. Intuitively, this implies that the receiver Alice cannot freely choose both keys. Here
is the resulting protocol, where (G, p, g) is a group of prime order p generated by g where the DDH problem
is hard.

Challange: Bob picks a random δ ∈ Zp and sends ∆ = gδ to Alice;

Choose: Alice (with choice bit b):

1. Samples random α← Zp;
2. Compute hb = gα;

3. Let h1−b = ∆h−1b ;

4. Send (h0, h1) to Bob;

Transfer Phase: Bob (with input messages m0,m1):

1. Abort if h0 · h1 6= ∆; Else:

2. Computes c0 = Ench0
(m0; r0) and c1 = Ench1

(m1; r1) using random r0, r1, where Enc is the
ElGamal encryption function;

3. Sends (c0, c1) to Alice;

Retrieve Phase: Alice outputs mb ← Dec(sk, cb), where Dec is the ElGamal decryption function;

In some sense, you can relate the challenge phase of the protocol to the “coin-flip” phase of the GMW
compiler, since in both cases this helps preventing Alice from freely choosing both keys. However, in the
specific case of ElGamal (thanks to the homomorphic properties of exponentiation) this can be done in a
very simple way. There are some interesting security properties that this protocol already satisfies:

ä Exercise 4.

Prove that Alice, even if she behaves dishonestly, cannot learn both the secret keys corresponding to
h0 and h1;
Hint 1: You can compute some discrete logarithm that Alice isn’t supposed to know if Alice outputs
both α0, α1 such that h0 = gα0 and h1 = gα1 . Which one?

ä Exercise 5.

Prove that Bob, even if he behaves dishonestly, cannot learn b.
Hint 1: This holds unconditionally i.e., the proof does not require any computational assumption,
but only looking at the the distribution of the message (h0, h1) as a function of b. Remember that this
depends also on ∆ which is chosen by Bob.

Unfortunately, the properties above are not enough to prove active security as we have defined earlier.
As we have seen several times already our definition requires being able to simulate the protocol having only
access to the ideal functionality, which implies being able to “extract” some inputs from the corrupt parties
that produce the same output distirbution in the ideal world. To achieve this we can enhance the protocol
by adding some ZK proofs. The added ZK proofs are highlighted like this.

6



Challange: Bob picks a random δ ∈ Zp and sends ∆ = gδ to Alice; Bob and Alice engage in a ZK proof
where the statement is x = ∆, Bob has witness w = (δ) and the protocol outputs R(x,w) = 1 to Alice
only if ∆ = gδ;

Choose: Alice (with choice bit b):

1. Samples random α← Zp;
2. Compute hb = gα;

3. Let h1−b = ∆h−1b ;

4. Send (h0, h1) to Bob;

5. Alice and Bob engage in a ZK proof where the statement is x = (h0, h1), Alice has witness w = (α)
and the protocol outputs R(x,w) = 1 to Alice only if h0 = gα ∨ h1 = gα;

Transfer Phase: Bob (with input messages m0,m1):

1. Abort if h0 · h1 6= ∆; Else:

2. Computes c0 = Ench0(m0; r0) and c1 = Ench1(m1; r1) using random r0, r1, where Enc is the
ElGamal encryption function;

3. Sends (c0, c1) to Alice;

Retrieve Phase: Alice outputs mb ← Dec(sk, cb), where Dec is the ElGamal decryption function;

Note that the ZK proofs that we use in this protocol can be implemented much more efficiently than the
generic ones used in the GMW-compiler. If you have followed CPT, you know about the simple and efficient
Schnorr protocol for proving knowledge of discrete logarithms (Challenge step). Using an OR-proof, the ZK
proof for the (Choose) step is essentially equivalent to two DL-proofs.

