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1 Before you start

Before reading this note, it is recommended to read the formal definition of security against semi-honest
adversaries (or passive security) from [HL10, Sections 2.1-2.2].

Here are the references for the material covered in this note:

1. Examples of reductions between different functionalities (from [HL10, Sections 2.5.1-2.5.2]).

2. One Time Truth Tables: see also [IKMOP13, Section 3.2].

3. The BeDOZa protocol: see [BDOZ11, Section 3.1] (for the arithmetic case) and [NNOB12, Section 3]
(for the Boolean case). In this note we only focus on the (simplified) version for passive security.

4. Most of the topics in this note are also covered in this video1.

2 One-Time Truth Table – Passive Security

We start with (probably) the simplest protocol for secure two-party computation in the presence of a trusted
dealer D. The protocol allows two parties to compute any function of their inputs. In more details we are
going to compute a function

f : {0, 1}n × {0, 1}n → {0, 1}

(In this note we are going to treat {0, 1}n and [0, . . . , 2n − 1] interchangeably. Sometimes it will be useful
to remember that the input is a string of bits, so that each bit can be referenced individually, while other
times it will be useful to be able to add/subtract the inputs modulo 2n). The function is represented by
a truth table (i.e., a matrix) T ∈ {0, 1}2n×2n where T [i, j] = f(i, j) (that is, one of the inputs selects a
row in the matrix, and the other selects a column in the matrix). Our goal (or the “ideal functionality”)
is the following: Alice inputs x ∈ {0, 1}n, Bob inputs y ∈ {0, 1}n. At the end of the protocol Alice learns
z = f(x, y) while Bob learns nothing. Here is how the protocol works:

The dealer: The dealer D performs the following operations:

1. Choose two shifts r ∈ {0, 1}n and s ∈ {0, 1}n uniformly at random;

2. Choose a matrix MB ∈ {0, 1}2
n×2n uniformly at random;

3. Compute a matrix MA such that

MA[i, j] = MB [i, j]⊕ T [i− r mod 2n, j − s mod 2n]

4. Output (r,MA) to Alice and (s,MB) to Bob;

1https://www.youtube.com/watch?v=jJ5d-EUq-DY
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The protocol: Having received (r,MA) and (s,MB) from D, A and B with input x and y:

1. Alice computes u = x + r mod 2n and sends it to Bob;

2. Bob computes v = y + s mod 2n and zB = MB [u, v] and sends (v, zB) to Alice;

3. Alice outputs z = MA[u, v]⊕ zB ;

It is clear that the protocol produces the right result. By construction:

z = MA[u, v]⊕ zB = MA[u, v]⊕MB [u, v] = T [u− r, v − s] = T [x, y] = f(x, y)

We want to argue that the protocol is secure against passive adversaries. To do so, we need to construct
a simulator S that, given the input/output of the functionality, produces a simulated view which is indis-
tinguishable from the one in the “real world” (in the protocol execution). Remember that the view of a
party contains the party’s input, internal randomness (if any – note that in this protocol Alice and Bob do
not need to make any random choices) and all messages received during the protocol (the messages that the
party sent do not need to be included in the view, since they are a function of the other values above). So
the views in this protocol are:

viewA = {x, (r,MA), (v, zB)}

viewB = {y, (s,MB), u}

Since this is a deterministic functionality and we are only looking at semi-honest corruptions, we can
look at the distribution of the output and the views separately (see also [HL10, page 21]).

The simulator for Alice works as follows (the simulator for Bob is easier and is left as exercise):

1. The simulator gets as input x ∈ {0, 1}n and z ∈ {0, 1};

2. Sample uniformly a random zB ∈ {0, 1}, a random v ∈ {0, 1}n and a random r ∈ {0, 1}n;

3. Construct a matrix MA in the following way: for all (i, j) 6= (x+r, v), choose MA[i, j] ∈ {0, 1} uniformly
at random. Finally define MA[x + r, v] = z ⊕ zB ;

It is easy to argue that the view of Alice in the real protocol and in the simulated execution has identical
distribution: In both cases the values r, v and MA[i, j] for all (i, j) 6= (u, v) are chosen uniformly at random;
the pair (MA[u, v], zB) is in both cases a pair of random bits such that MA[u, v]⊕ zB = z. This can be seen
as a simple application of the “principle of deferred decision” (it does not matter in which order the random
elements are sampled before they are revealed).

Pro and Cons of OTTT: The OTTT protocol has the following properties:

Perfect (unconditional) security.