We now prove security against a corrupted Alice in the above protocol using the following simulator:
(Challenge) The simulator S acts as an honest Bob in the challenge step, sends a value ∆ to Alice and
simulates the ZK proof. (Choose) Then the simulator receives (h0, h1) from Alice. Moreover the simulator
extracts α from the ZK proof. Call b′ the value such that hb′ = gα. (Transfer) Then the simulator checks
that ∆ = h0 · h1 like an honest Bob would do and aborts if this is not the case. If the test does not fail,
the simulator inputs b′ to the ideal functionality and receives mb′ . Now, the simulator sends to encryptions
(c0, c1) where cb′ is computed like an honest Bob would do with message mb′ , while c1−b′ is computed as an
encryption of 0. This concludes the simulation.

By inspection, the only difference between a real protocol and a simulated one is the way the ciphertext
c1−b′ is computed. For ease of notation assume that b′ = 0 from now on and therefore the only difference is
the encryption c1 performed under public key h1.

Assume an adversary can distinguish between the real protocol and the simulated execution. Intuitively
this means the adversary is distinguishing the ciphertext c1. Therefore we can try to use this adversary
inside a reduction that breaks the security of the ElGamal encryption scheme. This is not immediate as it
might seem. To see why, note that when we reduce the security to the ElGamal encryption, the security
experiment of ElGamal will send us a public key, let’s call it pk, but that the encryption c1 that Alice
distinguishes inside the OT protocol is performed under h1 which is generated during the protocol. Luckily,
exploiting again the linear properties of the ElGamal keys this is not an issue. At a high-level, the reduction
works as follows: the reduction gets pk from the ElGamal security experiment and then sets ∆ = pk for the
OT adversary in the (Challenge) step. In the (Choose) step, the reduction receives h0, h1 and α s.t., gα = h0
from the ZK proof. Now the reduction sends (0,m1) to the ElGamal challenger and receives an encryption
c∗ = (c∗1, c

∗
2) = (gr,m∗pkr) from the ElGamal challenger (where r is of course unknown to the reduction and

where m∗ is either 0 or m1). Now the reduction can turn this encryption under pk into an encryption of the
same message under h1 by computing

c1 = (c∗1, c
∗
2) · (1, (c∗1)−α)

7



Doing the math this is equal to

c1 = (gr,m∗pkr) · (1, g−α·r) = (gr,m∗(pk · h−10 )r) = (gr,m∗hr1)

Which is a valid encryption of m∗ under key h1, thus matching the expected view of the OT adversary.
Now, the reduction will guess that c∗ was an encryption of m∗ = 0 if the OT adversary says that he is
playing against a simulator, and an encryption of m∗ = m1 if the OT adversary says that he is playing in
the real protocol. The advantage of the reduction in breaking ElGamal is the same as the advantage of the
OT adversary in distinguishing between the simulated protocol and the real one.

ä Exercise 6.

Prove security against an actively corrupt Bob.

2.2 Optimizing the OT Protocol

The previous protocol can be optimized using the following ideas: 1) It is enough to send one value h instead
of both h0, h1. Instead of letting Bob check that the two keys satisfy the right relation, we can ask Bob to
compute the other key from from h,∆. 2) There is no need to use ElGamal encryption in the transfer phase.
Using a principle similar to Diffie-Hellman Key-Exchange, we can let Alice and Bob compute symmetric
keys combining the exchanged group elements and exponents, and use a symmetric (shorter and faster) way
to encrypt instead. The resulting protocol is as follows, and is essentially the “Simplest OT” protocol as
described in [C015]:

Challange: Bob picks a random δ ∈ Zp and sends ∆ = gδ to Alice;

Choose: Alice (with choice bit b):

1. Pick random α← Zp;
2. Compute h = ∆bgα, K = ∆α;

3. Send h to Bob;

Transfer Phase: Bob (with input messages m0,m1):

1. Compute K0 = hδ,K1 = (h/∆)δ

2. Computes c0 = EncK0
(m0) and c1 = EncK1

(m1) using a symmetric encryption scheme.