Optimal round complexity (each party only sends one message).

(Essentially) optimal communication complexity (total of 2n + 1 bits. There is a protocol that does
it with only 2n bits, and it can be proven that one cannot go below that for “interesting” functions,
see [IKMOP13]).

The main problem with the protocol is that the storage complexity (measured in the number of bits
that parties need to receive from the dealer) is exponential in n2, therefore the protocol can only be
used for inputs of very small size.

2Note that one could generate MB (or MA) using a pseudorandom generator. In this case (at the price of going from
unconditional to computational security) the storage complexity of one of the two parties can be made small, but the other
party still needs exponential storage.
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3 The BeDOZa protocol – Passive Security

In this section we describe the BeDOZa protocol with passive security3 which is a protocol for secure two-
party computation which allows to securely evaluate circuits (as opposed to truth tables) in the presence of
passive adversaries and uses a trusted dealer.

Circuit Notation: We will consider a circuit C : {0, 1}n × {0, 1}n → {0, 1}, where Alice inputs the first n
bits and Bob inputs the second n bits. We consider circuits which are composed of four different kind
of gates: two unary gates (XOR with constant, AND with constant), and two binary gates (XOR of
two wires, AND of two wires). Gates have unbounded fanout (that is, the output of one gate can be
fed as input to any number of gates) and we do not allow cycles (that is, gates are ordered in layers
and a gate in layer i can only receive inputs from gates with layer < i).

Invariant: The BeDOZa protocol works on secret shared bits. For each wire in the circuit which carries a
value x ∈ {0, 1}, we write [x] (x in a box ) to say that the value x is shared between Alice and Bob,
in such a way that neither Alice nor Bob has any information about x.4 Formally when we write [x]
we mean that Alice knows a bit xA and Bob knows a bit xB such that (xA, xB) is a pair of uniform
random bits under the constraint that xA ⊕ xB = x.

Input Wires: For each of the n wires belonging to her, Alice samples a random bit xB ← {0, 1}, sets
xA = x ⊕ xB and sends xB to Bob. We write also [x] ← Share(A, x). (The protocol for Bob’s input
wires is symmetric to this).5

Output Wires: If Alice (resp. Bob) is supposed to learn the value associated to some wire [x], Bob sends
xB to Alice which outputs x = xA ⊕ xB . We write (x,⊥) ← OpenTo(A, [x]). If both Alice and Bob
are supposed to learn an output, we write x ← Open([x]) as a shortcut for (x,⊥) ← OpenTo(A, [x])
and (⊥, x)← OpenTo(B, [x]).

XOR with Constant: We write [z] = [x] ⊕ c to denote the subprotocol for securely evaluating a unary
gate which takes as input x, and outputs z = x⊕ c for some constant bit c ∈ {0, 1}6:

1. Alice defines zA = xA ⊕ c;

2. Bob defines zB = xB ;

AND with Constant: We write [z] = c · [x] to denote the subprotocol for securely evaluating a unary gate
which takes as input x, and outputs z = c · x for some constant bit c ∈ {0, 1}:

1. Alice defines zA = c · xA;

2. Bob defines zB = c · xB ;

XOR of Two Wires: We write [z] = [x] ⊕ [y] to denote the subprotocol for securely evaluating a binary
XOR gate which takes as input x, y and outputs z = x ⊕ y, where both x, y are wires in the circuit
and might therefore be unknown to both Alice and Bob:

3Many variants of this protocol for passive security have appeared in the literature before [BDOZ11], and in previous editions
of this course the protocol was called the GMW protocol to credit the seminal work on multi-party computation of Goldreich,
Micali and Widgerson. However, this generated confusion with a concept which will be introduced later in the course, namely
the GMW compiler, thus the change of name.

4Note that we are abusing of notation, since when we write x we sometimes refer to the name of the wire/variable (the l-value
of x) while sometimes we refer to the value associated to the wire/variable x (the r-value of x). When notation is unclear, we
will use n(x) to refer to the name of x and v(x) for the value associated to x.

5Note that in the OTTT protocol the description of the protocol for Alice and Bob was completely deterministic (i.e., all
their randomness was chosen by the trusted dealer), while in this protocol – as described here – parties sample some internal
randomness as well. In the active secure version of BeDOZa instead we will let the trusted dealer sample the randomness used
during the input phase instead.

6By “constant” here we mean that c is part of the description of the function, therefore c is known to both Alice and Bob –
when c = 1 this is a NOT gate.
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1. Alice defines zA = xA ⊕ yA;

2. Bob defines zB = xB ⊕ yB ;

AND of Two Wires: We write [z]← EvalAND([x], [y]) to denote the subprotocol for securely evaluating
a binary AND gate which takes as input x, y and outputs z = x · y, where both x, y are wires in the
circuit and might therefore be unknown to both Alice and Bob. The protocol requires the presence of
a trusted dealer D.

1. The dealer outputs a random triple [u], [v], [w] with w = u · v.7

2. Run subprotocol: [d] = [x]⊕ [u];

3. Run subprotocol: [e] = [y]⊕ [v];

4. Run subprotocol: d← Open([d]);

5. Run subprotocol: e← Open([e]);

6. Run subprotocol: [z] = [w]⊕ e · [x]⊕ d · [y]⊕ e · d;8

Putting things together: We assume that the circuit has L wires, denoted by x1, . . . , xL and that there
is only one output wire, namely xL. The complete protocol for securely evaluating a circuit C works
as follows: First Alice and Bob run the subprotocol Share for each of the 2n input wires in the circuit;
Then, for each layer in the circuit i = 1..d Alice and Bob securely evaluate all gates at that layer using
the subprotocols for XOR and AND gates (since a gate can only get inputs from gates at lower levels,
all gates at layer i can be evaluated in parallel); Once the value associated to the output wire is ready,
run the (x,⊥)← OpenTo(A, [xL]) subprotocol;

Analysis: Since we are in the semi-honest case and we only considered deterministic functions, it is enough
to prove that the output is correct and that the view of a corrupted party can be simulated. Correctness
follows from inspection of the protocol: the evaluation of the unary gates and the XOR gates is trivially
correct and the evaluation of the AND gates is correct since:

w ⊕ e · x⊕ d · y ⊕ e · d = uv ⊕ (xy ⊕ vx)⊕ (xy ⊕ uy)⊕ (xy ⊕ vx⊕ uy ⊕ uv) = xy

It is possible to simulate the view of a corrupted Alice having only access to her input/output in the
following way. The simulator works as follows:

1. For each invocation of [xi] = Share(xi, A), the simulator (behaving like a honest Alice) samples random
xi
B and sets xi

A = xi ⊕ xi
B ;

2. For each invocation of [xi] = Share(xi, B), the simulator includes in the view a message from Bob with
a random bit xi

A ← {0, 1};

3. When [xk] = [xi]⊕ [xj ] is invoked, the simulator (behaving like a honest Alice) computes xk
A = xi

A⊕x
j
A;

(Simulation for XOR with constant and AND with constant is done similarly);

4. When [xk] ← EvalAND([xi], [xj ]) is invoked, the simulator 1) adds three random bits uA, vA, wA to
the view of Alice; 2) simulates the XOR subprotocol as described above; 3) simulates d ← Open([d])
and e← Open([e]) by sampling and adding random bits dB , eB to the view of Alice.

7That is, the dealer output (uA, vA, wA) to Alice and (uB , vB , wB) to Bob where (uA, uB , vA, vB , wA, wB) are chosen
uniformly at random in {0, 1} under the constraint that wA ⊕ wB = (uA ⊕ uB) · (vA ⊕ vB). Note that the dealer can send all
of these tuples before the protocol starts, and he only needs to know how many AND gates there are in the circuit.

8NB: The exact descriptions of how to implement the three kind of operations run in step 6 (i.e., “[x]⊕ [y]”, “c · [x]”, and
“[x]⊕ c”) were given above.
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5. When xL ← OpenTo(A, [xL]) is invoked, the simulator adds to Alice’s view the value xL
B = xL ⊕ xL

A

(the simulator knows xL since in the passive case the simulator is given the input and output of the
functionality; the simulator knows xL

A because of the invariant and the simulation of the XOR/AND
gates).

We argue that the view produced by the simulator is perfectly indistinguishable from the view of a
corrupted party in a protocol execution. Note that Share and EvalXOR are simulated exactly as in the
protocol. In EvalAND dB , eB are chosen at random instead of being the output of the computation of Bob
– but in the protocol dB , eB are obtained as dB = xB ⊕ uB and eB = yB ⊕ vB . Since uB , vB are uniformly
random (in the protocol), the distribution does not change. Finally, xL

B is distributed exactly as in the
protocol since in the protocol xL

B ⊕ xL
A = xL, and in the simulation xL is constructed as xL

B = xL
A ⊕ xL.