3. Sends (c0, c1) to Alice;

Retrieve Phase: Alice outputs mb ← DecK(cb);

Correctness follows from inspection (Note that in the Choose phase Alice generates h in such a way that
α knows the discrete logarithm of h if b = 0 or the DL of h/∆ if b = 1. Thus K = Kb.) and has the
same security properties as the basic scheme (Alice cannot learn both keys and Bob cannot learn b, even
if they misbehave). Note that the protocol here is presented without the ZK proofs. This is because this
protocol can be shown to be secure as it is against malicious adversaries, if one is willing to make some
additional assumptions about the interal working of the adversary. More in detail, the protocol is secure if
we assume that the adversary only performs operations in the group using the regular group operations and
nothing else. In other words, the adversary only knows how to multiply group elements together and how
to raise them to exponents he knows, but the adversary cannot perform any other operation on the group
elements that exploits their representation. For instance, the adversary cannot compute the XOR of two
group elements, since this is not the group operation. This restricted model for the adversary can be justified
since for most groups, especially when looking at groups based on (the right kind of) elliptic curves, there

8



are actually almost no examples of attacks which exploit the structure of the group representation, and the
best attacks are “generic” in the sense that they only use the group operations.

This restricted model, typically known as the “generic group model” or the “algebraic group model”
has some very useful properties when trying to prove security of cryptographic protocols. For instance,
if we assume that the adversary is generic, if we send the adversary some group elements g1, . . . , gn and
the adversary outputs some group element h, then it must be the case that h =

∏n
i=1 g

xi
i for some values

x1, . . . , xn known to the adversary. But if the adversary knows these values we can assume that the simulator
also can extract these values from the adversary, and we can therefore save all the ZK proofs from the above
protocol: now, by definition, when a corrupt Bob sends ∆, then we know that Bob knows ∆’s discrete
logarithm δ, which we can therefore extract directly from Bob without having to add any ZK proof. This
overall intuition was properly studied and formalized in [ABKLX21].

ä Exercise 7.

Can you come up with an active secure OT protocol based on other encryption schemes? RSA? Pailler?
You are allowed to use ZK proofs, but try to only use ZK proofs for simple algebraic statements (like
knowledge of discrete logs, etc.)

References
[BM] Mihir Bellare, Silvio Micali

Non-Interactive Oblivious Transfer and Applications
CRYPTO 1989. https://link.springer.com/chapter/10.1007/0-387-34805-0_48

[ABKLX21] Michel Abdalla, Manuel Barbosa, Jonathan Katz, Julian Loss, Jiayu Xu
Algebraic Adversaries in the Universal Composability Framework
ASIACRYPT 2021. https://eprint.iacr.org/2021/1218

[BM89] Mihir Bellare, Silvio Micali
Non-Interactive Oblivious Transfer and Applications
CRYPTO 1989. https://link.springer.com/chapter/10.1007/0-387-34805-0_48

[C015] Tung Chou and Claudio Orlandi
Non-Interactive Oblivious Transfer and Applications
LATICRYPT 2015. https://eprint.iacr.org/2015/267

[HL10] Carmit Hazay, Yehuda Lindell
Efficient Secure Two-Party Protocols
http://lib.myilibrary.com.ez.statsbiblioteket.dk:2048/Open.aspx?id=300348

[Gol04] Oded Goldreich
Foundations of Cryptography. Volume II: Basic Applications
Cambridge University Press, 2004

[NP01] Moni Naor, Benny Pinkas
Efficient Oblivious Transfer Protocols
SODA 2001. http://www.pinkas.net/PAPERS/effot.ps

[PVW08] Chris Peikert, Vinod Vaikuntanathan and Brent Waters
A Framework for Efficient and Composable Oblivious Transfer
CRYPTO 2008. http://eprint.iacr.org/2007/348

9

https://link.springer.com/chapter/10.1007/0-387-34805-0_48
https://eprint.iacr.org/2021/1218
https://link.springer.com/chapter/10.1007/0-387-34805-0_48
https://eprint.iacr.org/2015/267
http://lib.myilibrary.com.ez.statsbiblioteket.dk:2048/Open.aspx?id=300348
http://www.pinkas.net/PAPERS/effot.ps
http://eprint.iacr.org/2007/348

	GMW-Compiler
	Tools
	The Compiler

	Efficient Active Secure OT
	Active OT from ElGamal
	Optimizing the OT Protocol