Pro and Cons of BeDOZa: The BeDOZa protocol has the following properties:

Perfect (unconditional) security.

Generic dealer: the dealer only needs to know an upper bound on the number of AND gates in the
circuit, and nothing more about the computed function.

(Essentially) optimal computational complexity (a small constant factor higher than computing the
circuit in the clear).

Round complexity proportional to the number of layers of the circuit (all gates belonging to the same
layer can be evaluated in parallel).

Communication complexity proportional to the size of the circuit (more exactly: 1 bit for each in-
put/output wire and 4 bits for each AND gate).

Storage complexity proportional to the size of the circuit (more exactly, each party receives 3 bits from
the dealer for each AND gate).

4 Exercises

The exercises contain hints that have been “redacted” so they will not appear when you print this file. If you
get stuck, you can use the hints. Can you figure out how? Congratulations! You are smarter than someone
working at the Ministry of Defense of the UK (https://www.information-age.com/nuclear-secrets-leaked-in-redaction-gaffe-1618828/)

ä Exercise 1. (Mandatory Assignment)

Implement a secure two-party protocol for the blood type compatibility function using the one-time truth
table protocol. Since the goal of the exercise is to better understand the protocol (not to build a full
functioning system), feel free to implement all parties on the same machine and without using network
communication. For example, you could implement the dealer, Alice and Bob as three distinct classes
in Java and then let them interact in the following way:

Dealer.Init();

Alice.Init(x,Dealer.RandA());

Bob.Init(y,Dealer.RandB());

Bob.Receive(Alice.Send());

Alice.Receive(Bob.Send());

z = Alice.Output();
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ä Exercise 2. (“Secure” Computation?)

Can you come up with a “secure” protocol (against passive adversaries) for the bit XOR function,
where only Alice learns the output, according to the definition in [HL10]?
Hint 1: Don’t give up so quickly!
Hint 2: The protocol is: Bob sends his input to Alice, who outputs the XOR of the two bits. The
exercises is not over! You still need to argue why this is “secure”.

ä Exercise 3. (Passive Security is Easy!)

Can you come up with a secure protocol for commitment, coin-flip and zero-knowledge proof of
knowledge that only need to be secure against against passive adversaries according to the definition
in [HL10]?
Hint 1: Even the committer/prover is passive! Hint 2:
Hint 2: Passive adversaries do not deviate from protocol specification!

ä Exercise 4. (The dealer in BeDOZa)

In the BeDOZa protocol Alice and Bob need help from a dealer which outputs (uA, vA, wA) to Alice and
(uB , vB , wB) to Bob where (uA, uB , vA, vB , wA, wB) are chosen uniformly at random in {0, 1} under
the constraint that wA ⊕ wB = (uA ⊕ uB) · (vA ⊕ vB).
Suppose instead they have access to a dealer which provides outputs from a simpler distribution, namely
it outputs random (rA, sA) to Alice and random (rB , sB) to Bob such that rA ⊕ rB = sA · sB .
Could Alice and Bob complete the EvalAND subprotocol using this dealer as well? (Perhaps using
using multiple samples from the second distribution?)
Hint 1: Expand wA ⊕ wB = (uA ⊕ uB) · (vA ⊕ vB) and see which parts can be computed by Alice
alone, Bob alone, and which ones need to use inputs from both parties.

ä Exercise 5. (Arithmetic Circuits)

These notes contain the BeDOZa protocol for securely evaluating Boolean circuits against passive
corruptions. It is sometimes better to compute over arithmetic circuits (that is circuits where each wire
carries a value in some ring, say Zm, and gates can either be additions or multiplications modulo m).
Try to generalize the BeDOZa protocol from Z2 to Zm. Check that it works!
Hint 1: In the Boolean case ⊕ is its own inverse i.e., (a⊕ b)⊕ b = a, but when working with m > 2
you need to use + or − in the right places to make the unwanted terms go away.

ä Exercise 6. (Think Adversarially!)

How insecure is the OTTT protocol against malicious adversaries (that is, adversaries that do not
follow the protocol and send arbitrary messages?). How many attacks can you find? Can you break
any interesting security property? Are there properties which are still preserved, even against malicious
adversaries?
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ä Exercise 7. (Think Adversarially!)

How insecure is the BeDOZa protocol against malicious adversaries. How many attacks can you find?
Can you break any interesting security property? Are there properties which are still preserved, even
against malicious adversaries?
Hint 1: You can break privacy, but it depends on the function f . Consider f(x, y) = y · (y ⊕ 1).
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